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Abstract: The Pairwise Nearest Neighbor (PNN) algorithm is a well-known method for 
the codebook construction in vector quantization, and for the clustering of data sets. The 
algorithm has simple structure and it gives high quality solutions. A drawback of the 
method is the large running time of the original (exact) implementation. In this paper we 
prove the monotony of the merge costs of the PNN. The monotony property is utilized 
for speeding-up an existing PNN variant. The idea is to postpone a number of distance 
calculations. In this way we can reduce the computation by about 35% while preserving 
the exactness of the PNN.  
 
Keywords: Vector Quantization, Codebook Generation, Clustering Algorithms, 
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1. Introduction 
 
We study the problem of generating a codebook for a vector quantizer (VQ). The aim is 
to find M code vectors (codebook) for a given set of N training vectors (training set) by 
minimizing the average pairwise distance between the training vectors and their 
representative code vectors. The problem of generating an optimal codebook is 
a combinatorial optimization problem and it is NP-complete [1]. In other words, there is 
no known polynomial time algorithm for finding the globally optimal solution. 
However, reasonable suboptimal solutions are typically obtained by heuristic algorithms 
[2-7]. The most cited and widely used algorithm is the generalized Lloyd algorithm 
(GLA) [2, 3]. It starts with an initial solution, which is iteratively improved using two 
optimality criteria in turn until a local minimum has been reached.  
 
A different approach is to build the codebook hierarchically. The pairwise nearest 
neighbor (PNN) algorithm [4] is a member of agglomerative clustering methods [8]. 
The PNN starts by constructing an initial codebook in which each training vector is 
considered as its own code vector. Two nearest code vectors are merged at each step of 
the algorithm and the process is repeated until the desired size of the codebook has been 
reached. The algorithm is straightforward to implement in its basic form and in 
comparison to the GLA [3] it gives good results. The PNN has also the advantage that 
                                                 
* Preliminary version of the paper was presented at GraphiCon'98: The 8-th International Conference on 
Computer Graphics and Visualization. 
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the hierarchical approach produces codebooks of differing sizes as a side-product. Thus, 
the PNN can be suited for joint minimization of distortion and entropy, see entropy-
constrained PNN [9]. The algorithm can also be used to produce an initial codebook for 
another algorithm, such as the GLA, or it can be embedded into hybrid methods such as 
a genetic algorithm [6], or the iterative split-and-merge method [7]. 
 
A drawback of the PNN is the relatively high running time in its exact form. There are 
a large number of steps because typically M<<N, and at each step, all pairwise distances 
are calculated for finding the pair of vectors to be merged. This is very slow for large 
training sets. Most of the computation originates from the calculation of the pairwise 
distances. However, only two code vectors are changed at each step of the PNN and 
therefore most of the distance calculations are unnecessary. A fast and space efficient 
implementation of the PNN has been recently given independently by [10] and [11]. The 
idea is to maintain for each cluster a pointer to its nearest neighbor and in this way, 
avoid unnecessary distance calculations. After the merge operation, the pointers must be 
updated only for clusters whose nearest neighbor is one of the merged clusters. 
 
In this paper we propose an improved version of the above nearest neighbor variant 
[10]. The main idea is to reduce the distance calculations further by delaying the 
updates. We can do this because, as we will show, the cost function is monotonically 
increasing as a function of time. This means that the cost of merging any cluster with its 
nearest neighbor does not decrease during the algorithm. It is therefore sufficient to 
update a cost value only when it becomes the minimum one. The new method, referred 
as Lazy-PNN, reduces the number of updates considerably. Empirical tests show that in 
comparison to the PNN algorithm of [10] the Lazy-PNN improves the running time by 
35% on average. 
 
The rest of the paper is organized as follows. The problem formulation and the structure 
of the PNN are given in Section 2. The Lazy-PNN is then introduced in Section 3. 
Simulation results for various training sets are shown in Section 4, and conclusions are 
finally drawn in Section 5. 
 
 
2. The PNN method 
 
We next use the following notations: 
 
T Set of N training vectors T={T1,T2,…,TN}. 
C Codebook of m code vectors C={C1, C2,…,Cm}. 
M Size of the final codebook. 
K The dimension of the vectors. 
Si Cluster (set) of ni training vectors. 
NNi Index of the nearest neighbor of the cluster Si. 
di Increase of the distortion if the clusters Si  and  are merged. 

iNNS
Ri Validity indicator; Ri=true if and only if di is valid. 
 
We consider a set of N training vectors in a K-dimensional Euclidean space. The task of 
the codebook construction is to find a set of M code vectors (i.e. a codebook) by 
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minimizing the average squared distance D between the training vectors Ti and their 
representative code vectors Cj: 
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Here S={S1,…,SM} defines the clustering of the training set T. For a given codebook C, 
the optimal clustering can be constructed by assigning each training vector Ti to the 
cluster j0 for which: 
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The basic structure of the PNN is shown in Fig. 1. The method starts by initializing each 
training vector Ti as its own cluster Si. At each step of the algorithm, two nearest clusters 
(Sa and Sb) are searched and merged. The distance (merge cost) d between two clusters 
is defined as the increase in the distortion of the codebook if the clusters are merged. It 
is calculated as the squared Euclidean distance of the cluster centroids (code vectors) 
weighted by the number of vectors in the two clusters [4]: 
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The chosen clusters Sa and Sb are then merged. The size of the combined cluster Sa+b is 
na+b=na+nb, and the corresponding code vector is the centroid of the training vectors in 
the cluster. It can be calculated as the weighted average of Ca and Cb: 
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It is thus sufficient to maintain only the cluster centroids (Ci) and the sizes of the 
clusters (ni) in the implementation of the algorithm. The merge process is repeated until 
the codebook reaches the size M. 
 
 

Let each training vector be a code vector (m=N). 
Repeat 

Find two nearest clusters Sa and Sb to be merged. 
Merge Sa and Sb; m�m-1. 
Update data structures. 

Until m=M. 
 

Figure 1. Structure of the PNN method. 
 
 
The exact PNN applies local optimization strategy where all possible cluster pairs are 
considered and the one increasing the distortion least (smallest cost function value) is 
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chosen for merge. Straightforward implementation [4] recalculates all distances at each 
step of the algorithm. No additional data structures are needed but the algorithm takes 
O(N3K) time because there are O(N) steps in total, and there are O(N2) cluster pairs to be 
checked at each step.  
 
Most of the computation of the PNN originates from the calculation of the pairwise 
distances. Since only two code vectors are changed at each step, most of the distance 
calculations are unnecessary. To reduce the number of distance calculations, previous 
pairwise cluster distances can be stored in an N�N matrix. The minimum cluster 
distance is searched from the matrix and the corresponding cluster pair is merged. New 
distances are then calculated between the new cluster and remaining clusters only. The 
algorithm runs in O(N2K+N3) time where the former term originates from the distance 
calculations and the latter from the search for the minimum [12]. The disadvantages of 
this approach are cubic running time and quadratic memory consumption. 
 
Kurita’s method [13] stores all pairwise distances into a matrix, as above, but it utilizes 
a heap structure for searching the minimum distance. The merged clusters can be found 
by popping the smallest element from the top of the heap in O(log N) time. Only O(N) 
distance updates are needed after each merge step; each of these updates takes O(K + 
log N) time because of the distance calculation and the heap operation. The method thus 
runs in O(N2K + N2 log N)) time. The method still requires O(N2) memory, which is 
impractical for large training sets. 
 
Another approach (�-PNN) has been recently studied by Fränti and Kaukoranta in [10], 
and by Shen and Chang in [11]. The main idea is to maintain only a nearest neighbor 
pointer for each cluster. The index of the nearest cluster (NNi) and the corresponding 
cost function value di are stored in the nearest neighbor table. The optimal cluster pair 
(Sa, Sb) to be merged can be found by a linear search among the di-values. After the 
merge operation, the nearest neighbor pointers must be updated for those clusters for 
which NNi=a or NNi=b. Fortunately, in practice, there are only a small number (denoted 
by �) of pointers to be updated on average. The method thus takes O(�N2K) time in total. 
In addition to that, the memory requirement of this approach is only O(N). 
 
Several approximate variants of the PNN have also been considered in the literature. 
Equitz uses K-d tree for localizing the search for the code vectors, and the algorithm 
merges several vector pairs at the same time [4]. Another possibility is to generate 
a preliminary codebook of size M0 (N>M0>M) using the GLA and then apply the exact 
PNN until the codebook reaches its final size M [14]. These variants decrease the 
running time at the cost of increased distortion. In the following, we focus on the exact 
PNN variants. 
 
 
3. Lazy-PNN algorithm 
 
We propose next an improved version of the nearest neighbor variant of the PNN [10]. 
The idea is to reduce the distance calculations even further. Although the total number 
of updates (�) is rather small on average, the search of the nearest neighbor is still an 
expensive O(NK) time operation and it dominates the running time of the algorithm. 
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However, some of the distance calculations can be delayed and therefore a remarkable 
number of updates may be avoided. The new method is referred here as Lazy-PNN. 
 
3.1. Monotony property 
The application of delayed distance calculations is based on the monotony property of 
the nearest neighbor distances of the clusters, which is defined as follows. Suppose that 
at a certain moment the minimal merge cost is d(Sa, Sb) and the clusters Sa and Sb are 
merged. It is possible that the centroid of the merged cluster (Ca+b) becomes closer to the 
centroid of a third cluster Sc than Cc was in respect to the original cluster centroids (Ca 
and Cb), see Fig. 2. However, the merge cost d(Sa+b, Sc) is never smaller than 
min{d(Sa, Sc), d(Sb, Sc)} because the large size of the merged cluster compensates the 
potential decrease of the Euclidean distance. The cost function d is therefore 
monotonically increasing as a function of time. This is formalized in the following 
lemma: 
 
Lemma 1. Consider the clusters Sa, Sb, Sc with centroids Ca, Cb, Cc, and frequencies na, 
nb, nc. Assume that � � � � � �cbcaba SSdSSdSSd ,,, ��

� �cb S,
�

 and . Then it holds 
that d . 

1,, �cba nnn
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Proof.  We have the following relationships between the distances of the cluster 
centroids: 
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We can thus write (6) in the form: 
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This gives the condition 
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Now, we can write the difference of the merge costs in form: 
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This gives us the formula 
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The value of (7) is clearly now positive due to the assumptions made in lemma. This 
proves the lemma. � 

 
 
3.2. Lazy update 
Because of the monotony property, we know that a given distance value never decreases 
due to its update. We may therefore delay the distance calculations until the old cost 
function value becomes a candidate for being the smallest distance. We accomplish this 
by marking each value whether it is up to date or not. The optimal cluster pair to be 
merged can now be searched as before with only one difference; when an out-dated 
distance value is found to be minimal it is recalculated. This practice does not 
compromise the exactness of the algorithm but it may remarkably reduce the number of 
expensive distance calculations. 
 
The lazy processing can be applied to the nearest neighbor method as such. We take one 
step further and maintain a min-heap of the distance values (di) and the corresponding 
nearest neighbor pointers (NNi). The heap elements contain an additional flag (Ri), 
which indicates whether the distance value is up-to-date or not. The difference to 
Kurita’s method is that we only store one element per cluster whereas Kurita stores all 
distances. The use of the heap has no asymptotic influence on the running time of the 
Lazy-PNN because the recalculation of the distance values still dominates the running 
time. The heap, however, may speed-up the practical implementation because we need 
to consider only the root of the heap and therefore may potentially avoid a number of 
distance recalculations. 
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Figure 2. Illustration of the clusters in 2-dimensional space. Ca and Cb are the centroids 
of the two clusters to be merged, Ca+b is the centroid of the merged cluster, and Cc is the 

centroid of any other cluster. 
 
 
3.3. Implementation 
The pseudo code of the Lazy-PNN algorithm is presented in Fig. 3. The algorithm starts 
by initializing each cluster (or code vector) with one training vector. For each cluster Si, 
the nearest neighbor according to (3) is searched among the other clusters Sj (i�j). 
Information of the nearest neighbor is stored and marked valid. The nearest neighbor 
distances di of all clusters are inserted in the minimum heap H. The algorithm is then 
iterated until the size of the codebook reduces to M. At each step, the cluster Sa with the 
smallest d-value is deleted from H. If the d-value of Sa is out-of-date (Ra=False) its 
nearest neighbor is recalculated and reinserted in the heap. The process is repeated until 
a valid minimal distance is obtained from the top of H.  
 
The cluster Sa and its nearest neighbor Sb (b=NNa) are merged according to (4) and the 
number of vectors in the new cluster is calculated. The nearest neighbor of the new 
cluster is then determined and inserted in the heap according to its d-value. The 
information of the merged cluster is stored into the place of Sa leaving Sb unused. The 
non-existing cluster Sb is removed from the heap. This can be done in O(log N) time by 
maintaining a position index to the heap for each cluster. To avoid gaps in the indexing, 
the last cluster Sm replaces Sb. All the nearest neighbor pointers NNi to Sm are reassigned 
to Sb. Finally, the size of the intermediate codebook m is subtracted by one. 
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Input:  Training set {Ti} and final codebook size M. 
Output:  {Ci}. 
Main program 
H��; 
m�N; 
for � i��1, m�: Ci�Ti; ni�1; 
for � i��1, m�: UpdateNNpointer(H, i); 
repeat 

PickPair(H,a,b); 
MergeClusters(a,b); 
UpdateNNpointer(H, a); 

until m = M; 
  
Procedure PickPair(H,a,b): 
a�DeleteMin(H); 
while Ra=False 

UpdateNNpointer(H,a); 
a�DeleteMin(H); 

b�NNa; Remove(H, b); 
 
Procedure MergeClusters(a,b): 
Ca � (naCa+nbCb) / (na+nb); 
na�na+nb; 
for � i��1, m�: if NNi=a � NNi=b then Ri�False; 
Cb � Cm; nb� nm; NNb � NNm; db � dm; Rb � Rm; 
for � i��1, m-1�: if NNi=m then NNi�b; 
m � m-1; 
 
Procedure UpdateNNpointer(H, a) 
NNa� FindNearestCluster(a); 
da�d(a, NNa); 
Ra�True; 
Insert(H, a); 

 
Figure 3. Pseudo code of the Lazy-PNN. 

 
 
 
4. Practical results 
 
We generated training sets from six different images: Bridge, Camera, Miss America, 
Table tennis, Airplane and House, see Fig. 4. The vectors in the first two sets (Bridge, 
Camera) are 4�4 pixel blocks from the image. The third and fourth sets (Miss America, 
Table Tennis) have been obtained by subtracting two subsequent image frames of the 
original video image sequences, and then constructing 4�4 spatial pixel blocks from the 
residuals. Only the first two frames have been used. The fifth and sixth data sets 
(Airplane, House) consist of color values of the RGB images, prequantized to 5 bits per 
color component. Applications of this kind of data sets is found in image and video 
image coding (Bridge, Camera, Miss America, Table tennis), and in color image 
quantization (Airplane, House). 
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Bridge 
(256�256) 

K=16, N=4096 

Camera 
(256�256) 

K=16, N=4096 

Miss America 
(360�288) 

K=16, N=6480 

 

  
Table tennis 
(720�486) 

K=16, N=5490* 

Airplane 
(512�512) 

K=3, N=2317** 

House 
(256�256) 

K=3, N=1837** 
 
Figure 4. Sources of the training sets. *The training set Table tennis is constructed by 
random sampling only every fourth block. **The images Airplane and House are 
prequantized by 5 bits per color component. 
 
 
Properties of the compared PNN methods are presented in Table 1. Table 2 shows 
a summary of the test results for three main variants. Kurita’s method was not applied 
because its memory consumption is too high for these training sets. The size of the 
codebook was fixed to M=256. Both nearest neighbor variants (�-PNN and Lazy-PNN) 
are clearly superior to the original PNN being about 100 to 500 times faster. From these 
two variants, the Lazy-PNN is about 35% faster. The speed-up originates mainly from 
the decreased number of distance recalculations; the average number of updates (�� 
varied from 4.4 to 5.6 in the �-PNN, and from 3.0 to 3.8 in the Lazy-PNN. Small 
improvement is also due to the use of the heap structure. 
 
In order to compare the nearest neighbor variants with the Kurita’s method we generated 
subsets from Bridge and House by random sampling. The smaller training sets are of 
size N=(128, 256, 384, 512, 640, 768, 896, 1024). In these tests the codebook size was 
set to M=1 for getting the maximal number of iterations. The results for the two cases 
are illustrated in Fig. 5. The Lazy-PNN is comparable to the Kurita’s method in speed 
but the Lazy-PNN has the benefit of smaller memory consumption. The actual running 
times are virtually the same for training sets with large vector dimensions (e.g. Bridge, 
K=16), whereas for training sets with smaller dimensions (e.g. House, K=3) the Lazy-
PNN is faster.  
 
The exact PNN is compared in Fig. 6 with two approximative variants of the PNN. The 
Fast-PNN refers to the O(N log N) time variant of the PNN given by Equitz [4]. The 
figure shows the (running time, MSE) pairs for the Fast-PNN, when the maximum 
bucket size of the K-d tree ranges from 8 to 160. The method is very fast with small 
bucket sizes and gets slower as the maximum bucket size increases. Another 
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approximative PNN variant, the GLA-PNN by deGarrido et al. [14], starts with an initial 
codebook of size M0 (M<M0<N). The initial codebook is first generated by the GLA and 
then reduced to the final size using the exact PNN (Lazy-PNN). The method is 
a compromise between higher speed of the GLA and better quality of the PNN, and is 
parameterized by the choice of M0. From the two approximative methods, the GLA-
PNN has a better time-distortion performance than Equitz’s K-d tree variant, see Fig. 6. 
The exact PNN, on the other hand, always produces the lowest MSE values. 
 
 
Table 1. Summary of the compared exact PNN methods. 
 
Method Time complexity Extra data Space complexity
Original PNN [4] O(N3K) - O(N) 
Kurita's method [11] O(N2K + N2 log N) Distance matrix O(N2) 
�-PNN [8] O(�N2K) Nearest neighbor table O(N) 
Lazy-PNN O(�N2K) Nearest neighbor table O(N) 
 
 
Table 2. Summary of the running times (in seconds). 
 
Training set Original PNN �-PNN Lazy-PNN Time saved 

by Lazy-
PNN  

Bridge 73385 334 224 32.8% 
Camera 73797 303 213 29.8% 
Miss America 292351 874 569 34.9% 
Table tennis 177019 650 429 34.0% 
Airplane 5123 51 32 38.1% 
House 2514 29 19 33.8% 
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Figure 5. Comparison of the fast exact PNN methods for subsets of House (K=3) and 
Bridge (K=16) when M=1. The size of the training set is limited to N=1024 due to the 

memory requirements of Kurita's method. 
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Fig. 6. Comparison of the suboptimal PNN variants (for Bridge). The size of the initial 
codebook of GLA-PNN varies from 256 (standard GLA) to 4096 (optimal PNN). The 
K-d tree variant is parameterized by varying the maximum bucket size from 8 to 160. 

 
 
5. Conclusion 
 
A fast variant of the exact PNN algorithm was introduced. The main idea of the 
algorithm is to maintain a table of nearest neighbors as in the �-PNN algorithm. In 
addition to that we postpone the updating of the closest distance information to the 
moment when the (old) distance becomes the new tentative minimum among the cluster 
distances. This action is possible due to the monotony of the cluster distances. The 
monotony property is utilized further by using a heap structure as a priority queue to 
maintain the set of cluster distances.  
 
Our practical tests indicate that the Lazy-PNN is about 100 to 500 times faster than the 
original PNN. The new method is comparable to the Kurita's algorithm in speed but it 
has the benefit of smaller memory by factor N. In the comparison to �-PNN the number 
of updated cluster distances was observed to reduce by 35% on average. The proposed 
method is rather simple to implement and practical because no distance matrix is needed 
for storing the pairwise distances. 
 
We also gave a proof of the monotony property for the vectors in Euclidean space. It is 
an open question whether the result generalizes to other cluster distances. This would 
expand the usefulness of the new algorithm to the general clustering problem. 
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