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Abstract 
   

The main challenge of cluster analysis is that the 
number of clusters or the number of model parameters is 
seldom known, and it must therefore be determined before 
clustering. Bayesian Information Criterion (BIC) often 
serves as a statistical criterion for model selection, which 
can also be used in solving model-based clustering 
problems, in particular for determining the number of 
clusters. Conventionally, a correct number of clusters can 
be identified as the first decisive local maximum of BIC; 
however, this is intractable due to the overtraining 
problem and inefficiency of clustering algorithms. To 
circumvent this limitation, we proposed a novel method 
for identifying the number of clusters by detecting the 
knee point of the resulting BIC curve instead. Experiments 
demonstrated that the proposed method is able to detect 
the correct number of clusters more robustly and 
accurately than the conventional approach. 
                         
1. Introduction  
  

One of the main difficulties for cluster analysis is that, 
the correct number of clusters for different types of 
datasets is seldom known in practice. However, most of 
clustering algorithms are designed only to investigate the 
inherited grouping or partition of data objects according 
to a known number of clusters. Thus, identifying the 
number of clusters is an important task for any clustering 
problem in practice albeit it must be faced with many 
operational challenges. A tractable way for cluster 
analysis is to ask the end user to input the number of 
clusters in advance, which needs the expert domain 
knowledge over the underlying datasets. On the other 
hand, many statistical criteria or clustering validity 
indices have been investigated in the sense of 
automatically selecting an appropriate number of clusters. 
Obviously, the clustering validity criteria must be 
carefully defined not only according to a presumably 
known data distribution of clusters but also to the 
specification of the input datasets. More importantly, 

those clustering validity criteria serve as a tool to measure 
the goodness of groups in clustering as well as a principle 
for selecting the “best” number of clusters meanwhile. A 
number of efforts have been made in the previous 
literatures, e.g., Milligan and Cooper [1] presented a 
comparison study over thirty validity indices for 
hierarchical clustering algorithms whereas Dimitriadou et 
al [2] conducted their comparison study over fifteen 
validity indices for the case of binary data.  

However, one class of clustering methods, model-
based clustering, has received considerable attention 
recently, in a framework of the estimation of Bayesian 
likelihood or the estimation of Bayesian parameters, e.g. 
the well-known EM algorithm. The model-based 
clustering combines both the advantage of the optimal 
model parameter estimation in model selection and the 
advantage of selecting the most appropriate number of 
mixture components [3]. In particular the mixture model 
approach allows for an approximation of Bayes factor [4] 
even if clusters are in distinctively different models. 
Thanks to Banfield and Raftery’s intuitive approximation 
of twice logarithm of Bayes factor, called “AWE”, the 
number of clusters can be identified directly according to 
the classification likelihood. The approximation of Bayes 
factor can be extended to a more general principle, 
Bayesian Information Criterion (BIC) [5-8] for the sake 
of selecting an appropriate number of model parameters 
or the number of clusters.  

In order to seek an optimal number of clusters 
particularly for a large-scale clustering problem, one 
could apply an intuitively heuristic approach instead of 
using an optimization algorithm. A remarkable example is 
that of Thorndike [9] who identified the optimal number 
of clusters such that a flattening of the clustering validity 
curve or a knee point can be observed. In contrast to 
finding the maximum or minimum of clustering validity 
index, the knee point detection algorithm is more practical 
because most of clustering validity indices are 
monotonically decreased or increased [10] with the 
number of clusters. Clearly, seeking a maximum or 
minimum is intractable. The monotony of clustering 
validity indices hinges on the fact that the likelihood of 
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the training data is undesirably improved when the 
number of clusters is increasing, which mainly results in 
overtraining problem if the number of parameters is too 
large. Of course, one could apply the successive 
difference of the clustering validity index, to seek the 
optimal number of clusters. However, most of those 
heuristic decision approaches are highly subjective or 
heuristic. For instance, the first decisive local maximum 
of BIC can be viewed as a good number of clusters but 
the resulting number of clusters is often inaccurate due to 
inefficiency of clustering optimization procedures. To 
overcome these difficulties, we propose a simple knee 
point detection algorithm for BIC in automatic detection 
of the number of clusters. The knee point detection 
algorithm is quite intuitive and heuristic since the 
clustering validity curve monotonically decreases or 
increases after the knee point. For simplicity of 
determining the number of clusters, we re-formulate BIC 
in the framework of partitioning based clustering. 

The rest of the paper is organized as follows. The 
problem formulation is given in Section 2.1. The BIC 
method in partitioning based clustering is renewed in 
Section 2.2, and the proposed method is introduced in 
Section 2.3. The experiments on the proposed method are 
presented in Section 3. The results on different kinds of 
datasets demonstrate that the proposed method improves 
the original BIC knee point detection algorithm. 
Conclusions are drawn in Section 4. 
             
2. Proposed Method 
           
2.1 Preliminary 

                               
The problem of determining the number of clusters is 

defined here as follows: 
Given a fixed number of clusters m≥2, and a specific 

clustering algorithm, find the clustering that best fits for 
the data set with different parameters. The procedure of 
identifying the best clustering scheme involves the 
following parts:  

• Select a proper cluster validity index. 
• Repeat a clustering algorithm successively for 

number of clusters, m from a predefined 
minimum to a predefined maximum. 

• Plot the “number of clusters vs. criterion 
metric” graph and select the m at which the 
partition appears to be “best” in terms of the 
optimization on the criterion. 

Based on this procedure, one can identify the best 
clustering scheme. The problem remains that how to 
select the optimal m for the validity index. Mean square 
error (MSE), for example, exhibits a decreasing monotony 
with respect to the number of clusters, m, whereas some 
clustering validity indices may embrace a local maximum 
or local minimum in the curve. Regardless of the 
monotony of the underlying clustering validity curve, in 

most cases, a significant local change could be observed 
on the curve, which is the so-called knee or jump point.  

Locating the knee point in the validity index curve has 
not been well-studied. A straightforward approach is to 
compute difference of successive index values, for 
example, calculating the difference between previous and 
current values of the index. Other method, such as L-
method [11] has been proposed to find the knee point of 
the curve by the boundary between the pair of straight 
lines that most closely fit the curve in Hierarchical / 
segmentation clustering. For some indices, the local 
maximum or minimum value will be considered as the 
knee point. However, if there are several local maximal 
(minimal) values, the challenge is to decide which one is 
the most suitable one to indicate the information of the 
data sets. According to the experimental results in our 
study, BIC indicates a good estimation in determining the 
number of clusters in partitioning based clustering. To 
improve the accuracy of BIC, a good knee point detection 
method is needed instead of taking the first local 
maximum.  
            
2.2 Bayesian Information Criterion (BIC) 
             

The Bayesian Information Criterion (BIC) has been 
successfully applied to the problem of determining the 
number of components in model-based clustering by 
Banfield and Raftery [12]. The problems of determining 
the number of clusters and the clustering problem are 
solved simultaneously.  

We derive the formula of BIC based on Kass and 
Wasserman [13].  

1( ) log
2

BIC L m nθ= −                                          (1) 

where, L(θ) is the log-likelihood function of data θ  
according to each model, m is the number of clusters and 
n is the size of the data set. Under the identical spherical 
Gaussian assumption, the maximum likelihood estimate 
for the variance of the ith cluster is:  
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where Ci represents the ith cluster or is the ith cluster 
center, ni is the size of the ith cluster and xj is the jth point 
in the cluster. For m clusters, the sum of log-likelihood of 
each cluster is as follows.  
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Suppose that pr(xj) is the probability of the jth data 
point in the data sets, and the variable d is the dimension 
of the data set. Then, log-likelihood of data belonging to 
the ith cluster can be derived as follows:  
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To extend the log-likelihood of each cluster to all of 
the clusters, the fact is applied that the log-likelihood of 
the whole data set is the sum of the log-likelihood of the 
individual cluster. Therefore the total log-likelihood will 
be: 
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We use this BIC formula globally for each number of 
clusters in a predefined range. In general, m should be as 
small as possible according to [5]. Their strategy for the 
number of clusters is that a decisive first local maximum 
indicates strong evidence for the model size. However, 
according to our experiments, a good knee point detection 
method would be a better choice for deciding which local 
maximum has the strongest evidence for the correct 
number of clusters. 
         
2.3   Knee Point Detection of BIC 
         

In this section, we analyze the drawback of knee point 
detection on BIC by using the first decisive local 
maximum as the number of clusters. Successive 
difference on BIC is also analyzed. We then propose our 
knee point detection method on BIC called DiffBIC 
method in partitioning based clustering.  

 
2.3.1 Existing Methods. There is a slight option 
difference on how to find the optimal value of BIC for 
cluster validity except the first decisive local maximum. 
However, our experimental findings indicate several local 
maximums in the BIC curve (see Fig.1) due to the fact 
that the clustering performance is highly subjective to the 
initial clustering guess or partition. Hence, the resulting 
first decisive local maximum could often be the local 
maximum approaching or very close to the initial guess. 
This can be observed in the BIC curve for dataset s3 in 
Fig.1: the first decisive local maximum is achievable at 
m=4 albeit the right number of clusters m is 15 where 
there is a more significant change of BIC (not a 
conventional knee point). The difference values of BIC 
for dataset s3 and s4 also reveal that detection of knee 
point for BIC may be faced with the same challenge as the 

first local decisive maximum. A more objective method of 
detecting the knee point of BIC curve is therefore 
demanded. 

Several alternative techniques on knee point detection 
methods have been proposed in the literature. Successive 
difference of two adjacent points is one possible way and 
it can be calculated as: SD(n) = BIC(n-1)+BIC(n+1)-
2*BIC(n); where n is the current point. However, it can 
locate the knee point only locally as it considers only 
several successive points in the curve as shown in Fig.1. 
According to the figure, we can find the highest 
differences for each dataset with successive difference at 
the points mopt(s1)=15, mopt(s2)=15, mopt(s3)=4 and 
mopt(s4)=5. The detected points offer the most significant 
changes of BIC but without taking into account of BIC 
value itself. Eventually, this method is not always reliable 
in particular when a local maximum close to the initial 
guess can be quickly obtained by clustering algorithms. 

    

 
Figure 1. The original BIC curve (up) for datasets s1 to 
s4 obtained by RLS clustering algorithm [14] and 
successive difference of BIC (down).  

2.3.2 DiffBic Function. We propose to combine both the 
information on BIC and the number of clusters m. The 
value of original BIC contains the information about the 
quality of clustering for each number of clusters. The 
knee point of BIC has to be the one that reflects this 
information overall. Two main features should be 
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satisfied i.e. the detected knee point can indicate the most 
significant change, and be as large as possible. The 
proposed method is designed based on these two features. 

Given the range of m: [mmin, mmax] where mmax>> mopt 
to contain the optimal m, obtain BIC value for each m. 
Normalize the obtained BIC value into the range of [mmin, 
mmax] to get C1. Then C1 is divided by the number of 
clusters m getting the value Cm. This is further 
normalized into the same range of [mmin, mmax] to obtain 
C2. With the normalizations, C1 and C2 are under the same 
range. BICmax and BICmin in (6) represent the maximal and 
minimal value among the BIC values. Besides, Cmmax and 
Cmmin are respectively the maximal and minimal value 
among the Cm values. 

C1 = (mmax − mmin) (BIC−BICmin)/( BICmax − BICmin) 

Cm = C1  ⁄ m 
C2 = (mmax − mmin) (Cm − Cmmin ) /(Cmmax− Cmmin)      (6) 

The value of Cm calculates the ratio between the 
normalized BIC value and the number of clusters, which 
reveals the global trend of the BIC curve as is shown in 
Fig.2. Each Cm value represents the angle α, which makes 
tan(α)=C1/m=Cm. Whenever there is a local maximum in 
the original curve, angle α will indicate a difference.  

 

 
Figure 2.  How the value of Cm (Normalized BIC value 
divided by the number of clusters) reveals the global trend. 
Normalized BIC curve (up); Result of Cm (down). 

 

We consider two cases that the original BIC curve has 
globally increasing trend (case1) or decreasing trend 
(case2). Basically, a large BIC value is preferred to be the 
optimal m. In case1, the value depends on mmax, 
meanwhile in case2, on the other side, it depends on mmin. 
In case1, C2 reaches several local maximums. When C2 
find the point that indicates the most significant change, it 
will not have an increasing trend anymore. The largest 
value of C2 is considered as the most significant change. 
Thus, the sum of C1 and C2 will be calculated to reach the 
maximum information. In the other case, the original BIC 
has a decreasing trend, which makes C2 to show a 
decreasing trend. As both of C1 and C2 are decreasing, the 
absolute subtraction of them is calculated to reach the 
most significant change. In both cases, two is divided in 
order to set the DiffBic value into the same range of C1. 

1 2

1 2

( ) / 2............. 1
| | / 2............ 2
C C case

DiffBic
C C case

+⎧
= ⎨ −⎩

                           (7)  

 
2.3.3 Max Refinement. The range of m: [mmin, mmax] is 
user-defined, which is assumed to contain the optimal m. 
Basically the most reliable way is mmax = n, n is the size of 
the dataset. However, mmax will be set as a more 
reasonable value in practice because of the heavy 
computation when mmax = n. In this paper, we define the 
mmax large enough, and then a max refinement is carried 
out. 

There will be intersections across the C1 and DiffBic 
value in (7) because of the normalizations whenever the 
trend of the original BIC is increasing or decreasing. The 
positions of the intersection are affected by the setting of 
mmin and mmax. We assume that mmax is large enough to 
contain mopt. With the assumption that mmax ≥ mopt, the 
first intersection m=max’ where max’≠ mmin and max’ > 
mopt exists. The value of max’ can be thought as the 
refinement to mmax value. With this max refinement, the 
range of m can be reduced to [mmin, max’]. There are two 
reasons for max refinement designing. One is that the 
original range setting is arbitrary; and the refined range is 
a smaller range that already contains the optimal value. 
The other is that BIC has an increasing or decreasing 
trend with the increment of the number of clusters, the 
points after the intersection has less information. Refine 
the original range [mmin, mmax] into smaller one [mmin, 
max’] can make the decision accurately.  

Finding the maximum value of DiffBic in the new 
range: [mmin, max’], the optimal number of clusters is 
obtained by the proposed method. As Fig.3 shows, we get 
the second case for datasets s1 to s4. For each dataset, an 
intersection can be found to refine the max value. The 
maximum value of the proposed method is thought as the 
optimal number of clusters. According to this, the results 
from the proposed method is: mopt(s1)= 15, mopt(s2)= 15, 
mopt(s3)= 15 and mopt(s4)= 15.  
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Figure 3. The results come from the proposed method for datasets s1 to s4 (left to right, up to down) with RLS clustering 
algorithm. Normalized BIC is represented as C1 in the context; DiffBic is the result from the proposed method.    

 

   
s1 s2 s3 s4 

   
a1 Iris Yeast Control 

Figure 4. Two-dimensional visualization of the datasets for experiments. 
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We have further experiments on the proposed method 
with more datasets here. Both artificially generated 
datasets and real datasets are tested. The two 
dimensional view of the datasets is shown in Fig.4.  

 
3. Experimental Results 

 
The datasets s1 to s4 are generated with varying 

complexity in terms of spatial data distributions, which 
have 5000 vectors scattered around 15 predefined 
clusters with varying degrees of overlapping. The 
dataset a1 is generated in 2-dimensional Gaussian 
distribution. Datasets Iris, Yeast and Control are 
obtained from the UCI Machine Learning Repository. 
Iris contains 3 classes of 50 instances each, where each 
class refers to a type of iris plant. Yeast is originally 
used for protein localization sites prediction. The class 
distribution from a rule-based expert system indicates 
the optimum number of clusters as 10. However, as the 
size of 6 clusters among them is too small, our 
clustering algorithms reach 5 clusters as the optimal 
clustering. Dataset Control contains 600 examples of 
control charts synthetically generated by the process of 
Alcock and Manolopoulos (1999). There are six 
different classes of control charts.  

The data sets can be found here: 
• s1-s4, a1:  http://cs.joensuu.fi/~isido/clustering/ 
• Iris, Yeast, Control:  

  www.ics.uci.edu/~mlearn/MLRepository.html 

Table 1. Data sets with their properties including the 
size of the dataset, dimension, the number of clusters 
and how they have been generated. 

Data Set Size Dimension No. of 
Clusters Generated 

s1-s4 5000 2 15 synthetic 
a1 3000 2 20 synthetic 
Iris 150 4 3 real 

Yeast 1484 8 5 real 
Control  600 NA 6 real 

As cluster validity criterion is related to clustering 
algorithm, we test the revised BIC on both K-means and 
Randomized Local Search (RLS) [14] clustering 
algorithms. The RLS method is run using 5000 
iterations and 2 K-means iterations within the algorithm. 
Meanwhile, in the K-Means clustering algorithm, 20 
iterations are used for synthetic datasets (s1-s4, a1), 200 
iterations for Iris and Yeast, and 500 iterations for 
control dataset. The proposed knee point detection 
method is then applied to the calculated BIC value. The 
results from different datasets by the proposed method 
with K-means and RLS clustering algorithms are 
summarized in Fig.5 and Fig.6. 

The results from different datasets with RLS 
clustering algorithm are all visible and correct. 
However, the results from the K-means clustering 
algorithm are not good for real datasets even if the 
number of iterations is well-tuned. The datasets Control 
gets the result mopt(control)=5. This can not prove the 
failure on our knee point detecting method; the actual 
reason is the K-Means clustering algorithm itself. Table 
2 shows the results from different knee point detection 
methods on BIC. 

 
4. Conclusions 
 
Determining the number of clusters is one of the most 
difficult problems in cluster analysis. We re-formulate 
BIC in partitioning based clustering, which shows good 
prospect for determining the number of clusters. The 
original method to decide the knee point of BIC is to 
take the first decisive local maximum, which is not 
accurate enough according to our experiments. To 
improve the BIC for getting more reliable results, a new 
knee point detecting method of BIC is proposed in this 
paper. As the proposed method takes advantage of the 
information of criterion and number of clusters, it is 
reliable to get the optimal results. Experimental results 
on different kinds of data sets also prove its 
effectiveness.  

Table 2. The number of clusters obtains from different knee point detection method on BIC. BIC represents the first local 
maximum. SD is the successive difference on BIC. Cm is the value that gets from the normalized BIC value divided by the 
number of clusters, taking the maximum as its optimal value. DiffBic represents the proposed knee point detection method. 

Method 
Data Sets 

s1 s2 s3 s4 a1 Iris Control Yeast 
BIC 15 4 4 5 3 3 2 2 
SD 15 15 4 5 3 17 2 2 
Cm 15 14 4 14 3 NA 2 2 
KP 15 15 15 15 20 3 6 5 
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Figure 5. Results on different datasets (a1, Iris, Yeast, Control from left to right, top to down) with RLS clustering 
algorithm; Normalized BIC is represented as C1 in the context; DiffBic is the result from the proposed method. 
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Figure 6. Results on different datasets (a1, Iris, Yeast, Control from left to right, top to down) with K-Means clustering 
algorithm; Normalized BIC is represented as C1 in the context; DiffBic is the result of the proposed method. 
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