

Predicting the difficulty of TSP instances using MST

Lahari Sengupta
School of Computing

University of Eastern Finland
Joensuu, Finland
lahari@cs.uef.fi

Pasi Fränti
School of Computing

University of Eastern Finland
Joensuu, Finland
franti@cs.uef.fi

Abstract— The efforts needed to solve travelling salesman
problems (TSP) obviously depend on the problem size. However,
also other factors can predict the difficulty of a given problem
instance. We present a measure based on the minimum spanning
tree (MST). The measure counts the number of knot points, which
branch the tree into multiple sub-trees. We show by experiments
that the more there are knots in the tree, the more difficult the
problem instance is to solve by both humans and computers.

Keywords—Travelling salesman problem, open loop TSP, MST,
human performance, instance complexity.

I. INTRODUCTION

Solving travelling salesman problems (TSP) is challenging
for computers and humans both. Computers can solve efficiently
only small-size instances since the problem is NP-hard. Human
problem-solving skills have also raised interest in the literature
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Solving TSP instances by humans
is like solving puzzle games but it also requires visual-spatial
abilities [9, 10].

TSP instances appear also in an orienteering variant called
rogaining [12], and in a mobile orienteering game called Mopsi
orienteering, O-Mopsi [13]. The goal of the game is to visit a
number of real-world targets, mainly in a city area. Unlike in the
classical orienteering, there is no pre-defined order of visiting
targets and the game ends immediately after all targets have been
reached. Thus, the game playing implicitly includes the open
loop travelling salesman problem.

O-Mopsi game instances are of small size, consisting of 4-
27 targets. From the playing records, we found that only 18% of
the players followed the optimum order while visiting targets.
Therefore, regardless of the small size, these game instances can
be difficult for human players. However, some problem
instances are significantly more difficult to solve than other
instances.

From the theory of algorithm, we know that the time
complexity of finding the optimum solution is exponential with
the number of targets. However, results from the literature have
shown that the time taken by humans to solve the problem

instances grows linearly or near-linearly with the problem size
[1, 2].

The size is not the only factor that affects the difficulty of the
problem instance. Three O-Mopsi game instances of Fig. 1 have
almost the same number of targets. Despite this, the leftmost
example (Otsola) is the easiest to solve because of the targets
having an almost linear structure that can be followed from north
to south. The middle one (Hukanhauta 3km) is slightly more
difficult, and the rightmost (Christmas Star) is the most difficult
for both humans and computers.

Figure 1: Examples of three TSP problem instances

with difficulty level increasing from left to right.

An open question is how to estimate the difficulty of a given
TSP problem instance. The number of targets is clearly one
affecting factor but what other factors are there?

In literature, several measures have been considered to
estimate the difficulty of the TSP problem instances for both the
closed loop and open loop cases. Many research results [3, 4, 5,
6] reported that the more of the target points lay on the convex
hull, the easier the problem is to solve by humans. Contradicting
results have also been reported [7, 8]. One study also claims that
human prefers to solve locally at first and then reaches to a
global solution by crossing avoidance method [7].

The minimum spanning tree (MST) is another closely related
graph problem. Its goal is to connect all the targets using a tree
structure by minimizing the total distance of the selected
connections. The MST is a significantly easier problem to solve
than TSP. Kruskal [14] and Prim [15] with sophisticated data
structures like union-heap require only about O(N2) time to
solve; compared to the exponential O(2N) time required to find

978-1-7281-2927-3/19/$31.00 ©2019 IEEE 847

the optimum solution for TSP. Human problem-solving
performance on the TSP and MST also correlates highly, by a
factor of 0.66 according to [9].

The solution for an open loop TSP is also a spanning tree,
although not necessarily the minimum one. Fig. 2 shows two
problem instances and the corresponding MST and TSP
solutions. In the case of the first instance, both solutions have
the same connections. In the case of the second instance,
solutions still resemble each other but there are two connections
in the TSP that have been replaced by shorter ones in the MST
solution. Nevertheless, the relationship between the MST and
TSP is obvious.

In this paper, we propose to use the MST solution for
estimating the difficulty of a TSP problem instance. The idea is
first to generate the minimum spanning tree and then count the
number of knot points in the tree. The knot is a target that
connects three or more points. Our hypothesis is that the more
there are knots in the MST, the more difficult is the problem
instance because knots are not allowed in the solution of a TSP.

Figure 2: Examples of MST and open loop TSP solutions

The proposed measure is compared to both human and
computer performance. We measure human performance in two
ways. First, we study how close human can reach to the optimum
when playing O-Mopsi games in the real world environment.
Second, we study how fast human can find the optimum solution
with computer simulations. In addition to these, we also test the
existing hypotheses whether human problem solving has a linear
or near-linear performance with the problem size.

Computer simulations are performed using the Concorde
algorithm [16]. The Concorde algorithm was designed for the
closed loop case; however, we modify it for the open loop case
as explained in [17]. It runs much faster than the trivial brute
force implementation. In specific, we want to find out whether
its performance correlates to the problem size and our proposed
MST knot measure or not.

II. COUNTING MST KNOTS

The problem instance consists of N targets, which are the
nodes of the graph. We define a knot as a node in the MST that

has at least three links associated with it. Fig. 3 shows three
examples with one, two and three knots, respectively.

Every knot divides the tree into sub-trees, called branches.
Every branch makes the creation of TSP path more difficult. The
number of knots varies from 0 to N/2-1. A special case is a tree
without any knots. This minimum spanning tree is also the
optimum solution for the open loop TSP because |MST||TSP|.
In general, we hypothesize that the more knots there are, the
more difficult it is to solve.

Figure 3: Examples of one, two, and three MST knots in problem sets

We measure the number of MST knots as following:

- We create MST by any algorithm
- While adding new links, we update the counts
- If a count exceeds 2, we mark the node as a knot
- Lastly, we count the total number of knots

Any algorithm such as Prim [15] and Kruskal [14] can create
MST. Prim creates the tree iteratively by always adding the
shortest link that connects a new target to the tree. It can be
implemented in O(N2) time using the Fibonacci heap [18].
Kruskal maintains multiple trees, and at each step, adds the
shortest link that merges two distinct trees.

A faster O(N1.5) time divide-and-conquer algorithm [19]
clusters the targets into SQRT(N) groups. It then solves the MST
for each cluster separately using either Prim or Kruskal and then
merges the sub-solutions by creating a meta-graph of the
clusters. It achieves significantly faster solution at the cost of
minor degradation of the accuracy of the MST.

Our problem instances are rather small and time is therefore
not a bottleneck. We, therefore, use Prim’s algorithm. Counting
the links is trivially done during the tree construction, and the
final measure is available immediately when the MST has been
completed. We can use the count of the knots as such, or we can
normalize it relative to the size of the problem instance (Fig. 4).
In the first case, the measure takes into account the size of the
problem, too.

848

Figure 4: The number of MST knots and the normalized knot

The main benefits of the proposed measure are that it is
simple to implement and that it can be calculated relatively fast.
This is a significant improvement over the existing measures, of
which many require to have optimum TSP solution as
a reference [8, 9]. This is a huge restriction in real-time
applications and limits the use of such measures only for the
theoretical analysis, or to small problem instances.

III. EVALUATION METHODOLOGY

To evaluate the proposed measure, we compare its results
against human and computer performance. We consider the
following three cases:

1. Mistakes by human
2. Time taken by human
3. Time taken by the computer algorithm

A. Human mistakes

We analyse the tours constructed by humans when playing
O-Mopsi games in the real world environment. The game itself
does not require players to find the optimum TSP solution but
any path would work. However, since the performance is
measured by the playing time, players naturally try to minimize
the distance of their path, and therefore, aim at finding the
optimum path.

For an easy game, finding the optimum path can be
straightforward. However, with the increasing difficulty, it
becomes harder to follow the optimum path during the game
playing. Hence, they make mistakes and the final visiting order
can differ from the optimum order. Consequently, the length of
the path becomes longer.

To measure human performance we use the following three
measures:

1. The number of mismatches
2. The number of mistakes
3. The gap to optimum

For the mismatch and mistake, we do not care about the
length of the path for visiting the targets. Instead, we analyse the
order in which targets were visited against the optimum path.
The number of differences defines human performance.

Mismatch: We denote a link as a pair of two consequent
targets in the path. The mismatch is defined as the number of

links in the optimum tour that are missed in the player’s path.
An example is shown in Fig. 5 where the player’s path is the
same as the optimum with only two exceptions.

The problem of the mismatch is that it cumulates faults. Even
a single different choice will cause another mismatch later in the
path. In Fig. 5, the player reversed the optimum visiting order of
the 3rd and 4th target. Therefore, the measure penalizes single
mistake twice.

Figure 5: Player’s tour has two mismatches in this game

Mistake: The idea is to count every mistake only once by
updating the optimum tour dynamically after every choice.
Otherwise, the measure works exactly as the mismatch: we
count the number of links in the optimum tour that were missed
by the player. After every mistake, we resolve a new optimum
solution for the remaining unvisited nodes starting from the
current node. Fig. 6 shows the same example as in Fig. 5 when
the optimum path is updated after the mistake. It shows that the
rest of the player’s choices were optimally made.

Some mistakes are more significant than others are. For
example, the mistake made in Fig. 6 causes only a minor
increase in the path length while other mistakes can have more
dramatic effects. Therefore, it can be meaningful to measure the
effect of the choices rather than their count. Hence, we also
consider the concept called a gap.

Gap: We measure the gap as the relative difference of the
optimum path (TSP) to the path generated from the player’s
choices:

TSP

TSPpath
gap

We note that we do not use the real path travelled by the
player. Instead, we generate artificial tour using the order of the
targets chosen by the player. In this way, we eliminate the effect
of navigating skills and measure merely the TSP problem-
solving skill.

849

Figure 6: One mistake in this game

The distance of the path is measured using Euclidean
distance between the targets. In some cases, the street network
might provide a more accurate measurement. However, most
games appear in parks and campus areas where using the street
network would be too restrictive because players can easily
make shortcuts. According to [17], Euclidean distance correlates
slightly better (0.95) to the reality than routing via open street
map (0.93).

Fig. 7 shows two examples of players’ paths. There is only
one mistake in the first example. However, the effect of that
mistake is relatively large making the overall path 22% longer
than the optimum path. On the contrary, even conceding two
mistakes, the player managed to find a path, which is only 0.5%
longer than the optimum in the second case.

Figure 7: The number of mistakes does not always reveal the significance of
the faults. The first example has only one mistake but the solution is rather

poor (22% gap). The second example has two mistakes but the solution is still
very close to the optimum (0.5% gap).

B. Human playing time

We evaluate human performance by measuring the duration
of their playing to find the optimum solution. This can be
significantly more challenging than just find a ‘good’ solution.

1 http://cs.uef.fi/o-mopsi/datasets/

For this, we presented problem instances to the players on the
computer screen. Their task was to create paths using the easy-
to-use web interface, which allows not only to create a new path
but also to modify existing ones by mouse click and drag. We
then measured the time it took for finding the optimum solution.

In the computer simulations, we showed the real-time
difference between the player’s current path and the optimum
(gap). This guides the player towards finding the optimum
solutions, which might be otherwise too hard to find for some
problem instances. The optimum tours were generated by the
local search algorithm in [20] as the instances were generated in
real-time. Although it does not guarantee the optimality of the
solution always, we later verified their optimality using the
Concorde solver [16].

The problem instances can be found on the web1, and their
statistics are summarized in Table 1. The problem sizes vary
from N=4 to 50, being 13 on average. The playing time varied
hugely. From our analysis, we excluded cases when playing time
exceeded 5 minutes.

TABLE I. DATASETS USED IN THIS STUDY

Dataset Type Distance Instances Sizes

O-Mopsia Open loop Haversine 147 4-27

Dotsb Open loop Euclidean 12125 4-50

a. http://cs.uef.fi/o-mopsi/datasets/o-mopsi/

b. http://cs.uef.fi/o-mopsi/datasets/dots/

C. Computer solving time

Our third test case is to measure the execution time for the
computer algorithm to solve the instances. We use the Concorde
algorithm, which is the fastest TSP solver for large problem
instances [16]. In theory, running time should grow
exponentially with the problem size. In practice, the
performance depends also on other factors than the number of
nodes. In specific, we expect that more difficult game instances
can take considerably more time than easier instances with the
same number of targets.

IV. EXPERIMENTAL RESULTS

We will test two hypotheses. The first hypothesis is based on
the literature [1, 2] saying that human problem solving has
a linear or near-linear performance with the problem size. The
second hypothesis is that the number of MST knots can predict
the difficulty of the instance.

We study three measures: problem size (N), the number of
MST knots, and its normalized variants. Linear correlations of
these three measures are summarized in Table II with the test
scenarios presented in Section III.

Results show that all measures correlate very well with
human mistakes (O-Mopsi) and Concorde time (O-Mopsi and
Dots). There is also a slight correlation with the human problem-
solving time (Dots), but only a weak correlation with the gap of
the human solution. In other words, all measures can predict how

850

well human and computer perform on the problem instances, but
not how close human players can reach the optimum solution.

We will test two hypotheses. The first hypothesis is based on
the literature [1, 2] saying that human problem solving has
a linear or near-linear performance with the problem size. The
second hypothesis is that the number of MST knots can predict
the difficulty of the instance.

We study three measures: problem size (N), the number of
MST knots, and its normalized variants. Linear correlations of
these three measures are summarized in Table II with the test
scenarios presented in Section III.

Results show that all measures correlate very well with
human mistakes (O-Mopsi) and Concorde time (O-Mopsi and
Dots). There is also a slight correlation with the human problem-
solving time (Dots), but only a weak correlation with the gap of
the human solution. In other words, all measures can predict how
well human and computer perform on the problem instances, but
not how close human players can reach the optimum solution.

TABLE II. CORRELATION BETWEEN PROBLEM SIZE AND MST KNOT
WITH GROUND TRUTHS

O-Mopsi Dots

Human
mistake

Human
gap

Concorde
time

Human
time

Concorde
time

Problem
size (N)

0.46 0.06 0.75 0.38 0.61

MST
Knots

0.54 0.16 0.68 0.35 0.56

Normalized
Knots

0.44 0.11 0.48 0.13 0.22

A. Human mistakes

Fig. 8 shows that with increasing problem size humans make
more errors and take more time to solve the problem.
Additionally, these figures show that human performance
degrades linearly with the problem size, which confirms the
conclusion made in [1] and [2].

The number of MST knots provides additional insight into
the difficulty of the problem. Even it has stronger correlation
(0.54) with human mistakes. Therefore, when the human
mistake is the measure of human performance, both problem
size and MST knots can predict the difficulty of instances.

B. Human playing time

Reference [1] and [2] both reported that the time needed by
a human to solve a TSP is linearly proportional to the problem
size. Our results with the Dots instances confirm that there is
indeed linear correlation (0.38) with the average playing time.
The regression line follows the function time = 1.4*N – 3.2.

However, there is a huge variation in the results, see Fig. 8
(middle). Again, in this case, MST knots can predict the
difficulty of the instances as it has a linear correlation (0.35) to
human time. Therefore, if the human time of finding an optimum
solution is the measure of human performance, problem size and
MST knots can define the difficulty of instances.

Figure 8: Human and algorithm performance with varying problem sizes and
MST knots

In [1], human performance was also measured as the gap
between the human solution and the optimum solution. It was
reported that the gap grows very slowly with the problem size.
Our results show that the gap has almost no correlation with the
problem size and with the MST knots. With the problem sizes
from N=10 to 15, the gap is almost constant. A linear correlation
between MST knots and the gap can be observed only for the
problem sizes between N=15 to 20, see Fig. 9.

C. Computer solving time

Concorde is an exact algorithm, and therefore, the problem
size should correlate well with the processing times. This is
indeed the case both with O-Mopsi (0.75) and Dots (0.61)
problem instances, see Table II. The variation is much less than
when compared against human performance, see Fig. 8
(bottom). The performance of the computer algorithm is,
therefore, more predictable. The MST knots has also strong
correlation both with O-Mopsi (0.68) and Dots (0.56) problem
instances.

Figure 9: Human performance with varying MST knots for several ranges of

problem sizes

851

D. Summary of results

The results in Table II showed that human mistake, human
playing time, and algorithm time all correlate well with the
problem size and the number of knots of the MST. The problem
size alone predicts computer performance very well. In the case
of human performance, none of the two parameters can predict
all the behavior.

Skills of human is also a significant contributor. The O-
Mopsi games are played in the real world where navigational
skills of the player affect results. In the case of large instances
(N>20), human performance also improves with an increasing
number of knots. This might be because more skillful players
played the larger games.

To sum up, in addition to the problem size, the number of
knots in MST provides an important clue about the difficulty of
the problem. However, the player skills should also be taken
into account when interpreting the results.

V. CONCLUSIONS

We have shown that counting MST knots can predict the
difficulty of TSP problem instances. It correlates very well with
the time both humans and computer algorithm take to find the
optimum solution, and the number of mistakes humans make
while playing O-Mopsi games in the real world.

The results also showed that human mistakes and computer
solving time have a linear relationship with the small problem
sizes. However, when human performance is measured by the
gap of the human and optimum solutions, neither the problem
size nor the MST knots can predict the difficulty of the problem
instances.

REFERENCES
[1] S. M. Graham, A. Joshi, and Z. Pizlo, “The traveling salesman

problem: A hierarchical model,” Memory and Cognition, 28 (7), 1191-
1204, 2000.

[2] M. J. Dry, M. D. Lee, D. Vickers, and P. Hughes, “Human performance
on visually presented traveling salesperson problems with varying
numbers of nodes,” Journal of Problem Solving, 1, 20-32, 2006.

[3] J. N. Macgregor and T. C. Ormerod, “Human performance on the
traveling salesman problem,” Perception and Psychophysics 58: 527,
1996.

[4] J. N. Macgregor, T. C. Ormerod, and E. P. Chronicle, “Spatial and
contextual factors in human performance on the travelling salesperson
problem,” Perception, 28, 1417-1427, 1999.

[5] J. N. Macgregor, T. C. Ormerod, E. P. Chronicle, “A model of human
performance on the traveling salesperson problem,” Memory and
Cognition, 28(7), 1183-1190, 2000.

[6] J. N. Macgregor, E. P. Chronicle, T. C. Ormerod, “ Convex hull or
crossing avoidance? Solution heuristics in the travelling salesperson
problem,” Memory & Cognition, 32(4), 260-270, 2004.

[7] D. Vickers, M. D. Lee, M. Dry, and P. Hughes, “The roles of the
convex hull and the number of potential intersections in performance
on visually presented traveling salesperson problems,” Memory and
Cognition, 31 (7), 1094-1104, 2003.

[8] M. J. Dry, and E. L. Fontaine, “Fast and Efficient Discrimination of
Traveling Salesperson Problem Stimulus Difficulty,” The Journal of
Problem Solving: 7 (1), Article 9, 2014.

[9] D. Vickers, T. Mayo, M, Heitmann, M. D. Lee, and P. Hughes,
“Intelligence and individual differences on three types of visually
presented optimisation problems,” Personality and Individual
Differences, 36, 1059-1071, 2004.

[10] M. J. Dry, K. Preiss, and J. Wagemans, “Clustering, Randomness, and
Regularity: Spatial Distributions and Human Performance on the
Traveling Salesperson Problem and Minimum Spanning Tree
Problem,” The Journal of Problem Solving, 4 (1), Article 2, 2012.

[11] Y. Haxhimusa, W. G. Kropatsch, Z. Pizlo, A. Ion, A. Lehrbaum
“Approximating TSP Solution by MST Based Graph Pyramid,”
Graph-Based Representations in Pattern Recognition. GbRPR 2007.
Lecture Notes in Computer Science, vol 4538, 2007.

[12] G. N. Phillips and R. Phillips, “Rogaining: cross-country navigation,”
Outdoor Recreation in Australia, Perth, W.A, 1982.

[13] P. Fränti, R. Mariescu-Istodor, and L. Sengupta, “O-Mopsi: Mobile
Orienteering Game for Sightseeing, Exercising, and Education,” ACM
Trans. Multimedia Comput. Commun. Appl. 13 (4), 56:1-12, 2017.

[14] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the Americal
Mathematical Society, 7, 48-50, 1956.

[15] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, 36 (6), 1957.

[16] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, “The
traveling salesman problem: a computational study,” Princeton
university press, 2011.

[17] L. Sengupta, R. Mariescu-Istodor, and P. Fränti, “Planning Your
Route: Where to Start?,” Computational Brain & Behavior, 1 (3-4),
252-265, 2018.

[18] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, “Introduction to
Algorithms,” second ed., The MIT Press, 2001.

[19] C. Zhong, M.I. Malinen, D. Miao and P. Fränti, "A fast minimum
spanning tree algorithm based on K-means," Information Sciences,
295, 1-17, 2015.

[20] L. Sengupta, R. Mariescu-Istodor, and P. Fränti, “Which local search
operator works best for open loop Euclidean TSP?”, manuscript
(submitted).

852

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

