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Abstract— The efforts needed to solve travelling salesman 
problems (TSP) obviously depend on the problem size. However, 
also other factors can predict the difficulty of a given problem 
instance. We present a measure based on the minimum spanning 
tree (MST). The measure counts the number of knot points, which 
branch the tree into multiple sub-trees. We show by experiments 
that the more there are knots in the tree, the more difficult the 
problem instance is to solve by both humans and computers. 

Keywords—Travelling salesman problem, open loop TSP, MST, 
human performance, instance complexity. 

I. INTRODUCTION  

Solving travelling salesman problems (TSP) is challenging 
for computers and humans both. Computers can solve efficiently 
only small-size instances since the problem is NP-hard. Human 
problem-solving skills have also raised interest in the literature 
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Solving TSP instances by humans 
is like solving puzzle games but it also requires visual-spatial 
abilities [9, 10]. 

TSP instances appear also in an orienteering variant called 
rogaining [12], and in a mobile orienteering game called Mopsi 
orienteering, O-Mopsi [13]. The goal of the game is to visit a 
number of real-world targets, mainly in a city area. Unlike in the 
classical orienteering, there is no pre-defined order of visiting 
targets and the game ends immediately after all targets have been 
reached. Thus, the game playing implicitly includes the open 
loop travelling salesman problem. 

O-Mopsi game instances are of small size, consisting of 4-
27 targets. From the playing records, we found that only 18% of 
the players followed the optimum order while visiting targets. 
Therefore, regardless of the small size, these game instances can 
be difficult for human players. However, some problem 
instances are significantly more difficult to solve than other 
instances. 

From the theory of algorithm, we know that the time 
complexity of finding the optimum solution is exponential with 
the number of targets. However, results from the literature have 
shown that the time taken by humans to solve the problem 

instances grows linearly or near-linearly with the problem size 
[1, 2].  

The size is not the only factor that affects the difficulty of the 
problem instance. Three O-Mopsi game instances of Fig. 1 have 
almost the same number of targets. Despite this, the leftmost 
example (Otsola) is the easiest to solve because of the targets 
having an almost linear structure that can be followed from north 
to south. The middle one (Hukanhauta 3km) is slightly more 
difficult, and the rightmost (Christmas Star) is the most difficult 
for both humans and computers. 

 
Figure 1: Examples of three TSP problem instances  

with difficulty level increasing from left to right. 

An open question is how to estimate the difficulty of a given 
TSP problem instance. The number of targets is clearly one 
affecting factor but what other factors are there? 

In literature, several measures have been considered to 
estimate the difficulty of the TSP problem instances for both the 
closed loop and open loop cases. Many research results [3, 4, 5, 
6] reported that the more of the target points lay on the convex 
hull, the easier the problem is to solve by humans. Contradicting 
results have also been reported [7, 8]. One study also claims that 
human prefers to solve locally at first and then reaches to a 
global solution by crossing avoidance method [7].  

The minimum spanning tree (MST) is another closely related 
graph problem. Its goal is to connect all the targets using a tree 
structure by minimizing the total distance of the selected 
connections. The MST is a significantly easier problem to solve 
than TSP. Kruskal [14] and Prim [15] with sophisticated data 
structures like union-heap require only about O(N2) time to 
solve; compared to the exponential O(2N) time required to find 
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the optimum solution for TSP.  Human problem-solving 
performance on the TSP and MST also correlates highly, by a 
factor of 0.66 according to [9]. 

The solution for an open loop TSP is also a spanning tree, 
although not necessarily the minimum one. Fig. 2 shows two 
problem instances and the corresponding MST and TSP 
solutions. In the case of the first instance, both solutions have 
the same connections. In the case of the second instance, 
solutions still resemble each other but there are two connections 
in the TSP that have been replaced by shorter ones in the MST 
solution. Nevertheless, the relationship between the MST and 
TSP is obvious. 

In this paper, we propose to use the MST solution for 
estimating the difficulty of a TSP problem instance. The idea is 
first to generate the minimum spanning tree and then count the 
number of knot points in the tree. The knot is a target that 
connects three or more points. Our hypothesis is that the more 
there are knots in the MST, the more difficult is the problem 
instance because knots are not allowed in the solution of a TSP.  

 

Figure 2: Examples of MST and open loop TSP solutions 

The proposed measure is compared to both human and 
computer performance.  We measure human performance in two 
ways. First, we study how close human can reach to the optimum 
when playing O-Mopsi games in the real world environment. 
Second, we study how fast human can find the optimum solution 
with computer simulations. In addition to these, we also test the 
existing hypotheses whether human problem solving has a linear 
or near-linear performance with the problem size. 

Computer simulations are performed using the Concorde 
algorithm [16]. The Concorde algorithm was designed for the 
closed loop case; however, we modify it for the open loop case 
as explained in [17]. It runs much faster than the trivial brute 
force implementation. In specific, we want to find out whether 
its performance correlates to the problem size and our proposed 
MST knot measure or not.  

II. COUNTING MST KNOTS 

The problem instance consists of N targets, which are the 
nodes of the graph. We define a knot as a node in the MST that 

has at least three links associated with it. Fig. 3 shows three 
examples with one, two and three knots, respectively.  

Every knot divides the tree into sub-trees, called branches. 
Every branch makes the creation of TSP path more difficult. The 
number of knots varies from 0 to N/2-1. A special case is a tree 
without any knots. This minimum spanning tree is also the 
optimum solution for the open loop TSP because |MST||TSP|. 
In general, we hypothesize that the more knots there are, the 
more difficult it is to solve. 

 
Figure 3: Examples of one, two, and three MST knots in problem sets 

We measure the number of MST knots as following: 

- We create MST by any algorithm 
- While adding new links, we update the counts 
- If a count exceeds 2, we mark the node as a knot 
- Lastly, we count the total number of knots 

Any algorithm such as Prim [15] and Kruskal [14] can create 
MST. Prim creates the tree iteratively by always adding the 
shortest link that connects a new target to the tree. It can be 
implemented in O(N2) time using the Fibonacci heap [18]. 
Kruskal maintains multiple trees, and at each step, adds the 
shortest link that merges two distinct trees. 

A faster O(N1.5) time divide-and-conquer algorithm [19] 
clusters the targets into SQRT(N) groups. It then solves the MST 
for each cluster separately using either Prim or Kruskal and then 
merges the sub-solutions by creating a meta-graph of the 
clusters. It achieves significantly faster solution at the cost of 
minor degradation of the accuracy of the MST. 

Our problem instances are rather small and time is therefore 
not a bottleneck. We, therefore, use Prim’s algorithm. Counting 
the links is trivially done during the tree construction, and the 
final measure is available immediately when the MST has been 
completed. We can use the count of the knots as such, or we can 
normalize it relative to the size of the problem instance (Fig. 4). 
In the first case, the measure takes into account the size of the 
problem, too.  
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Figure 4: The number of MST knots and the normalized knot 

The main benefits of the proposed measure are that it is 
simple to implement and that it can be calculated relatively fast. 
This is a significant improvement over the existing measures, of 
which many require to have optimum TSP solution as 
a reference [8, 9]. This is a huge restriction in real-time 
applications and limits the use of such measures only for the 
theoretical analysis, or to small problem instances. 

III. EVALUATION METHODOLOGY 

To evaluate the proposed measure, we compare its results 
against human and computer performance. We consider the 
following three cases: 

1. Mistakes by human 
2. Time taken by human 
3. Time taken by the computer algorithm 

A. Human mistakes 

We analyse the tours constructed by humans when playing 
O-Mopsi games in the real world environment. The game itself 
does not require players to find the optimum TSP solution but 
any path would work. However, since the performance is 
measured by the playing time, players naturally try to minimize 
the distance of their path, and therefore, aim at finding the 
optimum path. 

For an easy game, finding the optimum path can be 
straightforward.  However, with the increasing difficulty, it 
becomes harder to follow the optimum path during the game 
playing. Hence, they make mistakes and the final visiting order 
can differ from the optimum order. Consequently, the length of 
the path becomes longer. 

To measure human performance we use the following three 
measures:  

1. The number of mismatches 
2. The number of mistakes 
3. The gap to optimum 

For the mismatch and mistake, we do not care about the 
length of the path for visiting the targets. Instead, we analyse the 
order in which targets were visited against the optimum path. 
The number of differences defines human performance. 

Mismatch: We denote a link as a pair of two consequent 
targets in the path. The mismatch is defined as the number of 

links in the optimum tour that are missed in the player’s path. 
An example is shown in Fig. 5 where the player’s path is the 
same as the optimum with only two exceptions. 

The problem of the mismatch is that it cumulates faults. Even 
a single different choice will cause another mismatch later in the 
path. In Fig. 5, the player reversed the optimum visiting order of 
the 3rd and 4th target. Therefore, the measure penalizes single 
mistake twice. 

 
Figure 5: Player’s tour has two mismatches in this game 

Mistake: The idea is to count every mistake only once by 
updating the optimum tour dynamically after every choice. 
Otherwise, the measure works exactly as the mismatch: we 
count the number of links in the optimum tour that were missed 
by the player. After every mistake, we resolve a new optimum 
solution for the remaining unvisited nodes starting from the 
current node. Fig. 6 shows the same example as in Fig. 5 when 
the optimum path is updated after the mistake. It shows that the 
rest of the player’s choices were optimally made. 

Some mistakes are more significant than others are. For 
example, the mistake made in Fig. 6 causes only a minor 
increase in the path length while other mistakes can have more 
dramatic effects. Therefore, it can be meaningful to measure the 
effect of the choices rather than their count. Hence, we also 
consider the concept called a gap. 

Gap: We measure the gap as the relative difference of the 
optimum path (TSP) to the path generated from the player’s 
choices: 


TSP

TSPpath
gap


  

We note that we do not use the real path travelled by the 
player. Instead, we generate artificial tour using the order of the 
targets chosen by the player. In this way, we eliminate the effect 
of navigating skills and measure merely the TSP problem-
solving skill. 
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Figure 6: One mistake in this game 

The distance of the path is measured using Euclidean 
distance between the targets. In some cases, the street network 
might provide a more accurate measurement. However, most 
games appear in parks and campus areas where using the street 
network would be too restrictive because players can easily 
make shortcuts. According to [17], Euclidean distance correlates 
slightly better (0.95) to the reality than routing via open street 
map (0.93).  

Fig. 7 shows two examples of players’ paths. There is only 
one mistake in the first example. However, the effect of that 
mistake is relatively large making the overall path 22% longer 
than the optimum path. On the contrary, even conceding two 
mistakes, the player managed to find a path, which is only 0.5% 
longer than the optimum in the second case. 

 
Figure 7:  The number of mistakes does not always reveal the significance of 
the faults. The first example has only one mistake but the solution is rather 

poor (22% gap). The second example has two mistakes but the solution is still 
very close to the optimum (0.5% gap). 

B. Human playing time 

We evaluate human performance by measuring the duration 
of their playing to find the optimum solution. This can be 
significantly more challenging than just find a ‘good’ solution. 

                                                           
1 http://cs.uef.fi/o-mopsi/datasets/ 

For this, we presented problem instances to the players on the 
computer screen. Their task was to create paths using the easy-
to-use web interface, which allows not only to create a new path 
but also to modify existing ones by mouse click and drag. We 
then measured the time it took for finding the optimum solution. 

In the computer simulations, we showed the real-time 
difference between the player’s current path and the optimum 
(gap). This guides the player towards finding the optimum 
solutions, which might be otherwise too hard to find for some 
problem instances. The optimum tours were generated by the 
local search algorithm in [20] as the instances were generated in 
real-time. Although it does not guarantee the optimality of the 
solution always, we later verified their optimality using the 
Concorde solver [16]. 

The problem instances can be found on the web1, and their 
statistics are summarized in Table 1. The problem sizes vary 
from N=4 to 50, being 13 on average. The playing time varied 
hugely. From our analysis, we excluded cases when playing time 
exceeded 5 minutes. 

TABLE I.  DATASETS USED IN THIS STUDY 

Dataset Type Distance Instances Sizes 

O-Mopsia Open loop Haversine 147 4-27 

Dotsb Open loop Euclidean 12125 4-50 

a. http://cs.uef.fi/o-mopsi/datasets/o-mopsi/ 

b. http://cs.uef.fi/o-mopsi/datasets/dots/ 

C. Computer solving time 

Our third test case is to measure the execution time for the 
computer algorithm to solve the instances. We use the Concorde 
algorithm, which is the fastest TSP solver for large problem 
instances [16]. In theory, running time should grow 
exponentially with the problem size. In practice, the 
performance depends also on other factors than the number of 
nodes. In specific, we expect that more difficult game instances 
can take considerably more time than easier instances with the 
same number of targets. 

IV. EXPERIMENTAL RESULTS 

We will test two hypotheses. The first hypothesis is based on 
the literature [1, 2] saying that human problem solving has 
a linear or near-linear performance with the problem size. The 
second hypothesis is that the number of MST knots can predict 
the difficulty of the instance. 

We study three measures: problem size (N), the number of 
MST knots, and its normalized variants. Linear correlations of 
these three measures are summarized in Table II with the test 
scenarios presented in Section III.  

Results show that all measures correlate very well with 
human mistakes (O-Mopsi) and Concorde time (O-Mopsi and 
Dots). There is also a slight correlation with the human problem-
solving time (Dots), but only a weak correlation with the gap of 
the human solution. In other words, all measures can predict how 
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well human and computer perform on the problem instances, but 
not how close human players can reach the optimum solution. 

We will test two hypotheses. The first hypothesis is based on 
the literature [1, 2] saying that human problem solving has 
a linear or near-linear performance with the problem size. The 
second hypothesis is that the number of MST knots can predict 
the difficulty of the instance. 

We study three measures: problem size (N), the number of 
MST knots, and its normalized variants. Linear correlations of 
these three measures are summarized in Table II with the test 
scenarios presented in Section III.  

Results show that all measures correlate very well with 
human mistakes (O-Mopsi) and Concorde time (O-Mopsi and 
Dots). There is also a slight correlation with the human problem-
solving time (Dots), but only a weak correlation with the gap of 
the human solution. In other words, all measures can predict how 
well human and computer perform on the problem instances, but 
not how close human players can reach the optimum solution. 

TABLE II.  CORRELATION BETWEEN PROBLEM SIZE AND MST KNOT 
WITH GROUND TRUTHS 

 

O-Mopsi Dots 

Human 
mistake 

Human 
gap 

Concorde  
time 

Human 
time 

Concorde 
time 

Problem 
size (N) 

0.46 0.06 0.75 0.38 0.61 

MST 
Knots 

0.54 0.16 0.68 0.35 0.56 

Normalized 
Knots 

0.44 0.11 0.48 0.13 0.22 

A. Human mistakes 

Fig. 8 shows that with increasing problem size humans make 
more errors and take more time to solve the problem. 
Additionally, these figures show that human performance 
degrades linearly with the problem size, which confirms the 
conclusion made in [1] and [2].  

The number of MST knots provides additional insight into 
the difficulty of the problem. Even it has stronger correlation 
(0.54) with human mistakes. Therefore, when the human 
mistake is the measure of human performance, both problem 
size and MST knots can predict the difficulty of instances.  

B. Human playing time 

Reference [1] and [2] both reported that the time needed by 
a human to solve a TSP is linearly proportional to the problem 
size. Our results with the Dots instances confirm that there is 
indeed linear correlation (0.38) with the average playing time. 
The regression line follows the function time = 1.4*N – 3.2.  

However, there is a huge variation in the results, see Fig. 8 
(middle). Again, in this case, MST knots can predict the 
difficulty of the instances as it has a linear correlation (0.35) to 
human time. Therefore, if the human time of finding an optimum 
solution is the measure of human performance, problem size and 
MST knots can define the difficulty of instances. 

 

 

 

Figure 8: Human and algorithm performance with varying problem sizes and 
MST knots 

In [1], human performance was also measured as the gap 
between the human solution and the optimum solution. It was 
reported that the gap grows very slowly with the problem size. 
Our results show that the gap has almost no correlation with the 
problem size and with the MST knots. With the problem sizes 
from N=10 to 15, the gap is almost constant. A linear correlation 
between MST knots and the gap can be observed only for the 
problem sizes between N=15 to 20, see Fig. 9. 

C. Computer solving time 

Concorde is an exact algorithm, and therefore, the problem 
size should correlate well with the processing times. This is 
indeed the case both with O-Mopsi (0.75) and Dots (0.61) 
problem instances, see Table II. The variation is much less than 
when compared against human performance, see Fig. 8 
(bottom). The performance of the computer algorithm is, 
therefore, more predictable. The MST knots has also strong 
correlation both with O-Mopsi (0.68) and Dots (0.56) problem 
instances. 

 
Figure 9: Human performance with varying MST knots for several ranges of 

problem sizes 
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D. Summary of results 

The results in Table II showed that human mistake, human 
playing time, and algorithm time all correlate well with the 
problem size and the number of knots of the MST. The problem 
size alone predicts computer performance very well. In the case 
of human performance, none of the two parameters can predict 
all the behavior. 

Skills of human is also a significant contributor. The O-
Mopsi games are played in the real world where navigational 
skills of the player affect results. In the case of large instances 
(N>20), human performance also improves with an increasing 
number of knots. This might be because more skillful players 
played the larger games.  

To sum up, in addition to the problem size, the number of 
knots in MST provides an important clue about the difficulty of 
the problem. However, the player skills should also be taken 
into account when interpreting the results.  

V. CONCLUSIONS 

We have shown that counting MST knots can predict the 
difficulty of TSP problem instances. It correlates very well with 
the time both humans and computer algorithm take to find the 
optimum solution, and the number of mistakes humans make 
while playing O-Mopsi games in the real world. 

The results also showed that human mistakes and computer 
solving time have a linear relationship with the small problem 
sizes. However, when human performance is measured by the 
gap of the human and optimum solutions, neither the problem 
size nor the MST knots can predict the difficulty of the problem 
instances. 
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