IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

Compression of Map Images by
Multilayer Context Tree Modeling

Pavel Kopylov and Pasi Frinti

Abstract—We propose a method for compressing color map im-
ages by context tree modeling and arithmetic coding. We consider
multicomponent map images with semantic layer separation and
images that are divided into binary layers by color separation. The
key issue in the compression method is the utilization of interlayer
correlations, and to solve the optimal ordering of the layers. The in-
terlayer dependencies are acquired by optimizing the context tree
for every pair of image layers. The resulting cost matrix of the
interlayer dependencies is considered as a directed spanning tree
problem and solved by an algorithm based on the Edmond’s algo-
rithm for optimum branching and by the optimal selection and re-
moval of the background color. The proposed method gives results
50% better than JBIG and 25% better than a single-layer context
tree modeling.

Index Terms—Context modeling, image coding, layer ordering,
spanning tree.

1. INTRODUCTION

IGITAL maps are usually stored as vector graphics in a
database for retrieving the data using spatial location as
the search key. The visual outlook of maps representing the
same region varies depending on the type of the map (fopo-
graphic or road map), and on the desired scale (local or re-
gional map). Vector representation is convenient for zooming
as the maps can be displayed in any resolution defined by the
user. The maps can be converted to raster images for data trans-
mission, distribution via internet, or simply because of incom-
patibility of the vector representations of different systems. A
compressed raster image format provides a reasonable solution
in the form of compact storage size and compatible format.
Typical map images have high spatial resolution for repre-
senting fine details such as text and graphics objects but not
so much color tones as photographic images. Thus, suitable
compression method could be found among the lossless palette
image compression methods such as GIF and PNG. The Com-
puServe graphics interchange format (GIF) is based on LZW
dictionary compressor [1]. Portable network graphics (PNG)
provides a patent-free replacement for GIF. It encodes the image
using the deflate [2] algorithm, which is a combination of LZ77
dictionary compression [3] and Huffiman coding.
On the other hand, lossy compression methods such as JPEG
[4] are efficient for photographic images but do not apply well
to palletized images and maps. The lossless JPEG-LS [5] uses

Manuscript received May 12, 2003; revised March 15, 2004. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Amir Said.

The authors are with the University of Joensuu, FI-80101 Joensuu, Finland
(e-mail: justas@cs.joensuu.fi; franti@cs.joensuu.fi).

Digital Object Identifier 10.1109/TTP.2004.838694

linear predictive modeling, which also works well on natural im-
ages where adjacent pixels tend to have similar values. The pre-
dictive coding, however, is not efficient for images that contain
only few colors.

It is also possible to divide the maps into separate color
layers and to apply lossless binary image compression, such
as JBIG and JBIG2 [6], [7]. They use context-based statistical
modeling and arithmetic coding in the same manner as origi-
nally proposed in [8]. The probability of each pixel is estimated
on the basis of context, which is defined as the combination
of a set of already processed neighboring pixels. Each context
is assigned with its own statistical model that is adaptively
updated during the compression process. Decompression is a
synchronous process with the compression.

Embedded image-domain adaptive compression of simple
images (EIDAC) [9] uses the three-dimensional (3-D) context
model tailored for the compression of grayscale images. The
algorithm divides the image into bit planes and compresses
them separately but context pixels are selected not only from
the current bit plane, but also from the already processed layers.

Another approach which utilizes 3-D dependencies is called
SKIP pixel coding [10]. Binary layers are acquired by color de-
composition, and the coding sequence proceeds layer by layer.
In a particular layer, if a given pixel has already been coded in a
layer of higher priority, it does not need to be coded in the cur-
rent layer or any of the lower layers. Thus, the coding of large
amount of redundant information around blank areas could be
“skipped.”

Statistical context-based compression, such as the prediction
by partial matching (PPM) [11], has also been applied to the
compression of map images [12]. The method is a two-dimen-
sional (2-D) version of the PPM method by combining a 2-D
template with the standard PPM coding. The method has been
applied to palette images and street maps. A simple scheme
for resolution reduction has also been given and the proposed
scheme was extended to resolution progressive coding, too.

The piecewise-constant image model (PWC) [13] is a tech-
nique designed for lossless compression of palette images,
which uses a two-pass object-based modeling. In the first pass,
the boundaries between constant color pieces are established.
The color of the pieces are determined and coded in the second
pass. The method was reported to give similar to or better com-
pression than the JBIG but with a much faster implementation.

Among the alternative approaches, context-based statistical
compression of the color layers is the most efficient in terms
of compression. The location of the context pixels can be opti-
mized for each layer separately as proposed in [14]. The method
optimizes the location of the template pixels within a limited

1057-7149/$20.00 © 2005 IEEE

Input Image

Yy

foe

Compressed
image

Statistical
model
Context based
compression

. iy

Fig. 1.

System diagram to illustrate the compression method.

neighborhood area and produces the ordered template as the re-
sult. The ordering can then be used to derive the context tem-
plate for any given template size. The method was then applied
for generating optimized multilayer context template for map
images [15].

Theoretically, better probability estimation can be obtained
using a larger context template. The number of contexts, how-
ever, grows exponentially with the size of template; adding one
more pixel to the template doubles the size of the model. This
can lead to the context dilution problem where the statistics are
distributed over too many contexts, thus affecting the accuracy
of the probability estimates. The use of context tree [16] pro-
vides a more efficient approach for the context modeling so that
a larger number of neighbor pixels can be taken into account
without the context dilution problem.

In this paper, we propose a method for compressing multi-
component map images based on layer separation and context
tree modeling. The main structure of the method is shown in
Fig. 1. The paper is based on the ideas and results presented in
two recent conference papers: the use of multilayer context tree
model as proposed in [17] and the algorithm for obtaining op-
timal ordering of the layers as proposed in [18]. The acquiring
of the optimal layer ordering is related to the directed spanning
tree problem, and is solved by an algorithm derived from the
Edmond’s algorithm for optimum branching.

The rest of the paper is organized as follows. Context-based
compression and context tree modeling are recalled in Sec-
tion II. Compression of map images is then considered in
Section III for semantic and color separated layers. The mul-
tilayer template, fixed-size template, and multilayer context
tree models are studied. The problem of optimal ordering of
the layers is studied in Section IV. Experiments are given in
Section V, and conclusions are drawn in Section VI.

II. CONTEXT-BASED COMPRESSION

Statistical image compression consists of two distinct phases:
statistical modeling and coding [19]. In the modeling phase, we
estimate the probability distribution of the symbols to be com-
pressed. The coding process assigns variable length code words
to the symbols according to the probability model so that shorter
codes are assigned to more probable symbols, and vice versa.
The coding can be performed using arithmetic coding, which
provides optimal coding for the given probability model [20].

A. Statistical Modeling

A binary image can be considered as a message generated
by an information source. The idea of statistical modeling is to

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

1
AL

total= 19497933 total= 383952 total= 297123 total= 107776 total= 72973
= 99,73% po= 11,68% Py= 93,40% Po= 74,28% py= 45.06%
bits= 18,08% bits= 6,83% bits= 3,56% bits= 3,03% bits= 2,48%

900, 000, 99
3% Sl < Sa
total= 121745 total= 69926 total= 67055 total= 82643 total= 65772
py= 86,99% py= 61,99% Py= 52,79% Pu= 77.58% Py= 37.63%

bits= 2,32% bits= 2,29% bits= 2,29% bits= 2,17% bits= 2,15%

Fig. 2. Most important contexts with the ten-pixel template of JBIG. The
results are for the basic layer of the image 431306 with semantic separation
(see Section V).

describe the message symbols (pixels) according to the proba-
bility distribution of the source alphabet (binary alphabet, in our
case). Shannon has shown in [21] that the information content
of a single symbol (pixel) in the message (image) can be mea-
sured by its entropy.

The pixels in an image form geometrical structures with ap-
propriate spatial dependencies that can be described by con-
text-based statistical model [8]. The probability of a pixel is
conditioned on a context C, which is defined as the black-white
configuration of the neighboring pixels within a local template.
The entropy of an /V-level context model is the weighted sum
of entropies of individual contexts

N
Hy ==Y p(Cy) - (b5 loga S + ;" -logy ;)
=1

where p(C}) is the probability of the context C'; and »%’ and pbcj
are the probabilities of the white and black pixel in the context
C;, respectively.

Nevertheless, only a small fraction of all contexts are really
important. For example, in the case of sample binary images
with ten-pixel context template, about 50% of the code bits
originate from the few most important contexts as illustrated in
Fig. 2. Furthermore, 99% of the code bits originate from 183
contexts, and 429 out of the 1024 contexts are never used at all.

B. Context Tree

Context tree provides a more flexible approach for modeling
the contexts so that larger number of neighbor pixels can be
taken into account without the context dilution problem [16].
The contexts are represented by a binary tree, in which the con-
text is constructed pixel by pixel. The context selection is de-
terministic and only the leaves of the tree are used. The loca-
tion of the next neighbor pixels and the depth of the individual
branches of the tree depend on the combination of the already
coded neighbor pixel values. Once the tree has been created, it
is fully static and can be used in the compression as any other
fixed-size template.

Context tree is applied in the compression in a similar manner
as the fixed-size context templates; only the context selection is
different. The context selection is made by traversing the con-
text tree from the root to leaf, each time selecting the branch
according to the corresponding neighbor pixel value. The leaf
has a pointer (index) to the statistical model that is to be used.

KOPYLOV AND FRANTI: COMPRESSION OF MAP IMAGES BY MULTILAYER CONTEXT TREE MODELING 3

Each node in the tree represents a single context. The two chil-
dren of a context correspond to the parent context augmented
by one more pixel. The position of this pixel can be fixed in a
predefined order, or optimized within a limited search area, rel-
ative to the compressed pixel position.

The tree can be optimized beforehand using a training image
(static approach) [22] or optimized directly to the image to be
compressed (semi-adaptive approach) [16]. In the latter case, an
additional pass over the image is required to collect the statistics,
and the tree must also be stored in the compressed file. The
cost of storing the tree structure is one bit per node. The static
approach is possible because of the similarity of the trees with
images of the same type. On the negative side, the resulting tree
would be more dependent on the choice of the training image.

C. Construction of the Tree

To construct a context tree, the image must be processed and
statistics should be calculated for potential contexts in the tree
including the internal nodes. The tree must then be pruned by
comparing the parent node and its two sub trees at every level.
If compression gain is not achieved by using the two sub trees
instead of the parent node, the sub trees should be removed and
the parent node would be a leaf node. The compression gain is
calculated as

Gain(C) = I(C) — l(Ciesr) — [(Clight) — SplitCost (1)

where C'is the parent node, and Cieg; and Cligp are the two sub
trees. The code length [denotes the total number of output bits
from the pixels coded using the context in the particular node.
The cost of storing the tree is integrated into the SplitCost. The
code length can be calculated by summing up the self-entropies
of the pixels as they occur in the image

(C) == logp'(C))

where p*(C') is the probability of upcoming symbol within con-
text C' at time moment ¢. The probability of the pixel is calcu-
lated on the basis of the observed frequencies using a Bayesian
sequential estimator

+ - n! (C)+8
pt(c) _ pm(C) = W if tth plxel is white
pi(C)=1-p! (C), if tth pixel is black
where n!, and n} are time-dependent frequencies and pf, and

p} are the probabilities for white and black colors, respectively,
and 6 = 0.45, as in [6].

The tree could be constructed in a straightforward manner by
applying the pruning criterion locally but the tree could then ter-
minate too early as in the example shown in Fig. 3. It is, there-
fore, recommended that the tree is optimized globally as fol-
lows.

The construction of the context tree consists of two parts [23]:
choosing an order of the context pixels and constructing op-
timal context tree for the given order. The following construc-
tion strategies have been considered:

n, = 27076
n, = 200
1(C) =1698.9

n, = 26865
n, = 200
(C) =1696.7

| /(C)=3927

Fig. 3. Example of tree pruning with local pruning criterion. The code length
is calculated adaptively according to (2).

ConstructOptimalTree (C)

CreateChildrenNodes (C) ;
Lj.seé— ConstructOptimalTree (C.left);
Lyigne¢— ConstructOptimalTree(C.right);
Lyooc ¢ H(C);
Gain ¢ Lyoor-Ligse~Lyjgne- SplitCost;
IF Gain > 0 THEN

L ¢ Ljgse+Lpjgnet SplitCost;
ELSE

C.left « NIL;

C.right « NIL;

L ¢ Lygors
RETURN L;

}

Fig. 4. Recursive algorithm for optimal construction of the context tree.

1) Optimal bottom-up: The approach constructs a full tree of
k levels, which is then pruned one level at a time using the
criterion of (1). The bottom-up approach provides optimal
context tree [24] for the given order but at the cost O(2%)
time and space.

2) Optimal top-down: The tree is constructed by recursively
expanding the tree starting from the root using the algo-
rithm in Fig. 4. The advantage is that only linear time and
space complexity is needed [23].

3) Free-tree: The tree is constructed stepwise by expanding
the tree one level at a time using a local pruning criterion.
The location of the context pixel is optimized for each
node separately [16].

In a static approach, there is no overhead from storing the
tree and the SplitCost is 0. In the semi-adaptive approach, the
cost for storing the tree is 1 bit/node when fixed context order
is used. In the case of free tree, the position of the next context
pixel must also be stored for each context. The additional cost
of storing the location of this split pixel is also integrated into
SplitCost parameter.

III. MAP IMAGE COMPRESSION

Map images can be a result of rasterization of vector map
format such as simple vector format (SVF), scalable vector
graphics (SVG), or ERSI ArcShape [25]. The map server can
provide the maps as a set of layers with different semantic
meaning. For example, the topographic map series 1 : 20 000

Multl component map lmage

Watér

Basic Contours Fields
Q g‘ﬂg
Layer 1 Layer 2 Layer 3 Layer 4
(brown) (yellow)

(black)

‘S’g‘f’&;

Fig. 5. Illustration of a multicomponent map image. The shown fragment has
the dimensions of 1000 x 1000 pixels.

of National Land Survey of Finland (NLS) [26] divides the in-
formation into four logical layers: basic (topographic data and
contours), elevation lines, fields, and water. The size of each
layer is 5000 x 5000 pixels, and represents a 10X 10km? area.
The map image can then be easily reconstructed by combining
the binary layers, and displayed to the user as a color image.

A. Representation of Map Image

In order to utilize the context-based compression, the map
must be divided into binary layers. Each layer is compressed
separately, and the compressed layers are stored into the same
file, as proposed in [27]. There are three alternative approaches
to do this: semantic separation, color separation and bit-plane
separation.

This first approach, semantic separation, means that the map
is output into a set of binary layers each containing different se-
mantic meaning. This representation is possible if the maps are
obtained directly from a map database. The advantages of se-
mantic separation are better compressibility, and that the layers
to be shown can be selected at the time of viewing.

On the other hand, the map image could be provided as a
raster color image without any additional information about the
semantics of the image. In this case, color separation must be
used to divide the image into binary layers so that each layer
represents one color of the original image. The drawback of the
color separation is that information of the original semantic sep-
aration cannot be recovered. Furthermore, the color separation
can fragment the binary layers, as shown in Fig. 5. For example,
overlapping text elements break the continuation of fields and
lakes. This does not decrease the quality of the image but it in-
creases the complexity of these layers, and, thus, the compressed
file size. Moreover, the color separation results into one addi-
tional layer—the background color.

The third approach, bit-plane separation, must be applied
when we have the original map only as a raster image, and the
number of colors is too high for efficient color separation. For

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

Given:
Search template T=array[O0..
Input image I

Kyax]

Construct_Template (T, I)
while (T != occupied)

L = FindMinCodeLenghtPosition (T, I);
AddPositionPermanentely (L, T) ;

Fig. 6. Algorithm for optimizing the context template.
Standard Standard Optimized Optimized
1-norm 2-norm template template

template template (basic layer) (contour layer)
@)
@
@@000@@ ONO.00D,
QGOOOﬂG @000000
BEX 000
Fig. 7. Alternative orderings for the context templates.

example, the image might have been digitized from a paper copy
and stored using lossy compression method, such as JPEG [4].
In the bit-plane separation, the number of colors is first reduced
by quantizing the image into a limited size color palette, or to
256 gray scales. The resulting image is then separated into bit
planes using Gray coding [28] and represented as a sequence of
binary images. In this paper, we consider only the first two ap-
proaches (semantic and color separation).

B. Independent Compression of Layers

Straightforward solution is to compress the layers separately
by fixed-size template defined by the standard 1-norm and
2-norm distance functions (see Fig. 7). The optimal template
size depends on the size of the image. The location of the
template pixels, on the other hand, has no direct effect on the
learning cost but, if properly designed, may greatly improve
the accuracy of the model. It is, therefore, feasible to optimize
the location of the template pixels for the compressed images.

It is possible to optimize the size and shape of the template
for the given image layer to be compressed at the cost of longer
compression time [14]. The optimal context template can be
solved by compressing the image using all possible templates
and selecting the one with the most compression. However,
there are an exponential number of different template config-
urations as a function of the template size. A more practical
approach is to optimize the location of the template pixels one
pixel at a time as outlined in Fig. 6. Alternative orderings for
the context templates are outlined in Fig. 7.

The optimization starts with an empty context template and
expands it by one pixel at a time. A new pixel is added to each
unoccupied location in the neighborhood area. For each candi-
date pixel location, we calculate the statistics of the image and
compare the entropies of the model with different location of
the candidate pixel. We then select the pixel location providing
minimum entropy and add it permanently to the context tem-
plate. The process is continued until the context template size
reaches a predefined maximum context size Kkpyax-

The optimization can be applied in two alternative manners:
static and semi-adaptive. In the static approach, we optimize the
template using a priori knowledge of the image type. This is pos-
sible, as we know the type of the images to be compressed. The

KOPYLOV AND FRANTI: COMPRESSION OF MAP IMAGES BY MULTILAYER CONTEXT TREE MODELING 5

Fields — Basic Water — Basic

®%®® @

Current — Reference

88@

00)
(o ()
000,

000

Fig. 8. (Left) Sample two-layer context templates for JBIG-2, (middle)
optimized for fields layer, and (right) for water layer when basic is used as the
reference layer.

advantage is that the time-consuming optimization can be done
off line. In the semi-adaptive approach, the template is opti-
mized for the compressed image and is stored in the compressed
file. This is a better solution if the image type is not known
beforehand. The compression process, however, would be very
slow, which makes this approach not suitable for real-time ap-
plications.

C. Optimized Multilayer Template

The idea of multilayer context template is to utilize the infor-
mation from additional image layer, referred here as the refer-
ence image. The restriction on the use of the reference image is
that it must have already been coded so that both encoder and
decoder have the same information. The main difference in the
construction of single-layer and multilayer context templates is
in additional neighborhood mask used for selection of the pixels
from the reference image. The pixels in the current layer must
be already coded pixels, but in the reference layer, the pixels can
be anywhere in the image.

The idea of utilizing interlayer dependencies have been used
in JBIG2 [7]. Two-layer context template is applied for utilizing
the information of a matching symbol when compressing the
pixels in the segment. The same idea was then applied for gen-
erating multilayer context template for map images [15]. In [29],
gray-scale images are divided into binary layers by Gray coding
and bit-plane separation. The bit planes are then compressed as
binary images using context template including pixels both from
the current layer and from the pixels in the previously coded
(higher layer) bit planes.

In the following, we use the combined neighborhood area
of 77 pixels, which was introduced in [17]. Optimized sample
context templates for the map images are shown in Fig. 8. The
two-layer context template of JBIG2 is shown for comparison.

D. Multilayer Context Tree

The idea of utilizing multilayer dependencies can be extended
also to the context tree modeling. The multilayer context tree
is constructed as follows. The tree starts from scratch and the
branches are expanded one pixel at a time. The location of the
template pixels are optimized and fixed beforehand and then
applied for every branch. Another approach is to optimize the
location separately for every branch (free tree approach). The
context pixels are chosen from the same joint 77 pixels neigh-
borhood.

The use of the information from the reference layer will allow
us in some cases to increase the compression ratio of the single
layer up to 50% according to [17]. In fact, if we will consider

Layer1 Layer2
oy
Lt')\‘\ N
\:° | “ aRyvi .
MKkl (C 4 "

A, 6
R RS0 S L i
T 0./ /G
LS NS, ¢
ars . Coufala X
lala > A . >
Xy {

nanlghtti, IIRE -
L el S

Fig. 9. Example of two layers obtained by color separation.

i
“ca| %2

Pw=99.93% Pw=84.31%
Pb=007% Pb=15.69%

é% M pw%% B é%
)

Pb=99.99% Pb=0%
Pw=068% Pw=100%

Pb=99.32% Pb=0%

Fig. 10. Example of a two-layer context tree, in which two context pixels are
taken from the current layer and one from the reference layer (shown below the
current pixel).

the compression of sample images in Fig. 9, the compression
of these two images separately using single-layer context trees
would result in 4854 + 1330 = 6184 bytes. On the other hand,
if we use the information from the first layer when compressing
the second layer, the tree structure of the second layer would be
simpler. All information would be concentrated only in the first
branch of the tree, as shown in Fig. 10. Thus the compression
of the second layer would be only 146 bytes, and the final size
of the compressed file 4854 4+ 146 = 5000 bytes.

The map images usually have interlayer dependencies. For
example, the same pixel is usually not set in the water layer and
in the field layers at the same time, although it is possible as
the layers are generated from the map database independently
from each other. Another observation is that the basic and the
water layers have redundant information along the rivers and
lake boundaries. In general, anything is possible, and it is not
easy to observe the existing dependencies by the eye. The de-
pendencies, however, can be automatically captured by the sta-
tistical modeling.

IV. OPTIMAL ORDERING OF THE LAYERS

The existing dependencies are demonstrated in Fig. 11, in the
case of the NLS map images. There are significant interlayer
dependencies between the basic layer and the two other layers
(water and field). The contour layer, on the other hand, is inde-
pendent from all other layers. The main observation is that we
cannot utilize all the existing dependencies as the order of pro-
cessing restricts which layers we can use as the reference layer.

For example, if we compress the basic layer first, we can then
improve the compression of the water layer by 52% (118705
bytes). The opposite order would improve the compression of
the basic layer by 35% (345061 bytes). It is easy to see that the

6
o
(118705 bytes)
Sy _3567%
(345061 bytes)
A
2[5
&3
=
5
Contours (563326 bytes]
Fig. 11. Arrows show the interlayer dependencies as the number of saved bits

when compressing the second image using the first one as reference image.

TABLE 1
EXAMPLE OF THE COST MATRIX FOR A SAMPLE IMAGE
0 1 2 3 4 5 6 7 8 9 10 1

0 7564 | 13013 | 6189 1792 | 10448 | 16472 | 28477 | 1619 | 13683 | 13360 | 23976
1| 17158 16041 5871 1731 9997 | 15713 | 27988 | 1557 | 11994 | 11377 | 22000
2 | 13488 | 8594 6029 1834 | 10461 | 16488 | 27318 | 1946 | 13671 [13105 | 23760
3 | 23390 | 12116 | 20700 1636 9931 12333 | 28093 | 2055 | 13567 [12735 | 22189
4 | 23471 | 12789 | 21348 | 6091 11011 | 18168 | 30445 | 2239 | 13683 | 12682 | 23713
5 | 23293 | 12116 | 21144 | 5385 1751 15508 | 26732 | 1834 | 13214 [12102 | 22548
6 | 23536 | 12269 | 21423 | 3934 1681 | 10134 27405 | 2111 13674 | 13385 | 20479
7 | 20197 | 10149 | 17117 | 4889 1646 7007 12446 1737 | 11075 | 10612 | 13574
8 | 22810 | 11956 | 22493 | 6780 1834 | 10617 | 16899 | 29489 13256 | 13097 | 23976
9 | 26015 | 12029 | 20013 | 6467 | 1834 | 10529 | 16494 | 29514 | 2239 9401 | 22764
10| 23036 | 11617 | 19305 | 5628 1722 | 10154 | 15797 | 27815 | 2013 7344 22038
11] 26169 | 12561 | 21008 | 5933 1829 | 10660 | 14706 | 23261 1963 | 12231 | 12515

best order of these layers would be to compress first the water
layer, second the basic layer, and then the fields layer last. The
contours layer should be processed independently.

In general, we can select any predefined order on the basis
of known (or assumed) dependencies. If the image source is
not known beforehand, we should find the optimal order of the
layers for maximal utilization of the interlayer dependencies.
The selected processing order can be saved in the compressed
file using a few bits. The problem of finding the optimal order
is studied in the following subsections.

A. Construction of the Cost Matrix

Suppose that we have k layers. In order to determine the op-
timal layer ordering, we have to consider all pairwise dependen-
cies by tentatively compressing every layer using all other layers
as reference. This results in a k X k cost matrix consisting of the
absolute bit rates for every layer-reference layer pairing (see
Table I). On the basis of the cost matrix, we can generate all k!
possible permutations for the processing order and calculate the
total saving achieved by the given layer ordering. If the number
of layers is small enough (with the NLS images k = 4), this is
not a problem. With larger values of k, however, this could be
computationally too expensive.

On the other hand, not all information in the matrix is rele-
vant to us. In the case when there are no dependencies between
the layers, the corresponding compression result would be the
same (or worse) with or without the use of interlayer context
model. We can, therefore, reduce the amount of information in
the cost matrix by subtracting the original values (Table II) by
the values obtained by layer-independent compression (Table I),
and eliminate values smaller than or equal to zero. The resulting
cost matrix is shown in Table III.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

TABLE I
ORIGINAL COMPRESSION VALUES OBTAINED
WITHOUT THE USE OF DEPENDENCIES

0o | 1] 2 | 31 41 5 [6 [7 8 [9 [10 [11
23451 | 11847 | 20123 | 6504 | 1734 | 10256 | 15341 | 29206 | 1845 | 12328 | 11495 | 23049

TABLE III
EXAMPLE OF THE COST MATRIX AFTER REDUCTION

0 1 2 3 4 5 6 7 8 9 10 11
0 4283 | 7110 0 0 0 0 729 226 0 0 0
1| 6293 4082 0 3 259 0 1218 288 334 118 1049
2 | 9963 | 3253 0 0 0 0 1888 0 0 0 0
3 61 0 0 98 325 3008 | 1113 0 0 0 860
4 0 0 0 0 0 0 0 0 0 0 0
5] 158 0 0 119 0 0 2474 11 0 0 501
6 0 0 0 1570 53 122 1801 0 0 0 2570
7| 3254 | 1698 | 3006 615 88 3249 | 2895 108 1253 883 9475
8| 641 0 0 0 0 0 0 0 0 0 0
&) 0 0 110 0 0 0 0 0 0 2094 | 285
10| 415 230 818 0 12 102 0 1391 0 4984 1011
11 0 0 0 0 0 0 635 5945 0 97 0

Fig. 12. Graph representation of Table III.

The reduced cost matrix can be considered as a directed graph
with k£ nodes as shown in Fig. 12. The problem of finding the
optimal order is closely related (but not exactly) to the minimum
spanning tree problem. We will next give graph-based algorithm
to solve the optimal ordering. We follow the approach taken by
Tate for optimal band ordering in the compression of multispec-
tral images [30].

B. Maximum Spanning Tree

A spanning tree of a graph is a subset of the edges so that
all nodes of the graph are included in the set but there are no
cycles. Minimum spanning tree (MST) is a spanning tree with
the minimum sum of the weights of the edges included in the
given graph [31].

The minimum weighted tree can be solved in polynomial time
using Prim’s algorithm [32], for example. The algorithm begins
by adding the lowest weighted edge into the solution. It then
loops by adding the next lowest weighted edge that connects
a node inside the set to another node outside of the set. The
algorithm terminates when n — 1 edges have been chosen and,
thus, all nodes covered.

However, there are few differences that separate our problem
of obtaining the optimal order from the minimum spanning tree
problem.

1) We have a directed graph whereas the MST is defined with
undirected graph.

2) We can have only one incoming edge for any node.

3) We can have several separate spanning trees instead of
only one.

KOPYLOV AND FRANTI: COMPRESSION OF MAP IMAGES BY MULTILAYER CONTEXT TREE MODELING 7

Given:
Connected graph G=[V, E]
Solution set S=[V,E

MST_For_Directed_Graph(G, S)
FOR (each Vi) DO
Ei=FindMaxEnteringEdge (Vi,G) ;
AddEdgeAndItsEndpoints (S, Ei) ;
C=LocateCycles(S) ;
IF (C != empty) THEN
FOR (each Ci)

Ee=FindEnteringEdges (G, Ci) ;
CalculateModifiedCost (Ee) ;
Eem=FindMaxEdge (Ee) ;

ReplaceEdge (Ec, Eem) ;

Fig. 13.

gooe
R0
o

Fig. 14. Resulting spanning tree after Edmonds’ algorithm.

Edmond’s algorithm.

4) We have maximization problem.

The first two differences make the problem as a directed span-
ning tree problem. The directed spanning tree is defined as a
spanning tree where all nodes (except the root) have exactly one
incoming edge. This is also known as the optimum branching
problem [33] and can be solved in O(n?) time [34].

In the optimal ordering, it is not necessary to have a single
spanning tree, but we can have separate sub graphs, see Fig. 11.
This means that we should actually find spanning forest instead
of a single tree. The problem was considered as the maximum
spanning forest problem in [30]. However, we have eliminated
all negative weights in the cost matrix (Table III), and the inclu-
sion of a zero-edge can be considered as independent compres-
sion of the corresponding layers. Thus, we can still consider the
optimal ordering as directed spanning tree problem.

We apply Edmond’s algorithm [33], as shown in Fig. 13. The
algorithm begins by selecting the maximum incoming edge for
every node except the root. If no cycles are formed, the resulting
graph is MST. Otherwise, the algorithm detects and removes
existing cycles by removing an edge in the cycle and replacing it
by another edge incoming from outside. The edges are chosen so
that maximal saving is achieved. We also note that the Edmond’s
algorithm requires that one node is selected as the root. We,
therefore, repeat the algorithm using every node as potential root
and select the one resulting to most saving. The time complexity
of the algorithm for a single root is O(n?) and for considering
all nodes as a root O(n?).

The optimal branching for the data in Table I is shown in
Fig. 14. This ordering of the layers sums up to 124977 bytes,
which corresponds to the improvement of 24.79% in compar-
ison to the original result. The process of the algorithm in detail
is illustrated in Fig. 15 using node 10 as the root. The initial so-
lution contains three cycles (0 < 2,3 < 6, and 7 < 11). The
first cycle (0 < 2) is eliminated by replacing the edge 0 — 2
by the edge 1 — 2. This creates a new cycle (0 — 1 — 2),
which is then resolved in the second step by replacing the edge
1 — 2 by the edge 7 — 2. The rest of the cycles are resolved
accordingly.

C. Selection of the Background Color

In the case of color separation, we can eliminate one layer
completely and consider it as the background color. The back-
ground color is usually white but this is not necessarily the case
always. In fact, we can set any layer as the background color.
The advantage is that the chosen layer is not stored in the com-
pressed file at all. There are two obvious choices for selecting
the background color:

1) greedy: the layer with the maximal compressed size;

2) optimal: the layer of whose removal gives most improve-

ment in compression.

The greedy choice is not necessary the best choice because
the layer with most information can also include most interlayer
dependencies with other layers. In other words, the background
layer cannot be used as a reference layer, and, therefore, the
removal of the dependent layer can increase the compressed size
of other layers.

The optimal choice can be obtained by considering all layers
as the background color and selecting the one that result in the
best overall compression. In principle, this is computationally
demanding as the problem of finding the optimal ordering takes
O(n?), and, thus, O(n*) time for finding the optimal choice
for the background color. In practice, however, the number of
layers is small (here, n = 4. .. 16). Therefore, the bottleneck of
the optimization is not the solving of the spanning tree but the
calculation of the cost matrix at the first place.

V. EXPERIMENTS

We evaluate the proposed method by compressing the sets of
map images listed in Table IV, and illustrated in Fig. 16. The
sets #1 to #4 are from the map database of the National Land
Survey of Finland (NLS) [26]. In the case of the detailed road
maps (Sea and City), the number of colors was reduced to 16
before the compression.

Two different image representations are considered: 1) se-
mantic representation and 2) color separation. Semantic repre-
sentation was available for five randomly selected map sheets of
scale 1 : 20 000. These images are further denoted as 124101,
201401, 263112, 431204, and 431306 according to their map
sheet number in the NLS database. The rest of the images were
passed trough color separation. The obtained binary layers (se-
mantic or color separation) were compressed using semi-adap-
tive context tree modeling and arithmetic coding. The optimal
ordering and the choice of background color were solved for
every image separately. The context trees were created using
the algorithm in Fig. 3.

We first study the effect of the multilayer context tree mod-
eling by compressing the set of images by the following vari-
ants:

1) CT: context tree modeling of each layer separately;
2) MCT (single): multilayer context tree using single condi-
tioning layer;
3) MCT (optimized): multilayer context tree using optimal
layer ordering.
All variants are considered with and without optimal selec-
tion of the background color. In the semantic separation, the

Initial solution:

et

@\%W ®

Second cycle:

e ONO
@Q

A

Detected cycle:

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

Cycle removed:

&

G @

Cycle removed:

Final solution:

Fig. 15. Process of Edmond’s algorithm. The first graph is the result of selecting maximum incoming edge except the root (initially node 10). The following steps

illustrate the removal of cycles and the final result.

TABLE IV
SET OF TEST IMAGES
Scale Type Images Image size | No. of colors
_Set#: | 4 50000 Topographic 5 5000x5000 5
semantic separation|
ﬂ 1:20000 Topographic 5 5000x5000 6
color separation
Set #2: 1:8000 Topographic 4 1024x1024 7
Set #3: 1:100 000 Road map 4 1024x1024 16
Set #4: 1:800 000 Road map 4 10241024 16
Set#5: | 1:250000 03 map 2 800800 16
(detailed)
1 2 3
Topographic map Topographic map Road map
1:20000 1:100 000
YVi 7

Detailed — Sea

1:250 000

Fig. 16. Sample 256 x 256 pixel fragments of the test images.

background is excluded by default, as it was never included. The
results show that the multilayer context tree (MCT) produces file
sizes of about 25% less than the single layer context tree (CT)
(see Table V). The optimal ordering is about 10% better than the
use of a single conditioning layer.

The compression performance is illustrated as a function of
the number of contexts in Fig. 17, and compared to the fixed
size context modeling (JBIG), single-layer context tree (CT),

TABLE V
AVERAGE COMPRESSION RESULTS (KILOBYTES) FOR THE SET OF TEST IMAGES
With background Without background
MCT MCT
CcT MCT single optimized CT MCT single | optimized
SEA 441 395 382
'semantic separation|
S 960 612 577 616 495 401
color separation
Set#2 64 37 36 34 32 30
Set #3 243 211 194 185 173 155
Set #4 268 240 219 240 217 198
Set #5 198 165 155 158 143 135
Average 347 253 236 247 212 184
204
—o—MCT
18 —0— Fixed multi-layer .
——CT A
16 —a—JBIG
2
= 14
s 14
5
» 121
17
e
£ 104
Q
o
84
6_
41 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 22 2 2 22 2222 222222222
number of contexts

Fig. 17. Compression performance as a function of the number of contexts.
The results are for the basic layer of the image 431204 (with semantic
separation). In the case of multilayer compression, water is used as a reference
layer.

and fixed multilayer context (Fixed multilayer). In this experi-
ment, the size of the context tree was explicitly forced to given
size (solid line) and also to grow beyond the stopping crite-
rion (the dashed line) for comparison purposes. The results in-
dicate that better compression can be obtained by increasing the
context size (JBIG curve), by using context tree modeling (CT
versus JBIG), and by using multilayer contexts (Fixed multi-
layer versus JBIG). Nevertheless, the joint application of them

KOPYLOV AND FRANTI: COMPRESSION OF MAP IMAGES BY MULTILAYER CONTEXT TREE MODELING

TABLE VI
COMPRESSION AND DECOMPRESSION TIMES USING 500 MHz PENTIUM IIT
JBIG CT MCT
Tree + Cost | Optimal |

Comp. | Decomp. Comp. | Decomp. o v Comp. | Decomp.

Semantic| 0:02:23 0:02:09 | 0:45:02 0:05:38 | 61:34:00 0:00:04 0:03:10 0:05:39
Set #1 0:03:44 0:03:37 | 1:39:27 0:11:05 [111:59:00 0:00:05 0:06:23 0:11:05
Set #2 0:00:09 0:00:10 0:02:35 0:00:18 2:46:00 0:00:04 0:00:10 0:00:18
Set #3 0:00:22 0:00:23 | 0:08:58 0:01:03 | 28:16:00 0:00:04 0:00:45 0:01:03
Set #4 0:00:22 0:00:24 | 0:09:23 0:01:07 | 33:.02:00 0:00:04 0:00:38 0:01:07
Set#5 | 0:00:08 0:00:08 | 0:02:51 0:00:21 | 22:48:00 0:00:02 _ 0:00:12 _ 0:00:21
Sum 0:07:06 | 0:.06:50 | 2:45:28 | 0:19:29 | 260:25:00] 0:00:23 | 0:11:18 | 0:19:31

with the optimized layer ordering gives significantly better com-
pression than any of the ideas alone.

The improved compression, however, does not come without
a price. In this case, the drawback is a significantly increased
compression time (see Table VI). Most of the time is spent
for calculating the cost matrix, i.e., tentatively compressing the
image layers using all possible current-reference layer pairs.
Finding the optimal ordering does not take much time at all,
although the algorithm itself has the time complexity of O(n?).
The actual compression is somewhat slower than that of the CT
but the difference is tolerable. In comparison to the JBIG, both
the CT and MCT are somewhat slower also in the decompres-
sion.

For illustrating the performance of the CT and MCT in detail,
we have collected four most used contexts and their statistics in
Fig. 18. In the case of independent compression, the optimized
context trees can be remarkably different for different layers.
For example, the contexts in fields layer contain much fewer
pixels than the contexts in contours layer. Pixels are also taken
further away and only a few nearby pixels are needed to model
the probability distribution. The contours layer does not contain
large convex shapes as the fields layers, but more complex thin
lines that need more context pixels to be modeled accurately.

In the case of multilayer context tree, the selection of the
context pixels depends on the layers in question. The general
tendency is the same as in the case of independent compression
so that fields and water layers need fewer context pixels. The
basic layer uses significantly more pixels although the number
of pixels depends on the particular pixel combination. The
number of the context pixels in the reference layer is typically
much smaller. When the basic layer is used as reference, only
a few nearby pixels are used. In the case of water, on the other
hand, the context pixels are scattered from wider area.

Finally, the result of the proposed method (MCT) is compared
with the following methods:

1) GIF: CompuServe graphics interchange format [1];

2) PNG: portable network graphics [2], [3];

3) JBIG: joint bi-level image group [6];

4) PPM: prediction by partial matching [11], [12];

5) PWC: piecewise-constant image model [13];

6) SKIP: explicit skipping of pixels set in previous layer

[10];

7) CT: single layer context tree [16], [22].

The results are summarized in Table VII (semantic layers) and
Table VIII (color separation). Note that the results of GIF, PNG,
PPM, and PWC are applied to the color images and the JBIG,
SKIP, CT, and MCT for the binary layers. SKIP has been de-
signed for color separation where the exclusion of certain pixels

Independent compression / fixed order:

g cglee

total= 17156635 total= 276541 total= 52158 total= 47169
Pu= 99,86 % Po= 584 % Pu= 5354 % Pu= 3527 %
bits= 12,77 % bits= 4,38 % bits= 2,56 % bits= 2,18 %

Independent compression / optimized order:
(Fields Iayerz
o) ®)

total= 23233236 total= 11349 total= 10185 total= 7611
Pu= 99,99 % Po= 60,81 % Pu= 3833 % Po= 6537 %
bits= 8,99 % bits= 8,17 % bits= 7,29 % bits= 528 %

Independent compression / optimized order:
(Contours layer)
8 3 oo

X ©)

total= 16510318 total= 69665 total= 68230 total= 51081
Pu= 9988 % Po= 62,57 % Pw= 3293% Po= 57.14 %
bits= 12,76 % bits= 7,37 % bits= 3,50 % bits= 2,82 %

Multi-layer compression:
(Water Iaxer — Basic as reference layer)

[] QOO0 O
<
o5 oxd 33
o g ®
@ O 0 o N 0
[ONOO) : 00
O []
total= 17597610 total= 1628998 total= 478890 total= 374532
po= 100,00% Pu= 0,00% Pa= 99,99% pe= 100,00%
bits= 0,01% bits= 0,00% bits= 0,34% bits= 0,03%

) Multi-layer compression:
(Basic layer — Water as reference layer)

v

O] ®©
QO £ 0) O @)
O
total= 16522021 total= 284184 total= 59527 total= 45501
Py= 99,83% Po= 5.79% Py= 63.80% Po= 33,54%
bits= 14,66% bits= 4,55% bits= 2,82% bits= 2,10%

Fig. 18. Most used contexts in various context tree modeling strategies when
applied to the Set #1 with semantic separation.

TABLE VII
COMPRESSION RESULTS (KILOBYTES) FOR THE METHODS
IN COMPARISON FOR SEMANTIC SEPARATION

si%’;’f,’}ﬁcn GIF | PNG | JBIG | PPM I PWC] SKIP | cT | mMCT
12410 510 865 75 429 238 183 156 132
20140 2642 3953 791 2287 1238 933 685 599
263112 | 1028 1416 277 797 424 337 246 223
431204 | 2295 3158 650 1796 1009 799 569 451
431306 | 2431 3275 656 1936 958 743 549 508
Average | 1801 2533 510 1449 774 599 441 382
Bitsper | 590 | o830 | 0167 | 0475 | 0253 | 0196 | o145 | 0125
pixel
TABLE VIII
COMPRESSION RESULTS (KILOBYTES) FOR THE METHODS
IN COMPARISON FOR COLOR SEPARATION
cenorn| &F | pnG | umc [eem | pwc [ske [ot | wor
Set#1 | 1801 2533 1017 1449 774 532 616 201
Set#2 86 90 62 81 35 34 34 30
Set#3 288 278 283 203 198 202 185 155
Set#4 303 287 274 211 197 198 240 198
Set#5 188 184 210 143 139 145 158 135
Average 533 674 369 417 269 222 247 184
B::igle' 1655 | 1,659 | 1571 | 1234 | 41,079 | 1,085 | 1462 | 0970

can be concluded from the existence of the pixel in previous
layer. In semantic separation, the SKIP can also be applied if we
assume the order of the layers to be presented on the final color

image. Effectively, we are then doing color separation with a
predefined order of compressing the layers.

The result shows that the MCT gives the best compression
with all test sets. In the case of color separation, the SKIP
method is rather effective in comparison to JBIG despite of
its simplicity. Also, PWC and CT perform rather well. In the
case of semantic separation, the binary image coding methods
(JBIG, SKIP, CT, and MCT) are clearly better than the others,
of which the MCT gives most compression.

VI. CONCLUSION

We have proposed a method for compressing map images by
multilayer context tree modeling and by optimizing the order
of the processing of the binary layers. Solutions are given for
the context modeling, utilization of the multilayer dependencies
and for the optimal ordering of the layers. The proposed method
gives about 25% improvement over previous methods in com-
parison to the compression of binary layers without utilizing the
interlayer dependencies. The optimal order of processing the
layers was considered as directed spanning tree problem and
solved by an algorithm derived from the Edmond’s algorithm.

The proposed method requires a lot of processing in the
encoding. Therefore, it is not suitable for on-line applications
where the encoding must be done real time. The decoding
stage, however, does not require any additional processing. The
proposed method is therefore suitable for applications where
encoding is done only once and without any such limitations
for the decoding part.

There are ideas not dealt in this paper that could be consid-
ered in the future. For example, the two-layer context modeling
could be generalized to 3-D by conditioning the probability of
the pixel on several layers instead of only one. However, it is not
obvious how the optimal order of layers should then be solved,
and whether this modification would result additional compres-
sion worth the trouble. Another idea would be to model the
image as a color image instead of dividing it into binary layers.
In this case, the context modeling would become significantly
more complex. A third idea worth further studies might be to de-
velop the method towards real-time compression by designing
faster heuristic for estimating the interlayer dependencies in-
stead of the brute force calculation of the cost matrix.

REFERENCES

[1] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 17, no. 6, pp. 8-19, June 1984.

[2] P. Deutsch. (May 1996) DEFLATE compressed data format specifica-
tion. [Online]http://www.cis.ohio-state.edu/htbin/rfc/rfc1951.html

[3] J.Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337-343, May
1977.

[4] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compres-
sion Standard. New York: Van Nostrand Reinhold, 1993.

[5] M. Weinberger, G. Seroussi, G. Sapiro, and M. W. Marcellin, “The
LOCO-I lossless image compression algorithm: Principles and stan-
dardization into JPEG-LS,” HP Laboratories, HPL98-193, 1998.

[6] JBIG: ISO/IEC Int. Std. 11544, 1993.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

[7] P.G.Howard, F. Kossentini, B. Martins, S. Forchammer, and W. J. Ruck-
lidge, “The emerging JBIG2 standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 8, no. 7, pp. 838-848, July 1998.

[8] G. G. Langdon and J. Rissanen, “Compression of black-white images
with arithmetic coding,” IEEE Trans. Commun., vol. 29, no. 6, pp.
858-867, June 1981.

[9] Y. Yoo, Y. Kwon, and A. Ortega, “Embedded image-domain adaptive

compression of simple images,” in Proc. 32nd Asilomar Conf. Signals,

Systems, and Computers, Nov. 1998.

S. Forchhammer and O. R. Jensen, “Content layer progressive coding

of digital maps,” IEEE Trans. Image Process., vol. 11, no. 12, pp.

1349-1356, Dec. 2002.

[11] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding

and partial string matching,” IEEE Trans. Commun., vol. 32, no. 4, pp.

396-402, Apr. 1984.

S. Forchhammer and J. M. Salinas, “Progressive coding of palette im-

ages and digital maps,” in Proc. IEEE Data Compression Conf., Snow-

bird, UT, Apr. 2002, pp. 362-371.

[13] P.J. Ausbeck, Jr., “The piecewise-constant image model,” Proc. IEEE,
vol. 88, no. 11, pp. 1779-1789, Nov. 2000.

[14] E.I. Ageenko, P. Kopylov, and P. Frinti, “Optimizing context template
for compression of multicomponent map images,” in Proc. GraphiCon,
Moscow, Russia, 2000, pp. 151-156.

, “On the size and shape of multilevel context templates for com-
pression of map images,” in IEEE Int. Conf. Image Processing, vol. 3,
Thessaloniki, Greece, Oct. 2001, pp. 458-461.

[16] B. Martins and S. Forchhammer, “Bi-level image compression with tree
coding,” IEEE Trans. Image Process., vol. 7, no. 4, pp. 517-528, Apr.
1998.

[17] P. Kopylov and P. Frénti, “Context tree compression of multicomponent
map images,” in Proc. IEEE Data Compression Conf., Snowbird, UT,
Apr. 2002, pp. 212-221.

[10]

[12]

[15]

[18] ——, “Optimal layer ordering in the compression of map images,” in
Proc. IEEE Data Compression Conf., Snowbird, UT, Apr. 2003, pp.
323-332.

[19] J. J. Rissanen and G. G. Langdon, “Universal modeling and coding,”
IEEE Trans. Inf. Theory, vol. IT-27, pp. 12-23, Jan. 1981.

[20] —, “Arithmetic coding,” IBM J. Res. Develop., vol. 23, pp. 146-162,
1979.

[21] C. E. Shanon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 398-403, 1948.

[22] P.Frinti and E. I. Ageenko, “On the use of context tree for binary image
compression,” in Proc. IEEE Int. Conf. Image Processing, vol. 3, Kobe,
Japan, 1999, pp. 752-756.

[23] H. Helfgott and M. Cohn, “Linear-time construction of optimal con-
text trees,” in Proc. IEEE Data Compression Conf., Snowbird, UT, Apr.
1998, pp. 369-377.

[24] R.I. Nohre, “Topics in descriptive complexity,” Ph.D. dissertation, Univ.
Lingkoping, Lingkdping, Sweden, 1994.

[25] ESRL (1998) ESRI shapefile technical description. An ESRI

White Paper. [Online]. Available: http://www.esri.com/library/

whitepages/pdfs/shapefile.pdf

National Land Survey of Finland, Helsinki, Finland. [Online]. Avail-
able: http://www.nls.fi/index_e.html

[27] E. 1. Ageenko and P. Frinti, “Compression of large binary images in
digital spatial libraries,” Comput. Graph., vol. 24, no. 1, pp. 91-98, Feb.
2000.

[28] M. J. Weinberger, J. Rissanen, and R. Arps, “Application of universal
context modeling to lossless compression of gray-scale images,” IEEE
Trans. Image Process., vol. 5, no. 4, pp. 575-586, Apr. 1996.

[29] M. Rabbani and P. W. Melnychuck, “Conditioning contexts for the arith-

metic coding of bit planes,” IEEE Trans. Signal Process., vol. 40, no. 11,

pp. 232-236, Nov. 1992.

S. R. Tate, “Band ordering in lossless compression of multispectral im-

ages,” IEEE Trans. Comput., vol. 46, no. 4, pp. 477-483, Apr. 1997.

[31] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algo-
rithms. Cambridge, MA: MIT, 1990.

[32] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell Syst. Tech. J., vol. 36, pp. 1389-1401, 1957.

[33] J. Edmonds, “Optimum branchings,” J. Res. Nat. Bur. Stand., vol. 71B,
pp. 133-240, 1967.

[34] R. E. Tarjan, “Finding optimum branchings,” Networks, vol. 7, pp.
25-35, 19717.

[26]

[30]

KOPYLOV AND FRANTI: COMPRESSION OF MAP IMAGES BY MULTILAYER CONTEXT TREE MODELING

Pavel Kopylov receiced the M.Sc. degree from
Moscow State University, Ulyanovsk, Russia, in
1997 and the Ph.D. degree from the University of
Joensuu, Finland, in 2004.

Since 2000, he has been a Postdoctoral student at
the University of Joensuu, Joensuu, Finland. His pri-
mary research interests are in image compression and
restoration techniques.

11

Pasi Friinti received the M.Sc. and Ph.D. degrees in
computer science from the University of Turku, Fin-
land, in 1991 and 1994, respectively.

From 1996 to 1999, he was a Postdoctoral Re-
searcher with the University of Joensuu, Joensuu,
Finland (funded by the Academy of Finland), where
he has been a Professor since 2000. His primary
research interests are in image compression, vector
quantization, and clustering algorithms.

	toc
	Compression of Map Images by Multilayer Context Tree Modeling
	Pavel Kopylov and Pasi Fränti
	I. I NTRODUCTION

	Fig.€1. System diagram to illustrate the compression method.
	II. C ONTEXT -B ASED C OMPRESSION
	A. Statistical Modeling

	Fig.€2. Most important contexts with the ten-pixel template of J
	B. Context Tree
	C. Construction of the Tree

	Fig.€3. Example of tree pruning with local pruning criterion. Th
	Fig.€4. Recursive algorithm for optimal construction of the cont
	III. M AP I MAGE C OMPRESSION

	Fig.€5. Illustration of a multicomponent map image. The shown fr
	A. Representation of Map Image

	Fig.€6. Algorithm for optimizing the context template.
	Fig.€7. Alternative orderings for the context templates.
	B. Independent Compression of Layers

	Fig.€8. (Left) Sample two-layer context templates for JBIG-2, (m
	C. Optimized Multilayer Template
	D. Multilayer Context Tree

	Fig.€9. Example of two layers obtained by color separation.
	Fig.€10. Example of a two-layer context tree, in which two conte
	IV. O PTIMAL O RDERING OF THE L AYERS

	Fig.€11. Arrows show the interlayer dependencies as the number o
	TABLE€I E XAMPLE OF THE C OST M ATRIX FOR A S AMPLE I MAGE
	A. Construction of the Cost Matrix

	TABLE€II O RIGINAL C OMPRESSION V ALUES O BTAINED W ITHOUT THE
	TABLE€III E XAMPLE OF THE C OST M ATRIX A FTER R EDUCTION
	Fig.€12. Graph representation of Table€III .
	B. Maximum Spanning Tree

	Fig.€13. Edmond's algorithm.
	Fig.€14. Resulting spanning tree after Edmonds' algorithm.
	C. Selection of the Background Color
	V. E XPERIMENTS
	Fig.€15. Process of Edmond's algorithm. The first graph is the r
	TABLE€IV S ET OF T EST I MAGES
	Fig.€16. Sample 256 \times 256 pixel fragments of the test ima

	TABLE€V A VERAGE C OMPRESSION R ESULTS (K ILOBYTES) FOR THE S
	Fig.€17. Compression performance as a function of the number of
	TABLE€VI C OMPRESSION AND D ECOMPRESSION T IMES U SING 500 MHz
	Fig.€18. Most used contexts in various context tree modeling str
	TABLE€VII C OMPRESSION R ESULTS (K ILOBYTES) FOR THE M ETHODS
	TABLE€VIII C OMPRESSION R ESULTS (K ILOBYTES) FOR THE M ETHODS
	VI. C ONCLUSION
	T. A. Welch, A technique for high-performance data compression,
	P. Deutsch . (May 1996) DEFLATE compressed data format specifica
	J. Ziv and A. Lempel, A universal algorithm for sequential data
	W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compr
	M. Weinberger, G. Seroussi, G. Sapiro, and M. W. Marcellin, The

	JBIG: ISO/IEC Int. Std. 11544, 1993.
	P. G. Howard, F. Kossentini, B. Martins, S. Forchammer, and W. J
	G. G. Langdon and J. Rissanen, Compression of black-white images
	Y. Yoo, Y. Kwon, and A. Ortega, Embedded image-domain adaptive c
	S. Forchhammer and O. R. Jensen, Content layer progressive codin
	J. G. Cleary and I. H. Witten, Data compression using adaptive c
	S. Forchhammer and J. M. Salinas, Progressive coding of palette
	P. J. Ausbeck, Jr., The piecewise-constant image model, Proc. IE
	E. I. Ageenko, P. Kopylov, and P. Fränti, Optimizing context tem
	B. Martins and S. Forchhammer, Bi-level image compression with t
	P. Kopylov and P. Fränti, Context tree compression of multicompo
	J. J. Rissanen and G. G. Langdon, Universal modeling and coding,
	C. E. Shanon, A mathematical theory of communication, Bell Syst.
	P. Fränti and E. I. Ageenko, On the use of context tree for bina
	H. Helfgott and M. Cohn, Linear-time construction of optimal con
	R. I. Nohre, Topics in descriptive complexity, Ph.D. dissertatio
	ESRI . (1998) ESRI shapefile technical description . An ESRI Whi

	National Land Survey of Finland, Helsinki, Finland. [Online] . A
	E. I. Ageenko and P. Fränti, Compression of large binary images
	M. J. Weinberger, J. Rissanen, and R. Arps, Application of unive
	M. Rabbani and P. W. Melnychuck, Conditioning contexts for the a
	S. R. Tate, Band ordering in lossless compression of multispectr
	T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorith
	R. C. Prim, Shortest connection networks and some generalization
	J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Stand., vol.
	R. E. Tarjan, Finding optimum branchings, Networks, vol. 7, pp.

