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Speaker verification techniques neglect the short-time variation in the feature space even though it 
contains speaker related attributes. We propose a simple method to capture and characterize this spectral 
variation through the eigenstructure of the sample covariance matrix. This covariance is computed 
using sliding window over spectral features. The newly formulated feature vectors representing local 
spectral variations are used with classical and state-of-the-art speaker recognition systems. Results on 
multiple speaker recognition evaluation corpora reveal that eigenvectors weighted with their normalized 
singular values are useful in representing local covariance information. We have also shown that local 
variability features can be extracted using mel frequency cepstral coefficients (MFCCs) as well as using 
three recently developed features: frequency domain linear prediction (FDLP), mean Hilbert envelope 
coefficients (MHECs) and power-normalized cepstral coefficients (PNCCs). Since information conveyed 
in the proposed feature is complementary to the standard short-term features, we apply different 
fusion techniques. We observe considerable relative improvements in speaker verification accuracy in 
combined mode on text-independent (NIST SRE) and text-dependent (RSR2015) speech corpora. We 
have obtained up to 12.28% relative improvement in speaker recognition accuracy on text-independent 
corpora. Conversely in experiments on text-dependent corpora, we have achieved up to 40% relative 
reduction in EER. To sum up, combining local covariance information with the traditional cepstral features 
holds promise as an additional speaker cue in both text-independent and text-dependent recognition.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Speaker verification systems use speech features extracted 
from short-term power spectrum [1]. Commonly used short-
term spectral features, such as mel-frequency cepstral coefficients 
(MFCCs) [2] and perceptual linear prediction (PLP) [3] features, are 
extracted from speech segments of 20–30 ms duration and they 
represent spectral characteristics associated with the speech seg-
ment [4]. But temporal variation of spectrum also contains useful 
information about the dynamics of the speech production system. 
A common way to incorporate this information is to augment delta 
and double-delta coefficients with the static features computed 
over a temporal window of 50–100 ms [5,6]. MFCCs along with 
deltas and double-deltas remain as the primary features in state-
of-the-art speaker verification, due to reasonably high recognition 
accuracy and straightforward computation. Subsequently, this has 
sparked great research interest into further ideas such as feature 
post-processing. For example, cepstral mean and variance nor-
malization (CMVN) [7] and feature warping [8] help to suppress 
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channel and session variations. Different computational blocks of 
MFCC algorithms have also been explored. For instance, [9] used 
alternative multiple windowing technique in place of the con-
ventional Hamming window while [10] used regularized linear 
prediction (LP) analysis for power spectrum estimation. Classical 
triangular filter bank in MFCC can be replaced with Gaussian-
shaped filters [11], gammatone filters [12] and cochlear filters [13]. 
Root compression technique is prescribed for reducing the dy-
namic range of mel filter energies as opposed to the logarithmic 
compression [14]. An improved transformation technique on filter 
bank log-energies is proposed in [15] which was reported to yield 
higher recognition accuracy compared to conventional discrete co-
sine transform (DCT) in clean and noisy conditions.

Recently, further investigations have been carried out for ex-
tracting new features for speaker recognition [16,14] that utilize 
internally some form of long-term processing before extracting the 
short-term features. For instance, in frequency domain linear pre-
diction (FDLP) [17,18], the speech signal is first transformed into 
frequency domain with DCT operation directly on the speech sig-
nal. The subband Hilbert envelopes are computed followed by 
short-term energy computation from each band. In a more re-
cent work, short-term features called mean Hilbert envelope coef-
ficients (MHECs) are proposed from subband Hilbert envelope of 
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auditory filter output [14]. Here gammatone filter are employed 
simulating the effect of auditory nerve. Both the FDLP and MHEC 
features were reported to give high accuracy in both clean and 
noisy conditions. Another feature set, power-normalized cepstral co-
efficients (PNCCs), was recently proposed for robust speech recog-
nition [19] and subsequently applied to speaker recognition with 
success [20]. A common characteristic of these long-term process-
ing ideas, from a practical point of view, is that they have a large 
number of user-definable parameters that should be carefully cho-
sen, and the settings for different environmental effects and condi-
tions vary widely [16,21,22,14,19]. This makes the end-users task 
difficult when finding best feature configuration for a certain en-
vironment. In this paper, we introduce a new feature extraction 
technique which models the local feature-space variability and can 
be computed from any spectral features, similar to delta features. 
The variability of features is calculated directly from the covari-
ances of the pre-computed cepstral features.

The use of covariance information has a long history in speech 
processing and speaker verification is no exception. Since the 
speech signal varies a lot depending on spoken content, channel, 
background noise and various other situational parameters, the 
acoustic features computed from the signal for the same speaker 
are never exact replicas across training and test utterances. To 
compensate for such nuisance variations, the speaker and language 
community has put considerable effort into (co)variance modeling 
of features and speaker models [23,24]. In the classic techniques, 
uncertainty of speaker means is captured by covariance matrices 
in a Gaussian mixture model (GMM) [25]. In state-of-the-art sys-
tems, covariance modeling plays a major role at the later stages of 
the recognizer pipeline. For instance, nuisance attribute projection 
(NAP) [26] and within-class covariance normalization (WCCN) [27]
utilize, respectively, the estimated channel and within-speaker co-
variance matrices to suppress the respective effects from GMM su-
pervectors [26] or i-vectors [28]. Similarly, taking into account the 
uncertainty propagation at the PLDA model [29] helps to improve 
speaker recognition score with the use of posterior covariance es-
timation.

In most of the above-cited studies, covariance information has 
been used as a secondary tool for the purpose of suppressing 
nuisance variations from the primary acoustic features (such as 
MFCCs) or higher-level compact representations derived from them 
(such as i-vectors). In contrast to these prior studies, a new view-
point of our work is a study of covariance features for speaker 
characterization. To this end, the proposed features are obtained 
using a low-cost procedure from time-localized covariance infor-
mation of arbitrary acoustic features, such as MFCCs. To this end, 
our input acoustic features include not only standard MFCC fea-
tures but also the recently studied alternative parameterizations, 
so-called FDLP, MHEC and PNCC. Our method is inspired by the 
successful use of covariance-based features in applications out-
side of speech technology, such as movement detection and image 
classification [30–32], blind source separation [33], anomaly de-
tection in a network [34], similarity analysis of multivariate time-
series [35] and brain-computer interfacing applications [36]. To 
this end, the intention of the present study is to provide a fea-
sibility study of such features for speaker characterization. We first 
motivate and detail our proposed approach in Sections 2 and 3. We 
describe the experimental set up in Section 4 followed by Section 5
that provides extensive experimentation on three of the standard 
NIST speaker recognition evaluation (SRE) corpora (2001, 2008 and 
2010) and recently released RSR2015. Section 6 provides a sum-
mary of our findings. Finally, for reproducibility and to spark fur-
ther research interest to this direction, we provide an open-source 
implementation of the proposed method.1

2. Local variability features: motivation

In speaker recognition, the total variation in feature space is 
captured by the covariances computed over all the features. But 
this neglects the variations of the features for a short time dura-
tion during the articulation of various speech segments. A previous 
study has suggested that these variations might be more related to 
the spoken text [37]. But as each individual has his or her own 
unique articulatory behavior even for the same spoken content, 
we argue that measuring that variation could be useful for speaker 
characterization. To this end, our features are a low-dimensional 
parameterization of the short-term covariance matrix. A similar 
method is used in image processing applications where the seg-
ments of an image are described by covariance matrices of features 
of the region, known as region covariance [30,32]. The property of 
local-covariance matrix is also explored in other applications with 
reasonable success [33–36]. However, to the best of our knowledge, 
this has not been explored yet for speaker characterization. Here, 
we first analyze the property of local covariance with different 
known speech segments of different the speakers. We further pro-
vide an analysis how the local covariance is related to the global 
covariance matrix. We have also analyzed the property of local-
covariance in the presence of different kinds of speech segments. 
This leads to the derivation of feature vector in the next section.

2.1. Analysis of covariance for different speech segments

In Fig. 1, we have shown global covariances of three different 
speakers from NIST SRE 2001. The utterances are long and have 
more than two minutes of speech data. To compute covariance, we 
consider first two dimensions of MFCC, excluding the energy co-
efficient. The global covariance does not vary much even when 
the utterances contain completely different contents (and chan-
nels). Now, when CMVN is applied for reducing the convolutional 
channel effect in feature space, the covariances become even more 
similar, which indicates that global covariance may not be too 
effective for speaker characterization. Indeed, some of the early 
speaker modeling techniques using global covariance for speaker 
modeling (e.g. [24,23]) have generally been found less effective 
than methods that rely on speaker means.

On the other hand, the geometric structure of short-term sample 
covariance matrices are illustrated for ten different words of TIMIT 
sentence SA2 of three different speakers in Fig. 2. To extract the 
local covariance, we use the TIMIT word-level annotations. Clearly, 
local covariances for different speakers are visually more distin-
guishable even though they correspond to the same spoken text. 
This motivates us to explore ways to parameterize the short-term 
covariance into sequences of feature vectors, to be used with ar-
bitrary classifier back-ends. Before presenting this in Section 3, 
we shall first elaborate on the relationship of global and local 
(segment-dependent) covariances.

2.2. Relationship between the global covariance and local covariances

Let the t-th cepstral feature vector from a speech utterance 
be xt . Then the sample estimator of the global covariance matrix 
of entire feature space with T frames is,

Cglobal = 1

T

T∑
t=1

xtx�
t − μμ�, (1)

1 http :/ /cs .joensuu .fi /~sahid /codes /local _variability.zip.

http://cs.joensuu.fi/~sahid/codes/local_variability.zip
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Fig. 1. Plot of global covariance matrices of three different speakers of NIST SRE for (i) without CMVN and (ii) with CMVN processing. First two dimensions of feature vector 
are chosen for this visualization.

Fig. 2. Plot of covariance matrices of three different female speakers corresponding to different words of SA2 sentences (“Don’t ask me to carry an oily rag like that”) in TIMIT 
corpus. First two dimensions of feature vector are chosen for this visualization.
where μ is the global mean. If the utterance is divided into Q non-
overlapping segments (not necessarily of same length), the sample 
covariance of q-th segment Sq is,

Clocal
q = 1∣∣Sq

∣∣
∑
t∈Sq

xtx�
t − μqμ

�
q , (2)

where 
∣∣Sq

∣∣ is the number of samples in the q-th segment. Now we 
can write,
∑
t∈S

xtx�
t = ∣∣Sq

∣∣Clocal
q + μqμ

�
q . (3)
q

From Eq. (1), we find that,

Cglobal = 1

T

⎡
⎣∑

t∈S1

xtx�
t +

∑
t∈S2

xtx�
t + . . . +

∑
t∈Sq

xtx�
t

⎤
⎦ − μμ�.

(4)

Hence from Eqs. (3) and (4), we get,

Cglobal = 1

T

[
|S1|Clocal

1 + μ1μ
�
1 + |S2|Clocal

2 + μ2μ
�
2 + . . .

+ ∣∣Sq
∣∣Clocal

q + μqμ
�
q

]
− μμ�. (5)
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Finally, we can express the global covariance as,

Cglobal = 1

T

Q∑
q=1

∣∣Sq
∣∣Cq

local +
1

T

Q∑
q=1

μqμ
�
q − μμ�. (6)

From here we find that when mean-normalization in feature 
space is performed, μ becomes 0 and 

∑Q
q=1 μqμ

�
q is directly re-

lated to the between-segment covariance (Cbsegs), as given by

Cbsegs = 1

Q

Q∑
q=1

μqμ
�
q . (7)

Note that this Cbsegs is analogous to between-class covariance 
matrix used in linear discriminant analysis [38]. Now from Eq. (6)
and Eq. (7), we can express the global covariance as,

Cglobal = 1

T

Q∑
q=1

∣∣Sq
∣∣Clocal

q + Q

T
Cbsegs. (8)

Therefore, after mean-normalization over the entire feature 
space, the global covariance is nothing but the linear combination 
of the local covariances (i.e., within-segment covariance matrix) 
and between-segment covariance matrix.

3. Eigenstructure features from local covariance matrix

3.1. Local spectral variation from short-term covariance

The short-term spectral features of a speech utterance for dif-
ferent frames can be viewed as a multivariate time-series where 
one spectral frame represents a “snapshot” of the speech produc-
tion system. The variations in this multivariate data can be mea-
sured by computing its covariance matrix [39]. In conventional 
Gaussian mixture modeling (GMM) that underlies in both clas-
sic [25,40] and modern recognizers [28], covariance of each mix-
ture component represents spectral variability within the respec-
tive acoustic class. In contrast, we consider the short-term sam-
ple covariance matrix computed over a short-segment of speech 
(about 5 to 11 frames), and parameterize it as a feature vector for 
use with any recognizer back-end.

The diagonal elements of this short-term covariance matrix (i.e., 
sample variance of each feature over the temporal window) cor-
respond to feature variation across the frames. They were found 
useful for speaker characterization in [41]. The off-diagonal ele-
ments, representing co-variation in MFCCs, have generally smaller 
values due to use of (global) decorrelation technique, such as 
the discrete cosine transform (DCT) in MFCC extraction. However, 
as DCT achieves perfect decorrelation only when the mel-filter 
bank log-energies follow a first-order Markov process [42], the off-
diagonals are also useful for characterizing spectral variations. For 
steady sounds, such as sustained vowels, the first-order Markov 
property is reasonable but segments containing relatively more 
variable spectral contents, such as unvoiced fricatives, stop conso-
nants and diphthongs, will yield non-negligible diagonal elements. 
We will now describe the proposed method which aims at pre-
serving the important characteristics of the local covariance ma-
trix.

3.2. Features from short-term covariance

Let a sliding window of spectral features be denoted by a 
d × N matrix X centered around the t-th speech frame contain-
ing d-dimensional features in each column corresponding to N =
(2L + 1) frames. That is,
Fig. 3. Graph of eigenvectors corresponding to the highest eigenvalues of local co-
variance matrices for four different speakers (in separate line styles). The data cor-
responds to the same phoneme /ae/ from SA2 sentences (“Don’t ask me to carry an 
oily rag like that”) in TIMIT corpus. For each speaker, two separate instances of the 
same sound are shown with identical line styles.

X = [
xt−L . . . xt . . . xt+L

]
, (9)

where each xt denotes d-dimensional column vector represent-
ing spectral feature of t-th frame. The sample covariance matrix 
is C = 1

N−1

∑N
t=1(xt − x̄)(xt − x̄)� , where x̄ is the sample mean, 

x̄ = 1
N

∑N
t=1 xt . Now, C is a d × d matrix which contains infor-

mation related to variation of spectral features. As the effect of 
mean subtraction, only the variable component of spectral features 
are retained in C. Due to practical limitations, elements of the co-
variance matrix would form a rather poor parameterization. We 
employ eigen-decomposition property [43] where a positive semi-
definite covariance matrix C is uniquely represented by its eigen-
vectors and -values as,

Cei = λiei, i = 1,2,3, . . . ,d (10)

where λi is the eigenvalue corresponding to the d-dimensional 
eigenvector ei . Geometrically, the covariance matrix C corresponds 
to a prediction ellipse of a multivariate Gaussian that can be repre-
sented by its semi-axes. Specifically, the direction of i-th semi-axis 
is determined by the eigenvector ei , and its magnitude is the re-
spective singular value, si = √

λi . In our present setup, short-term 
features of 19-dimensions are computed from speech frame of 
20 ms with an overlap of 10 ms. Hence, in order to keep the 
sliding window at 110 ms, N needs to be fixed at 11. Note that 
N < d in all the cases considered in this paper since we use tem-
poral windows having length at most 130 ms. Consequently, the 
rank of the sample covariance matrix C is at most 13 assuming 
all the observations are linearly independent [44, p. 103]. That is, 
C is always rank-deficient for which it is non-invertible [44, p. 51]. 
However, this is not a concern as we do not need the inverse of 
C at any point. Instead, we parameterize the covariance matrix via 
its eigenvalues and -vectors and treat it as a feature vector, anal-
ogous with MFCCs. To this end, note first that at most N of the 
eigenvalues are nonzero; secondly, only the few top eigenvalues 
are significant as features of close-by frames are highly correlated. 
Therefore, eigenstructure of C can be represented with a fewer 
eigenvalues.

In Fig. 3, the first two eigenvectors corresponding to the mul-
tiple instances of phoneme /ae/ are illustrated for four different 
speakers. Those speakers are separable by the direction (specified 
by the eigenvectors). On the other hand, the singular values can 
be seen as measures of spectral activity. For example, speech re-
gions with less variation will have lower singular values as the 
covariance matrix is nearly a null matrix (with all singular val-
ues equal to zero in the limiting case). For rapidly varying regions, 
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Fig. 4. Figure showing speech spectrogram of “She had your dark suit” (top) and the corresponding first two singular values of covariances (bottom). Here, the covariance is 
computed for 110 ms sliding window (i.e., number of frame, N = 11 for window size 20 ms with an overlap of 50%) in temporal domain. The figure shows that portions 
of the speech segment with “stable” spectral information have lower eigenvalue where as regions with “highly varying” speech information correspond to higher singular 
values.
however, the singular values will be higher as they correspond to 
the standard deviations in the directions of the eigenvectors. In 
Fig. 4, variation of two highest singular values are illustrated for 
one speech segment. Clearly, regions having slowly varying or “sta-
ble” spectral characteristics under a temporal window of 110 ms, 
have lower singular values in comparison with the “rapidly vary-
ing” section of spectrum.

To incorporate information from both the eigenvectors and sin-
gular values, we proceed as follows. Assuming {ei}K

i=1 are the 
eigenvectors corresponding to the K largest eigenvalues, our pro-
posed dK-dimensional feature is,

f = [
f�1 f�2 . . . f�K

]�
(11)

where fi = αiei are weighted eigenvectors. We consider three kinds 
weighting schemes:

1. αi = 1,
2. αi = si ,

3. αi = si/ 
d∑

n=1
sn .

The first variant discards any information of the singular values 
and we call it uniformly weighted eigenvector coefficient (UWEC). In 
the second case, eigenvectors are weighted with the corresponding 
singular value, leading to singular value weighted eigenvector coeffi-
cient (SWEC). In the last case, the weights are further normalized 
by the sum of singular values or trace-norm to incorporate the 
influence of discarded eigenvectors. We call it normalized singular 
value weighted eigenvector coefficient (NSWEC).

In practice, we use singular value decomposition (SVD) to si-
multaneously compute singular values and eigenvectors [45]. SVD 
represents a d ×N rectangular matrix X̃ as a multiplication of three 
matrices, i.e., X̃ = USV� , where U is a d × d orthogonal matrix 
containing eigenvectors of X̃X̃� , V is an N × N orthogonal matrix 
containing eigenvectors of X̃�X̃, and S is a diagonal matrix con-
taining the singular values of both X̃X̃� and X̃�X̃ [46]. Now if 
X̃ has zero mean in row space, U will represent eigenvectors of 
X̃X̃� (i.e., covariance matrix) and S will contain the corresponding 
singular values. Therefore, the steps to calculate the new features 
from any feature matrix X of size d × N are:
Step 1: Compute normalized feature matrix X̃ by (i) subtracting 
sample mean x̄ = 1

N

∑N
i=1 xi from each column of X, (ii) dividing 

them by 
√

N − 1.
Step 2: Perform SVD: X̃ = USV�, where U ∈R

d×d , S ∈R
d×N and 

V ∈R
N×N .

Step 3: Get the singular values si from the diagonal of S. Like-
wise, the i-th row of U is ei .

Step 4: Form the feature vector f by concatenating fi = αiei for 
i = 1, 2, . . . , K with appropriate value of αi .

Note that the SVD step requires additional computations with 
time complexity O (min{Nd2, N2d}) per frame [47] for the com-
monly used implementation. But there are faster algorithms to 
compute SVD, specifically for our case, where singular vectors cor-
responding to the top K singular values are only required [45,48,
49]. Computational cost can be further reduced here as SVD is cal-
culated on the data using sliding window [50]. Another issue with 
SVD is that the inherent sign ambiguity associated with its de-
composition can be a problem [51]. However in practice, it will 
not affect the recognition performance, if exactly same implemen-
tation of robust SVD algorithm2 that gives deterministic output is 
employed for training and testing.

4. Experimental setup

4.1. Database description

We evaluate speaker verification accuracy on three NIST cor-
pora. First, we perform extensive experiments on NIST SRE 20013

to find out optimal parameter configurations. Then we apply it on 
the telephone sub-conditions of NIST SRE 20084 and 2010.5 We 
have selected C6 sub-condition from NIST SRE 2008 containing all 
the telephone speech trials. From NIST SRE 2010, we have chosen 
C5 and C6. Here, C5 corresponds to normal vocal effort in both en-
rolment and verification samples while in C6 the target speakers 

2 For example, SVD implementation in MATLAB which uses LAPACK (Linear Al-
gebra Package). We have also found that this algorithm is stable and signs of the 
singular vectors are not affected due to small amount of random perturbation [52].

3 http :/ /www.itl .nist .gov /iad /mig /tests /spk /2001/.
4 http :/ /www.itl .nist .gov /iad /mig /tests /sre /2008/.
5 http :/ /www.itl .nist .gov /iad /mig //tests /sre /2010/.

http://www.itl.nist.gov/iad/mig/tests/spk/2001/
http://www.itl.nist.gov/iad/mig/tests/sre/2008/
http://www.itl.nist.gov/iad/mig//tests/sre/2010/
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Table 1
Description of NIST speech corpora used for the performance evaluation. (�: Male, �:Female.)

NIST SRE 2001 NIST SRE 2008 (C6) NIST SRE 2010 (C5) NIST SRE 2010 (C6)

Target models 74�, 100� 648�, 1140� 290�, 290� 181�, 184�
Test segments 850�, 1188� 895�, 1674� 355�, 357� 147�, 185�
Target trials 850�, 1188� 874�, 1840� 353�, 355� 178�, 183�
Non-target trials 8500�, 11 880� 11 637�, 21581� 13 707�, 15 958� 12 825�, 15 486�

Table 2
Description of the RSR2015 speech corpus (Part I) used for the performance evaluation. (�: Male, �:Female.)

Development Evaluation

Target models 1492�, 1405� 1708�, 1470�
Test segments 8979�, 8448� 10 256�, 8810�
Target trials Target Correct (TC) 8931�, 8419� 10 244�, 8810�
Non-target trials Target Wrong (TW) 259 001�, 244 123� 297 076�, 255 490�

Impostor Correct (IC) 437 631�, 387 230� 573 664�, 422 880�
Impostor Wrong (IW) 6 342 019�, 5 612 176� 8 318 132�, 6 131 760�
are enrolled with normal vocal effort but tested with high vocal 
effort speech [53]. The details of the NIST corpora are summarized 
in Table 1.

We have also performed experiments with the recently released 
text-dependent RSR2015 corpus [54]. It contains trials with lexical 
constraints in training and test. Part 1 of the database is used for 
the experiments where the speakers use a fixed pass-phrase for 
authentication. The details of the Part 1 of the corpora are sum-
marized in Table 2. It consists of four different kinds of trials. The 
first type of trial, target correct (TC), consists of target speakers 
tested with correct pass-phrase from the same speaker, considered 
as the target trial. There are three different non-target trials. The 
first one is target wrong (TW) where the same speakers with dif-
ferent pass-phrase try to authenticate. The two remaining ones are 
impostor correct (IC) and impostor wrong (IW), where impostor 
speakers try to authenticate, respectively, using correct and wrong 
pass-phrases.

4.2. Feature extraction

Short-term spectral features are extracted from speech frames 
of 20 ms with 50% overlap. The Hamming window is used for dis-
crete Fourier transform (DFT) based power spectrum estimation. 
Baseline MFCCs are extracted first using 20 triangular filters in 
mel scale [15]. Discarding the energy coefficient, the remaining 19 
coefficients are processed further with relative spectral (RASTA) fil-
tering [55]. Then delta and double-delta coefficients are computed 
with temporal window of three frames and augmented with the 
static coefficients to create 57-dimensional feature vector. Then, 
features corresponding to non-speech frames are discarded using a 
speech activity detection (SAD) technique that utilizes bi-Gaussian 
modeling of log-energies [56]. Finally, utterance level cepstral mean 
and variance normalization (CMVN) is performed. The proposed lo-
cal covariance based features are extracted using the static part of 
the MFCCs (after processing with RASTA and CMVN) using a slid-
ing window of fixed length in the temporal domain.

The proposed features are also extracted using other recently 
studied features to extract the base coefficients. MHEC [14], 
FDLP [21], and PNCC [19] features are implemented with the op-
timized configurations reported in literature. In MHEC, first the 
speech signal is passed through a gammatone filter bank con-
sisting of 32 filters. Then the mean energy of Hilbert envelope 
of each subband is computed. Finally, DCT is performed on 15th 
root compressed energy coefficients to compute 20-dimensional 
cepstral features. We have also appended delta and double-delta 
coefficients to get final 60 dimensional feature vector as in [14]. In 
the case of FDLP, first the speech signal is divided into very long 
segments of length 10 s. Then, DCT is performed to transform the 
signal into frequency domain. After this, linear prediction analysis 
of order 30 is performed for each of the 17 subbands spaced lin-
early in Bark scale. Then, short-term energy of each envelope is 
computed and they are used for creating 13-dimensional cepstral 
features using DCT (discarding the energy coefficient). Finally, delta 
and double-delta coefficients are added to create 39-dimensional 
features. In PNCC, we use a temporal window of five frames. 32 fil-
ters are used to compute the energy coefficients which further un-
dergo 15th root power compression. Finally, we get 57-dimensional 
features similar to our MFCCs. We set the frame size and the frame 
shift same for all the compared features. CMVN is performed in 
all cases. For all the compared base feature sets, we compute the 
NSWEC features in the same manner as from the MFCCs using a 
window of 60 ms.

4.3. Classifier description

We evaluate speaker recognition performance using two differ-
ent classifiers. First, to enable a large number of preliminary ex-
periments, we use the classic lightweight Gaussian mixture model 
with universal background model (GMM–UBM) on NIST SRE 2001. 
The main purpose is to find an optimized configuration for our 
proposed feature. We then use an up-to-date i-vector [28] rec-
ognizer with probabilistic linear discriminant analysis (PLDA) [57,
58] back-end to assess the recognition accuracies of the baseline 
MFCCs and proposed features in the two newer NIST corpora. In 
the i-vector system, two gender-dependent UBMs with 512 mix-
ture components are trained using 20 EM iterations with speech 
data from NIST SRE 2004–06, FISHER, and Switchboard. Then, a to-
tal variability matrix with 400 factors is trained using five EM 
iterations from the same data. The i-vectors are processed using 
linear discriminant analysis (LDA) to reduce their dimensions to 
200, followed by radial Gaussianization [58]. For PLDA training, the 
same data as in T-matrix estimation is utilized. The dimensional-
ity of the speaker subspace is set to 150 and 20 EM iterations are 
used for estimating the PLDA hyper-parameters. For performing ex-
periments with RSR2015, we have used GMM–UBM system as the 
speech files are short in duration and i-vector shows poor perfor-
mance [54]. In this case, gender-dependent UBM is trained using 
TIMIT corpora and target speakers are created using maximum-
a-posteriori (MAP) algorithm with relevance factor 14 [40]. The 
reason for selecting TIMIT is that it also contains microphone qual-
ity speech signals with sampling frequency of 16 kHz similar to 
that of RSR2015. In order to conduct experiments with this corpus, 
we have made necessary changes to the cepstral feature extractor 
used for NIST evaluation, i.e., the sampling rate is set at 16 kHz. 
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Table 3
Speaker verification performance on NIST SRE 2001 using a GMM–UBM system for 
the baseline MFCCs and the proposed eigenstructure features. Temporal window 
length is set to 100 ms. Top three eigenvectors are chosen, i.e., K = 3. Dimensional-
ity of all the four feature sets is the same, 57.

Feature (dimensionality) EER (in %) minDCF × 100

MFCC (57) 8.01 3.66
UWEC (57) 9.86 4.25
SWEC (57) 10.05 4.51
NSWEC (57) 9.42 4.12

Fig. 5. DET plot showing speaker verification performance on NIST SRE 2001 for 
57-dimensional MFCC (static + � + ��) and three 57-dimensional proposed fea-
tures computed from first three eigenvectors using temporal window of 100 ms.

However, other parameters including the number of static features 
are kept identical as before.

4.4. Performance evaluation

We use equal error rate (EER) and minimum detection cost 
function (minDCF) to assess speaker recognition accuracy. EER is 
calculated when the false alarm (P fa) and the false rejection rates 
(Pmiss) are equal, whereas minDCF is the minimum of wmiss ×
Pmiss + w fa × P fa over all detection thresholds. Here, wmiss and w fa
are weights for the miss and false alarm rates. These values are 
set according to the evaluation plans of the respective corpora. For 
NIST SRE 2001 and RSR2015, wmiss = 0.10 and w fa = 0.99 while 
for NIST SRE 2008 and 2010, wmiss = 0.001 and w fa = 0.999.

5. Results

We first study the newly proposed eigenstructure features for 
an arbitrarily chosen temporal window length (here 100 ms). As 
in our present setup, the speech frame size is 20 ms with 10 ms 
overlap, we consider nine frames (i.e., context of four frames in 
each direction) for covariance computation. In order to keep the 
dimensionality of the proposed feature same to that of the base-
line MFCCs (i.e., 57), only the first three eigenvectors correspond-
ing to the highest eigenvalues are considered (i.e., K = 3). Differ-
ent weighting schemes along with the baseline MFCCs are com-
pared on NIST 2001 in Table 3, and the corresponding DET plots 
are shown in Fig. 5. Features based on normalized singular value 
weighting (NSWEC) outperforms the other two variants, UWEC and 
SWEC, in terms of both EER and minDCF. The proposed features 
yield generally higher error rates compared with our MFCC base-
line but, as we will see shortly, they capture complementary cues 
to MFCCs that help in a fusion mode.
Table 4
Speaker verification performance on NIST SRE 2001 using the proposed NSWEC fea-
tures with GMM–UBM system for different length of temporal window and number 
of eigenvectors (i.e., K ). Note that for 40 ms temporal window (i.e., using three 
frames), performance cannot be evaluated for K > 2 as higher eigenvalues become 
zero or close to zero.

Window 
length 
(in ms)

K = 2 K = 3 K = 4

EER 
(in %)

minDCF 
× 100

EER 
(in %)

minDCF 
× 100

EER 
(in %)

minDCF 
× 100

40 9.42 4.10 – – – –
60 8.83 3.96 8.29 3.82 9.47 4.14
80 8.98 3.82 8.93 3.90 8.98 3.87

100 9.51 4.08 9.42 4.12 9.03 4.22
120 10.26 4.48 10.50 4.47 10.84 4.73
140 10.70 4.50 10.55 4.72 10.90 4.83
160 10.45 4.77 10.56 4.81 10.94 4.90

The proposed NSWEC feature combines information from both 
the eigenvalues and -vectors of the local covariance matrix. In a 
separate experiment, we also studied whether eigenvalues only 
(without eigenvectors) could also serve as useful features. To this 
end, we set the temporal window length again to 100 ms (9 ad-
jacent frames), used square root of the top eigenvalues (i.e., the 
singular values) as features, and varied dimensionality from 3 to 
the maximum value of 9. This leads to EERs larger than 32% in all 
the cases, which indicates that eigenvalues alone perform poorly.

5.1. Effect of temporal window length and number of eigenvector

The difference in performance of our proposed feature w.r.t. 
MFCC is high. The length of window (i.e., 100 ms) for computing 
the proposed feature may not be optimal. The temporal window 
length should be carefully chosen: too long a window may be 
influenced by the context while too short a window will not effec-
tively represent information related to temporal variation. Table 4
shows the results for NSWEC with temporal window size varried 
from 40 to 140 ms. We also vary the number of eigenvectors, 
i.e., K . The highest recognition accuracy on NIST SRE 2001 is ob-
tained with temporal window of 60 ms (i.e., 5 frames) with K = 3. 
Interestingly, this is the same length of speech from which our 
baseline MFCCs are computed (by taking delta and double-deltas 
into account).

5.2. Comparison with conventional dynamic features

Keeping in mind that the proposed features are similar to deltas 
in the sense that they capture temporal characteristics of the base 
coefficients, it is interesting to compare them to deltas only (with-
out the base MFCCs). To this end, we compare the performances of 
the proposed eigenvector-based feature (NSWEC) with the conven-
tional dynamic coefficients (deltas, double-deltas, and triple-deltas) 
in Table 5. When used separately, the traditional deltas and double 
deltas achieve lower error rates in most cases. But comparing the 
combination of traditional dynamic coefficients with the equiva-
lent variant of the proposed features (i.e., first two eigenvectors or 
first three eigenvectors), we observe reductions in both EER and 
minDCF. We also observe that when these dynamic coefficients 
are further augmented with the static MFCCs, the performance im-
proves substantially.

5.3. Complementarity and compatibility with other robust features

The proposed feature set conveys information associated with 
the variation of spectral features neglected in MFCCs. Therefore, we 
expect a gain in speaker verification accuracy when the two fea-
ture sets are combined. We furthermore hypothesize that the pro-
posed local-covariance based feature can be computed from other 
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Table 5
Comparison of speaker verification performance on NIST SRE 2001 using conventional dynamic fea-
tures, proposed eigenstructure-based features, and their combinations with static MFCC. The pro-
posed features are computed for 60 ms temporal window.

Feature (dimension) Stand-alone Input fusion with static MFCC

EER (in %) minDCF × 100 EER (in %) minDCF × 100

� (19) 10.37 4.41 8.29 3.71
�� (19) 11.68 5.11 8.29 3.97
��� (19) 14.37 6.24 8.63 4.06
� + �� (38) 9.37 4.07 8.01 3.66
� + �� + ��� (57) 9.76 4.25 8.39 3.55

First eigenvector (19) 10.01 4.56 8.15 3.61
Second eigenvector (19) 14.52 6.37 9.14 4.18
Third eigenvector (19) 26.64 9.37 9.14 4.32
First two eigenvectors (38) 8.83 3.96 7.62 3.55
First three eigenvectors (57) 8.29 3.82 7.90 3.52
First four eigenvectors (76) 9.03 4.22 7.89 3.69
Table 6
Speaker verification performance on NIST SRE 2001 using different fusion technique. 
The results are also shown when the proposed technique is applied to the MHEC, 
FDLP and PNCC features. In all cases, proposed NSWEC features are computed with 
temporal window of 60 ms and three eigenvectors are retained.

Base feature Mode EER (in %) minDCF × 100

MFCC Baseline 8.01 3.66
NSWEC 8.29 3.82
Input fusion 7.94 3.41
Score fusion 7.90 3.50

MHEC Baseline 11.34 4.84
NSWEC 9.96 4.60
Input fusion 9.67 4.19
Score fusion 10.21 4.39

FDLP Baseline 9.42 3.88
NSWEC 13.00 5.59
Input fusion 9.13 3.92
Score fusion 9.57 3.98

PNCC Baseline 9.23 3.88
NSWEC 10.83 4.78
Input fusion 8.06 3.58
Score fusion 8.87 3.83

features not limited to MFCCs. In Table 6, results of the combina-
tion schemes and results with other features are shown for NIST 
SRE 2001 with the optimized temporal window size (60 ms) ob-
tained above. We find that the proposed eigenstructure-based fea-
ture extraction technique works well with MHEC, FDLP and PNCC 
as well. Performance is also improved when fused with the con-
ventional features for both input and output fusion schemes. Here, 
input fusion is done by concatenating the base cepstral and local 
variability based features. Alternatively, output fusion is performed 
by linearly combining the recognition scores (i.e., likelihood ratio) 
of the two systems with equal weights. We also note that input fu-
sion (i.e., frame-level concatenation of two 57-dimensional feature 
vectors) yields lower error rates compared with score fusion.

5.4. Performance evaluation on i-vector framework

We evaluate the performance in i-vector framework with the 
optimized feature configuration obtained in the initial experiments 
with the GMM–UBM system. We conduct experiments with MFCC 
as base feature as it outperforms other features in the preliminary 
experiments on NIST SRE 2001 (Table 6). In addition to the input 
fusion and equal weights (EW) score fusion, we have also done 
experiments with linear regression (LR) based score fusion. Here, 
fusion weights are optimized in one speech corpus (development 
data) by minimizing logistic loss function. Then the weights are 
applied in experiments with evaluation data. We have used Focal 
Table 7
Speaker verification performance on telephone speech sub-condition (C6) of NIST 
SRE 2008 using i-Vector system for baseline MFCC and eigenstructure-based pro-
posed features. Results are also shown for input fusion, equal weighted score fusion, 
and i-vector fusion.

System EER (in %) minDCF × 100

Male Female Male Female

Baseline 4.81 6.26 7.38 9.79
NSWEC 5.63 7.57 7.36 9.80
Input fusion 4.92 6.20 7.60 9.79
Score fusion (EW) 4.67 6.60 6.92 9.78
i-Vector fusion 4.58 6.43 7.49 9.85

toolkit6 for this purpose. NIST SRE 2008 is used as development 
data for optimizing the fusion parameters. We have further con-
ducted experiments with i-vector fusion. Here, i-vectors from two 
systems are first concatenated. Then they are processed with LDA, 
whitening followed by length normalization before they are used 
with PLDA system. The results for different fusion schemes along 
with baseline system are shown in Table 7 and Table 8 for NIST 
SRE 2008 and SRE 2010, respectively. The combined systems give 
higher recognition accuracy than the baseline MFCC-based system. 
Highest relative improvement has been achieved for male section 
of NIST SRE 2010 (C6). In this case, the relative reduction in EER is 
12.28% for i-vector fusion based combined system.

5.5. Text-dependent speaker recognition results on RSR2015

Experimental results on the text-dependent RSR2015 corpus 
are shown in Tables 9 and 10, respectively, for the development 
and evaluation sections. Speaker verification performance using 
our baseline GMM–UBM system is outperforms the previously re-
ported results in most of the sub-conditions [54]. We see increased 
recognition accuracy in all cases using our proposed feature in 
fused mode. In many cases, the improvement is remarkably higher 
compared to improvements obtained on the text-independent NIST 
corpora. For example, we have obtained 40% relative reduction in 
EER over our MFCC baseline system in the female part of the 
evaluation section for the third sub-condition (i.e., where wrong 
pass-phrases from impostors are used as non-target trials). Con-
siderable improvement is also obtained in the other cases. This is 
most likely due to the lexical constraints in text-dependent mode. 
Here, the proposed features capture speaker-related variability and 
the contribution from this complementary information is helpful 
to improve speaker verification accuracy.

6 https :/ /sites .google .com /site /nikobrummer /focal.

https://sites.google.com/site/nikobrummer/focal
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Table 8
Same as Table 7 but for the sub-conditions C5 and C6 of NIST SRE 2010.

System C5 C6

EER (in %) minDCF × 100 EER (in %) minDCF × 100

Male Female Male Female Male Female Male Female

Baseline 2.55 3.68 4.73 5.44 4.48 5.75 7.19 8.13
NSWEC 3.72 5.64 7.72 6.60 7.78 8.64 8.36 9.40
Input fusion 2.64 3.94 4.51 5.35 4.49 7.10 7.81 7.49
i-Vector fusion 2.67 3.66 4.47 4.96 3.93 6.56 7.35 6.99
Score fusion (EW) 2.74 3.94 4.59 4.70 4.40 5.46 7.08 8.36
Score fusion (LR) 2.27 3.66 4.33 5.10 3.95 5.35 7.13 8.24

Table 9
Speaker verification performance on development section of RSR2015 using GMM–UBM system for baseline MFCC (static + � + ��), eigenstructure-based proposed features 
and combined systems. The proposed features are computed by considering top three eigenvectors from temporal window of 60 ms.

System Target: TC, Non-target: TW Target: TC, Non-target: IC Target: TC, Non-target: IW

EER (in %) minDCF × 100 EER (in %) minDCF × 100 EER (in %) minDCF × 100

Male Female Male Female Male Female Male Female Male Female Male Female

Baseline 2.86 0.84 1.40 0.43 2.83 1.98 1.35 1.03 0.36 0.10 0.16 0.05
NSWEC 4.38 2.13 2.05 1.34 4.28 3.23 2.08 1.78 0.76 0.38 0.35 0.19
Input fusion 2.33 0.64 1.11 0.32 2.64 1.61 1.22 0.86 0.31 0.06 0.13 0.03
Score fusion (EW) 2.73 0.77 1.30 0.43 2.70 1.76 1.28 0.94 0.32 0.11 0.13 0.04

Table 10
Same as Table 9 but for evaluation section of RSR2015.

System Target: TC, Non-target: TW Target: TC, Non-target: IC Target: TC, Non-target: IW

EER (in %) minDCF × 100 EER (in %) minDCF × 100 EER (in %) minDCF × 100

Male Female Male Female Male Female Male Female Male Female Male Female

Baseline 1.31 0.60 0.63 0.27 1.67 1.76 0.86 0.91 0.17 0.08 0.07 0.04
NSWEC 2.64 1.76 1.30 0.88 3.09 3.56 1.59 1.84 0.39 0.34 0.19 0.17
Input fusion 0.97 0.49 0.47 0.23 1.58 1.72 0.80 0.86 0.12 0.05 0.05 0.03
Score fusion (EW) 1.25 0.53 0.59 0.27 1.62 1.67 0.79 0.89 0.14 0.08 0.06 0.03
Score fusion (LR) 1.23 0.53 0.59 0.27 1.62 1.68 0.79 0.89 0.14 0.08 0.05 0.03
6. Conclusion

Most speaker verification methods rely on speaker means, for 
instance, in the form of GMM supervectors or i-vectors, while 
the use of (co)variance features has been much less explored. To 
this end, the main intention of this study was to investigate fea-
sibility of local covariance features for speaker characterization. 
We have proposed a new straightforward speech parameteriza-
tion from short-term covariance matrix based on eigenstructure 
analysis. Similar to delta features, the proposed features can be 
computed from arbitrary base cepstral coefficients not limited to 
MFCCs as demonstrated in this study with the MHEC, FDLP, and 
PNCC features.

When used as stand-alone features, the speaker verification er-
ror rates were higher than our MFCC baseline (including deltas and 
double deltas), but comparable and complementary with the most 
standard “dynamic” features – deltas and double-deltas. Different 
from the delta coefficients, our features are – by construction – in-
variant to frame re-ordering within the observation window and 
they capture the uncertainty in the window. Fusion experiments 
were conducted out to find out the compatibility of our features 
with three recently investigated features. We got consistently bet-
ter results for GMM–UBM based speaker recognition system for 
both input (feature) and output (score) fusion when evaluated on 
the NIST SRE 2001 data. We then performed experiments with an 
up-to-date i-vector system on NIST SRE 2008 and 2010 corpora. 
The proposed features were again found helpful when fused with 
MFCCs at frame or score level. In experiments with text-dependent 
RSR2015 corpus, we have also observed considerable reductions in 
EER and minDCF.
Summing up our study, the use of local covariance information 
for speaker characterization holds promise in speaker characteriza-
tion. The local covariance features capture spreading (uncertainty) 
information of the local short-term features absent from the cep-
stral features and deltas. It is worthwhile emphasizing that we 
observed performance improvements (in fusion mode with base-
line features) for four different state-of-the-art base feature sets, 
two different classifiers and four different corpora including both 
text-independent and text-dependent set-ups. Some of the inter-
esting future directions are robustness analysis, variable window 
size, optimized back-end parameters and studying the applicability 
of our features in other tasks, such as language and accent recog-
nition.
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