
Vector Quantization by
Lazy Pairwise Nearest Neighbor Method*

(published in Optical Engineering, 38 (11), 1862-1868, November 1999)

Timo Kaukoranta1, Pasi Fränti2 and Olli Nevalainen1

1 Turku Centre for Computer Science (TUCS)

Department of Computer Science
University of Turku

Lemminkäisenkatu 14A, FIN-20520 Turku
FINLAND

2 Department of Computer Science
University of Joensuu

P.O. Box 111, FIN-80101 Joensuu
FINLAND

Abstract: The Pairwise Nearest Neighbor (PNN) algorithm is a well-known method for
the codebook construction in vector quantization, and for the clustering of data sets. The
algorithm has simple structure and it gives high quality solutions. A drawback of the
method is the large running time of the original (exact) implementation. In this paper we
prove the monotony of the merge costs of the PNN. The monotony property is utilized
for speeding-up an existing PNN variant. The idea is to postpone a number of distance
calculations. In this way we can reduce the computation by about 35% while preserving
the exactness of the PNN.

Keywords: Vector Quantization, Codebook Generation, Clustering Algorithms,
Pairwise Nearest Neighbor Algorithm.

1. Introduction

We study the problem of generating a codebook for a vector quantizer (VQ). The aim is
to find M code vectors (codebook) for a given set of N training vectors (training set) by
minimizing the average pairwise distance between the training vectors and their
representative code vectors. The problem of generating an optimal codebook is
a combinatorial optimization problem and it is NP-complete [1]. In other words, there is
no known polynomial time algorithm for finding the globally optimal solution.
However, reasonable suboptimal solutions are typically obtained by heuristic algorithms
[2-7]. The most cited and widely used algorithm is the generalized Lloyd algorithm
(GLA) [2, 3]. It starts with an initial solution, which is iteratively improved using two
optimality criteria in turn until a local minimum has been reached.

A different approach is to build the codebook hierarchically. The pairwise nearest
neighbor (PNN) algorithm [4] is a member of agglomerative clustering methods [8].
The PNN starts by constructing an initial codebook in which each training vector is
considered as its own code vector. Two nearest code vectors are merged at each step of
the algorithm and the process is repeated until the desired size of the codebook has been
reached. The algorithm is straightforward to implement in its basic form and in
comparison to the GLA [3] it gives good results. The PNN has also the advantage that

* Preliminary version of the paper was presented at GraphiCon'98: The 8-th International Conference on
Computer Graphics and Visualization.

 1

the hierarchical approach produces codebooks of differing sizes as a side-product. Thus,
the PNN can be suited for joint minimization of distortion and entropy, see entropy-
constrained PNN [9]. The algorithm can also be used to produce an initial codebook for
another algorithm, such as the GLA, or it can be embedded into hybrid methods such as
a genetic algorithm [6], or the iterative split-and-merge method [7].

A drawback of the PNN is the relatively high running time in its exact form. There are
a large number of steps because typically M<<N, and at each step, all pairwise distances
are calculated for finding the pair of vectors to be merged. This is very slow for large
training sets. Most of the computation originates from the calculation of the pairwise
distances. However, only two code vectors are changed at each step of the PNN and
therefore most of the distance calculations are unnecessary. A fast and space efficient
implementation of the PNN has been recently given independently by [10] and [11]. The
idea is to maintain for each cluster a pointer to its nearest neighbor and in this way,
avoid unnecessary distance calculations. After the merge operation, the pointers must be
updated only for clusters whose nearest neighbor is one of the merged clusters.

In this paper we propose an improved version of the above nearest neighbor variant
[10]. The main idea is to reduce the distance calculations further by delaying the
updates. We can do this because, as we will show, the cost function is monotonically
increasing as a function of time. This means that the cost of merging any cluster with its
nearest neighbor does not decrease during the algorithm. It is therefore sufficient to
update a cost value only when it becomes the minimum one. The new method, referred
as Lazy-PNN, reduces the number of updates considerably. Empirical tests show that in
comparison to the PNN algorithm of [10] the Lazy-PNN improves the running time by
35% on average.

The rest of the paper is organized as follows. The problem formulation and the structure
of the PNN are given in Section 2. The Lazy-PNN is then introduced in Section 3.
Simulation results for various training sets are shown in Section 4, and conclusions are
finally drawn in Section 5.

2. The PNN method

We next use the following notations:

T Set of N training vectors T={T1,T2,…,TN}.
C Codebook of m code vectors C={C1, C2,…,Cm}.
M Size of the final codebook.
K The dimension of the vectors.
Si Cluster (set) of ni training vectors.
NNi Index of the nearest neighbor of the cluster Si.
di Increase of the distortion if the clusters Si and are merged.

iNNS
Ri Validity indicator; Ri=true if and only if di is valid.

We consider a set of N training vectors in a K-dimensional Euclidean space. The task of
the codebook construction is to find a set of M code vectors (i.e. a codebook) by

 2

minimizing the average squared distance D between the training vectors Ti and their
representative code vectors Cj:

 ��
� �

��

M

j jSiT
ji CT

N
D

1

21 . (1)

Here S={S1,…,SM} defines the clustering of the training set T. For a given codebook C,
the optimal clustering can be constructed by assigning each training vector Ti to the
cluster j0 for which:

2

,...,1

2

0
min jiMjji CTCT ���

�

 (2)

The basic structure of the PNN is shown in Fig. 1. The method starts by initializing each
training vector Ti as its own cluster Si. At each step of the algorithm, two nearest clusters
(Sa and Sb) are searched and merged. The distance (merge cost) d between two clusters
is defined as the increase in the distortion of the codebook if the clusters are merged. It
is calculated as the squared Euclidean distance of the cluster centroids (code vectors)
weighted by the number of vectors in the two clusters [4]:

� � 2, ba
ba

ba
ba CC

nn
nnSSd ��

�

� (3)

The chosen clusters Sa and Sb are then merged. The size of the combined cluster Sa+b is
na+b=na+nb, and the corresponding code vector is the centroid of the training vectors in
the cluster. It can be calculated as the weighted average of Ca and Cb:

ba

bbaa
ba nn

CnCnC
�

�

�
�

 (4)

It is thus sufficient to maintain only the cluster centroids (Ci) and the sizes of the
clusters (ni) in the implementation of the algorithm. The merge process is repeated until
the codebook reaches the size M.

Let each training vector be a code vector (m=N).
Repeat

Find two nearest clusters Sa and Sb to be merged.
Merge Sa and Sb; m�m-1.
Update data structures.

Until m=M.

Figure 1. Structure of the PNN method.

The exact PNN applies local optimization strategy where all possible cluster pairs are
considered and the one increasing the distortion least (smallest cost function value) is

 3

chosen for merge. Straightforward implementation [4] recalculates all distances at each
step of the algorithm. No additional data structures are needed but the algorithm takes
O(N3K) time because there are O(N) steps in total, and there are O(N2) cluster pairs to be
checked at each step.

Most of the computation of the PNN originates from the calculation of the pairwise
distances. Since only two code vectors are changed at each step, most of the distance
calculations are unnecessary. To reduce the number of distance calculations, previous
pairwise cluster distances can be stored in an N�N matrix. The minimum cluster
distance is searched from the matrix and the corresponding cluster pair is merged. New
distances are then calculated between the new cluster and remaining clusters only. The
algorithm runs in O(N2K+N3) time where the former term originates from the distance
calculations and the latter from the search for the minimum [12]. The disadvantages of
this approach are cubic running time and quadratic memory consumption.

Kurita’s method [13] stores all pairwise distances into a matrix, as above, but it utilizes
a heap structure for searching the minimum distance. The merged clusters can be found
by popping the smallest element from the top of the heap in O(log N) time. Only O(N)
distance updates are needed after each merge step; each of these updates takes O(K +
log N) time because of the distance calculation and the heap operation. The method thus
runs in O(N2K + N2 log N)) time. The method still requires O(N2) memory, which is
impractical for large training sets.

Another approach (�-PNN) has been recently studied by Fränti and Kaukoranta in [10],
and by Shen and Chang in [11]. The main idea is to maintain only a nearest neighbor
pointer for each cluster. The index of the nearest cluster (NNi) and the corresponding
cost function value di are stored in the nearest neighbor table. The optimal cluster pair
(Sa, Sb) to be merged can be found by a linear search among the di-values. After the
merge operation, the nearest neighbor pointers must be updated for those clusters for
which NNi=a or NNi=b. Fortunately, in practice, there are only a small number (denoted
by �) of pointers to be updated on average. The method thus takes O(�N2K) time in total.
In addition to that, the memory requirement of this approach is only O(N).

Several approximate variants of the PNN have also been considered in the literature.
Equitz uses K-d tree for localizing the search for the code vectors, and the algorithm
merges several vector pairs at the same time [4]. Another possibility is to generate
a preliminary codebook of size M0 (N>M0>M) using the GLA and then apply the exact
PNN until the codebook reaches its final size M [14]. These variants decrease the
running time at the cost of increased distortion. In the following, we focus on the exact
PNN variants.

3. Lazy-PNN algorithm

We propose next an improved version of the nearest neighbor variant of the PNN [10].
The idea is to reduce the distance calculations even further. Although the total number
of updates (�) is rather small on average, the search of the nearest neighbor is still an
expensive O(NK) time operation and it dominates the running time of the algorithm.

 4

However, some of the distance calculations can be delayed and therefore a remarkable
number of updates may be avoided. The new method is referred here as Lazy-PNN.

3.1. Monotony property
The application of delayed distance calculations is based on the monotony property of
the nearest neighbor distances of the clusters, which is defined as follows. Suppose that
at a certain moment the minimal merge cost is d(Sa, Sb) and the clusters Sa and Sb are
merged. It is possible that the centroid of the merged cluster (Ca+b) becomes closer to the
centroid of a third cluster Sc than Cc was in respect to the original cluster centroids (Ca
and Cb), see Fig. 2. However, the merge cost d(Sa+b, Sc) is never smaller than
min{d(Sa, Sc), d(Sb, Sc)} because the large size of the merged cluster compensates the
potential decrease of the Euclidean distance. The cost function d is therefore
monotonically increasing as a function of time. This is formalized in the following
lemma:

Lemma 1. Consider the clusters Sa, Sb, Sc with centroids Ca, Cb, Cc, and frequencies na,
nb, nc. Assume that � � � � � �cbcaba SSdSSdSSd ,,, ��

� �cb S,
�

 and . Then it holds
that d .

1,, �cba nnn
� � aca SdSS , �

Proof. We have the following relationships between the distances of the cluster
centroids:

� � � �bcbabcbaca CCCCCCCCCC ��������� 2222 (5)

and

� � � bcba
ba

a
bcba

ba

a
cba CCCC

nn
nCCCC

nn
nCC ����

�

�
��
�

�
�

	
��	���

�

�
��
�

�

	

�

�
222

2
2 � . (6)

We can thus write (6) in the form:

� �222

22
2

2

cacbba
ba

a

bcba
ba

a
cba

CCCCCC
nn

n

CCCC
nn

nCC

�����
�

�

�����
�

�
��
�

�

�
	�

�

� �
2

2
22

ba
ba

ba
bc

ba

b
ca

ba

a CC
nn

nnCC
nn

nCC
nn

n
�

�

��

�

��

�

�

This gives the condition

� � � �babcbcaacbaba SSdCCnCCnCCnn ,222

�������
�

.

Now, we can write the difference of the merge costs in form:

 5

� � � �
� �

� �cacba
cba

bac
cacba SSdCC

nnn
nnnSSdSSd ,,, 2

��

��

�

��
��

� � � caba
cba

c
bc

cba

cb
ca

cba

ca SSdSSd
nnn

nCC
nnn

nnCC
nnn

nn ,,22
�

��

��

��

��

��

� �

� � � �caba
cba

c

bc
cb

cb

cba

cb
ca

ca

ca

cba

ca

SSdSSd
nnn

n

CC
nn

nn
nnn

nnCC
nn

nn
nnn

nn

,,

22

�

��

�

�

�

�

��

�
��

�

�

��

�
�

� � � � � � � �

� � � � � �ca
cba

b
ba

cba

c
cb

cba

cb

caba
cba

c
cb

cba

cb
ca

cba

ca

SSd
nnn

nSSd
nnn

nSSd
nnn

nn

SSdSSd
nnn

nSSd
nnn

nnSSd
nnn

nn

,,,

,,,,

��

�

��

��

��

�

�

�

��

��

��

�
��

��

�
�

This gives us the formula

� � � �
� � � �� � � � � �� �

cba

bacbccacbb
cacba nnn

SSdSSdnSSdSSdn
SSdSSd

��

���

��
�

,,,,
,, . (7)

The value of (7) is clearly now positive due to the assumptions made in lemma. This
proves the lemma. �

3.2. Lazy update
Because of the monotony property, we know that a given distance value never decreases
due to its update. We may therefore delay the distance calculations until the old cost
function value becomes a candidate for being the smallest distance. We accomplish this
by marking each value whether it is up to date or not. The optimal cluster pair to be
merged can now be searched as before with only one difference; when an out-dated
distance value is found to be minimal it is recalculated. This practice does not
compromise the exactness of the algorithm but it may remarkably reduce the number of
expensive distance calculations.

The lazy processing can be applied to the nearest neighbor method as such. We take one
step further and maintain a min-heap of the distance values (di) and the corresponding
nearest neighbor pointers (NNi). The heap elements contain an additional flag (Ri),
which indicates whether the distance value is up-to-date or not. The difference to
Kurita’s method is that we only store one element per cluster whereas Kurita stores all
distances. The use of the heap has no asymptotic influence on the running time of the
Lazy-PNN because the recalculation of the distance values still dominates the running
time. The heap, however, may speed-up the practical implementation because we need
to consider only the root of the heap and therefore may potentially avoid a number of
distance recalculations.

 6

Cc

CbCa Ca+b

nb
na+nb

na
na+nb

Figure 2. Illustration of the clusters in 2-dimensional space. Ca and Cb are the centroids
of the two clusters to be merged, Ca+b is the centroid of the merged cluster, and Cc is the

centroid of any other cluster.

3.3. Implementation
The pseudo code of the Lazy-PNN algorithm is presented in Fig. 3. The algorithm starts
by initializing each cluster (or code vector) with one training vector. For each cluster Si,
the nearest neighbor according to (3) is searched among the other clusters Sj (i�j).
Information of the nearest neighbor is stored and marked valid. The nearest neighbor
distances di of all clusters are inserted in the minimum heap H. The algorithm is then
iterated until the size of the codebook reduces to M. At each step, the cluster Sa with the
smallest d-value is deleted from H. If the d-value of Sa is out-of-date (Ra=False) its
nearest neighbor is recalculated and reinserted in the heap. The process is repeated until
a valid minimal distance is obtained from the top of H.

The cluster Sa and its nearest neighbor Sb (b=NNa) are merged according to (4) and the
number of vectors in the new cluster is calculated. The nearest neighbor of the new
cluster is then determined and inserted in the heap according to its d-value. The
information of the merged cluster is stored into the place of Sa leaving Sb unused. The
non-existing cluster Sb is removed from the heap. This can be done in O(log N) time by
maintaining a position index to the heap for each cluster. To avoid gaps in the indexing,
the last cluster Sm replaces Sb. All the nearest neighbor pointers NNi to Sm are reassigned
to Sb. Finally, the size of the intermediate codebook m is subtracted by one.

 7

Input: Training set {Ti} and final codebook size M.
Output: {Ci}.
Main program
H��;
m�N;
for � i��1, m�: Ci�Ti; ni�1;
for � i��1, m�: UpdateNNpointer(H, i);
repeat

PickPair(H,a,b);
MergeClusters(a,b);
UpdateNNpointer(H, a);

until m = M;

Procedure PickPair(H,a,b):
a�DeleteMin(H);
while Ra=False

UpdateNNpointer(H,a);
a�DeleteMin(H);

b�NNa; Remove(H, b);

Procedure MergeClusters(a,b):
Ca � (naCa+nbCb) / (na+nb);
na�na+nb;
for � i��1, m�: if NNi=a � NNi=b then Ri�False;
Cb � Cm; nb� nm; NNb � NNm; db � dm; Rb � Rm;
for � i��1, m-1�: if NNi=m then NNi�b;
m � m-1;

Procedure UpdateNNpointer(H, a)
NNa� FindNearestCluster(a);
da�d(a, NNa);
Ra�True;
Insert(H, a);

Figure 3. Pseudo code of the Lazy-PNN.

4. Practical results

We generated training sets from six different images: Bridge, Camera, Miss America,
Table tennis, Airplane and House, see Fig. 4. The vectors in the first two sets (Bridge,
Camera) are 4�4 pixel blocks from the image. The third and fourth sets (Miss America,
Table Tennis) have been obtained by subtracting two subsequent image frames of the
original video image sequences, and then constructing 4�4 spatial pixel blocks from the
residuals. Only the first two frames have been used. The fifth and sixth data sets
(Airplane, House) consist of color values of the RGB images, prequantized to 5 bits per
color component. Applications of this kind of data sets is found in image and video
image coding (Bridge, Camera, Miss America, Table tennis), and in color image
quantization (Airplane, House).

 8

Bridge
(256�256)

K=16, N=4096

Camera
(256�256)

K=16, N=4096

Miss America
(360�288)

K=16, N=6480

Table tennis
(720�486)

K=16, N=5490*

Airplane
(512�512)

K=3, N=2317**

House
(256�256)

K=3, N=1837**

Figure 4. Sources of the training sets. *The training set Table tennis is constructed by
random sampling only every fourth block. **The images Airplane and House are
prequantized by 5 bits per color component.

Properties of the compared PNN methods are presented in Table 1. Table 2 shows
a summary of the test results for three main variants. Kurita’s method was not applied
because its memory consumption is too high for these training sets. The size of the
codebook was fixed to M=256. Both nearest neighbor variants (�-PNN and Lazy-PNN)
are clearly superior to the original PNN being about 100 to 500 times faster. From these
two variants, the Lazy-PNN is about 35% faster. The speed-up originates mainly from
the decreased number of distance recalculations; the average number of updates (��
varied from 4.4 to 5.6 in the �-PNN, and from 3.0 to 3.8 in the Lazy-PNN. Small
improvement is also due to the use of the heap structure.

In order to compare the nearest neighbor variants with the Kurita’s method we generated
subsets from Bridge and House by random sampling. The smaller training sets are of
size N=(128, 256, 384, 512, 640, 768, 896, 1024). In these tests the codebook size was
set to M=1 for getting the maximal number of iterations. The results for the two cases
are illustrated in Fig. 5. The Lazy-PNN is comparable to the Kurita’s method in speed
but the Lazy-PNN has the benefit of smaller memory consumption. The actual running
times are virtually the same for training sets with large vector dimensions (e.g. Bridge,
K=16), whereas for training sets with smaller dimensions (e.g. House, K=3) the Lazy-
PNN is faster.

The exact PNN is compared in Fig. 6 with two approximative variants of the PNN. The
Fast-PNN refers to the O(N log N) time variant of the PNN given by Equitz [4]. The
figure shows the (running time, MSE) pairs for the Fast-PNN, when the maximum
bucket size of the K-d tree ranges from 8 to 160. The method is very fast with small
bucket sizes and gets slower as the maximum bucket size increases. Another

 9

approximative PNN variant, the GLA-PNN by deGarrido et al. [14], starts with an initial
codebook of size M0 (M<M0<N). The initial codebook is first generated by the GLA and
then reduced to the final size using the exact PNN (Lazy-PNN). The method is
a compromise between higher speed of the GLA and better quality of the PNN, and is
parameterized by the choice of M0. From the two approximative methods, the GLA-
PNN has a better time-distortion performance than Equitz’s K-d tree variant, see Fig. 6.
The exact PNN, on the other hand, always produces the lowest MSE values.

Table 1. Summary of the compared exact PNN methods.

Method Time complexity Extra data Space complexity
Original PNN [4] O(N3K) - O(N)
Kurita's method [11] O(N2K + N2 log N) Distance matrix O(N2)
�-PNN [8] O(�N2K) Nearest neighbor table O(N)
Lazy-PNN O(�N2K) Nearest neighbor table O(N)

Table 2. Summary of the running times (in seconds).

Training set Original PNN �-PNN Lazy-PNN Time saved

by Lazy-
PNN

Bridge 73385 334 224 32.8%
Camera 73797 303 213 29.8%
Miss America 292351 874 569 34.9%
Table tennis 177019 650 429 34.0%
Airplane 5123 51 32 38.1%
House 2514 29 19 33.8%

0

2

4

6

8

10

128 256 384 512 640 768 896 1024

Size of the training set N

Ti
m

e
(s

ec
on

ds
)

Kurita
t-PNN
Lazy PNN

Subsets of House

0

5

10

15

20

128 256 384 512 640 768 896 1024

Size of the training set N

Ti
m

e
(s

ec
on

ds
)

Kurita
t-PNN
Lazy PNN

Subsets of Bridge

Figure 5. Comparison of the fast exact PNN methods for subsets of House (K=3) and
Bridge (K=16) when M=1. The size of the training set is limited to N=1024 due to the

memory requirements of Kurita's method.

 10

165

170

175

180

185

190

0 50 100 150 200 250 300
Time (seconds)

M
SE Optimal PNN

Standard GLA

K-d tree variant

GLA + Lazy-PNN

Fig. 6. Comparison of the suboptimal PNN variants (for Bridge). The size of the initial
codebook of GLA-PNN varies from 256 (standard GLA) to 4096 (optimal PNN). The
K-d tree variant is parameterized by varying the maximum bucket size from 8 to 160.

5. Conclusion

A fast variant of the exact PNN algorithm was introduced. The main idea of the
algorithm is to maintain a table of nearest neighbors as in the �-PNN algorithm. In
addition to that we postpone the updating of the closest distance information to the
moment when the (old) distance becomes the new tentative minimum among the cluster
distances. This action is possible due to the monotony of the cluster distances. The
monotony property is utilized further by using a heap structure as a priority queue to
maintain the set of cluster distances.

Our practical tests indicate that the Lazy-PNN is about 100 to 500 times faster than the
original PNN. The new method is comparable to the Kurita's algorithm in speed but it
has the benefit of smaller memory by factor N. In the comparison to �-PNN the number
of updated cluster distances was observed to reduce by 35% on average. The proposed
method is rather simple to implement and practical because no distance matrix is needed
for storing the pairwise distances.

We also gave a proof of the monotony property for the vectors in Euclidean space. It is
an open question whether the result generalizes to other cluster distances. This would
expand the usefulness of the new algorithm to the general clustering problem.

Acknowledgements

The work of Pasi Fränti was supported by a grant from the Academy of Finland.

References

[1] M.R. Garey, D.S. Johnson, H.S. Witsenhausen, "The Complexity of the

Generalized Lloyd-Max Problem". IEEE Transactions on Information Theory,
Vol.28 (2), pp.255-256, March 1982.

 11

[2] A. Gersho and R.M. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston 1992.

[3] Y. Linde, A. Buzo and R.M. Gray, "An Algorithm for Vector Quantizer
Design". IEEE Transactions on Communications, 28 (1), pp. 84-95, January
1980.

[4] W.H. Equitz, "A new vector quantization clustering algorithm", IEEE
Transactions on Acoustics, Speech, and Signal Processing 37 (10), pp. 1568-
1575, October 1989.

[5] P. Fränti, T. Kaukoranta and O. Nevalainen, "On the splitting method for VQ
codebook generation", Optical Engineering, 36 (11), pp. 3043-3051, November
1997.

[6] P. Fränti, J. Kivijärvi, T. Kaukoranta and O. Nevalainen, "Genetic algorithms
for large scale clustering problem", The Computer Journal, 40 (9), pp. 547-554,
1997.

[7] T. Kaukoranta, P. Fränti and O. Nevalainen, "Iterative split-and-merge
algorithm for VQ codebook generation", Optical Engineering, 37 (10), pp.
2726-2732, October 1998.

[8] G.N. Lance and W.T. Williams, "A general theory of classificatory sorting
strategies 1. Hierarchical systems", Computer Journal, 9, pp. 373-380, 1967.

[9] F. Kossentini and M.J.T. Smith, "A fast PNN design algorithm for entropy-
constrained residual vector quantization", IEEE Transactions on Image
Processing, 7 (5), pp. 1045-1050, July 1998.

[10] P. Fränti and T. Kaukoranta, "Fast implementation of the optimal PNN
method", Proc. IEEE Int. Conf. on Image Processing (ICIP), Chicago, Illinois,
October 1998.

[11] D.-F. Shen and K.-S. Chang, "Fast PNN algorithm for design of VQ initial
codebook", Proc. SPIE 3309, Visual Communications and Image Processing
'98, San Jose, California, pp. 842-850, 1998.

[12] J. Shanbehzadeh and P.O. Ogunbona, "On the computational complexity of the
LBG and PNN algorithms". IEEE Transactions on Image Processing 6 (4), pp.
614-616, April 1997.

[13] T. Kurita, "An efficient agglomerative clustering algorithm using a heap".
Pattern Recognition, 24 (3), pp. 205-209, March 1991.

[14] D.P. de Garrido, W.A. Pearlman and W.A. Finamore, "A clustering algorithm
for entropy-constrained vector quantizer design with applications in coding
image pyramids". IEEE Transactions on Circuits and Systems for Video
Technology 5 (2), pp. 83-95, April 1995.

 12

	1. Introduction
	2. The PNN method
	3. Lazy-PNN algorithm
	4. Practical results
	5. Conclusion
	Acknowledgements
	References

