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Abstract: Visualizations have been proved to be more effective in communicating 

ideas for a very long time. They can help us understand something easily and effec-

tively. In this study, we try to learn about the performance of clustering algorithms 

through visualization. Clustering is a machine learning technique that groups data 

having similar features together and vice versa. K-means is a very popular clustering 

algorithm and here we try to learn about the performance of k-means and few other 

clustering algorithms that use k-means as an extension or are a variant of k-means. 

Different visualization techniques, their advantages, drawbacks, and the analysis of 

these algorithms have been discussed and documented. 
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4 Algorithm visualization and animation 

1 Introduction 

Clustering is a grouping of objects so that a similar set of objects are in one group 

than those in the other groups. Clustering can be achieved by various algorithms that 

have some differences in understanding what constitutes a cluster and how the clus-

ters are found. It is challenging for a human to categorize and process large-scale 

data into separate categories.  

Selecting the best method to measure the distance between objects is important for 

the clustering results. In clustering software, Euclidean distance is the default dis-

tance measure method. In Euclidean distance, objects that have low values are clus-

tered together.  

When we have a large set of data, like thousands and millions of data points, we need 

tools and techniques to visualize the data. There are lots of tools available for visual-

ization. Today, the best-used tools for data visualization are Google charts, Grafana, 

Chartist.js, Fusion charts, Infogram, D3.js, Chart blocks, and Fusion charts.  The 

graphical representation of data is called data visualization. Some other commonly 

used tools are flash player, Seaborn, Matlab, matplotlib.py. In this thesis, HTML5 

with JavaScript is used to visualize the clustering results. Visualizing data is an im-

portant step to draw conclusions from large data sets.  

Flash player was used for animations, games, and visualizing algorithms in the past. 

Same goes for Java applets. Nowadays HTML improved and does not need (poten-

tially dangerous) external plugins etc. When doing data visualization, the process of 

creation of visualization is usually wanted automated. The goal of this thesis is to 

study different ways of visualization to study the performance of several clustering 

algorithms. 
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1.1 Objective 

In this thesis, we will discuss some visualization techniques by using a clustering 

algorithm that helps to find similar objects by splitting the observation into some 

subsets. When objects are split, similar objects go to the same group, and different 

objects are in different groups. We focus on the visualization of some clustering al-

gorithms to see how they work and how we can learn more about the behavior of 

those algorithms on different datasets. We also try to interact with those visualiza-

tions to check that where (in which kind of dataset) a specific algorithm lacks, and 

others perform well. 

1.2 Motivation 

Clustering has a lot of importance in data mining and data analysis applications. The 

set of objects is the primary clustering task where similar objects are going into the 

same group. Identifying the distinct groups in customer base clustering has a signifi-

cant role in organizations. In many applications, clustering is mesmerizing, like pat-

tern recognition, market research, image processing, and data analysis. Using cluster-

ing in data visualization, one can get a clearer idea about information means by giv-

ing it visual context through graphs or maps. 

Moreover, Clustering algorithms are NP-hard because clustering problems are poly-

nomial-time reducible even though they may not be NP itself (Vattani 2009). and 

exact algorithms are not useful. Heuristic algorithms are efficient, but their behavior 

is hard to understand at times. Visualizers/animators help scientists to better under-

stand algorithm behavior in real instances. 
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2 Clustering Problem 

Clustering provides an abstraction from individual data objects to clusters in which 

those data objects reside. Clustering aims to find usefulness defined by the goals of 

data analysis. Clustering is a fundamental exploratory analysis used in many scien-

tific domains. Various clustering algorithms with various cost functions produce so-

lutions, and there is no single best algorithm for all possible data sets. A primary task 

is to find the best possible clustering for the given data set. Other challenges in clus-

tering are: 

1. Determining the number of clusters in the dataset.  

2. Detecting outliers as they may disturb the clustering process  

 

Most papers focus on convex clustering techniques. Some Bayesian approaches like 

Dirichlet Process Mixture Models help by directly estimating the number of clusters. 

This approach is by no means a panacea. Other hyperparameters still tuned these 

models, and these models do not always estimate the correct number of clusters ac-

curately (Cheng et al 2018).  

 

According to David Robinson (Robinson, D. J. et al 2013) the shortcoming of the 

most famous clustering algorithm, k-means, is that even when the human eye can 

easily separate data into groups, the k-means algorithm can still fail (Robinson 

2013). It aligns with that analysis, but it is entirely reasonable from an algorithm per-

spective (Zhao, Q. 2012).  

 

According to (Zhao & Fränti 2014), finding the correct number of the clusters, clus-

tering algorithm, and cluster validity indexes based on the sum of squares, works 

very well for Gaussian type data. Most of them cannot provide a global maximum or 

minimum point for the correct cluster number. WB index works slightly better than 

the other indices. It provides a more stable result than the min-max function (Zhao & 

Fränti 2014) This is the standard way to find cluster variations but not enough to de-

termine the value of k reliably in all cases. 
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Another method is finding knee (or elbow) point is SSE curve for various k-values. 

Bayesian information criterion (BIC) was reformulated in partitioning-based cluster-

ing showing the perspective of finding several clusters (Zhao et al 2008). This meth-

od decides the local maximum but not always accurately. To improve BIC, it still 

needs functions that provide min (or max) at this point. When the data set becomes 

more arduous, it becomes more complex, so the knee point is just an intuitive idea, 

and one needs a concrete function to implement it. Interestingly, BIC was initially 

designed for Gaussian Mixture models (GMM) within the EM algorithm. By impos-

ing multivariate Gaussian assumptions on observations, a closed form of BIC is pro-

vided (Teklehaymanot et al 2018) 

 

GMM itself is worth mentioning in the cost function part. While k-means uses sum-

of-squared errors (SSE) it has only centroid and binary (hard) partition, Gaussian 

mixture model (GMM) has also the variance of each cluster. Either a so-called diag-

onal matrix so that one variance for each attribute (commonly used) or a full matrix 

so that co-variances of individual attributes are also modeled (rarely used). While it 

is more complex than SSE, it can potentially find clusters of elliptical shape and in-

variant to their size. SSE tends to make all clusters of similar size: tiny dense points 

will make one cluster, but a sizeable wide cluster may be split into several smaller. 

2.1 Distance Function 

In our work, the centroid is used as the prototype because it is the most common 

choice for this. These centroids are calculated as the average of the objects in the 

cluster using Euclidean distance. The choice of distance function is an important 

step. To measure the distance, there are some classical methods like Euclidean Dis-

tance and Manhattan distance. Euclidean distance is measured using the formula: 

𝒅𝒆𝒖𝒄(𝒙, 𝒚) = √∑(𝒙𝒊 − 𝒚𝒊)𝟐

𝒏

𝒊=𝟏

 (1) 
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Manhattan Distance is measured using the formula: 

𝒅𝒎𝒂𝒏(𝒙, 𝒚) = ∑ |(𝒙𝒊 − 𝒚𝒊)|

𝒏

𝒊=𝟏

 (2) 

Some correlation-based distance measures also exist to measure gene expression data 

analysis. Pearson Correlation distance measure is one example: 

𝒅𝒄𝒐𝒓(𝒙, 𝒚) = 𝟏 −  
∑ (𝒙𝒊 − �̅�)(𝒚𝒊 − �̅�)𝒏

𝒊=𝟏

√∑ (𝒙𝒊 − �̅�)𝟐(𝒚𝒊 − �̅�)𝟐𝒏
𝒊=𝟏

 (3) 

Eisen Cosine correlation distance measured is another: 

𝒅𝒆𝒊𝒔𝒆𝒏(𝒙, 𝒚) = 𝟏 −  
| ∑ 𝒙𝒊𝒚𝒊

𝒏
𝒊=𝟏 |

√∑ 𝒙𝒊
𝟐 ∑ 𝒚𝒊

𝟐𝒏
𝒊=𝟏

𝒏
𝒊=𝟏

 (4) 

Spearman Correlation distance measure computes the correlation of centroid c and y 

as: 

𝒅𝒔𝒑𝒆𝒂𝒓(𝒙, 𝒚) = 𝟏 −  
∑ (𝒙𝒊

′ − 𝒙′̅)(𝒚𝒊
′ − 𝒚′̅)𝒏

𝒊=𝟏

√∑ (𝒙𝒊
′ − 𝒙′̅)𝟐(𝒚𝒊

′ − 𝒚′̅)𝟐𝒏
𝒊=𝟏

 
(5) 

Kendall correlation distance is non-parametric perform rand-based correlation analy-

sis measured as: 

𝒅𝒌𝒆𝒏𝒅(𝒙, 𝒚) = 𝟏 −  
𝒏𝒄 − 𝒏𝒅

𝟏
𝟐 𝒏(𝒏 − 𝟏)

 
(6) 

Select the best distance measure is important. In many clustering software, Euclidean 

distance is the default distance measure method. In Euclidean distance, objects with 

low values should be clustered together. 

2.2 Objective Function 

Clustering goals are typically expressed by an objective function that depends on 

points to one another and the cluster centroids. For example, to minimize the sum of 

the squared distance of each point of the cluster to its closest cluster centroid. By 



 

 

9 Algorithm visualization and animation 

using some examples, we use this goal. The critical point in this study is that when 

we have specified distance measure and objective function, then centroid can often 

be determined mathematically. The primary objective behind all this is to improve 

the performance of the algorithm. The objective function is to minimize the square 

distance of every point to its nearest centroid. 

2.3 Data Processing 

Some issues appear while gathering the data. The first issue is setting boundaries for 

objects. Some researchers clearly delineate the focus of their study and include ob-

jects within the boundary. The second issue is identifying the objects representing 

that domain which is most critical because if the domain is incomplete then a further 

solution can be distorted, and it generates a partial picture of the cluster in visualiza-

tion (Roskos-Ewoldsen 2008).  The following procedure is followed for the func-

tionality of the clustering visualizer (or clustering animator). 

The first step in visualization is to show the dataset on the screen (denoted as canvas 

in the following) so we start by loading the dataset. Dataset is loaded and normalized 

(between 0-1 values) to unify all computations. Then to show the data points on the 

canvas, values are rescaled to the size of the canvas and then plotted on the canvas. 

Rescaling the data set according to the canvas size is required; otherwise, our plot 

might have the size of one pixel and be practically invisible. Rescaling the data set is 

necessary also for the algorithms because it helps to calculate the distances among 

the data. If scaling of data sets is not done, then the features with higher value ranges 

start to dominate when we calculate distance. The scaling of data points makes a dif-

ference between a better and a weaker algorithm.  

2.3.1 Normalization and standardization 

The most commonly used technique for scaling is normalization and standardization 

as in figure 1. The process of normalization is to bound the data values between two 

numbers, minimum and maximum (Roskos-Ewoldsen 2008). The standardization 

process transforms that data to have zero mean and variance of 1., as shown in Figure 

1. 
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Figure 1. Data points scaling (Roskos-Ewoldsen, 2006) 

Data from multiple features can be transformed through normalization, so normaliza-

tion is well suited for processing data distribution known as Gaussian distribution 

(Murtagh 2017). Normalization needs less data for calculation compared to Quan-

tiles. The zero scores of normalized data are:  

 

We can see the difference between normalized and raw data in Figure 2. 



 

 

11 Algorithm visualization and animation 

 

Figure 2. Data before and after normalization 

2.3.2 Log Transform  

In Log Transform, the data set conforms to power distribution by clumping the data 

at the lower end. In Figure 3, the red color is closer to yellow. However, when the 

power-law distribution is performed by log transform, it creates smoother distribu-

tion, and the red color becomes closer to the blue color (Shah 2017). 

 

 

 

Figure 3. Power-law distribution 

 

Figure 4. Gaussian distribution (Shah 2017) 

log(feature) 

log(feature) 
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2.3.3 Quantiles 

Quintiles are a technique of making distributions identical in properties. To quantile 

two or more distributions to each other with reference distribution as before and then 

setting average of these distributions. So, the similarity between the examples de-

creases when the number of examples among them increases. Data normalization 

reproduces data distribution, so applying log transformation does not reflect intuition 

on how similarity works. Instead of the data divided into intervals where every inter-

val has an equal number of data objects, these boundaries are called quantiles. Con-

verting data into quantiles is done by the following steps (Murtagh 2017). Firstly, 

several intervals are decided; each interval is defined and every value is replaced by 

the index of the interval it falls into. Then indexes are converted into predefined 

ranges defined by their features by scaling the values of the index. Quantiles are 

sometimes a good choice to distribute the data more evenly. Two Quantiles are taken 

here as an example: 

 

 

Figure 5. Quantiles (Murtagh 2017)  

Researchers identify different methods of scaling and clustering with several goals. 

Our goal is to simplify the data and describe it in an organized way to visualize the 

clusters. Scaling methods help to reduce the complexities of the dataset by identify-

ing its underlying data set structure. Some researchers use multidimensional scaling 

by discovering four-dimensional situations like: 

1. Cooperative and friendly vs. competitive and hostile 

2. Equal and unequal 

3. Informal or social-emotional vs. task-oriented or formal 

4. Superficial vs. intensive 

feature 
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2.4 Algorithms 

Clustering can be defined as a problem and a clustering algorithm that can be solved 

using various algorithms that are different in their characteristics and cluster constitu-

tion and how efficiently we can find them. The critical challenges in clustering are 

what is a cluster, how to measure goodness of clusters, and the variance inside the 

cluster. For example, in centroid-based clustering, clusters are primary vectors, not 

necessarily a data set member. It is necessary to modify data until the results are ac-

cording to the desired properties. When clusters are fixed to k, then k means cluster-

ing is performed, which gives the formation optimization problem, finding the cluster 

center and assigning objects to the nearest center of a cluster like square distance 

from the cluster. 

In clustering, outlier detection and removal is considered a preprocessing step, so the 

idea here is to clean the data from outliers that can affect the cluster quality analysis. 

The approach to performing clustering first and label the objects as outliers that fail 

to fit into any cluster. Removing outliers improves the clustering, and performing 

clustering first facilitates outlier detection. Outlier detection consists of two steps 

known as scoring and thresholding. Computing outliers relies on reference choice in 

the dataset. K nearest-based outlier detector uses neighbor objects and tunes their size 

by setting k value. When the outlier number is significant, the most traditional detec-

tor becomes ineffective (Yang & Rahardja 2021).  
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3 Clustering Algorithms 

Clustering an unsupervised machine learning technique splits the data points into 

subsets (called clusters) based on similarity (data objects in the same cluster are simi-

lar to each other in some sense) basis. Clustering is also known as aggregation (Wu, 

O. et al 2012), whose result does not have any, predefined labels. It is one of the 

most common data analysis techniques used to get insights into the data structure and 

identify the subgroups as shown in figure 6. Data points in the same subset are simi-

lar and data points in different subgroups are different (Malinen 2014). We can say 

that data points in each cluster would be identical as possible according to the simi-

larity like Euclidean distance to find the homogeneity of the subgroup. These similar-

ities depend on the decision. 

The similarity of data points is measured based on their characteristics, where similar 

values are grouped called clusters. Every cluster has some data points that share 

common properties, so all collections of clusters compose a clustering. 

 

Figure 6. Clustering (Kassambara 2017) 
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When we try to find sample subgroups, feature-based clustering analysis is done to 

find samples based on their features. Clustering is unlike supervised learning, so con-

sidered an unsupervised learning method. In a supervised learning algorithm, the 

algorithm learns the data sets labeled and provides them with an answer key so that 

the algorithm can evaluate the accuracy of training data. At the same time, unsuper-

vised learning algorithms give unlabeled data that try to make sense by extracting the 

patterns and features independently (Saraswat 2017), as seen in the figure 6. 

 

Most of the clustering algorithm works on similarity computing basis means their 

runtime increase with square numbers of n example as O(n2) with complexity nota-

tion. The algorithm with complexity O(n2) is no practical, so the focus of this work is 

k-means has complexity O(n) means the algorithm proceeds linearly with n. To reach 

the clustering, several approaches exist, as researched by Hagan Murphy (2018) in 

his comprehensive review of clustering algorithms. 

Objective function 

The clustering goal is expressed as an objective function that depends on proximities 

of cluster centroids and points to one another. The objective function is to minimize 

the square distance of every point to its nearest centroid to improve the clustering 

performance. 

3.1 Clustering approaches 

Centroid-based clustering algorithms are efficient but very sensitive to initial condi-

tions and outliers. For centroid-based clustering, k means is the most widely used 

example (Kassambara 2017).  

Density-based clustering connects high-density areas into clusters and allows arbi-

trary-shaped distribution to extended dense connected areas. Outliers are not as-

signed in this algorithm and have difficulty for varying high density and dimensions. 

Distribution-based clustering has just like Gaussian distributions. As Gaussian dis-

tance increases, probability belongs to distribution decrease (Zhang, Z. et al 2019).  
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Hierarchical clustering creates a tree of clusters with well-suited hierarchal data like 

taxonomies, as discussed by Lukjancenko, O., Wassenaar, T. M., & Ussery, D. W. 

(2010). 

Centroid based  

 

Density-based  

 

 

Distribution-based  

  

 

Hierarchical  

 

Figure 7. Examples for different clustering approaches 
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Table 1 Algorithms Objective Functions 

Clustering 

Algorithm 

Research Clustering 

Approach 

Properties 

K-means  Irawan (2019) 

Zhang et al, 

(2018) 

Centroid based 

Clustering  
• Help to scale a large set of data 

Random 

swap 

Fränti, (2018) 

Fränti et al,  

(2008) 

Hierarchical 

clustering  
• Proved to be very efficient  

• can drive expected time complexity 

Gradual 

K-means 

algorithm 

Malinen et al 

(2014) 

 

Hierarchal 

clustering  

 

• Have better performance when mutation 

decreases to some point 

• Computes faster if variables are enor-

mous. 

Density 

Weighted 

K-means 

Goceri et al,  

(2018) 

Kerdprasop et 

al, (2005) 

Density based 

clustering 
• Improved version of the k-means algo-

rithm 

•  Improved scalability.  

3.2 K-Means Algorithm 

The clustering K-means algorithm is a method of vector quantization that aims to 

partition the n observations into k clusters. The iterative algorithm tries to partition 

the sets of data into k predefined non-overlapping subgroups (see figure 8). The data 

points belong to each group and try to make cluster data that would be possibly simi-

lar or different (Goel 2020). The data points assigned to the cluster would be the sum 

of squared distance between cluster centroid, and data points are at a minimum. If the 

data points' variations are low, then data points become more homogenous within 

that cluster. The K-means algorithm's primary use is to get meaningful data structure 

intuition through which we are dealing with and predict where different models will 

build for other subgroups. K-means algorithm identifies the no of k centroids and 

allocates every data point to its nearest cluster by keeping centroids small as possible 

(Malinen 2014). 
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Figure 8. K-means (Malinen 2018) 

It starts working by initially selecting the k number of random data points called cen-

troids. Each data point is assigned to its nearest centroid (to measure distance, some 

method is used, e.g., Euclidean distance or haversine distance). In the next step, eve-

ry centroid is moved to the average position of all the data points assigned to it (the 

middle part of that cluster). And then, these steps are kept repeating until centroids 

no longer change (then the algorithm is said to be converged) (Khanmohammadi, 

2017).  The distance-based approach is used to calculate the data points within a 

fixed neighborhood. The algorithm calculates the data points and neighborhood ap-

proach find the distance define by a k-nearest neighbor where k is the input parame-

ter (Fränti, P. & Sieranoja 2018). 

 

Figure 9. Distance-based and neighbor based (Fränti, P. & Sieranoja 2018) 
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The K-means clustering algorithm finds out characteristics and similarities of the 

grouped data and classifies them according to their properties or similarities. K-

means algorithms can label each data point itself according to attributes as shown in 

figure 10. 

The following results are obtained with the use of k-means clustering: 

• Centroids k clusters are used to label new data. 

• Labeling to train the data like each data point is assigned to every cluster. 

• There is no such method that determines K's exact value, but in this article, 

we determine the accurate estimate by using the metrics technique. One met-

ric is used to compare the results of the importance of K, which means the 

difference between data points in centroids. 

 

Figure 10. K-means clustering (Zhang 2018) 
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The purpose of the K-means algorithm is to set every data point which is closest to 

the centroid. K-means compute the centroid and iterate it until it finds the optimal 

centroid. Data points in the algorithm are assigned to cluster in such a way that the 

sum of squared distance between data points and centroids would be minimum. Clus-

ters are formed by minimizing the mean square error by looking at the fixed number 

of k of the cluster in the dataset. Mean squared error (MSE) measures the average 

squares of the errors, the average squared difference between the estimated values 

and the actual value. The aim is to find the set of k clusters such that every data point 

is assigned to the closest center, and the sum of the distances of all such assignments 

is minimized. 

 

When we give the number of sets k or select any collection of data, a group of clus-

ters is generated at a specific distance. These data points are selected randomly from 

datasets and called clusters. We can say that the distance between them depends on 

the similarity and characteristics of the data points. If two data points are close to one 

another, we can say that clusters are similar or have similar properties. When the 

iterative approach is implemented, all the data sets go to their position; a central or 

average point shows a particular cluster's location. So we can say that the selection of 

nearby data points updates the average location. When the mean position is updated, 

the position of the centroid changes as well. When the position of the centroid 

changes, then again algorithm will iterate to see which data points are near to one 

another, and iterations continue in this way (Khanmohammadi 2017).   
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The objective of the k-means algorithm is to improve the performance of clustering. 

For this purpose, we measure SSE, a Statistical method for measuring absolute dif-

ference from the actual value to the achieved weight. Euclidean distance helps to find 

the nearest centroid to compute the sum of square error. For example, with a given 

set of the cluster, two clusters produce two different K-means runs, so we prefer 

small square error, which means the prototype of clustering has a better representa-

tion of points in clustering. 

𝑺𝑺𝑬 = ∑ ∑ 𝒅𝒊𝒔𝒕(𝒄𝒊, 𝒙)𝟐

𝒙∈𝑪𝒊

𝑲

𝒊=𝟏

 (7) 

SSE value can be minimized directly, which is our objective function, by assigning a 

point to the nearest set of centroids. D is the distance between the cluster center and 

data. The formula sum of square error SSE is used to measure performance among 

obtained data by the prediction that has been done previously. SSE is a research 

reference for determining optimal clusters. Through K-means, it is better for finding 

the optimum cluster center by modifying the K-means clustering algorithm, and it is 

based on the minimum sum of a squared error value. As K increases, SSE decreases, 

and distortion will be small. K-means algorithm can be improved by considering the 

initialization better and repeating k-means several times using the different initial 

solutions. As we know that K-means is NP-hard so it does not offer to achieve the 

exact optimal value of SSE.  

3.3 Random Swap 

K-means clustering is perfect when we want to capture the data clusters' insights if 

clusters are spherical. It will try to construct a perfectly spherical shape around the 

centroid, which means when the cluster has a complex geometric shape, K-means 

does not perform its jobs well in clustering data (Saraswat 2017). The First K-means 

algorithm does not let the data points far away from each cluster's share through 

which they even belong to the same cluster. Second, the data generated from a multi-

variate normal distribution having different means and having standard deviations.  
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K-means algorithm has many weaknesses, and many variations have been introduced 

to overcome these weaknesses. One of the failings of the k-means algorithm is, it 

may get trapped in the local optimum. Apart from the k value of the k-means algo-

rithm is very sensitive to the initial conditions, so that we can run this algorithm sev-

eral times with the same value of k. Then, we can put each instance in each unique 

cluster with the use of the consequence function. To overcome this issue, the Ran-

dom Swap k-means algorithm has been introduced as shown in figure 11.  

Random Swap k-means algorithm is based on k-means, where it takes N number of 

data positioned into k clusters and uses centroids. The functions used are SSE the 

same as k-means because k-means do not go ahead further if local minima reach and 

stops, which may lead to a wrong solution. That is why to overcome this problem 

random swap algorithm is developed. Firstly, a centroid is selected randomly and 

swapped in a random location. K-mean algorithm runs after random swap with a pre-

decided number of times. These steps are repeated with a pre-decided number of 

times. If these new solutions have lower SSE at each iteration after swapping and k-

means, then the new solution is evaluated. Otherwise, some other centroids are cho-

sen randomly and swap again (Fränti 2018). 

 

Figure 11. Random swap clustering (Pham 2020) 
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The benefit of using a random swap algorithm is it is straightforward to implement 

and has a minimal extension. The primary purpose of using a random swap algorithm 

is to efficiently solve the swapping prototype's clustering sequence and fine-tuning 

their exact location using k-means. Using a randomized search strategy proved very 

simple and efficient; the process goes to have a perfect quality clustering. If it would 

no longer be iterated, they have a high probability of finding correct clustering. The 

most crucial observation in using that algorithm is that it is unnecessary to swap one 

redundant prototype. Still, it would be easy to remove any prototype in the middle of 

the neighborhood, which is enough since k-means to fine-tune the exact location lo-

cally (Hong 2020).  

Two steps are involved in the random swapping algorithm in which one of which is 

known as run-k-mean, and the second is the centroid step. Only one additional step 

known as prototype swap is included when implementing the random swap algorithm 

in the k-means algorithm. This step does not depend on the data and the functional 

objectivity, so it is trivial to implement to make it highly useful for the practice. After 

implementing a random swap, we find the correct location of the cluster every time. 

Random collection removes the existing cluster and creates new data space. Alterna-

tive swap implementation creates a new cluster by choosing an existing random clus-

ter and selecting a random data vector within this cluster. After the swap, local repe-

tition is done to update the partition, so all the process in a single iteration depends 

on implementation with following steps.  

1. Prototype swapping 

2. Old cluster removal 

3. The new cluster is created 

4. Update the affected prototype 

5. K-means iteration 

During iteration, three different swaps are done: one is known as a trial, the other is 

accepted, and the last one is successful. During the trial swap, every iteration im-

proves the objective function known as an accepted swap. If swap becomes success-

ful can be understood as successful (Fränti 2018).  
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Figure 12. Random swap clustering (Cho 2020) 

At the initial stage, the centroid is chosen randomly at a random location. The k-

means algorithm runs a pre-decided number of times. Steps are repeated according to 

the pre-decided number of times. If any new solution after swapping and k-means 

with lower SSE exist than earlier iteration, then the new solution is accepted. Other-

wise, other centroids are chosen randomly and then swapped again. Some steps are 

involved, which are: 

6. Random swapping centroids 

7. Run k-mean 
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The whole pseudo-code for the implementation of random swap algorithm is: 

Algorithm 2 

 

 

If we explain the K-means algorithm, then the distance among two centroids is the 

inter-cluster distance, and that inter-cluster distance is measured in many ways, like 

the maximum distance of two vectors in the k cluster. Inter-clusters are maximized to 

achieve cluster in inter-cluster, and then cluster distance could be minimized. The 

correlation exists between clusters and SSE when SSE decreases the number of clus-

ters increase. The objective of this function is to help the quality cluster understand-

ing in k-means iterations, so the value of the objective function help in understanding 

the compactness of the cluster. There are many objective functions like graph cut 

objective, ratio cut, WWS, and Dunn index to minimize and maximize the objective 

function. The objective function is selected not with a trivial job, but it depends on 

the nature of the data set and clustering algorithm. 

All the process of random swap is just the variation in K-means. Every time two iter-

ations run and check any random centroid point.  Mean squared value is found out by 

swapping the arbitrary values and this process is done when the mean square value of 

that data point is less than the first data point value. If the means square error MSE 

value becomes low, then the swapping process is done; otherwise, there is no change. 

At each iteration of the swap, the value of MSE becomes better. If the MSE value 

becomes low gradually, we can say that swap becomes successful, and the algorithm 

continues (Bouzos 2018). 
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3.4 Gradual K-Means 

Gradual K-means algorithm was also introduced to overcome the problem of solving 

the global allocation of clusters. Compared to traditional approaches, where different 

methods are proposed to fit the clustering model to data to solve correct global allo-

cation, data is fitted to an optimal clustering structure as represented in figure 13. 

First, an artificial dataset of identical size and dimensions as input is generated so 

that the data vectors are divided into k perfectly separated clusters without any varia-

tion. Bijective mapping of the input data to the artificial data is then performed (M.I. 

Malinen 2014). 

 

Figure 13. Gradual k-means clustering (Malinen 2014) 

k-means is a very traditional approach to fit a model for the data given, like the pro-

totype, and overcome the optimum local problem. In this algorithm, an opposite ap-

proach is taken to fit the data into a given cluster, which proved optimal for similar 

pathological data with equal size and dimensions. The algorithm is as follows: 
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Algorithm 3 

 

The inverse transformation of data is used to solve the K-means associated problems. 

The gradual K-means algorithm is a little bit different as compared to the other two 

algorithms. In these algorithms, we try to set the centroids according to the data sets 

to control the centroids at a proper location where similarity can be found. In the 

gradual K-means algorithm, we perform the reverse of it. Here we are not controlling 

the centroids within data points, instead we are trying to fit the centroids into the data 

points. Firstly, in the implementation process, we take a central point as an initial 

point where we can initialize our centroids. Suppose we bring all the data set at a 

time and then transform it into multidimensional plan data. After transferring all da-

ta, we combine all the data at the location of centroids. We can say that we locate the 

data here in a compressed form. After following step by step guide, we send data 

back to its original position (Wang 2020). 

3.5 Density Weighted K-Means 

The Weighted K-means algorithm is also known as W-K-Means that calculates the 

weights automatically. The weights of variables produced using the algorithm meas-

ure the variable importance in clustering as shown in figure 14 (Guérin, J. et al 

2017). 
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Figure 14. Weighted k-means  

This animation uses the weighted algorithm in data mining selection applications 

when we have large and complex data, so selecting higher weighted variables and 

removing the lower weighted variables produced good clustering results. For exam-

ple, we have:  

Wf = {w1, w2, w3,…, wm}   these are the weights of m number of variables.  

The following algorithm is used for weighted K-means clustering: 
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We have a set of clusters with data points X, but we want it to stipulate that some 

points are more critical than others, so we encounter this problem. We use a 

weighted algorithm to decide where to put data points that have particular im-

portance. We chose some convenient centers for each data point for how much that 

data point has to travel from one point to the cluster center represented in figure 15. 

The natural way to record the importance of different data points is to assign a 

weight to each one. The problem becomes a simple case where each point was given 

the same weight. Additionally, the K-means algorithm handles when some data 

points are so important that they pull the cluster close to the gravitational attraction 

(Liu, H. & Wu 2017). 

 

Figure 15. Centroid location 

For weighted clusters, we define weighted cluster variance in the form of the follow-

ing equation. 

𝒗𝒂𝒓(𝒙, 𝒘, 𝒄) = ∑ 𝒗𝒂𝒓(𝒙, 𝒘, 𝒄𝒋)

𝒌

𝒋=𝟏

=  ∑
∑ 𝒘𝒊||𝒙𝒊 − 𝒄𝒋||𝟐

𝒙𝒊∈𝒄𝒋

∑ 𝒘𝒊𝒙𝒊∈𝒄𝒋

𝒌

𝒋=𝟏

 (8) 

Cj is the center of the cluster. At each step, weighted K-means that the algorithm 

reduces the cluster variance weight, and best clustering minimizes the quantity. 

While using weighted K-means, some changes occur, which are of two types (Sane 

2020) 

• Center update: mass can be used instead of centroid 

• Variance: computation of weighted variance sum 
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Figure 16. Center and cluster 

Weighting allows it to be more sophisticated grouping by considering the importance 

of things to be more valuable and have more information. 

The objective is to obtain a Sum of Square Error SSE, which refers to the derivation 

among data points from its centroids. Therefore, SSE value is obtained by taking the 

sum of all square errors at all data points. Declining the value of SSE cannot be long-

er significant. To improve the algorithm's performance, it would be better to replicate 

the whole algorithm many times and select a result with the best replication that 

gives the smallest SSE value. The objective function is defined as follows: 

𝐚𝐫𝐠 𝐦𝐢𝐧
𝑺

∑ ( ∑ ||𝒙𝒋 −  𝝁𝒊||
𝟐

𝒙𝒋∈𝑺𝒊

)

𝒌

𝒊=𝟏

 (9) 

Which tries to minimize the sum of all squared distances among clusters for all 

available clusters. 
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4 Algorithm visualization and animation 

Visualization can be defined as any technique to create images, diagrams, or any 

kind of animation to convey a message but as we are focusing on visualization of 

algorithms, for us the term visualization will refer to animations as we are going to 

show the work process of algorithms and showing that in a series of images (anima-

tion) would be efficient.  

For Visualization of algorithms, we have developed a web-based application called 

clustering animator and the focus would be to discuss and document that why specif-

ic methods and techniques have used, what were other possibilities and which meth-

od is applicable on a specific algorithm, and where it would not be a good thing to do 

so. And those algorithms are specifically used for clustering, so all of the algorithms 

share many common characteristics, and components used for visualizations of those 

algorithms are also common among all algorithms. Some of those common compo-

nents are: 

• Centroids and Clusters 

• Convex Hull 

• Voronoi Diagram 

In clustering algorithms tend to split the given dataset into different or same groups 

or categories based on some common characteristics, those groups are called clusters. 

And we call the average or mean position of the cluster a centroid. In simple words, a 

centroid is the center position of a cluster as shown in the figure 15. 

In computational geometry, many algorithms are used, which are known for compu-

ting the convex Hull with the finite number of data points and other geometric ob-

jects. The reason behind implementing a convex hull means that constructing an un-

ambiguous and efficient representation of the convex shape that is shown in the fig-

ure 17 as outlines. 
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Figure 17. Convex hull 

 

Algorithm 

Convex Hull produces convex shape spherical clusters, which are convex shaped, so 

the output representation considered for the convex Hull of data points includes the 

list of inequalities that describe the hull facets, an undirected graph with facets and 

adjacencies, and full-face lattice hull. For two convex Hull, two or three dimensions 

corresponding to complexities and algorithm is usually estimated in n terms of sever-

al inputs and h number of data points in the convex Hull which are significantly 

smaller than n. for getting higher dimensions faces dimension come into an analysis 

where Graham scan computes the n points of the convex hull in-plane with time 

complexity of O(n log n).  
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As its name represent convex Hull having various objects with a broad range of ap-

plication in computer science. Convex Hull means a non-ambiguous and efficient 

representation of convex shape constructed. The complexity found in the evaluated 

algorithm is estimated in terms of number n, input point, h, and points in the convex 

hull. With the time of development and varying the time complexity, various algo-

rithms are stated: input points and hull point h. Gift wrapping is one of them, which 

is a most straightforward algorithm and created independently by Chand. The com-

plexity of the Gift-Wrapping algorithm is O(n2). Complexity can be measured in 

O(nh), where h is hull size, and n is input size. Graham Scan is another convex hull 

algorithm that is more sophisticated but more efficient. Its points are sorted by their 

coordinates or by the angle at a fixed-sized vector. The time complexity for Graham's 

algorithm is O (n log n). By analyzing the complexity, we perform sorting in the 

form of O (n log n), and the time is: 

𝐭𝐢𝐦𝐞 = ∑(𝑫𝒊 + 𝟏)

𝒏

𝒊=𝟏

= 𝒏 + ∑ 𝑫𝒊

𝒏

𝒊=𝟏

 (10) 

Di is the number of points on processing Pi, and at each point is pushed on stack only 

once. When one point is popped, it cannot be popped again.  

Quickhull Algorithm 

Quickhull is another convex hull algorithm that has time complexity O(n log n). An-

other algorithm is Monotone Chain which can be seen as a Graham scan sorting the 

points lexicographically by its coordinates. Kirkpatrick Seidel algorithm is the more 

sensitive output generated algorithm that modifies the divide and conquers algorithm 

using the marriage technique before the conquest. Chan algorithm is a simpler opti-

mal output generator algorithm that combines gift wrapping with O(n log n) execu-

tion on small subsets of inputs (Zhang 2020). In this process, the Graham scan algo-

rithm is used to find the convex hull algorithm in O(n log n) time. Graham's scan 

algorithm is a very efficient algorithm and helpful in finding the convex Hull with a 

finite set of data points with O's time complexity (n log n). Through this algorithm, 

all the convex hull vertices are ordered along the boundary (Alshamrani 2020). 
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The bottom-most point is to find out after comparing coordinates at all points having 

two issues with the same y value, then point it with a small coordinate name as x 

considered. Consider the remaining points n-1 and sorting them clockwise around 

their points. The nearest point is first if two points of polar angle are the same. After 

sorting, if two points have the same angle, then the same point angle is removed ex-

cept the farthest point. If the value of m is less, then three convex hulls are not possi-

ble. An empty stack is created at point 0, and 1 and 2 to S. processing starts at the 

reaming points one by one. 

The Voronoi diagram is basically a partitioning method (see in figure 18) that sepa-

rates the data points at a point distance but does not position it. Three basic compo-

nents are considered important for Voronoi diagrams are vertices, edges, and genera-

tors.  

 

Figure 18. Basic Voronoi diagram (Kang 2008) 

If we define the Voronoi diagram in two dimensional way then we can formally 

define it in the ordinary form. The first location of point pi is donated and its 

corresponding vector is x. Let 

𝑃 = {𝑝1, 𝑝2, . . , 𝑝𝑛} ∈ ℝ2 where 2 ≤ 𝑛 < ∞ and 𝑝𝑖 ≠ 𝑝𝑗 , 𝑖 ≠ 𝑗 and ∀ 𝑖, 𝑗 = 1,2, … , 𝑛  

the set of generated points and generators so we can call the particular regions given 

by  

𝑉(𝑝𝑖) = {�⃗�| ||�⃗� − 𝑥𝑖⃗⃗⃗⃗ || ≤ ||�⃗� − 𝑥𝑗⃗⃗⃗⃗ || ∀𝑗∋ 𝑖 ≠ 𝑗 }  (11) 
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The Voronoi region pi at ||.|| is Euclidean distance. V(pi) is referred as Vi. The 

Voronoi regions are connected and become convex. The evaluated set is represented 

as  

𝑉 = {𝑉(𝑝1), 𝑉(𝑝2), … , 𝑉(𝑝𝑛)}  Voronoi diagram of P. For V different notations is 

⋃ 𝑉𝑛
𝑖=1 𝑖

. 

As long as we develop the distance function of our problem, we can make a Voronoi 

diagram; otherwise, we can make a Voronoi diagram without visuals. We would 

stick and would not get precious medium reads (Sane 2020).  

• Voronoi diagrams are easy to understand and apply but cannot deal with real-

time distances.  

• Apply on the overall complexity of the algorithm 

• Recourse intensive 

• Naïve implementation is complex 

• Fortune algorithm is complex  

Weighted Voronoi Diagram 

If generated points along their location have equal weight and value, assigning the 

distinct weight to the generated point will be more beneficial than uniformly points 

in scenarios. Weighted generator points are more applicable. From the basic Voronoi 

diagram definition, the region Vi at intersection dominates Pi over every P point 

generator. The weighted distance between two points like x and y is: 

𝐷𝑜𝑚𝑤(𝑝𝑖, 𝑝𝑗) = {𝑝|𝑑𝑤(𝑝, 𝑝𝑖)  ≤ 𝑑𝑤(𝑝, 𝑝𝑗)}  (12) 

𝑽𝑤(𝑝𝑖), 𝒐𝒓 𝑽𝑤(𝒊) is weighted voronoi region and 𝑉𝑤 = {𝑉𝑤(𝑝1), 𝑉𝑤(𝑝2), … , 𝑉𝑤(𝑝𝑛)} 

is weighted voronoi diagram.  

There are many ways for the Voronoi diagram construction (Kang 2008). 

• Plane Sweep Method 

• Tree Expansion Method  

In the Plan Sweep method, we draw Voronoi vertices, Voronoi edges, and generated 

points at the non-cartesian plane. A one-to-one correspondence exists between the 

cartesian plane and the non-cartesian plane at initial assumptions.  
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Figure 18. Voronoi diagram (Roskos-Ewoldsen, 2020) 

 

The expansion and deletion method is a good system for constructing the Voronoi 

diagram and a programmable way to do it. Just like the Plan Sweep method, some 

assumptions are also made in this method. All polygons and vertices are labeled un-

decided and non-incidentally.  

 

 

a 

 

b 

 

c 

 

Figure 19. Implementation of tree expansion and deletion algorithm (Kang 2008) 
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4.1 Clustering Animator 

We created a clustering visualization tool for the web called clustering animator that 

shows us how various clustering algorithms work and lets us interact with it to un-

derstand and learn about the processing of those algorithms in a better way and to 

some extent also gives us the idea of where some algorithms perform better and 

where they lack. 

To develop the clustering animator, we used HTML5 canvas with JavaScript. The 

following procedure is followed for the functionality of the clustering visualizer (or 

clustering animator).  

The first step in visualization is to show the dataset on the canvas so, we start by 

loading the dataset. Dataset is loaded and normalized (between 0-1 values) to make 

computations faster (Scaling techniques have been mentioned above). Then to show 

the data points on the canvas, values are rescaled to the size of the canvas and then 

plotted on the canvas. Rescaling data set according to the canvas size is required oth-

erwise our plot will look like one single pixel. Scaling dataset does not only provide 

the ability to perform visualizations faster, but it also provides us the ability to adapt 

to the screen size as we rescale data when we plot it on the canvas. 

After plotting the dataset on the canvas, we start our animation for the algorithm. 

Canvas is updated after each iteration of the algorithm, but to make the animation a 

little slower (so that the user can actually see points changing location) for the human 

eye to catch up we run each iteration after taking a slight moment break, for example, 

the canvas is updated after every half of a second.  

Here is the basic overview of our animator: 
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Figure 20. Clustering animator 

In the figure 20, we have a menu on the left side for controls like selecting algorithm, 

dataset, the number of clusters (k), SSE (sum of squared error), CI (centroid index), 

and state information of the animator (e.g., stopped processing algorithm, processing 

or restarting, etc.) and on the right side, we have our canvas where we can see our 

animation showing the process going on in the algorithm. 

Animator Design 

As visualization is the crucial part of an animator so we followed some UI-friendly 

concepts to make it easy to interact with. The clustering animator can only show k-

means, random swap, weighted k-means, and gradual k-means algorithm at the time 

of writing this thesis. So, the visualization concepts that we will discuss will mostly 

be applicable to these algorithms for example, why we chose a certain way to display 

that specific thing and what were the possibilities to do it, and how it would have 

affected the user. 

Visualization Concepts Followed 

Let us discuss visualization methods, in our canvas we have: 

1. Datapoints (in small black dots) 

2. Centroids (as green circles) 

3. Centroid Index (as plus (+) or minus (-) signs) 

4. Clusters (Convex hull - a line polygon covering a cluster) 
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Figure 21. Animator Design 

Datapoints 

We used black dots as in figure 22 to represent our data points in the canvas, but we 

also have some other possibilities in terms of visualization. For example, black 

transparent dots can help indicate density in a region with many overlapping points. 

With transparency, a dense area will be darker than a region where data points are 

not overlapping each other so it will provide a better overview of data points. 

 

Figure 22. Datapoints 
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Centroids 

Centroids are displayed as a green circle as shown in figure 23 occupying a slightly 

larger area than our data points. 

 

Figure 23. Centroids 

On the web they look good but what if we print it on paper? As it is a light color so if 

we print it in gray ink on paper the centroids will have less intensity than the data 

points. A better way to represent that could be to have gray-colored data points and 

black-colored centroids so they stay more intense even if we print these on paper in 

black and white. 

Centroid Index 

Centroid index is the similarity measure between two solutions or in simple words, 

Centroid index tells us where we have more centroids (clusters) than needed as 

shown in figure 24 and where we need more clusters by comparing our solution with 

the ground truth values of that specific dataset. 

 

Figure 244. Centroid index 
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In the figure above, plus (+) signs in blue show that we could have more clusters in 

this region, and the minus (-) sign in red shows that we have excessive clusters in this 

region. What are the other possibilities to visualize these values in a better way?  

Maybe show the signs the other way around to convey the message, plus showing 

that we have more centroids here and minus showing here are fewer centroids than 

needed for an optimal solution. 

The representation of clusters has been done using the convex hull. The convex hull 

is the smallest set of convex points that contains it as we discussed in detail earlier. 

In terms of visualization, there are many possibilities that could be applied for vari-

ous reasons to represent different clusters such as: 

1. Different colors per cluster 

2. Different gray intensity per cluster 

3. Convex hull 

Different colors per cluster 

The first problem is that different colors for each cluster could be used but for a huge 

set of data, it might not be a good choice because it creates difficulty to differentiate 

similar colors. Or our users might have the problem of color blindness which is diffi-

cult for them to differentiate colors. Another problem might be to differentiate clus-

ters on a printed page in black and white as two totally different shades might have 

almost the same grayscale intensity and they might look like the same color in gray-

scale.  

 

Figure 25. Different color for each cluster 
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Different gray intensity per cluster 

Using different gray intensity per cluster is another choice to represent clusters and it 

would look good on both screen and paper but if we have a very big dataset with 

many clusters then it can get difficult to differentiate between different clusters as 

intensity difference will not be much. 

 

Figure 26. Different color intensity for each cluster 

In the figure 26 every cluster has a significant change in intensity of color but for us 

(human eyes) there is not any difference in most of the clusters above. We can dif-

ferentiate between them based on the polygon line wrapping each cluster. 

Convex hull 

The convex hull is a nice option to wrap up clusters for differentiating as shown in 

figure 27 and it would look nice where clustering methods produce spherically 

shaped clusters and do not overlap each other like in K-means.  
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Figure 27. Convex hull 
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5 Analyzing Clustering Performance 

The performance of the algorithm is the most important part of any algorithm that it 

is being designed for. Almost every algorithm has some limitations and issues so 

here we are using a clustering animator to monitor the clustering as it progresses and 

learn more about when they perform better and where they lack in performance. The 

objective is to interact with the algorithms through visualization and try to analyze 

their performance in different situations. 

5.1 K-means 

K-means algorithm has many advantages like: 

• simple to understand and fast to cluster, 

• scales to large datasets, 

• always guarantees convergence, 

• easily adapts to new examples. 

 

 

Figure 28. k-means process 

Figure 28 has 4 frames captured from the animator while processing the k-means 

algorithm. As we see there is a major difference in frames (a) and (b). So, we can 

assume that how fast its clustering can be, so it can easily scale to large datasets. And 
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another advantage is it always yields a result (but it may be a disadvantage as well 

because sometimes results can be deceiving). 

At the same time, it also has some disadvantages like: 

• need to select k (number of clusters), 

• sensitive to outliers, 

• sensitive to initialization, 

• produces spherical solutions. 

The k in k-means refers to the number of clusters and this value has to be given as 

input. Selecting k is a hot topic in research and there have been many methods intro-

duced to overcome this problem like the elbow or knee method. The standard solu-

tion is to run clustering for several values of k, but using a cost function that allows 

comparing clustering results with different values of k (see figure 29). 

 

Figure 29. Number of clusters 

K-means is also sensitive to outliers that means that if your dataset has one point far 

away from the rest of the data, then k-means will always try to include in a separate 

cluster or make it a part of another cluster (in the second case the centroid position of 

the cluster would change drastically just because of that anomaly). 
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Figure 30. Sensitivity to outliers 

Its sensitivity to initial seeds for centroids also plays a vital role in the clustering re-

sults. For example, if the initial positions for centroids were congested in one area 

but not in some parts then clustering results would not be good enough as they will 

get stuck in local optima. On the other hand, if initial positions for centroids were 

well diverse throughout the whole dataset, then it would produce good clustering 

results. A research paper “How much k-means can be improved by using better ini-

tialization and repeats?” by Fränti, P. and Sieranoja, S. (2019) provides and exten-

sive study of different initialization methods and the effects. 

 

Figure 31. Sensitivity to centroid initialization 
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K-means produces spherical solutions means that in a 2D plane it would produce 

clusters that would more look like circles rather than elliptic shapes. The reason is 

that we are using the Euclidean distance from the centroid. This is also why outliers 

are such a big issue for k-means. See example in figure 32. 

 

Figure 32. Spherical clusters 

5.2 Random Swap 

K-means algorithm is suitable for fine-tuning clusters boundaries, but it cannot solve 

clusters globally (Fränti 2018) whereas, random swap clustering is more efficient as 

compared to k-means algorithm as it aims at solving clustering by swapping cen-

troids and by fine-tuning their exact location using k-means. Some of its advantages 

are: 

• Easy to implement, 

• More efficient as compared to K-means, 

• If iterated longer it finds correct clustering, 

• Almost never gets stuck in the local minimum. 

The major drawbacks of random swap algorithm are: 

• Their computational complexity, 

• Lack of theoretical results of its properties, 

• No precise rule like how the algorithm should be iterated, 

• The parameter needs to be selected experimentally. 
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Figure 33. Random Swap iterative steps 

The figure 33 shows few iterations of random swap clustering. And if we compare 

the k-means algorithm and random swap algorithm, it is evaluated that the random 

swap algorithm is straightforward and is a small extension when k-means can be im-

plemented. The K-means algorithm has two steps, while the random swap algorithm 

has one additional step and that is prototype swap. 

It is seen from the above diagram that in most cases, this additional step is independ-

ent of data and the objective function so trivial to implement, which makes it worth-

while for practical implementations of applications. And it also gives us the ad-

vantage over k-means as it overcomes the sensitivity to initialization problem that we 

had in k-means. 

5.3 Gradual K-means 

Gradual K-means is an alternative approach for clustering that fits the data into an 

optimal clustering model instead of fitting the cluster model to the dataset. The grad-

ual K-means algorithm gives the following advantages in this study which are: 

• Efficient evaluation of objective function avoids illegal string elimination, 

• Convergence of global optimum, 

• Calculate objective value like mean square error incrementally. 
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With all these advantages, there are observed some disadvantages with gradual k-

means algorithm implementation, which are: 

• Predicting the value of k is very difficult as in other clustering algorithms, 

• There are some pathological cases where it fails, 

• If initial partitions are different, then the final clusters will be different. 

 

Figure 34. Example showing a complete cycle of gradual k-means. 

It can be seen in the figure 34 that gradual k-means overcomes the locality problem 

of k-means really well and converges globally. But it does not provide optimal re-

sults every time in the last step of the diagram it has been pointed out that it failed to 

correctly allocate one centroid. 

5.4 Weighted k-means 

Weighted k-means is an extension to the k-means algorithm by adding a new step to 

assigning weights to in the iterative process that results in improved clustering scala-

bility. Advantages that the weighted k-means algorithm provide are the following: 

• It improves clustering scalability, 
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• Works well with nested and non-nested datasets, 

• Initial weights for centroids are equal. 

With all the advantages, there are some disadvantages observed while running the 

algorithm: 

• Complexity increases when calculating the weights 

 

Figure 35. Example showing results of weighted k-means clustering on different datasets. 

 

One of the potential drawbacks might be that it allocates equal weights to all the cen-

troids at the start, so the first iteration of the algorithm works like normal k-means. 

The weighted k-means algorithm is also known as W-K-Means that calculates the 

weights automatically and then organizes the cluster according to its weights (Bhatia 

2010). 
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6 Conclusion 

In this study, a detailed explanation of the clustering algorithms, explanation of its 

components that helps to visualize clusters in a more better, a discussion on how 

some components can be visualized for better representation, and what are possible 

ways to visualize some components in different situations, and the performance of 

clustering algorithms is analyzed through visualization. The clustering algorithms 

included in this study are k-means, random swap, weighted k-means and gradual k-

means algorithm. A web-based animator was developed to learn about these algo-

rithms. Each algorithm is implemented individually so that particularities of each 

algorithm could be emphasized. Every clustering algorithm has its advantages as 

well as some disadvantages.  

Visualization of algorithms can help us learn more about their working. This learning 

process becomes even more efficient by interacting with the algorithms as we are 

able to try some extreme cases that may not happen itself during a normal animation 

cycle. 
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