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ABSTRACT
Nowadays, a large part of the multimedia data on the Internet is 
generated with devices that automatically annotate them with 
location information However, free-form content on websites does 
not implicitly contain any geographical information. This is the biggest 
challenge for building a location-aware search engine. In this paper, 
we study how to extract location-aware information from the web. The 
key challenges are to detect location from a web page and to extract 
relevant information related to that location. We detect locations 
by identifying postal addresses using freely available gazetteers. 
Additional information for summarising the search results are titles 
and representative images, which we mine from the content using 
simple rule-based approaches utilising the structure of web pages. 
This information can be used to personalise search results for mobile 
users so that the results are relevant to their location.

1.  Introduction

The volume of geospatial data has been increasing over the years as more and more devices 
have access to the Internet and positioning technology (Patterson, Muntz, and Pancake 
2003). A large part of these multimedia data is nowadays generated with devices that auto-
matically annotate them with location information, but free-form content, such as that found 
on websites, does not implicitly contain any geographical information. Mobile search engines 
allow users to find information anytime and anywhere. However, search performance is 
influenced by the type of mobile device and the user location, profile, previous activity, time 
of year and social network (Liu, Rau, and Gao 2010).

Location is an important factor in personalising web search because the content of a 
website often has relevance only to a limited area (Bennett et al. 2011). Location-based search 
aims at finding a business or place around a specific geographical location. This is imple-
mented by search engines that support geographical preferences (Markowetz et al. 2005). 
The relevance of a search result depends on the distance between the user-specified location 
and the location of the service (Yokoji, Takahashi, and Miura 2001). Location-based search 
changes the search from web-oriented to service-oriented, which makes it a more challeng-
ing task for two reasons. First, it is not enough just to find a relevant web page for the user, 
as in traditional web search. Instead, we also need to detect the location that the web page 
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is relevant to. Second, we need to extract a summary of content from the web page, such 
as the title and images, but, in the case of service directories, we also need to detect the part 
belonging to that particular service. This requires both identification of geographical data 
and automatic information extraction from web pages.

Locations can be embedded explicitly into the HyperText Mark-up Language (HTML) as 
geographical coordinates (latitude and longitude) usually in three different ways: as meta 
tags named geo-tags,1 as <address> tags. or as plain text. According to previous studies 
(Vänskä 2004; Ahlers and Boll 2008a) and our own experiments, very few web pages contain 
explicit locations. Instead, locations are mostly embedded implicitly as geographical refer-
ences in many ways such as postal addresses, place names, description in natural language 
and driving directions. Identifying geographical references and associating a website with 
one or multiple locations is a process called geo-referencing. Particular cases of geo-refer-
encing are geo-tagging, which means the assignment of geographical coordinate metadata 
to multimedia such as photos, videos and websites, and geo-coding, which means finding 
geographical coordinates from other types of location data, such as street addresses or 
postal codes.

A typical workflow of a location-based search application is shown in Figure 1. Using the 
location of the user and a set of keywords, the application detects and validates locations, 
identifies service information, and presents a ranked list of results consisting of the following: 
short text summary (title), link, image thumbnails, address and distance.

In this paper, we present a location-based framework for a search engine, summarise our 
choices for its components, and discuss their advantages and disadvantages. We extract 
locations by analysing the text content of the web pages. To summarise the detected entities, 
we extract a title and a representative image for each search result. The framework integrates 
the processes of geo-referencing, geo-coding and geo-tagging into a unified location-based 
system that can extract information relevant to the user’s location. This information should 
be close to the user’s location, relate to the keywords provided by the user and extracted 

Figure 1. Web mining using location and keyword.
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from the content of the websites found by standard search engines. The prototype of the 
proposed framework is implemented in the Mopsi platform, see (Fränti, Kuittinen et al. 2010; 
Fränti, Tabarcea et al. 2010). Besides location-based search, Mopsi offers tools for collecting, 
processing and displaying location-based data, such as photos and GPS trajectories, along 
with social media integration.

2.  Related work

Location-aware search is an alternative approach for traditional location-based services using 
pre-collected data. An example is a location-based search engine for the Singapore area 
(Tsai 2011) that finds services using the location of the user, and filters for area names, build-
ing names, landmark types, business names and business categories using a catalogue of 
businesses and landmarks. Our approach does not rely on pre-collected databases of services 
but is based on a real-time search and automatic detection of locations.

According to Wang et al. (2005), there are three types of locations that can be inferred 
from websites: provider location (where the owner of the page is), content location (where 
the content is pointing to) and serving location (the area for which the website is relevant). 
Provider location is detected using a set of heuristic rules, such as referred frequency, URL 
levels and spatial positions of the address strings in the website. Content locations are 
obtained by extracting all geographical references using probabilities to measure the reli-
ability of each source. These are calculated using power and spread of a geographical refer-
ence (Ding, Gravano, and Shivakumar 2000), and using country-state-city location hierarchy 
in the form of a geographic tree. Serving location is found in a similar way but additionally 
using links between the pages and user visit logs. We focus on detecting the content 
location.

To make a search engine location-aware, the key challenge is to detect the location that 
the website relates to. Websites are designed to be browsed by humans and contain geo-
graphical references that are complex, informal, diverse, ambiguous and difficult to be pro-
cessed by a computer (Shi and Barker 2011). There is no widely used standard on how to 
code the location on a web page, and the concept of the location itself is not uniquely 
defined. It can be exact geo-coordinates (latitude and longitude), their approximation by 
GPS, postal addresses that have the accuracy of the houses, area, town or country, or even 
driving directions or plain text description. However, one can adopt an unsupervised 
approach to extract the implicit locations from websites by several different strategies, as 
outlined in Hu, Lim, and Rizos (2006): text matching using gazetteers, rule-based linguistic 
analysis, text matching based on regular expressions, identification of host location and 
reading geographic meta tags. We use text matching based on gazetteers and regular expres-
sions because most of the locations from web pages are postal addresses. According to 
Mikheev, Moens, and Grover (1999), detecting addresses is more accurate when using a 
gazetteer.

Early methods of assigning locations to web resources in studies by (Buyukokkten et al. 
1999) and (Watters and Amoudi 2003) relied on identifying the host location, which is the 
location of the owner or the administrator of the website. These researchers assigned a single 
location for each website by querying its Whois2 records for the address and telephone 
number of the network administrator. This method was expanded on by (McCurley 2001) 
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who additionally used hyperlinks, meta tags and postal addresses as sources for location 
information.

Geo-tags and <address> tags are the most direct way to define locations for a website, 
but they are rarely used. However, postal address is the de facto standard to define geo-
graphical references on websites (Goldberg, Wilson, and Knoblock 2007). They can be con-
verted into locations by geo-coding services. We use two freely available geo-coding services: 
OpenStreetMap and a publicly available geo-coded database for Finland. Despite the occa-
sional unavailability of the service and data inaccuracies, free geo-coding services such as 
OpenStreetMap or Geonames3 are best suited for applications that require near-accurate 
(but not necessarily exact) geo-tagging because they have extensive coverage (Florczyk et 
al. 2010). Other applications, such as public health or underground cable locations (safe-to-
dig.com, kaivuulupa.fi), would require much higher precision of data.

One of the biggest challenges when identifying postal addresses is the ambiguity of 
terms, which can be between locations with the same name (geo/geo ambiguity) or between 
location names and non-geographical entities (geo/non-geo ambiguity) (McCurley 2001). 
Both types of ambiguity can be resolved using heuristic rules. The algorithm in the work of 
(Zhang et al. 2011) attempts to resolve the geo/geo ambiguity using an algorithm similar 
to Google’s Page Rank (Page et al. 1999). In our case, ambiguity is not a problem because 
we detect complete postal addresses, which, in most of the cases, are unique within the 
same country.

There are several approaches to detecting addresses, such as training a classifier (Viola 
and Narasimhan 2005) or syntactic pattern recognition (Can et al. 2005), but most of the 
address detection methods, such as (Cai, Wang, and Jiang 2005; Silva et al. 2006; Borges et 
al. 2007; Lee, Liu, and Miller 2007; Ahlers and Boll 2008b; Leung, Lee, and Lee 2013) and ours 
roughly follow the same process. Firstly, address elements are identified using regular expres-
sions and ontologies, which, in most cases, are gazetteers with hierarchical relationships 
between elements. Second, address candidates are built. They can be aggregations of the 
detected elements, graphs or blocks of elements. Finally, the address candidates are validated 
using a pattern matching method, such as regular expression validation, gazetteer matching 
or graph matching. The patterns can be built either by training or using a set of rules, rela-
tionships and heuristics.

There have been several works in the literature on location-aware search. A personalised 
mobile search engine enhanced by capturing users’ preferences in the form of click-through 
data is proposed in the work of (Leung, Lee, and Lee 2013). The users’ preferences are cap-
tured in the form of concepts. These are modelled as ontology and separated into location 
concepts and content concepts. The search engine also considers users’ GPS location and 
uses content and location entropies to balance between the content and the location 
concepts.

(Hess, Magagna, and Sutanto 2014) assigned location tags to websites with a precision 
up to street level. They extracted words from the websites and checked them against free 
gazetteers (Geonames and OpenStreetMap) using the Aho–Corasick string matching algo-
rithm (Aho and Corasick 1975). Validation and disambiguation of the locations were done 
using all the geographical references found from the text content to create a context. The 
method was reported to outperform a commercial solution (Yahoo! Placemaker) despite 
detecting only 60% of the locations correctly. The authors derived three practical applications 
from their work: location-aware web surfing through a mobile device, browsing using nearby 
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54   ﻿ A. TABARCEA ET AL.

tags and location tagging through social networks. Our address detection approach is similar 
to theirs because we also used free gazetteers and a fast string matching algorithm, which 
in our case is a prefix tree search.

A system that is capable of handling geographical queries of the triplet of <theme><spa-
tial relationship><location> is described in the work of (Purves et al. 2007). It handles spatial 
relationships such as inside, near, north-of, south-of and geo-references. The system stores 
and indexes websites using both pure text and spatial indexes. Using both types of indexes 
enables a full set of geographical query operators, graphical query formulation and ranking 
of results according both to conceptual and to spatial criteria. Geographical ontologies are 
used for query expansion and for disambiguating the queries and the extracted locations. 
The system relies on web crawling and pre-processed indexes. Locations are detected using 
a gazetteer, which is enhanced with context rules. Additional name lists are used for 
filtering.

Another system that can be used in the named entity recognition and disambiguation 
steps, was described by (Qin et al. 2010). It builds and updates a set of locations, and uses 
them to provide evidence of geographical contextual.

The method by (Schmidt et al. 2013) identifies companies from websites by detecting 
their address data using patterns and gazetteers from free sources such as OpenStreetMap. 
The websites are pre-processed by removing HTML tags, extracting text, line splitting, 
tokenising and part-of-speech tagging. Single attributes (postal codes, city names, street 
names, street numbers, company names) are identified on the pre-processed data using reg-
ular expressions and heuristic rules. The attributes are then aggregated starting with the 
company name. We use a similar method to aggregate address elements, but we decided 
on a different method to identify service and company names. We use scoring based on 
visual appearance and distance from the detected address. Furthermore, our goal is more 
general, as we do not restrict to company websites, although most of our results still came 
from businesses and companies.

A knowledge-based web-mining tool is described in the work of (Li et al. 2012). The 
method adopts a geospatial ontology, a rule-based screening algorithm, and inductive 
learning for automated location retrieval. They customised address detection to discover 
the locations of emergency service facilities; other detected addresses were discarded. Our 
method is simpler, as it does not require any training or learning. Compared to (Li et al. 2012), 
we aim at a broader scope for our application without limiting its use to a certain type of 
service.

A method for extracting postal addresses and associated information using sequence 
labelling algorithm was introduced by (Chang and Li 2010). Unlike most existing methods, 
they do not use gazetteers to detect postal addresses. Instead, they detect addresses by 
pre-processing data with a named entity recognition tool, extracting features from text, and 
training models using support vector machines and conditional random fields. Pattern min-
ing was applied to identify the boundaries of address blocks and to extract the associated 
information for each detected address. The associated information is defined as information 
that refers to the detected addresses and allows for better comprehension.

The method in the work of (Dou and Hu 2012) extracts product data from company 
websites, but it applies to our application as well. The leaf nodes of the DOM tree are analysed 
and used to generate semantic information vectors for the other nodes, which, in turn, are 
used to generate a maximum repeating semantic vector pattern. The generated pattern is 
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used to detect product data regions and to build product templates, which are used along 
with a semantic tree matching technique to identify product information. This method is 
effective and can also be applied to detect locations and associated information, but it is 
limited to websites that contain a list of items with a clear and repeating pattern. We also 
use the leaf nodes of the DOM tree, but our approach is different: we mark the nodes that 
contain location information and detect company data by ranking the nearby nodes based 
on how close and how visually different they are to the node that contains location 
information.

An alternative to the DOM tree is the visual block tree-based approach of extracting data 
records proposed by (Liu, Meng, and Meng 2010). The visual block tree (Cai et al. 2003) is 
composed of rectangular data blocks. These data blocks are filtered, clustered and regrouped 
to identify data records. The visual block tree is built using the visual features that humans 
can capture from websites; it uses the layout of the page and attributes such as fonts and 
background colour. The data records are extracted using the structure of the visual block 
tree and the visual features of its elements.

3.  Location-aware framework

We next present the overall framework of our location-aware search engine, present our 
choices for the components, and discuss their advantages and disadvantages. The framework 
is summarised in Figure 2, and it contains the following components:

• � Website provider
• � Web page parser
• � Address detector and validator
• � Title and image extraction
• � Distance-based ranking
• � Summarisation (form output)

3.1.  Website provider

The proposed framework is based on a meta-search approach similar to that of (Leung, Lee, 
and Lee 2013). The Website provider uses external search engines such as Google and Yahoo 
to perform the actual search. It takes the search keyword provided by the user and submits 
it to external search engines for results. We gather the results that are not location-aware 
and post-process them by extracting locations from the provided websites. The advantage 
of the meta-search engine is that it does not require web pages to be crawled and indexed; 
instead it combines results from multiple search engines, which allows us to find relevant 
websites and allows users to access more information. The drawback of the meta-search is 
that it depends on the relevance of other search engines and is vulnerable to changes in the 
external search engines we use.

3.2.  Web page parser

The web pages are downloaded and converted by our Webpage parser into tree representa-
tions based on the approach of (Tabarcea, Hautamäki, and Fränti 2010). Contrary to existing 
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56   ﻿ A. TABARCEA ET AL.

methods, which concentrate merely on extracting plain text, we also extract titles and rep-
resentative images using the same DOM tree representation of the provided websites. This 
allows better control of where to search for the additional information related to the detected 
locations, especially in websites that contain more than one location (see Figure 3).

3.3.  Address detector

We find locations by detecting postal addresses. Our approach is similar to that of (Qin et al. 
2010) as we rely on gazetteers in the address detection step, but we also use contextual 
information in order to detect the entities that are related to the detected locations. The 
address elements are identified individually and then aggregated in order to build an address 
candidate, similar to the method of (Schmidt et al. 2013). The difference is that we start the 
aggregation with the street name, and we detect the additional elements in the words close 
to the street name. We identify address elements using a gazetteer and regular expressions, 
and we validate the detected addresses using the gazetteer to find their respective 
coordinates.

Figure 2. Location-based search framework.
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3.4.  Validation with Gazetteer

We optimise the gazetteer search using a fast prefix-tree based on text search, which was 
tested against heuristic and brute-force approaches, and our search provided better results 
(Tabarcea, Hautamäki, and Fränti 2010). This approach is lightweight, as it does not require 
training, but it is dependent on the quality of the gazetteer data and the addresses in the 
web pages. In this paper, we further extend the previous solution, which was limited to only 
two locations (Finland and Singapore) by interfacing it with the largest available open-source 
mapping and gazetteer service, OpenStreetMaps.4 In this way, our application can detect 
addresses in most countries, which improves its practical applicability. The drawback is that 
the use of gazetteers does not allow spelling mistakes, name variations or abbreviations.

Because our approach is service-oriented, we need complete addresses that can be con-
verted into coordinates, not just the areas, towns or other more general descriptions. An 
advantage of this is that disambiguation is not a big problem because a complete address 
has very small chance of repeating in different areas and no chance of representing a non-ge-
ographical entity. In respect to existing commercial services, such as Google Maps,5 Bing 
Local,6 or Yahoo Local,7 our goal is the same: to provide location-relevant information to the 
user. However, these applications are mainly based on commercial databases, user input 
and pre-collected data resulted from web crawling, and they only exploit the results in real-
time web search to a limited extent. In information retrieval, a location-based search engine 
is an alternative approach to traditional location-based services based on fixed databases. 
It aims to utilise the location of the user but without restriction to any fixed location-based 
service.

In summary, we integrate the processes of geo-referencing, geo-coding and geo-tagging 
into a unified location-based system that is able to provide relevant information close to the 
user’s location. The implementation is not limited to specific geographical areas, although 
it is dependent on the accuracy of the gazetteer we use. For this purpose, we use a gazetteer 

Figure 3. Example of the DOM tree representation of a part of a web page. All components can be found 
in this part: address, title and representative image.
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built using OpenStreetMap data, which is available for most countries. Our system is flexible 
as it can detect locations from any set of web pages that contain postal addresses. It can be 
easily customised to work with web crawlers or custom search engines, not just the results 
of an external search engine.

3.5.  Title and image extraction

We extract a title and representative images for each detected location to provide a brief 
summary of the search results in a way similar to the work of (Chang and Li 2010). The Title 
and image extractor uses the detected addresses and the DOM tree representation to identify 
candidate titles and images related to the address. For the image extraction, we use the 
solution presented by (Gali, Tabarcea, and Fränti 2015) as such. For the title extraction, we 
use the solution presented by (Gali, Mariescu-Istodor, and Fränti 2017a) with a few improve-
ments. We do not associate a single location to a single website but allow the same page to 
contain multiple locations. This is typical for service directory web sites. For this purpose, we 
classify the web pages either as single, brand or service directories. A modified title selection 
is used in case of service directories. The scoring of the candidate titles is presented in the 
work by (Gali and Fränti 2016).

3.6.  Ranking and summarisation

All result data are aggregated to compose the search results, which are sorted using dis-
tance-based ranking and displayed as a list. We rank these results by the distance from the 
user’s location. The search results are general and not limited to a theme or a type, such as 
products or companies. Adequate data are then displayed to the end user, as shown in Figure 
4. In the mobile applications, the summarisation is simplified due to space limitations.

To sum up, most of the building blocks of our system have been studied as their own 
papers (Tabarcea, Fränti, and Manta 2009; Tabarcea, Hautamäki, and Fränti 2010; Gali, 
Tabarcea, and Fränti 2015; Gali, Mariescu-Istodor, and Fränti 2017a, 2017b). The main focus 

Figure 4. Web interface of Mopsi search.
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of this paper is to describe the overall system, study how each of the components are con-
structed, and discuss their practical applicability. Our methods are implemented in the real 
prototype system Mopsi (Figure 4). There are also independent technical contributions, 
including

• � an added classifier for detecting the web page functionality;
• � improvements to the method for title extraction from service directories;
• � a more detailed study of the prefix tree solution; and
• � new results on location inclusion in web pages and address detection.

4.  Extracting location-aware information

4.1.  Mopsi prototype

We have implemented a prototype meta search engine that works in the Mopsi platform on 
the web (cs.uef.fi/mopsi/) and on smart phones (Fränti, Kuittinen et al. 2010). The system 
takes search keyword and user location as input, and outputs an ordered list of search results 
that contains the following information: rank, title, web link, address, representative images 
and distance to the location (see Figure 1). In the next section, we define all components 
needed to implement this. The search workflow is detailed in Figure 2.

The search starts by finding websites that are relevant to the location and the keywords 
provided by the user. This is done by the website provider, which takes the user location as 
input and converts it to a city using our gazetteer based on OpenStreetMap data. The city 
and the keywords are then input to a conventional search engine as <keyword, city> phrase 
and outputs a list of websites found. The city is added to increases the probability for the 
search result being related to the area of the user. Otherwise, we would need to process a 
much higher number of websites that are relevant by their content but not by their location. 
This is an unavoidable drawback of the meta-search approach.

For the search, we use two different search engines: BOSS API by Yahoo!8 and Custom 
Search by Google,9 as they allow third parties to build search products using the infrastruc-
ture of their search engines. The website provider relies on the relevance of the results of 
the external search engine and uses the keyword and the city provided by the user, and it 
does not expand the query in any other way. To keep the computation reasonable, only the 
first 10 results of the query are the output of this module.

The websites are processed by the data extraction module. This module consists of mostly 
self-built components based on the Document Object Model (DOM), which is a tree structure 
representation of a website. The DOM tree is used in all stages: for detecting the websites 
and the addresses, extracting the titles such as services names, and extracting representative 
images that correspond to the detected services. The output is a list of the address candidates 
found and the associated information.

First, the website parser downloads all the detected websites and converts their HTML 
sources into a DOM tree representation. The address detector then searches for postal 
addresses using a text matching algorithm based on street name prefix trees (Tabarcea, 
Hautamäki, and Fränti 2010). It operates on the text nodes of the DOM tree to identify the 
following address elements: street name, street number, postal code and city. Address can-
didates are constructed by aggregating address elements that are close to each other in the 
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text of the website. The prefix trees are constructed on demand for each city using our own 
gazetteer for Finland, see (Tabarcea, Fränti, and Manta 2009), and OpenStreetMap for the 
rest of the world. The address detector outputs a list of address candidates and marks the 
nodes that hold valid locations.

The Title and image extraction module processes the marked nodes to extract a repre-
sentative title and image for each detected address. It uses the same DOM tree and based 
on the lowest common ancestor of the nodes that contain location information, splitting 
the DOM tree so that each sub-tree contains a single address. Inside each of those sub-trees, 
the module searches for text and images associated with the detected address. The output 
is a list of geo-referenced entities that contains the information described in Figure 2. The 
address candidates are validated at the same time by the address validator, which uses our 
own gazetteer built on OpenStreetMap. This is a geo-coding service that validates the 
addresses detected at the previous steps and converts them to geographical coordinates.

Finally, we aggregate all the attributes as entities in the search results list, which is dis-
played to the user and sorted using distance-based ranking. All the information is assembled 
by the form output as a list of search results. The coordinates are also used to display the 
results on the map and to compute the distance from the user’s location. The postal address 
candidates that are not validated by the geo-coding services are discarded.

4.2.  Parsing web pages

HTML documents are considered to be semi-structured data, which are neither raw nor 
strictly typed (Abiteboul 1997). HTML documents do not conform to a formal data model 
or have a fixed schema, and their elements typically hold information solely for rendering. 
They are not completely unstructured because their HTML tags and tree structure can be 
used to guide data extraction.

An HTML document has a DOM representation, which is a platform- and language-neutral 
interface that allows programmes and scripts to dynamically access and update the content, 
structure and style of documents.10 A DOM tree is composed from HTML elements and their 
parent–child relationship, having the <html> as the root of the tree. Figure 5 shows a sim-
plified example of an HTML page, where we display just the sub-tree that contains the 
location and the result for this particular case. This DOM tree is used for address, title and 
image extraction. The three components are detailed separately in Sections 4.3, 4.4, and 4.5.

4.3.  Address detection and validation

Typically, a postal address includes a subset of the following elements: street name, street 
description, street number, postal code, neighbourhood, city, region and country. Figure 6 
shows a few examples from addresses found in our service data-set in Mopsi.

We use a rule-based text-matching algorithm to separately identify each type of address 
element (see Figure 7). We use the text nodes from the DOM tree of the web page to extract 
the text from their associated sub-trees. This allows us to find addresses that are spreading 
through several nodes (e.g. if one element is bold) or through tables. The text is segmented 
into words, and each word is verified according to whether or not it is an address element. 
In order to identify a postal address, we first build an address candidate by aggregating the 
address elements that are close to each other in the text of the considered sub-tree. The 
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maximum distance for two address elements to be considered close is 10 words. We define 
that an address candidate must contain at least the following three elements: street name, 
street number, and postal code or city name. We validate the candidates using our gazetteer 

Figure 5. Part of a web page that contains location information: visual appearance (top) and DOM tree 
(bottom).

Kaislakatu 8, 80130, Kanervala, Joensuu, Finland 
Torikatu 25, 80100 Joensuu, Finland 
Parppeintie 6, 82900 Ilomantsi, Finland 
Aleksanterinkatu 25, 15140 Lahti, Finland 
Vene 18, 10140 Tallinn, Estonia 
Carrer de la Marina, 266-270, Barcelona, Spain 
2 Rue Pasteur, 06500 Menton, France 
Pulchowk Rd, Lalitpur 44600, Nepal 
20 Ch  Cá, Hàng Ðào, Hoan Kiem District, Hanoi, Vietnam 
East Coast Park Service Road 1, Singapore 

Figure 6. Address examples.
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and mark all the nodes that satisfy the criterion that they contain validated locations, and 
will use them later in the content extraction stage.

The first step of the address detection algorithm is to identify the city names from the 
content of the web page. This is done using a city-name dictionary. The next step is to identify 
the street names using the data from each city that were detected at the previous step. For 
each city considered, we build a prefix tree of street names (Tabarcea, Hautamäki, and Fränti 
2010). An example of a prefix tree is shown in Figure 8, but, for the sake of simplicity, it does 
not contain real street names but shorter words that can be endings of street names.

In order to build a street name prefix tree for a city, we require a gazetteer that contains 
all addresses in the region we are interested in. To make our location-based solution widely 
available, our gazetteer uses free data from the Nominatim11 project, which is based on 
OpenStreetMap. Because building a prefix tree for each city is a long process, we generate 
prefix trees on demand when a search is made, and we cache the generated prefix trees on 
our server.

Table 1 shows the prefix tree statistics of a small city (Joensuu) compared to three other 
bigger cities (Paris, Singapore, and Stockholm). The size of the prefix tree varies from 420 kB 
(Joensuu) to 3.5 (Stockholm). Storing it for the whole of Finland would take about 74 MB, 
which is negligible compared to the size of the corresponding gazetteer, which takes roughly 
3 GB (Tabarcea, Hautamäki, and Fränti 2010).

Every word on a web page is checked as to whether it is a street name by searching for 
it in the prefix tree. The complexity is the same as string search in general. It depends linearly 
on the size of the web page (number of words). Searching from the prefix tree is fast: in case 
of a positive match, we need to retrieve down to the level corresponding to the length of 
the word. In case of a mismatch, each search terminates usually within a few steps. Building 
the tree is more time-consuming, around 10–15s, but since it can be made off-line before-
hand, it does not affect the search.

Figure 7. Pseudocode for address detection.
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After the street names have been identified, we store their positions on the page and use 
regular expressions to identify street numbers, city names and postal codes close to the 
detected positions. An address element is considered close to a street name if the distance 
to it is a maximum of 10 words. Finally, when we identify address entities containing at least 
the minimum set of elements: {street, number, city} or {street, number, post code}, we use 
it as an address candidate and validate it using the geo-coding functions provided by 
Nominatim. If the geo-coding service returns valid coordinates, we consider the address as 
valid and use the coordinates to calculate the distance from the user’s position.

We tested our system using the Finnish services collected by Mopsi users (see Section 5). 
Finnish addresses have concatenated street names and street descriptions, with street name 
being the prefix and street description being the suffix. Examples of street names are as 

Figure 8. Prefix tree example.

Table 1. Prefix tree statistics.

Joensuu Paris Singapore Stockholm
Total number of street names 1145 6472 5316 4584
Total number of tree nodes 5430 38 323 24 062 40 189
Total number of leaf nodes 1131 4836 3274 3940
Maximum depth 20 57 63 51
Average depth for each leaf node 12.5 18.5 15.5 15.1
Average width for each level 271 672 382 788
Size (MB) 0.42 3.33 2.09 3.50

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

as
te

rn
 F

in
la

nd
] 

at
 0

2:
16

 2
9 

N
ov

em
be

r 
20

17
 



64   ﻿ A. TABARCEA ET AL.

follows: Kauppa- (market), Alexanterin- (Alexander’s) or Kaisla- (Reed). Examples of descrip-
tions are as follows: -katu (street), -tie (road), -polku (way), or -kuja (alley). Finnish addresses 
have a fixed order: street name, street number, neighbourhood, postal code and city, but 
neighbourhood and postal code are optional. Although the websites we use to test our 
methods are Finnish, our address detection algorithm is not customised for Finnish addresses 
and does not use a predefined order of address elements.

The proposed address detection is based on the method described in the work of 
(Tabarcea, Hautamäki, and Fränti 2010) with a few improvements. First, we are browsing the 
DOM tree of the web page and mark the nodes that contain addresses instead of extracting 
plain text from the web page. This is because the words and paragraphs do not always appear 
in the same order as on the web page, especially when the web page contains tables or 
columns. Using the DOM tree also allows exploiting visual or structural features from the 
web page that would not be possible from the plain text. This also helps the detection of 
content such as service titles and images. The second improvement is that we used a local 
database of Finnish addresses and extended its scope using OpenStreetMap data.

The chosen address detection method (especially the street name detection), relies on 
the accuracy of the OpenStreetMap gazetteer because it needs to find the exact string match. 
It supports multi-word street names and addresses because the address elements are 
indexed as strings that can also contain spaces, but it does not support any variation on the 
order of the words in a street name, mistyped words or abbreviations. Although the websites 
we use to test our methods are from Finnish services, our address detection algorithm is not 
tailored for a specific country or language; however, it only detects addresses that follow a 
structure similar to Western European addresses. Our method does not use a predefined 
order of address elements. Therefore, it tolerates variations in the order of elements, as we 
search for elements both before and after the detected street names, but it could produce 
false positives since it does not consider any semantic relationship between the elements. 
Supporting abbreviations depends on the data in the gazetteer, which needs to have a 
separate entry for each possible abbreviation and is difficult to generate and maintain. 
Furthermore, the text matching method we use only supports exact matching and does not 
detect misspelled street names or municipalities. In future work, our text matching method 
can be improved with methods such as term normalisation (Ahlers and Boll 2008a).

4.4.  Title extraction

Extracting a representative title for a service in a website is not trivial. By default, the title 
tag could be used, but according to our experiments, it provides useful information only in 
72% of the websites. In the other cases, the title tag contains useless data such as ‘Homepage’, 
‘Contact’, or long descriptions, including slogans or advertisements such as ‘Joensuu Center 
| Intersport – Sport to the people’. Search results also contain numerous service directories 
where the title belongs to the owner of the website rather than to the service in the content. 
We use the method proposed by (Gali, Mariescu-Istodor, and Fränti 2017a) and review its 
main idea briefly for the sake of completeness.

We consider two types of websites separately: individual service and service directories. A 
page for an individual service contains a single address, and its content is related to a single 
service, business, or place. A service directory is a website that lists services offered by others. 
Such sites have one or more common attributes: type, location or owner. Because the 
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structure of these two categories of pages is different, we consider these two cases separately. 
We use a decision-tree classifier to detect to which of these two types a given website 
belongs. It analyses the web link and the content of possible menu lists on the page. The 
page is classified as a service directory if it fulfils a criterion that measures the diversity of 
the content of the menu items: the more heterogeneous the content, the more likely the 
page is a service directory (see Section 5).

For individual services, we use the content of the title <title> and meta tags <meta name=-
title>. We use three different rules. The first one gives higher weight to phrases in the begin-
ning and the end of the string. This is a useful rule of thumb when dealing with very long 
title strings. The second rule analyses how often the same phrases are used in header tags, 
and the third rule determines whether the phrase also appears in the web link. The candidate 
phrase with the highest score is selected (Gali and Fränti 2016).

With service directories, the title tag or meta tags are not usually related to the service 
but rather to the service directory itself. In this case, we consider text nodes as potential title 
candidates. We analyse the DOM tree starting from the node containing the validated address 
and measure the distance to the common ancestor of the address node and the candidate 
text node. The closer the distance, the more likely it is that the candidate relates to this 
address. Visual cues, such as emphasis (Table 2) and colour (Table 3), are also used. The 
perceptual colour difference CIE 2000 (Luo, Cui, and Rigg 2001) between the colour and 
background-colour attributes of the candidate text node and the postal address node is 
scored between [0, 10]. In order to extract the CSS attributes shown in Table 3, we render 
the page and calculate the CSS for each considered node. However, we only use features 
that can be computed directly from the source code of the page instead of, for example, 
analysing the layout of the page. All candidates are scored based on the distance and the 
visual factors; the highest scored candidate phrase is chosen.

For example, in Figure 9, the detected address is ‘Kauppakatu 25, Joensuu’ and the can-
didate text node is ‘Mokkamaa’. They have a DIV as the closest common ancestor. HTML tags 
along the path from the candidate text node to the closest common ancestor node are 
scored as shown in Figure 9.

4.5.  Image extraction

Images are used on websites more than any other type of online content because they can 
transfer information to the user in a quick and efficient way. Although a large number of 
images are embedded into websites, many of them are less relevant to the content of the 
website, such as advertisements, navigational banners, icons, and images that serve as 

Table 2. Scores for HTML tags.

Tags Score
H1 +7
H2 +6
H3 +5
H4, A +4
H5, H6, B, STRONG +3
I, EM +2
Others  0
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section headings. A solution is therefore needed to ignore the irrelevant images and find a 
good representative image for the website.

Representative images are important in many other applications, especially in cases when 
bandwidth limitation restricts the total number of images that can be retrieved, or when 
building a visual category in which a single image must represent an entire category of 
documents and their associated content. In the next section, we briefly review the method 
that was presented in the work of (Gali, Tabarcea, and Fränti 2015).

All images found in the HTML, CSS and JavaScript source code of the website are consid-
ered as candidate images. We classify images into categories based on their expected func-
tionality: representative, logo, banners, advertisement, formatting and icons. We choose the 
image with the highest score from the representative category when available. If there are 
no images in this category, we proceed to the next category in the priority described above, 
until an image is found. The categories are detailed below, and an example is shown in  
Figure 10.

• � Representative: images that are directly related to the content of the website;
• � Logos: recognisable images that identify the service provider (company or institution);
• � Banners: images placed usually either above or below the website, or beside the con-

tent. They are generally used for decoration. Headers and footers are classified in this 
category;

Table 3. Scoring CSS attributes.

CSS attributes Score
Colour, background-colour + perceptual colour difference (0–10)
Font-size + (node font size − address node font size)
Font-weight +3 if bold or >500
Text-transform +5 if uppercase

Figure 9. DOM sub-tree that contains the address of a service.
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• � Advertisements: images that promote products or services not directly related to the 
website;

• � Formatting and icons: images that are used to enhance the visual appearance of the 
website. These can be spacers, bullets, borders, backgrounds or pictures used purely 
for decoration. These also include small images that serve a functional purpose, such 
as links to the home page or icons used for changing language.

For classifying the images, we use the rules shown in Table 4. In most categories, a pre-
defined set of keywords is used. If any of these are found in the image link or in the class 
name of the <img> tag and of the parent element, then the image is assigned to this par-
ticular category. Banners and formatting are also categorised according to image size and 
aspect ratio. An example of the features is shown in Figure 11. Note that the categories are 
overlapping. If the same image meets the requirements of multiple categories, it will be 
classified using the order of priority shown above. However, an image can belong to the 
class of representatives only if it does not belong to any other category.

5.  Experiments

We tested the proposed approach for address and data extraction using the Mopsi Services 
data-set (cs.uef.fi/mopsi/data/). It contains services submitted by users of the application 
and confirmed by administrators. Each service has the following fields: title, web link, 

Banner

Logo

Formatting

Representative

Icons Advertisement

Figure 10. Image categories.

Table 4. Rules used for image categorisation.

Category Features Keywords
Representative Not in other category
Logo Parent is h1 or h2 (not used) Logo
Banner Ratio > 1.8 Banner, header, footer, button
Advertisements Free, adserver, now, buy, join, click, affiliate, adv, hits, counter
Formatting and icons Width < 100 px Background, bg, sprite

Height < 100 px
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coordinates, postal address, image, keywords and free-form text description. Except title, 
postal address and coordinates, all the other fields are optional, and we therefore, only 
consider the services that also have a web link. The titles have been manually entered by 
the users, and the geo-location is obtained either by GPS positioning (in the case of mobile 
input) or manually tuned on the map (in the case of web input). Although there has been 
no common practice in terms of how to input the data, the most relevant data (title and 
address) exist for all services and can be used as a ground truth against which the results of 
the data extraction results can be compared.

The data-set contains 364 services from Finland; it includes a wide variety of web links 
such as home, brand, business directory, Wikipedia, Facebook, blog and information pages, 
which cover various domains, such as education, health, shop, bank, entertainment, sports, 
food & drink, hotel & accommodation, travel & leisure and news. Our experiments were con-
ducted on all these data types without exception.

The services have been stored using both Finnish and English language. Some users have 
systematically used both languages (kirkko, church), but not all. The administration has been 
quite limited and cursory; it mainly constituted of removing duplicate and invalid entries, 
fixing obvious errors, and sometimes improving on the content. The following are the most 
popular words appearing either in the title or in the set of keywords (Finnish-English): Kahvila-
Cafe (64–9), Ravintola-Restaurant (61–17) Loma-Holiday (45–1), Kampaamo-Barber (31–21) 
Sauna (25), Kirkko-Church (20–20), Pizza (20), Baari-Bar-Pub (17–6-6), Market (15). Other 
common keywords include Post, Chinese, Kebab, Pharmacy, Park and Bank. Occasionally, 
the following are also found: Frisbeegolf, Parckour, Golf, Locksmith.

For the experiments, we downloaded all the websites for each of the 364 services in the 
period from 29 April to 15 May 2015, and we analysed their content. We observed that rel-
evant information about the services, such as the title, description, address and opening 
hours, is commonly static because users are expected to rely on this information. However, 
if the target pages are expected to be fully dynamic, we recommend using a WebKit browser 
such as PhantomJS12 to render the web page prior to the application of our method.

src http://www.ravintolakreeta.fi///images/banner.jpg
alt --
title --
from css
format jpg
width 945
height 202
size 190 ,890 px
aspectratio 4.67
parenttag <div>
class header

Figure 11. Image features we use.
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We first studied whether a location exists either as a geo-tag or a postal address. If it exists, 
we compare it against the ground truth address stored within the service. Having services 
input by users manually verified by the administrator ensures that the address associated 
with the service is the correct one, but its website might contain a different address or no 
addresses.

First, we checked for geo-tags and <address> tags. The results in Table 5 show that just 
10 (3%) of the websites have a geo-tagged location, only 13 (4%) have an address tag, but 
in 145 (40%) of the cases, our method found addresses in the text content of the website, 
out of which 82% were accurate addresses. Considering their low number, we manually 
checked addresses found from geo-tags and address tags, and we found that they were all 
valid. Among all websites, our algorithm found the correct address 119 (33%) times and 
different addresses 26 (7%) times. The number might appear low, but it is high enough for 
our needs. First, we do not need to retrieve all information relevant to the keywords, but 
only those related to the location. Second, the existence of addresses is much higher in 
commercially oriented web pages such as those of cafes and shops, which are usually the 
most relevant search results. What we cannot retrieve are web pages that might be relevant 
to the location but do not contain addresses or other location-specific information, such as 
blogs and Wikipedia pages.

Most errors are results that are relevant by their content but for which no location infor-
mation was detected. Thus, such results were simply omitted. Some relevant search results 
could be missed, but this has only limited effect on practical applicability, as users never see 
these. The inaccuracies cause some content-relevant results from different location to also 
be included. According to our experiments, such cases appear relatively rarely – 26/145 = 20% 
of the results. Thus, one result out of five is from different locations, although the content is 
probably still relevant. This level of error can be accepted already in practical applications.

The high number of websites containing postal addresses was expected because we 
considered service-based websites as needed for entertainment, sports, restaurants, and 
websites that advertise businesses, local services, or tourist locations. The small number of 
geo-tags and useful addresses tags emphasises the importance of data mining methods for 
identifying locations. This is the spirit of the web: users do not follow uniform formalism on 
a wider scale, and even professional website designers use their freedom. The web is built 
for people, not for search engines.

For each correctly detected address, we tested the title extraction algorithm described 
in Section 4.4. For comparison, we report the result when the title was taken from the title 
tag as such (baseline method) or the corresponding meta tag (meant for robots). A result 
was considered correct if the similarity of the strings (extracted and the ground truth) is 
higher than a threshold of 0.5. The results in Table 6 show that the correct title was found in 
29% of the cases if we exclude the websites in which we did not detect any address. This is 
significantly lower than that of the baseline method (72%). (Gali, Mariescu-Istodor and Fränti 

Table 5. Results of the address detection.

All websites

Location found in … Address is …

Geo tag Address tag Text content Correct Different None
Number 364 10 13 145 119 26 219
Percentage 100% 3% 4% 40% 33% 7% 60%
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2017a) conducted a similar study as a normal web-mining task without considering the 
location aspect. The method described in Section 4.4 was applied only to service directory 
pages, having 65% true detection. The reported results for Google and Yahoo! were 67 and 
64%, respectively. The results here are lower because we applied our method to all website 
types. Our method performs worse on websites of individual companies or places because 
it gives high scoring to text that is close to the postal address. In these types of websites, 
the title is not always repeated close to the address, and our algorithm detects wrong titles 
such as: ‘Post address:’, ‘Company info:’ or ‘You can contact us at:’.

The quality of the results can be improved using website classification and the methods 
described by (Gali, Mariescu-Istodor and Fränti 2017b), in which we first classify a website 
as a single service, brand or service directory. In Table 7, we summarise the classification 
accuracies for the decision-tree and the clustering models using precision, recall and 
F-measure. We observed that both models provide good precision (83%) and recall (91%) 
values for detecting single service websites. The values for detecting service directory web-
sites (88 and 89%) and (76 and 97%), respectively, are also good, considering that this is a 
challenging task due to their heterogeneous structures. For brand websites, our classifiers 
provided less satisfactory results, as only (38%) of them are detected by the decision-tree 
and (19%) of them are detected by the clustering. These results are due to the fact that brand 
websites can be as simple as single websites, such as the Cocoa Bar website,13 or as difficult 
as service directories, such as the Best Western Hotels website.14 Our classifiers misclassified 
more than half of them. The clustering-based model has an advantage in that it classifies 
service directory webpages with high accuracy (97%) in comparison to the decision-tree 
model (89%). This would be beneficial in applications that need a central place of information 
rather than searching every website individually.

Depending on the type of the website, we used either the method described in Section 
4.4, the method used by (Gali and Fränti 2016), or the method described by (Gali, Mariescu-
Istodor and Fränti 2017b). The method tested in this paper shows clear limitations for web-
sites that are not service directories, but our experiments in the work of (Gali, Mariescu-Istodor 
and Fränti 2017a) show more promising results.

The accuracy of the image extraction was measured by comparing how many times the 
image extraction component (WebIma) selects the same image that was marked as ground 
truth by the volunteers using our data collection tool (Gali, Tabarcea and Fränti 2015). 

Table 6. Results of the title and image extraction.

All websites

Title found in… Image found on…

Title tag Text content WebIma Facebook Google+
Number 298 214 42 185 143 166
Percentage 100% 72% 29% out of 145 62% 48% 56%

Table 7. Classification accuracy for decision-tree and clustering-model website classifiers.

Type of website

Decision-tree (%) Clustering (%)

Precision Recall F-measure Precision Recall F-measure
Single 83 91 87 83 91 87
Brand 46 38 42 44 19 26
Service directory 88 89 91 76 97 88
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Different services can have the same website, so we filtered out duplicates and unavailable 
websites, after which 298 web pages remained. The results show that, in 62% of the cases, 
the image extraction component found the correct image, which outperforms the compar-
ative results of Google+ (56%) and Facebook (48%). The results can be only indirectly com-
pared to those reported in the work of (Gali, Tabarcea, and Fränti 2015), where a more 
extensive set of 1032 websites was evaluated. The accuracy reported there was 64%, which 
was significantly higher than that of Google+ (48%) and Facebook (39%).

The relevance of the overall search results was not studied, but we briefly recall a previous 
study comparing between GoogleMaps and Yellow Pages in (Fränti, Tabarcea et al. 2010). 
We chose 10 test keywords consisting of five commercial (hotel, restaurant, pizzeria, cinema 
and car repair) and five non-commercial ones (hospital, museum, police station, swimming 
hall and a church). Mopsi provided more results (2352) than Google Maps (1405) or Yellow 
Pages (1597), and the results were slightly more relevant (1.59) than Google Maps (1.66), but 
always less relevant than Yellow Pages (1.28). Mopsi was better especially with rural non-com-
mercial keywords.

6.  Conclusions

Detecting locations and associated information from websites is the key challenge in creating 
a location-aware search engine. Our paper describes the components needed to build such 
an engine, including automatic address detection, title and image extraction. The results 
demonstrated that, in 40% of the websites used in our experiments, a standard search engine 
can be made location-aware by these data analysis components alone. Since the test was 
limited to service websites only, it is expected that results with other types of websites, such 
as blogs and news stories, would have lower success rates.

Notes

1. � http://www.w3.org/2003/01/geo/.
2. � http://www.whois.net.
3. � http://www.geonames.org.
4. � http://www.openstreetmaps.org.
5. � http://maps.google.com.
6. � http://www.bing.com/local.
7. � http://local.yahoo.com.
8. � http://developer.yahoo.com/boss.
9. � https://developers.google.com/custom-search.
10. � http://www.w3.org/DOM.
11. � http://nominatim.openstreetmap.org.
12. � http://phantomjs.org/.
13. � http://www.cocoabarnyc.com/.
14. � http://www.bestwestern.fi/hotels/best-western-hotel-savonia-kuopio-91083.

Disclosure statement

No potential conflict of interest was reported by the authors.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

as
te

rn
 F

in
la

nd
] 

at
 0

2:
16

 2
9 

N
ov

em
be

r 
20

17
 

http://www.w3.org/2003/01/geo/
http://www.whois.net
http://www.geonames.org
http://www.openstreetmaps.org
http://maps.google.com
http://www.bing.com/local
http://local.yahoo.com
http://developer.yahoo.com/boss
https://developers.google.com/custom-search
http://www.w3.org/DOM
http://nominatim.openstreetmap.org
http://phantomjs.org/
http://www.cocoabarnyc.com/
http://www.bestwestern.fi/hotels/best-western-hotel-savonia-kuopio-91083


72   ﻿ A. TABARCEA ET AL.

Funding

This work was supported by the Tekes [grant number 70010/12] and [grant number 70052/09].

ORCID

Najlah Gali   http://orcid.org/0000-0001-6038-0875
Pasi Fränti   http://orcid.org/0000-0002-9554-2827

References

Abiteboul, S. 1997. “Querying Semi-structured Data.” In Proceedings of the 6th International Conference 
on Database Theory, 1–18. London: Springer-Verlag.

Ahlers, D., and S. Boll. 2008a. “Retrieving Address-based Locations from the Web.” In Proceedings of the 
5th International Workshop on Geographic Information Retrieval, 27–34. New York, NY: ACM.

Ahlers, D., and S. Boll. 2008b. “Urban Web Crawling.” In Proceedings of the First International Workshop 
on Location and the Web, 25–35. New York, NY: ACM.

Aho, A. V., and M. J. Corasick. 1975. “Efficient String Matching: An Aid to Bibliographic Search.” 
Communications of the ACM 18 (6): 333–340.

Bennett, P. N., F. Radlinski, R. W. White, and E. Yilmaz. 2011. “Inferring and Using Location Metadata to 
Personalize Web Search.” In Proceedings of the 34th International ACM SIGIR Conference on Research 
and Development in Information Retrieval, 135–144. New York, NY: ACM.

Borges, K. A., A. H. Laender, C. B. Medeiros, and C. A. Davis Jr. 2007. “Discovering Geographic Locations 
in Web Pages Using Urban Addresses.” In Proceedings of the 4th ACM Workshop on Geographical 
Information Retrieval, 31–36. New York, NY: ACM.

Buyukokkten, O., J. Cho, H. Garcia-Molina, L. Gravano, and N. Shivakumar. 1999. “Exploiting Geographical 
Location Information of Web Pages.” Proceedings of the ACM SIGMOD Workshop on the Web and 
Databases, 1–6.

Cai, D., S. Yu, J. R. Wen, and W. Y. Ma. 2003. VIPS: A Vision-Based Page Segmentation Algorithm. Technical 
Report MSR-TR-2003-79. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
tr-2003-79.pdf

Cai, W., S. Wang, and Q. Jiang. 2005. “Address Extraction: Extraction of Location-Based Information 
from the Web.” In Proceedings of the 7th Asia-Pacific web conference on Web Technologies Research 
and Development, 925–937. Berlin-Heidelberg: Springer-Verlag.

Can, L., Z. Qian, M. Xiaofeng, and L. Wenyin. 2005. “Postal Address Detection from Web Documents.” In 
Proceeding of the International Workshop on Challenges in Web Information Retrieval and Integration, 
40–45. Los Alamitos, CA: IEEE Computer Society.

Chang, C. H., and S. Y. Li. 2010. “MapMarker: Extraction of Postal Addresses and Associated Information 
for General Web Pages.” In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web 
Intelligence and Intelligent Agent Technology - Volume 01, 105–111. Washington, DC: IEEE Computer 
Society.

Ding, J., L. Gravano, and N. Shivakumar. 2000. “Computing Geographical Scopes of Web Resources.” In 
Proceedings of the 26th International Conference Very Large Data Bases, 545–556. San Francisco, CA: 
Morgan Kaufmann.

Dou, W., and J. Hu. 2012. “Automated Web Data Mining Using Semantic Analysis.” In International 
Conference on Advanced Data Mining and Applications, 539–551. Berlin Heidelberg: Springer.

Florczyk, A. J., F. J. López-Pellicer, P. Muro-Medrano, J. Nogueras-Iso, and F. J. Zarazaga-Soria. 2010. 
“Semantic Selection of Georeferencing Services for Urban Management.” Journal of Information 
Technology in Construction (ITcon) 15 (8): 111–121.

Fränti, P., J. Kuittinen, A. Tabarcea, and L. Sakala. 2010. “MOPSI Location-Based Search Engine: Concept, 
Architecture and Prototype.” In Proceedings of the 2010 ACM Symposium on Applied Computing,  
872–873. New York, NY: ACM.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

as
te

rn
 F

in
la

nd
] 

at
 0

2:
16

 2
9 

N
ov

em
be

r 
20

17
 

http://orcid.org
http://orcid.org/0000-0001-6038-0875
http://orcid.org
http://orcid.org/0000-0002-9554-2827
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2003-79.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2003-79.pdf


JOURNAL OF LOCATION BASED SERVICES﻿    73

Fränti, P., A. Tabarcea, J. Kuittinen, and V. Hautamäki. 2010. “Location-based Search Engine for Multimedia 
Phones.” In International Conference on Multimedia and Expo (ICME), 558–563. IEEE.

Gali, N., and P. Fränti. 2016. “Content-based Title Extraction from Web Page.” In International Conference 
on Web Information Systems and Technologies (WEBIST 2016)- Volume 2, edited by Karl-Heinz Krempels, 
Paolo Traverso, Tim A. Majchrzak, Valérie Monfort, 204–210. Setúbal: SCITEPRESS.

Gali, N., A. Tabarcea, and P. Fränti. 2015. “Extracting Representative Image from Web Page.” In International 
Conference on Web Information Systems and Technologies (WEBIST 2015), edited by Valérie Monfort, 
Karl-Heinz Krempels, Tim A. Majchrzak, and Ziga Turk, 411–419. Setúbal: SCITEPRESS.

Gali, N., R. Mariescu-Istodor, and P. Fränti. 2017a. “Using Linguistic Features to Automatically Extract 
Web Page Title.” Expert Systems with Applications 79: 296–312.

Gali, N., R. Mariescu-Istodor, and P. Fränti. 2017b. “Functional Classification of Website.” International 
Symposium on Information and Communication Technology (SoICT), December.

Goldberg, D. W., J. P. Wilson, and C. A. Knoblock. 2007. “From Text to Geographic Coordinates: The 
Current State of Geocoding.” URISA-WASHINGTON DC- 19 (1): 33.

Hess, B., F. Magagna, and J. Sutanto. 2014. “Toward Location-aware Web: Extraction Method, Applications 
and Evaluation.” Personal and Ubiquitous Computing 18 (5): 1047–1060.

Hu, Y. H., S. Lim, and C. Rizos. 2006. “Georeferencing of Web Pages Based on Context-Aware Conceptual 
Relationship Analysis”. http://cs.uef.fi/pages/franti/lami/papers/Georeferencing%20of%20Web%20
Pages%20based%20on%20Context-Aware_Conceptual%20Relationship%20Analysis.pdf

Lee, H. C., H. Liu, and R. J. Miller. 2007. “Geographically-sensitive Link Analysis.” In Proceedings of the 
IEEE/WIC/ACM International Conference on Web Intelligence, 628–634. Washington, DC: IEEE Computer 
Society.

Leung, K. W. T., D. L. Lee, and W. C. Lee. 2013. “PMSE: A Personalized Mobile Search Engine.” IEEE 
Transactions on Knowledge and Data Engineering 25 (4): 820–834.

Li, W., M. F. Goodchild, R. L. Church, and B. Zhou. 2012. “Geospatial Data Mining on the Web: Discovering 
Locations of Emergency Service Facilities.” In International Conference on Advanced Data Mining 
and Applications, edited by S. Zhou, S. Zhang, and G. Karypis, 552–563. Berlin Heidelberg: Springer.

Liu, C., P. L. P. Rau, and F. Gao. 2010. “Mobile Information Search for Location-based Information.” 
Computers in Industry 61 (4): 364–371.

Liu, W., X. Meng, and W. Meng. 2010. “ViDE: A Vision-based Approach for Deep Web Data Extraction.” 
IEEE Transactions on Knowledge and Data Engineering 22 (3): 447–460.

Luo, M. R., G. Cui, and B. Rigg. 2001. “The Development of the CIE 2000 Colour-difference Formula: 
CIEDE2000.” Color Research & Application 26 (5): 340–350.

Markowetz, A., Y. Y. Chen, T. Suel, X. Long, and B. Seeger. 2005. “Design and Implementation of a 
Geographic Search Engine.” In Eighth International Workshop on the Web and Databases, edited 
by AnHai Doan, Frank Neven, Robert McCann, and Geert Jan Bex, 19–24. http://pages.cs.wisc.
edu/~anhai/papers/webdb05_eproceedings.pdf

McCurley, K. S. 2001. “Geospatial Mapping and Navigation of the Web.” Proceedings of the 10th 
International Conference on World Wide Web, 221–229. New York, NY: ACM.

Mikheev, A., M. Moens, and C. Grover. 1999. “Named Entity Recognition without Gazetteers.” In 
Proceedings of the Ninth Conference on European Chapter of the Association for Computational 
Linguistics Linguistics, 1–8. Stroudsburg, PA: Association for Computational Linguistics.

Page, L., S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking: Bringing Order to 
the Web. Technical Report. Stanford InfoLab.

Patterson, C. A., R. R. Muntz, and C. M. Pancake. 2003. “Challenges in Location-Aware Computing.” IEEE 
Pervasive Computing 2 (2): 80–89.

Purves, R. S., P. Clough, C. B. Jones, A. Arampatzis, B. Bucher, D. Finch, G. Fu, H. Joho, A. K. Syed, S. Vaid, 
and B. Yang. 2007. “The Design and Implementation of SPIRIT: A Spatially Aware Search Engine 
for Information Retrieval on the Internet.” International Journal of Geographical Information Science  
21 (7): 717–745.

Qin, T., R. Xiao, L. Fang, X. Xie, and L. Zhang. 2010. “An Efficient Location Extraction Algorithm by 
Leveraging Web Contextual Information.” In  Proceedings of the 18th SIGSPATIAL International 
Conference on Advances in Geographic Information Systems, 53–760. New York, NY: ACM.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

as
te

rn
 F

in
la

nd
] 

at
 0

2:
16

 2
9 

N
ov

em
be

r 
20

17
 

http://cs.uef.fi/pages/franti/lami/papers/Georeferencing%20of%20Web%20Pages%20based%20on%20Context-Aware_Conceptual%20Relationship%20Analysis.pdf
http://cs.uef.fi/pages/franti/lami/papers/Georeferencing%20of%20Web%20Pages%20based%20on%20Context-Aware_Conceptual%20Relationship%20Analysis.pdf
http://pages.cs.wisc.edu/~anhai/papers/webdb05_eproceedings.pdf
http://pages.cs.wisc.edu/~anhai/papers/webdb05_eproceedings.pdf


74   ﻿ A. TABARCEA ET AL.

Schmidt, S., S. Manschitz, C. Rensing, and R. Steinmetz. 2013. “Extraction of Address Data from 
Unstructured Text Using Free Knowledge Resources.” In Proceedings of the 13th International 
Conference on Knowledge Management and Knowledge Technologies, Article No. 7. New York, NY: ACM.

Shi, G., and K. Barker. 2011. “Extraction of Geospatial Information on the Web for GIS Applications.” 
In 10th IEEE International Conference on Cognitive Informatics & Cognitive Computing, 41–48. IEEE.

Silva, M. J., B. Martins, M. Chaves, A. P. Afonso, and N. Cardoso. 2006. “Adding Geographic Scopes to 
Web Resources.” Computers, Environment and Urban Systems 30 (4): 378–399.

Tabarcea, A., P. Fränti, and V. Manta. 2009. “Using a Spatial Database in a Location-based Search 
Application.” Buletinul Institutului Politehnic Iasi, 55–62.

Tabarcea, A., V. Hautamäki, and P. Fränti. 2010. “Ad-Hoc Georeferencing of Web-pages Using Street-
name Prefix Trees.” In International Conference on Web Information Systems and Technologies, 259–271. 
Berlin Heidelberg: Springer.

Tsai, F. S. 2011. “Web-Based Geographic Search Engine for Location-Aware Search in Singapore.” Expert 
Systems with Applications 38 (1): 1011–1016.

Vänskä, I. 2004. “Using Location Information in Web Documents.” University of Eastern Finland.
Viola, P., and M. Narasimhan. 2005. “Learning to Extract Information from Semi-structured Text Using 

a Discriminative Context Free Grammar.” In Proceedings of the 28th Annual International ACM SIGIR 
Conference on Research and Development in Information Retrieval, 330–337. New York, NY: ACM.

Wang, C., X. Xie, L. Wang, Y. Lu, and W. Y. Ma. 2005. “Detecting Geographic Locations from Web Resources.” 
In Proceedings of the 2005 Workshop on Geographic Information Retrieval, 17–24. New York, NY: ACM.

Watters, C., and G. Amoudi. 2003. “GeoSearcher: Location-Based Ranking of Search Engine Results.” 
Journal of the American Society for Information Science and Technology 54 (2): 140–151.

Yokoji, S., K. Takahashi, and N. Miura. 2001. “Kokono Search: A Location Based Search Engine.” In 
Proceedings of the Tenth International World Wide Web Conference (WWW10). http://www10.org/
cdrom/posters/p1146/index.htm 

Zhang, Q., P. Jin, S. Lin, and L. Yue. 2011. “Extracting Focused Locations for Web Pages.” In International 
Conference on Web-Age Information Management, 76–89. Berlin: Springer.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
E

as
te

rn
 F

in
la

nd
] 

at
 0

2:
16

 2
9 

N
ov

em
be

r 
20

17
 

http://www10.org/cdrom/posters/p1146/index.htm
http://www10.org/cdrom/posters/p1146/index.htm

	Abstract
	1. Introduction
	2. Related work
	3. Location-aware framework
	3.1. Website provider
	3.2. Web page parser
	3.3. Address detector
	3.4. Validation with Gazetteer
	3.5. Title and image extraction
	3.6. Ranking and summarisation

	4. Extracting location-aware information
	4.1. Mopsi prototype
	4.2. Parsing web pages
	4.3. Address detection and validation
	4.4. Title extraction
	4.5. Image extraction

	5. Experiments
	6. Conclusions
	Notes
	Disclosure statement
	Funding
	References



