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Abstract: In the past few years, there has been a significant advancement in the
development of location-based positioning devices, and an increasing number of
moving objects and their trajectories are being captured. Thus, it follows that the
subject of moving object trajectory clustering is certain to be of prime importance
to researchers working on data mining on moving objects. To give a context, we
look at how development and the current trend in moving object clustering are in
and then review common clustering techniques presented in the past few years.
In this thesis, we start by summarizing the basic characteristics of a trajectory.
Second, we examine the metrics for determining the similarity/dissimilarity of two
trajectories. Thirdly, we investigate the methods and implementation processes
of conventional moving object clustering methods. Finally, the validation criteria
used to assess the efficacy and efficiency of clustering algorithms are explored.
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1 Introduction

The increasing usage of integrated mobile devices integrate with GPS, WI-FI, and
data storage hardware allow us to gather a massive quantity of data. Due to the
intricacy of the collected data, extract useful information is a challenging prob-
lem to solve. Knowing principal routes that people or vehicles follow during the
day can provide valuable information for the analysis of mobility. For instance,
the presence of important routes not adequately covered by the public transport
service could be highlighted by a set of trajectories, which provide information on
how to improve it. Trajectory clustering is an appropriate way of analyzing tra-
jectory data and has been applied to road network extraction (Mariescu-Istodor
& Fränti, 2018; Ahmed et al., 2015) and (Biagioni & Eriksson, 2012), detecting
taxi fraud (Liu et al., 2013), data compression (M. Chen et al., 2012). Addi-
tionally, trajectory clustering is used to gather temporal-spatial information in
the trajectory data and is widely used in many application areas, such as motion
prediction (Z. Chen et al., 2010) and traffic monitoring (Atev et al., 2006)

Trajectory data is stored in a variety of forms based on the kind of device, the
velocity of the object, and even the function. For instance, a GPS device gener-
ates a trajectory, which is a locations sequence in a geographical space identified
by a combination of coordinates and a time stamp. Additional object-related
attributes such as direction, velocity, or geographic information may be added
in certain cases (Ying et al., 2011, 2010). For instance, Figure 1 shows trajec-
tories with different length. Multidimensional data is used in different areas, for
example, to better understand animal migratory patterns by examining animal
trajectories, to help forecast the weather by analyzing hurricane data, to help
athletes achieve higher levels of performance, and much more.

Measurement of how similar two trajectories are is a typical approach in a wide
range of applications. As a result, the measurement of distances is necessary for
many tasks and applications of trajectory analysis since it enables us to judge
the similarity of two trajectories. The spacing between the trajectories must be
properly determined. Because trajectories are high-dimensional data (a sequence
of positions on a map/a time-series of positions on a time-line) that has both
spatial and temporal qualities, they must be taken into consideration when doing
calculations like distance measurements. Therefore, there are several distance
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Figure 1: Trajectories with varying lengths.

metrics used for trajectory data. E.g., the term ‘measure the sequence-only dis-
tance between trajectories‘ may include concepts such as Euclidean distance and
Dynamic Time Wrapping Distance (DTW). Various approaches, including clus-
tering which is illustrated in Figure 2 and classification, are often employed to
identify valuable patterns from large volumes of trajectory data. Clustering is an
unsupervised learning method that organizes data based on their distance (Han
et al., 2011; R. Xu & Wunsch, 2005). Trajectories that occur in each cluster
tend to be rather similar and distinct from those in other clusters (Berkhin, 2006;
Besse et al., 2015; Yuan et al., 2017).

There are two primary methodologies used for data clustering like trajectories.
Specify trajectory clustering algorithms first, then use generic clustering methods
to compare trajectory distance/dissimilarity. Density-based clustering (Kriegel et
al., 2011) is one of the most ideal clustering methods for trajectories since it can
extract clusters of any form and is also tolerant to outliers (Ester et al., 1996).
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), is one
of the most extensively used approaches in this group, which is commonly used
(L. Zhao & Shi, 2019; Cheng et al., 2018; J. Chen et al., 2011; Lee et al., 2007).
Fundamental to the clustering challenge is measuring similarity. To measure sim-

2



Figure 2: Clustering Methods.

ilarity (inverse distance), it should be done before grouping. The definition of
distance in spatial trajectories is significantly complicated. Trajectories are non-
linear sequences of points with various lengths in multiple dimensions. Thus, to
compare two trajectories, a comprehensive approach is required to fully determine
the distance between them. Different distance metrics are presented according
to the analysis’s goal and the data type. Due to the domain-specific nature of
the concept of similarity, distinct distance metrics are defined to address vari-
ous aspects of similarity, are temporal, spatio-temporal, and spatial. Euclidean,
Fréchet, Hausdorff, DTW, and LCSS are the fundamental metrics in measuring
similarity from which many additional metrics are derived (Abbaspour et al.,
2017; Aghabozorgi et al., 2015; Wang et al., 2013).

2 Model for trajectory clustering

A trajectory is a series of time-stamped data that captures the path of moving
things, such as humans, cars, animals, and natural features. For example, Global
Position System (GPS) tracking devices generating a trajectory as Trajectory =

(T1, T2, · · · , Tn), which is a consecutive spatial space sequence of points, and Ti

indicates a combination of coordinates and timestamps such as Ti = (xi, yi, ti).

Clustering methods are designed to aggregate similar trajectories into distinct
groups. This is a challenging task due to the trajectory complication, as objects
within a particular region can take numerous paths. Clustering trajectories may
be done in a variety of ways. We will focus on trajectory clustering based on
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distance but have also investigated alternative techniques. In most situations,
trajectory data is represented as a multidimensional (2D or 3D) time series as
in Figure 3. Gaffney & Smyth (1999); Vasquez & Fraichard (2004); M. Chen
et al. (2012) used GPS trajectory clustering for improving data compression.
The continuous definition of trajectory also applies by Gariel et al. (2011) to re-
sample trajectories to achieve equal-length time series. These new trajectories
are then analyzed for the main components to obtain and finally cluster the
primary components. The purpose is to group trajectories that follow similar
paths. As clustering is focused on trajectories, and it necessitates a new distance
measurement to define the similarity between them.

There has been considerable effort put into developing different trajectory dis-
tances. Numerous approaches have been employed to cluster trajectories from
data collection. Clustering techniques based on Euclidean distance provide erro-
neous results since trajectories include a variable number of points. As a result,
numerous warping distance-based techniques have been established. Typical ex-
amples are distance measurements based on Dynamic Time Warping (DTW), and
Longest Common Subsequence (LCSS), all of which reorder trajectories’ time in-
dex to obtain a perfect match. Another possibility is to concentrate on the shape
of the trajectories. Hausdorff and Fréchet, for example, maybe adapted to tra-
jectories. In the next section, we will study and compare several distances on the
trajectory.

Figure 3: A GPS trajectory with 7076 points (Qian & Lu, 2017).
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3 Trajectory Distance

A trajectory distance generalization that considered moving objects and measures
on average how close two objects were during some time period. d(A,B) repre-
sents the distance of two trajectories AandB. The greater the value, the less
similarity between the two trajectories. Apart from the concept of mathematical
distance, several measurements may be utilized to characterize this dissimilarity.
Distances may be categorized into two types: those based on the geometry of the
trajectory (Shape-based distances) and those that consider temporal dimension
(Warping based distance).

3.1 Warping based distance

In the 1960s, Euclidean distance was suggested to calculate distance between time
series, and now, during the last several decades, has been recognized to be one of
the most commonly used distance functions (Keogh & Pazzani, 2000; Faloutsos
et al., 1994; Pfeifer & Deutrch, 1980; Priestley, 1980).

Figure 4: Euclidean distance.

The Euclidean distance dEuclidean(A,B) as seen in Figure 4 between trajectories
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AandB with the same size n is defined in Equation 1:

dEuclidean(A,B) =

∑︁n
i=1 d(ai, bi)

n
(1)

Where ai and bi is the ith sample point of two trajectories A and B. The time
complexity of Euclidean distance is O(n).

The Euclidean distance measure is simple to understand; however, it is only
accurate if the compared trajectories are of equal size, which is not likely to be
the case in practical applications. The primary objective of warping distance is to
resolve this issue. The dynamic time warping algorithm (DTW) (Kruskal, 1983)
and the longest common subsequence algorithm (LCSS) (Kearney & Hansen,
1990) were introduced to increase the accuracy. While both distances are specified
identically, they use distinct cost functions.

3.1.1 DTW

Dynamic time warping (DTW) is a similarity method for comparing two se-
quences. In the beginning, Myers et al. (1980) developed DTW to calculate
time-series distance. In the 1980s, DTW was introduced to measure trajectory
distance (Kruskal, 1983) and has become one of the most extensive methods for
measuring trajectory distance. DTW explores all point alignments between two
trajectories in search of the distance which is minimum (see Figure 5).

Specifically, Equation 2 defined the DTW distance dDTW (A,B) between two tra-
jectories A and B:

dDTW (A,B) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if n = 0 and m = 0

∞, if n = 0 or m = 0

d(Head(A), Head(B)) +min{dDTW (A,Rest(B)),

dDTW (Rest(A), B), dDTW (Rest(A), Rest(B)} otherwise

(2)

With Head(A) denotes a1, Rest(A) denotes {a2, . . . , an} in case trajectory A

is consists of GPS points {a1, . . . , an}. n, m are trajectories A and B lengths.
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Figure 5: DTW distance.

DTW’s time complexity is O(mn).

3.1.2 LCSS

Longest common subsequence (LCSS) is a well-known method for measuring
string similarity that searches for the longest common sub-sequence between two
strings. For example, for two sequences ’ABCD’ and ’ACBAD’, their longest
sub-sequences are ’ABD’ and ’ACD’. Because a trajectory may be considered
as a series of sample points, LCSS was used to compare the similarity of tra-
jectories. However, it is difficult to identify two sample points with identical
geographical information. When comparing trajectories AandB, LCSS consid-
ers ai (ai ∈ A) and bj (bj ∈ B) to be the same if their distance is less than a
threshold ϵ. Therefore, we will ignore some sample points of AandB which are
too far apart to contribute (see Figure 6).

In contrast to Euclidean distance, LCSS is robust to noise (Su et al., 2020). LCSS
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Figure 6: LCSS.

similarity is defined as:

sLCSS(A,B) =

⎧⎪⎪⎨⎪⎪⎩
0, if n = 0 or m = 0

1 + LCSS(Rest(A),Rest(B)), if d(Head(A),Head(B)) ≤ ε

max(LCSS(Rest(A), B),LCSS(A,Rest(B))), otherwise
(3)

LCSS is similarity, so we will calculate the distance:

dLCSS(A,B) = 1− sLCSS(A,B) (4)

3.1.3 Pros and Cons

DTW and LCSS enable to comparison of different length trajectories.

However, there are two major drawbacks to using warping-based distance:

• In general, warping methods compare sequences one-to-one so choosing a
series as a reference for other sequences is necessary. Two sequences must be
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well-balanced in order to detect changes in time series such as when there
was acceleration and deceleration. Therefore, the sequence to be referenced
must be carefully selected.

• Due to the inherent noise in traffic data, traditional warping-based methods
cannot obtain accurate results when examining time series.

3.2 Shape based distance

Rather than matching the trajectory sample points, these distances compare the
shape of trajectories. This indicates that trajectories are clustered regardless of
their location. The most well-known distances are the Hausdorff and Fréchet.

3.2.1 Fréchet distance

The Fréchet distance (Eiter & Mannila, 1994) is a method that measure similarity
between curves considers both the location and sequence of points. The Fréchet
distance between the two curves as shown in Figure 7 is the shortest length of
leash necessary for both paths to be traversed.

Figure 7: Fréchet distance
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The Fréchet distance algorithm is shown below:

dFrechet(A,B) = infmaxtin[t.start,t.end]{d(fa(t), fb(t))} (5)

fa and fb denote as two continuous functions of two trajectories AandB over
time t, t.start and t.end denote starting time and end time of time period t

respectively. The Fréchet distance between AandB is defined as the infimum over
all reparameterizations fa(t) and fb(t). Fréchet distance is affected by variations
in sampling rate and is susceptible to noise since it is the longest distance between
two trajectories at the same time.

Fréchet distance’s time complexity is O(mn).

3.2.2 Hausdorff distance

The Hausdorff distance is a metric distance which calculates the distance between
two subsets of a metric space. It is the maximum distances from a point in one
set to the closest point in the other set (see Figure 8).

The Hausdorff distance algorithm is shown as:

dHausdorff (A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} (6)

The Hausdorff distance’s time complexity is O(n2).
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Figure 8: Hausdorff distance.

3.2.3 Pros and Cons

Both the Fréchet and Hausdorff distances are metrics, which means they corre-
spond to the triangle inequality. If we want the clustering methods like DBSCAN
or K-medoid to be efficient, we need this property of the distance. They’ve been
used in many areas where shape comparison is required. However, it may be
difficult to do a comprehensive comparison of trajectories. Both distances return
the greatest distance between two trajectories at particular moments.

Figure 9: Distances calculated by Hausdorff and Fréchet (Besse et al., 2015).
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As in Figure 9, we can see that T 1 and T 2 are the most comparable of the
three trajectories, yet they are the furthest apart in Fréchet due to the maximum
distance (6) at one end. And the Hausdorff distances for all trajectories are
nearly identical, implying poor precision. These two approaches are effective in
applications involving shape comparisons, such as image comparison.

3.3 HC-SIM

Fränti & Mariescu-Istodor (2021) proposed a new shape-based distance, HC-SIM
(Hierarchical Cell Similarity), an independent variant of C-SIM measure as shown
in Figure 10. We will evaluate HC-SIM in this thesis and compare it with other
distances. HC-SIM are proposed as it is least impacted by sample rate changes
and works well with noise.

Figure 10: C-SIM.

C-SIM algorithm was proposed by Mariescu-Istodor & Fränti (2017) to compute
the similarity of two trajectories. It computes a cell representation for the two
trajectories using a grid and determines the proportion of cells that are in common
with the total cells.

C-SIM:
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S (CA, CB) =
|CA ∩ CB|+

⃓⃓
CA ∩ Cd

B

⃓⃓
+
⃓⃓
CB ∩ Cd

A

⃓⃓
|CA|+ |CB|+ |CA|+ |CA ∩ CB|

(7)

The C-SIM time complexity is O(NA +NB + |CA|+ |CB|) where NA and NB are
the number of trajectories’ points.

HC-SIM implements a grid featuring six layers (0.5%, 1%, 2%, 4%, 8%, and 16%).
At each layer, we calculate how many cells are shared by two segments to the
total number of cells they occupy. In this thesis, we calculate HC-SIM distance
through dissimilarity measurements:

HC-SIM(A,B) =
1

L

L∑︂
i=1

C-SIM(A,B) (8)

dHC-SIM(A,B) = 1− HC-SIM(A,B) (9)

4 Clustering

Clustering is the most common unsupervised learning method in pattern recog-
nition. It is basically the task of grouping objects such that similar objects reside
in the same group together. Clustering algorithms have gained a lot of atten-
tion among researchers and therefore, numerous clustering algorithms have been
evolved. In order to be successful with clustering, we first need to understand the
nature of the objects we need to cluster. We need to examine their properties
and understand how these objects are passed to the algorithm. For instance, one
may be interested to know whether the data that needs to be clustered is passed
into the algorithm incrementally. This is an interesting problem when data is
collected as clusters are evolving. On the other hand, the data set can be present
as a whole prior to the execution of the clustering algorithm. Additionally, the
properties of the objects that need to be clustered are very important. These
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properties can give rise to a number of important questions such as if the objects
are vector-based or if the objects are metric-based. Moreover, one needs to know
if objects can be transformed from one form to another so that further analysis
can be done on them. One of the most important aspects of clustering is a way
of comparing the objects which are widely known as a distance function.

In this section, we will explore clustering algorithms and make an attempt to show
which clustering algorithm is reasonable for trajectory clustering. We first start
off with some prerequisites that many clustering algorithms require and show that
these requirements are met by the trajectory distance function.

4.1 Methods

4.1.1 K-means

K-means (Lloyd, 1982; MacQueen et al., 1967) is the well-known unsupervised
machine learning technique for partitioning data set into k clusters, where k the
is predefined number of clusters. It classifies objects into a number of clusters
that objects in the same cluster are similar while objects from other clusters
are dissimilar. K-means represents each cluster by its center (also known as the
centroid) which matches the mean of data points.

The primary principle underlying k-means clustering is to define clusters that the
sum of square errors (SSE) or total within-cluster variation is minimized.

The K-means algorithm is summarized as follows:

1. Define the number of clusters (k).

2. Randomly select k objects from the data set as the initial cluster centroids.

3. Allocates each observation to the closest cluster.

4. Compute the centroids for the clusters by calculating the mean of all data
points that belong to each cluster.

5. Loop through steps 3 and 4 until the cluster assignments stay unchanged.
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K-means is a simple algorithm. By using a better initialization method and
restarting k-means, it can be significantly enhanced (Fränti & Sieranoja, 2019).
Furthermore, it can effectively deal with extremely huge data sets (MacQueen et
al., 1967; Anderberg, 2014). However, the k-means clustering has several draw-
backs. One drawback is that we must predetermine the number of clusters.
Another drawback is sensitivity to outliers and the ordering of the data. Ad-
ditionally, (Fränti & Sieranoja, 2018) showed that when cluster size unbalances,
k-means performs badly.

Balanced clustering is expected in many applications. Networking, for example,
uses balanced clustering to minimize imbalanced energy consumption (Siavoshi
et al., 2016). And in the traveling salesman problem, cities were clustered that
each salesman in a cluster has an equal workload (Nallusamy et al., 2010). Fur-
thermore, balanced clustering tends to avoid the emergence of outlier clusters
(S. Zhong & Ghosh, 2003). Balanced K-means (Malinen & Fränti, 2014) is a gen-
eral algorithm, which minimizes mean square error (MSE). The algorithm is the
same as K-means but cluster sizes are equal. Instead of using linear programming
in the assignment phase, Malinen & Fränti (2014) used the Hungarian algorithm
(Burkard et al., 2012) to solve the problem.

While K-means is an excellent technique for fine-tuning at the local level, it has
significant limitations when clusters do not overlap (Fränti & Sieranoja, 2019).

4.1.2 DBSCAN

Density-based clustering is a well-established subject of research with a straight-
forward concept: build a structure that properly represents the underlying density
with a collection of data points (Kriegel et al., 2011). Based on this idea, Density-
based spatial clustering of applications with noise (DBSCAN), as suggested by
Ester et al. (1996) has been broadly applied to trajectory clustering. The basic
concept is the density of the surrounding neighborhood must be greater than a
certain threshold.

The DBSCAN method (Ester et al., 1996; Kriegel et al., 2011) detects all clus-
ters by expanding each cluster’s core points to any density-reachable points (see
Figure 11). It takes an arbitrary point p as its starting point and generates its
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Figure 11: DBSCAN (Su et al., 2020).

ϵ-neighborhood. If it is a core point, it will initiate a new cluster, which will be
enlarged by including all points in its vicinity. If a neighboring core point is dis-
covered, the search is widened to encompass all points in the vicinity. The cluster
is considered full when not discovered further core points in the extended neigh-
borhood, and scan the remaining points to whether start a new cluster. After all
points have been processed, those that have not been allocated are considered as
noise.

DBSCAN has difficulty when handling data sets that have clusters of varied
density. (Ertöz et al., 2003). For example in Figure 12, if the threshold is set too
low, all of the points in the dense cluster will be considered noise. If the threshold
is set too high, all scores will be grouped together. An alternative option would
be to repeat the algorithm many times, eliminating previously discovered clusters
after each run.

The clustering technique must satisfy the trajectory object’s characteristics in
order to be chosen. A mean trajectory cannot be easily defined since trajectories
differ in length. Neither the k-means nor spectral clustering techniques are appli-
cable to our trajectory collection. Valid metrics are required when implementing
efficient algorithms like partitioning around medoids or the DBSCAN. The major-
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Figure 12: The distance threshold r. (Ertöz et al., 2003).

ity of the investigated distances, such as LCSS and DTW, have not been classified
as metrics, so we will not use DBSCAN or medoid partitioning technique in this
case. To cluster trajectories, we will use hierarchical cluster analysis (HCA).
Actually, in HCA, only the distance/similarity matrix is required, which means
objects of varying lengths can be clustered. In this thesis, we will use HCA to
cluster trajectories and validate our distances.

4.1.3 Hierarchical Clustering

As the name suggests, hierarchical clustering algorithms (Jain et al., 1999) pro-
duce a hierarchical representation of the data. Such hierarchical data represen-
tations are normally stored in a tree data structure. Each node of the tree is
considered to be a cluster. The root of the tree is at the highest level, and it
contains all the elements. The root of the tree can be viewed as a single cluster.
Each internal node of the tree contains children and each child can be interpreted
as a single cluster. Assuming that the entire dataset is given in advance, Figure 13
shows there are two basic strategies:

• Agglomerative (bottom-up)

• Divisive (top-down)
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Figure 13: Hierarchical clustering models (Bian et al., 2019).

The agglomerative approach starts at the bottom of the tree. Each object is
inserted into a leaf node representing a single cluster containing a single object.
The algorithm proceeds by merging similar objects by constructing internal nodes
containing several nodes from the previous level. This is done recursively until
there is a single node that defines the root of the tree.

The divisive approach works in the opposite direction. Unlike the agglomerative
approach, the divisive approach starts off by creating the root of the tree. The
algorithm continues by dividing the entire dataset into two subsets of similar
objects. This approach is also recursive. The recursion continues until the division
process reaches a subset with a single node.

In this section, we focus on HAC (Hierarchical Agglomerative Clustering) which
as an example of the hierarchical clustering algorithm. The main idea is to give
some insight into how such algorithms are designed. This is also beneficial because
the reader will have an idea of what these tree data structures may look like.
Assuming that we are given a dataset with n objects to a cluster. HAC starts
by creating a cluster for each object and then it performs n − 1 merges. The
two most similar clusters are merged together at each step. These form new
internal nodes of the tree containing more objects. Notice that when two nodes are
being merged together, the algorithm needs to have a dissimilarity measurement
between clusters. This means that the distance function is not enough. However,
the cluster dissimilarity measure is derived from the provided distance function.
HAC clustering may use one of the following ways as shown in Figure 14 to
compute the merged cost:

• Single Linkage.
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• Complete Linkage.

• Average Linkage.

• Ward Linkage.

Figure 14: HAC clustering (Sultana, 2020).

The dissimilarity measurement is a derivation of the distance function. Let G

and H be two clusters, the single linkage (SL) measurement is the least distance
between any two objects, g ∈ G and h ∈ H:

dSL(G,H) = min
g∈G
h∈H

d(g, h) (10)

The Complete Linkage (CL) is the opposite of single linkage: complete linkage is
the maximum distance between any two objects, g ∈ G and h ∈ H:

dCL(G,H) = max
g∈G
h∈H

d(g, h) (11)
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The Average Linkage (AL) is the average between groups:

dAL(G,H) =
1

|G| × |H|
∑︂
g∈G

∑︂
h∈H

d(g, h) (12)

Finally, in the Ward Linkage (WL) an error function is specified for each cluster
(see Figure 16). This error function is the average distance between each data
point in a cluster and the cluster’s center of gravity:

dWL(G,H) =
nGnH

nG + nH

||m⃗G − m⃗H ||2 (13)

Where m⃗j is the center of cluster j, and nj is the number of points in it.

The one we choose to use is called Ward Linkage. In contrast to the others,
it evaluates cluster variance rather than calculating distance directly. Ward’s
method is most logical choice as it minimizes sum of square error (SSE) similarly
as K-means. Fränti & Virmajoki (2006) had an experiment on Ward’s method
performance in minimizing SSE which is shown in Figure 15 (PNN is Ward’s
method).

Figure 15: Histograms of the MSE-values of 50 runs (Fränti & Virmajoki, 2006).
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Figure 16: Ward Linkage (Ignacio Gonzalez et al., 2017).
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4.1.4 Other Methods

In 2014, Malinen et al. (2014) proposed a different method for K-means cluster-
ing, putting the data into a specified clustering model that is best for identical
pathological data of the same size and dimensions. Then apply an inverse trans-
form from this pathological data back to the original data, while simultaneously
improving the ideal clustering structure. K-means clustering is used to update
the clustering model after each modification. If the changes are minor, the data
vectors will eventually return to their original location without disrupting the
clustering structure. The key items of this technique are determining an ap-
propriate artificial data structure, performing the mapping, and controlling the
inverse transformation illustrated in Figure 17. Alternatively, Fränti (2018) in-
troduced using Random Swap algorithms which using prototype swaps to solve
clustering, then using K-means to fine-tuning their positions. The basic idea is
replacing the randomly picked centroid with the random data of the object and
selecting centroids to replace by increasing the minimum cost function.

Figure 17: K-means* algorithm (Malinen et al., 2014).

As trajectories vary in lengths, shapes, and densities, many clustering techniques
are susceptible. C. Zhong et al. (2010) presented a graph-theoretical clustering
method which is not impacted by those differences. In the beginning, two round
minimal spanning trees are used to construct a graph and identify separate clus-
ters that include clusters separated by distance and density divided by comparing
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the cuts in the two-round minimal spanning trees.

Density peaks algorithm (Rodriguez & Laio, 2014) is another option. The al-
gorithm initially computes the densities of all points, followed by the distances
between them and the nearest point with a greater density (delta). Points with
high delta and density values are chosen as cluster centers while the others joined
other clusters with the nearest greater density point. While popular, O(N2) time
complexity has limited its application. Sieranoja & Fränti (2019) proposed a
new algorithm called FastDP illustrated in Figure 18 eliminating the quadratic
time complexity constraint of density peaks and enables for the clustering of big
datasets.

Figure 18: Fast density peaks algorithm (Sieranoja & Fränti, 2019).

Since GPS trajectories are spatial data, there are some clustering algorithms
tailored for spatial data. Q. Zhao et al. (2015) utilizes a grid structure which
example in Figure 19, takes into account a grid growth approach on the grid
structure. This method combines the features of k-means with DBSCAN and
does not require any inputs about the number of clusters. Rezaei & Fränti (2018)
provided another approach using grid-based for clustering. The approach was
initially segmented by splitting each dimension into a predetermined number of
bins. In the second phase, initial clusters are generated by simply indexing each
item and allocating it to a cell without computing distance. Each cell represents
a single cluster. In the final phase, nearby cells are merged to form final clusters
based on some criteria such as density or connectivity.
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Figure 19: Grid Structure example (Q. Zhao et al., 2015).
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4.2 Quality Criteria

Comparing the results of two clustering methods on a data set is a difficult prob-
lem in cluster analysis. Different clustering methods with varying cost functions
give different solutions, and no particular clustering approach is optimal for all
available data sets. Thus, the main task is to determine the optimal clustering
for a particular data set. However, the question of which cluster best represents
the data set arises. Cluster validity indexes have been provided to handle this
problem. They are categorized into internal and external indexes of which the
former are validated without external info while the latter are validated against
ground-truth.

Internal validity indexes evaluate the quality of a clustering method with-
out external information. There are several instances of internal validity indexes
based on cluster compactness and cluster separation. Internal validation meth-
ods may be used to determine the optimal clustering methodology and cluster
number without requiring any extra information. A variety of internal clustering
validation metrics for clustering have been studied by many authors. Table 1
shows 13 widely used internal validation indexes.

Table 1: Internal Validity Indexes (Q. Zhao & Fränti, 2014).

Name Formula

SSW SSWM =
∑︁N

i=1 ∥xi − cpi∥
2

SSB SSBM =
∑︁M

i=1 ni

⃦⃦
ci − X̄

⃦⃦2

Calinski-Harabasz (Caliński &
Harabasz, 1974)

CH = SSBM/(M−1)
SSWM/(N−M)

Ball&Hall (Ball & Hall, 1965) BH = SSWM/M

Xu-index (L. Xu, 1997) Xu = D log2

(︂√︁
SSWM/ (DN2)

)︂
+ logM

Krzanowski-Lai (Krzanowski &
Lai, 1988)

diffM = (M − 1)2/DSSWM−1−

M2/DSSWM

KL = |diffM | /diffM+1

Hartigan (Hartigan, 1975) H =
(︂

SSWM

SSWM+1
− 1

)︂
(N −M − 1)

or: H = log2 (SSBM/SSWM)

Dunn’s index (Dunn, 1974) d (ci, cj) = minx∈ci,x′∈cj ∥x− x′∥2

diam (ck) = maxx,x′∈ck ∥x− x′∥2
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Dunn =
minMi=1 minMj=i+1 d(ci,cj)

maxMk=1 diam(ck)

Davies & Bouldin (Davies &
Bouldin, 1979)

Rij =
Si+Sj

dij
, i ̸= j

where: dij = ∥ci − cj∥2

Si =
1
ni

∑︁ni

j=1 ∥xj − ci∥2

and, Ri = maxj=1,...,M Rij, i = 1, . . . ,M

DBI = 1
M

∑︁M
i=1Ri

R-Square SSW =
∑︁

k=1,...,M
d=1,...,D

∑︁nkd

i=1

(︂
xi − xd

)︂2

SST =
∑︁

d=1,...,D

∑︁nd

i=1

(︂
xi − xd

)︂2

RS = SST−SSW
SST

Silhouette Score (Zoubi & Rawi,
2008)

a (xi) =
1

nm−1

∑︁nm

j=1,j ̸=i ∥xi − xj∥2xi,xj∈Cm

b (xi) = mint

{︂
1
nt

∑︁
j∈Ct
∥xi − xj∥2

}︂
xi /∈Ct

s (xi) =
b(xi)−a(xi)

max(a(xi),b(xi))

SC = 1
N

∑︁N
i=1 s (xi)

Bayesian Information Criterion
(BIC) (Q. Zhao et al., 2008)

BIC = L ∗N − 1
2
M(D + 1)

∑︁M
i=1 log (ni)

Xie-Beni (Xie & Beni, 1991) XB =
∑︁N

i=1

∑︁M
k=1 u

2
ik∥xi−Ck∥2

N mint̸=s{∥Ct−Cs∥2}

External validity indexes evaluate how closely the clustering matches the
ground-truth (if available) or another clustering. Table 2 shows some investigated
external validation measures. They are classified as pair-counting, information-
theoretic, and set matching measures. Rand index, the Jaccard coefficient, the
Fowlkes-Mallows index are the pair-counting metrics. Clusters have also been
compared using information-theoretic indices such as entropy, Mutual Informa-
tion, and variation of information. Mutual information evaluates the information
shared between two clusters. F-measure, van Dongen criteria, and Pair Sets In-
dex (PSI) (Rezaei & Fränti, 2016) are set matching indices. Cluster-level indexes
such as Centroid Index (CI) and Centroid Similarity Index (CSI) (Fränti et al.,
2014) take advantage of close connection between centroids and partitions, use
cluster representatives rather than point-level partitions.

Some indices can be used to quickly identify the number of clusters by finding the
minimum or maximum value, while others cannot. Q. Zhao et al. (2008) proposed
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Table 2: External Validity Indexes (Rezaei & Fränti, 2016).

Name Formula
Entropy (Y. Zhao & Karypis, 2001) E = −

∑︁
i pi

(︂∑︁
j pij/pi log (pij/pi)

)︂
Purity (Y. Zhao & Karypis, 2001) P =

∑︁
i pi (maxj pij/pi)

F-measure (Van Rijsbergen, 1979) F =
∑︁

j pj maxi

[︂
2
pij
pi

pij
pj
/
(︂

pij
pi

+
pij
pj

)︂]︂
Variation of Information (Meilă, 2003) V I = −

∑︁
i pi log pi −

∑︁
j pj log pj

−2
∑︁

i

∑︁
j pij log

pij
pipj

Rand index (Hubert & Arabie, 1985) RI =

⎡⎣⎛⎝ n
2

⎞⎠−
∑︁

i(2
ni )−

∑︁
j(

nj
2 )+2

∑︁
ij(

nij
2 )

⎤⎦
⎛⎝ n

2

⎞⎠
Adjusted rand index (Hubert & Arabie, 1985) ARI = RI−E(RI)

1−E(RI)

Jaccard Index J =
∑︁

ij(
nij
2 )

[
∑︁

i(
ni
2 )+

∑︁
j(

nij
2 )−

∑︁
ij(

nij
2 )]

Mutual Information (Banerjee et al., 2005) MI =
∑︁

i

∑︁
j pij log

pij
pipj

Fowlkes and Mallows (Fowlkes & Mallows, 1983) FM =
∑︁

ij

(︁
2
nij

2

)︁
/

√︄∑︁
i

(︃
ni

2

)︃∑︁
j

(︃
nij

2

)︃
Minkowski score MS =

√︂∑︁
i(2

ni )+
∑︁

j(
n.j
2 )−2

∑︁
ij(

nij
2 )√︂∑︁

j(
n.j
2 )

Goodman-Kruskal GK =
∑︁

i pi

(︂
1−maxj

pij
pi

)︂
Centroid Index (CI) (Fränti et al., 2014) CI1(P,G) =

∑︁Kf

i=1 orphan (Gi)
CI2(P,G) = max (CI1(P,G), CI1(G,P ))

Centroid Similarity Index (CSI) (Fränti et al., 2014) CSI =
∑︁K

i−1 nij+
∑︁Kt

j−1 nji

2N

i, j : indexes of matched clusters

Pair Sets Index (PSI) (Rezaei & Fränti, 2016)

⎧⎨⎩
S−E(S)

max(K,K′)−E(S)
S ≥ E(S),max (K,K ′) > 1

0 S < E(S)
1 K = K ′ = 1

S =
∑︁min(K,K′)

i=1
nij

max(ni,mj)

i, j : indexes of paired clusters

an approach called knee point detection which was illustrated in Figure 20 for BIC
partitioning. The basic idea of this technique is to run an algorithm for several
values of a number of clusters, compare using some internal indices, then we will
detect the change in the curve which is called knee or jump point. However,
because of some indices, SSW and log-likelihood are monotonous so there is no
obvious knee point. Q. Zhao & Fränti (2014) used WB-Index, a sum-of-squares-
based index (Q. Zhao et al., 2009) to find the optimal number of clusters. When
the proper number of clusters is acquired, this index will reach its minimum value.

WB-Index:

WB − Index = M
SSW (M)

SSB(M)
(14)
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Figure 20: Knee Point Detection.

• SSW: Sum of squares within the clusters

• SSB: Sum of squares between the clusters

In this thesis, we will use Silhouette Coefficient as an internal index and an
external index introduced by Rezaei & Fränti (2016): Pair Sets Index.

4.2.1 Silhouette Coefficient

The Silhouette Coefficient (Rousseeuw, 1987) measures an object’s similarity to
its own cluster (cohesion) in comparison to other clusters (separation). The Sil-
houette Coefficient is defined for each sample and is composed of two scores:

• Cohesion(a): The mean distance between a sample and all other points
in the same cluster.

• Separation(b): The mean distance between a sample and all other points
in the next nearest cluster.
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s =
b− a

max(a, b)
(15)

Silhouette coefficient varies between -1 and 1, as a high value indicates a well-
matched and negative values indicate poorly match.

4.2.2 Pair Sets Index

Set-matching measures comprise three questions:

1. How can the similarity of two clusters be measured?

2. How should the clusters be matched?

3. How is overall similarity measured?

Pair Sets Index (PSI) was introduced by (Rezaei & Fränti, 2016) includes opti-
mum cluster pairing using the Hungarian algorithm (Kuhn, 1955) as illustrated in
Figure 21, a set matching measure based on Braun-Banquet (BB), and a chance
correction.

PSI =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S−E(S)

max(K,K′)−E(S)
, ifS ≥ E(S),max(K,K ′) > 1

0, ifS < E(S)

1, ifK = K ′ = 1

(16)

Where: S =
∑︁min(K,K′)

i=1
nij

max(ni,mj)
with i, j: paired clusters’ indexes

Pair Sets Index (PSI) simply is a metric that normalized in the range of [0, 1]. 1
indicates the same number of clusters.
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Figure 21: Pairing by Hungarian.

5 Experiments

In this section, we analyze and evaluate 5 distances DTW, LCSS, Hausdorff,
Fréchet and HC-SIM. Those distances were evaluated in two datasets: one is
known data, one is unknown data then we used Silhouette to detect the number
of clusters. For the ground-truth dataset, we used Pair Sets Index to evaluate.

5.1 Implementation

In this thesis, we used Python to implement all distances. LCSS, DTW, Fréchet
and Hausdorff are based on Euclidean distance to compute pair-wise distance. To
compute HC-SIM, we used algorithm implemented by Fränti & Mariescu-Istodor
(2021) available in: https://cs.uef.fi/sipu/segments/hcsim.zip. The quality
of a clustering algorithm will depend on the metric used to measure similari-
ty/dissimilarity between two trajectories.

Figure 22: Overview of our process.
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Figure 22 shows our clustering process that consists of two components. We
initially detected pointers among trajectories and then used them to calculate
pair-wise distance/similarity between trajectories.

Compute Distance Compute pair-wise distance from list of trajectories
Input: List T containing N trajectories
Output: Distance List D
1: D ← empty list
2: idx← 0
3: for i = 1, 2, . . . , N do
4: traji ← T [i]
5: for j = i+ 1, . . . , N do
6: trajj ← T [j]
7: D[idx]← distance(traji, trajj)
8: idx← idx+ 1
9: end for

10: end for

With a set of trajectories with pair-wise distance/similarity measures, we labeled
trajectories based on the correlation between trajectory pairs. After that, we
used hierarchical clustering to obtain clusters of trajectories based on the label.
We utilized Python scipy library for hierarchical clustering analysis by using
fastcluster module with Ward method.

For validating clusters, we also used sklearn library to compute Silhouette score
and genieclust library to compute Pair Sets Index.

5.2 Ground Truth Data

5.2.1 Data

The data we used are GPS data collected from Mopsi. Mopsi is a website that
enables users in finding out where their friends are, as well as what is surround-
ing them. This website provides photos sharing, navigation, and chatting with
friends (Mariescu-Istodor, 2013). Users have recorded their trajectories. Detailed
information about the routes, such as speed, distance traveled, and transporta-
tion mode used (walking, running, cycling, or skiing) is shown on the map, along
with these trajectories by the method in Waga et al. (2012). Mopsi provides many
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approaches to find trajectories. Additionally, it offers suggestions and tools for
data collecting management.

Mopsi data is classified into two types: geotagged images and trajectory data.
Geo-tagged images include information about the location and time stamp. A
trajectory is a collection of GPS points that are recorded at regular intervals.
Table 4 shows the trajectory data structure. The data set we use in this thesis were
collected from Mopsi 2014 dataset (Mariescu-Istodor & Fränti, 2017) including
6779 trajectories were recorded by 51 users. From Mopsi dataset, Mariescu-
Istodor & Fränti (2020) selected 11 groups in Figure 23 which are around Joensuu,
Finland. All of them have some redundancy in the database (moving from home
to work or to store). For each group, Mariescu-Istodor & Fränti (2020) used
similar ranking method (Mariescu-Istodor et al., 2014) to select top 10 similar
trajectories that have same direction. As the ranking was computed using CSIM,
which does not take direction into account, we thus manually processed the data,
removing identical trajectories in the opposite direction to produce the result for
other metrics simpler to comprehend. Then, based on visual, we sorted these sets
including 110 trajectories in Figure 23 into 10 clusters in Figure 24. In Figure 23,
green points are the start points and red points are the end points when users
stop their routes. First cluster contains 20 trajectories and 10 trajectories for
other clusters. We will use this dataset as ground-truth data (expected result).
Table 3 summarizes the data.

Table 3: Mopsi Data Summary.

Trajectories Clusters Points Kilometers

110 10 53976 336.419
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Figure 23: Mopsi Trajectories.

Table 4: Mopsi Data Structure.

Column Type Description Example

Latitude Double Point latitude 62.926880 (62° 55’ 36.7674")

Longitude Double Point longitude 23.184691 (23° 11’ 4.8876")

Timestamp String Point timestamp 1559983789 seconds

Altitude Double Point altitude -1.0 meter
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Figure 24: Mopsi Clusters.
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5.2.2 Analysis of the distances

As mentioned before, we chose Ward Linkage method on HAC (Hierarchical Ag-
glomerative Clustering) for the clustering. Figure 25, 26, 27, 28, 29 are Mopsi
clustering results using 5 distances DTW, LCSS, Hausdorff, Fréchet and HC-SIM
with Ward Linkage cluster method. Due to ground-truth data and result from
Silhouette scores in Figure 30, we used 10 as the number of clusters for both
distances.

Figure 25: DTW Trajectories Clustering.
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Figure 26: LCSS Trajectories Clustering.
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Figure 27: Hausdorff Trajectories Clustering.
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Figure 28: Fréchet Trajectories Clustering.
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Figure 29: HC-SIM Trajectories Clustering.
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5.2.3 Clusters Validation

We used Silhouette Score to decided the number of clusters.

Figure 30: Silhouette Score depending on cluster.
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Figure 30 illustrates Silhouette Score based on number of clusters using 5 dis-
tances. 9 clusters are found with LCSS, 8 with Hausdorff and 10 with Fréchet,
HC-SIM while DTW maximum at 2 clusters. HC-SIM and Fréchet give the best
results as those matching with the ground-truth data. Table 5 summarizes Sil-
houette Scores for each distance with the number of clusters range from 2 to 100.
0.78 HC-SIM’s Silhouette Score at 10 number of clusters is the maximum score
compare to all distances indicates that this is the best result. Fréchet comes in
second place with 0.75 and Hausdorff follows with 0.73. DTW and LCSS have
significantly smaller Silhouette Score maximum values (DTW = 0.58, LCSS =
0.42).

Table 5: Mopsi Silhouette Scores.

Clusters HC-SIM DTW LCSS Frechet Hausdorff

2 0.30 0.58 0.27 0.68 0.70
3 0.34 0.45 0.30 0.65 0.67
4 0.41 0.27 0.34 0.59 0.70
5 0.52 0.35 0.32 0.62 0.57
6 0.59 0.37 0.31 0.55 0.61
7 0.64 0.29 0.32 0.63 0.69
8 0.68 0.30 0.39 0.66 0.73

9 0.74 0.32 0.42 0.73 0.72
10 0.78 0.36 0.37 0.75 0.69
11 0.76 0.34 0.33 0.72 0.71
12 0.73 0.40 0.33 0.68 0.69
13 0.72 0.42 0.31 0.70 0.72
14 0.73 0.40 0.28 0.73 0.69
15 0.72 0.41 0.26 0.71 0.71
16 0.69 0.41 0.25 0.72 0.70
17 0.64 0.42 0.23 0.75 0.70
18 0.65 0.43 0.21 0.75 0.68
19 0.64 0.37 0.19 0.73 0.67
20 0.63 0.38 0.09 0.73 0.67
21 0.63 0.39 0.09 0.71 0.65
22 0.60 0.33 0.07 0.68 0.66
23 0.61 0.31 0.06 0.65 0.61
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24 0.60 0.30 0.05 0.65 0.58
25 0.60 0.29 0.05 0.63 0.59
26 0.59 0.28 0.04 0.63 0.60
27 0.61 0.28 0.04 0.62 0.60
28 0.57 0.27 0.04 0.62 0.60
29 0.57 0.26 0.04 0.61 0.59
30 0.51 0.26 0.04 0.61 0.56
31 0.51 0.24 0.04 0.62 0.54
32 0.51 0.24 0.04 0.62 0.55
33 0.50 0.24 0.04 0.62 0.54
34 0.51 0.24 0.04 0.59 0.54
35 0.49 0.24 0.04 0.57 0.53
36 0.48 0.27 0.04 0.59 0.55
37 0.48 0.22 0.04 0.57 0.53
38 0.47 0.22 0.04 0.58 0.52
39 0.46 0.23 0.04 0.56 0.51
40 0.46 0.23 0.04 0.54 0.51
41 0.46 0.25 0.04 0.55 0.50
42 0.46 0.26 0.04 0.53 0.45
43 0.45 0.25 0.04 0.52 0.44
44 0.45 0.24 0.04 0.52 0.45
45 0.43 0.26 0.04 0.51 0.45
46 0.43 0.27 0.04 0.49 0.43
47 0.43 0.25 0.04 0.50 0.43
48 0.39 0.25 0.04 0.47 0.43
49 0.41 0.20 0.04 0.46 0.42
50 0.42 0.21 0.04 0.46 0.41
51 0.42 0.20 0.04 0.46 0.42
52 0.43 0.19 0.04 0.46 0.40
53 0.45 0.17 0.04 0.45 0.40
54 0.45 0.19 0.04 0.45 0.40
55 0.46 0.19 0.04 0.45 0.40
56 0.45 0.19 0.04 0.44 0.40
57 0.44 0.19 0.04 0.43 0.36
58 0.45 0.18 0.04 0.42 0.36
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59 0.47 0.20 0.04 0.36 0.35
60 0.45 0.21 0.04 0.35 0.36
61 0.47 0.22 0.04 0.34 0.36
62 0.45 0.23 0.04 0.33 0.32
63 0.44 0.23 0.04 0.33 0.31
64 0.43 0.23 0.04 0.33 0.30
65 0.42 0.23 0.04 0.31 0.32
66 0.45 0.27 0.04 0.30 0.31
67 0.44 0.27 0.04 0.28 0.28
68 0.43 0.26 0.04 0.28 0.28
69 0.42 0.25 0.04 0.29 0.29
70 0.40 0.25 0.04 0.28 0.28
71 0.39 0.26 0.04 0.29 0.26
72 0.40 0.25 0.04 0.28 0.24
73 0.38 0.24 0.04 0.25 0.24
74 0.37 0.23 0.04 0.23 0.24
75 0.36 0.24 0.04 0.26 0.26
76 0.36 0.23 0.04 0.28 0.25
77 0.36 0.23 0.04 0.27 0.25
78 0.33 0.23 0.04 0.25 0.25
79 0.29 0.24 0.04 0.25 0.25
80 0.28 0.22 0.04 0.26 0.27
81 0.28 0.22 0.04 0.27 0.27
82 0.28 0.21 0.04 0.30 0.28
83 0.26 0.19 0.04 0.29 0.27
84 0.25 0.18 0.04 0.28 0.27
85 0.25 0.18 0.04 0.27 0.26
86 0.24 0.16 0.04 0.26 0.26
87 0.24 0.15 0.04 0.25 0.26
88 0.24 0.16 0.04 0.26 0.28
89 0.24 0.17 0.04 0.25 0.25
90 0.24 0.16 0.04 0.24 0.25
91 0.24 0.12 0.04 0.22 0.23
92 0.24 0.06 0.04 0.19 0.22
93 0.23 0.06 0.04 0.20 0.22
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94 0.20 0.09 0.04 0.19 0.20
95 0.20 0.12 0.04 0.19 0.20
96 0.21 0.15 0.04 0.18 0.20
97 0.21 0.15 0.04 0.18 0.21
98 0.20 0.15 0.04 0.17 0.20
99 0.19 0.15 0.04 0.17 0.18
100 0.17 0.15 0.04 0.17 0.17

Additionally, we used Pair Sets Index to evaluate cluster results from those 5
distances and got same result with Silhouette Score. Figure 31 shows that shaped
base distance give the better cluster results than warping-based distances with
higher Pair Sets Index values. Red color indicates the index is over 0.8 while blue
indicates value between 0.7 and 0.8, green indicates value is less than 0.7. HC-
SIM is in the first place (PSI=0.87) while Fréchet and Hausdorff are in second
(PSI=0.79) and third (PSI=0.67) respectively (details in Table 6). With 0.61
Pair Sets Index, LCSS gives the poorest result.

Figure 31: Pair Sets Index based on distance.
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Table 6: Pair Sets Index.

DTW LCSS Fréchet Hausdorff HC-SIM
0.62 0.61 0.79 0.67 0.87

Based on visual inspection, we sorted clusters in Figure 32, 33, 34, 35, 36, 37, 38,
39, 40, 41. All distances seem identical with ground-truth data in some clusters.
However, HC-SIM does the best, nearly match ground-truth data while the other
distances have some conflicts (red circle).

Figure 32: Trajectories Clusters 1.
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Figure 33: Trajectories Clusters 2.

Figure 34: Trajectories Clusters 3.
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Figure 35: Trajectories Clusters 4.

Figure 36: Trajectories Clusters 5.
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Figure 37: Trajectories Clusters 6.

Figure 38: Trajectories Clusters 7.
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Figure 39: Trajectories Clusters 8.

Figure 40: Trajectories Clusters 9.
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Figure 41: Trajectories Clusters 10.

5.3 Unknown Data

5.3.1 Data

The data we used are GPS data from 536 San-Francisco taxis over a 24-day
period. These data are public and can be found on Piorkowski et al. (2009).
We pre-processed data extracting 4127 trajectories with the same start, pickup
location as a black point in Figure 42 at Caltrain station and red points indicate
the end points which are drop-off locations.

5.3.2 Analysis of the distances

In Figure 43, we hardly determine optimal number of clusters. However, HC-SIM
still performs best. For example, at 15 clusters, HC-SIM’s Silhouette Score is
0.23, Fréchet and Hausdorff are 0.21 and 0.22 respectively while DTW and LCSS
are much lower with 0.14 and 0.05. Table 7 summarizes Silhouette Scores for
each distance with the number of clusters range from 2 to 100. The shape-based
distances (HC-SIM, Frechet, Hausdorff) are better than warping-based distances
(DTW, LCSS) as the Silhouette scores are higher, even LCSS got negative scores
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Figure 42: Caltrain Trajectories Dataset.
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Figure 43: Silhouette Score.

when number of clusters is greater than 38. In this experiment, we chose 15 as
the number of clusters for all distances then compared the results.

Table 7: Caltrain Silhouette Scores.

Clusters HC-SIM DTW LCSS Frechet Hausdorff

2 0.36 0.40 0.29 0.39 0.50
3 0.38 0.36 0.18 0.35 0.26
4 0.35 0.25 0.20 0.33 0.23
5 0.34 0.26 0.15 0.23 0.21
6 0.35 0.25 0.14 0.23 0.20
7 0.33 0.24 0.15 0.25 0.21
8 0.33 0.18 0.14 0.28 0.20
9 0.25 0.18 0.12 0.27 0.17
10 0.24 0.19 0.11 0.28 0.19
11 0.24 0.18 0.06 0.24 0.22
12 0.24 0.17 0.06 0.22 0.21
13 0.24 0.16 0.05 0.22 0.22
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14 0.23 0.17 0.05 0.22 0.22
15 0.23 0.14 0.05 0.21 0.22
16 0.22 0.15 0.04 0.22 0.22
17 0.22 0.15 0.03 0.22 0.23
18 0.22 0.17 0.03 0.24 0.22
19 0.22 0.17 0.03 0.24 0.22
20 0.21 0.17 0.02 0.24 0.22
21 0.21 0.16 0.02 0.24 0.22
22 0.19 0.16 0.02 0.24 0.21
23 0.20 0.17 0.02 0.24 0.21
24 0.20 0.16 0.02 0.25 0.20
25 0.20 0.16 0.02 0.24 0.20
26 0.20 0.16 0.02 0.22 0.20
27 0.20 0.16 0.02 0.22 0.21
28 0.20 0.16 0.00 0.22 0.20
29 0.21 0.16 0.01 0.22 0.21
30 0.21 0.15 0.01 0.21 0.21
31 0.21 0.15 0.01 0.21 0.21
32 0.21 0.15 0.01 0.21 0.21
33 0.20 0.12 0.01 0.22 0.21
34 0.20 0.12 0.00 0.22 0.21
35 0.20 0.12 0.01 0.22 0.22
36 0.20 0.11 0.00 0.22 0.22
37 0.20 0.11 0.00 0.22 0.22
38 0.20 0.11 -0.00 0.22 0.23
39 0.20 0.11 -0.00 0.23 0.23
40 0.20 0.11 -0.00 0.22 0.24
41 0.20 0.11 -0.00 0.22 0.23
42 0.20 0.11 -0.01 0.22 0.24
43 0.20 0.11 -0.01 0.22 0.23
44 0.19 0.11 -0.01 0.21 0.23
45 0.19 0.11 -0.01 0.21 0.23
46 0.19 0.10 -0.01 0.21 0.23
47 0.19 0.10 -0.01 0.21 0.23
48 0.19 0.10 -0.01 0.21 0.23
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49 0.19 0.10 -0.01 0.21 0.23
50 0.19 0.10 -0.01 0.21 0.23
51 0.19 0.11 -0.01 0.21 0.23
52 0.19 0.11 -0.01 0.21 0.23
53 0.19 0.11 -0.01 0.21 0.23
54 0.19 0.11 -0.02 0.20 0.23
55 0.19 0.11 -0.02 0.20 0.23
56 0.19 0.10 -0.02 0.20 0.23
57 0.19 0.10 -0.02 0.20 0.22
58 0.18 0.10 -0.02 0.20 0.22
59 0.18 0.10 -0.02 0.20 0.22
60 0.18 0.10 -0.02 0.20 0.23
61 0.18 0.09 -0.02 0.20 0.23
62 0.18 0.09 -0.02 0.19 0.23
63 0.18 0.09 -0.02 0.20 0.23
64 0.18 0.09 -0.02 0.20 0.22
65 0.18 0.09 -0.02 0.20 0.22
66 0.18 0.09 -0.02 0.20 0.22
67 0.18 0.09 -0.02 0.20 0.22
68 0.18 0.09 -0.02 0.20 0.22
69 0.17 0.09 -0.02 0.20 0.22
70 0.17 0.08 -0.02 0.20 0.21
71 0.17 0.08 -0.03 0.20 0.20
72 0.17 0.08 -0.03 0.20 0.20
73 0.17 0.08 -0.03 0.20 0.20
74 0.17 0.08 -0.03 0.20 0.20
75 0.18 0.08 -0.03 0.20 0.20
76 0.17 0.08 -0.03 0.20 0.21
77 0.17 0.09 -0.03 0.20 0.20
78 0.17 0.08 -0.03 0.20 0.21
79 0.17 0.08 -0.03 0.19 0.21
80 0.17 0.08 -0.03 0.19 0.21
81 0.15 0.08 -0.03 0.19 0.21
82 0.15 0.08 -0.03 0.19 0.20
83 0.14 0.08 -0.03 0.19 0.20
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84 0.14 0.08 -0.03 0.20 0.20
85 0.14 0.08 -0.03 0.19 0.20
86 0.14 0.08 -0.04 0.20 0.20
87 0.14 0.08 -0.04 0.20 0.20
88 0.14 0.08 -0.04 0.20 0.20
89 0.14 0.08 -0.04 0.20 0.20
90 0.14 0.08 -0.04 0.20 0.20
91 0.14 0.08 -0.04 0.20 0.20
92 0.14 0.08 -0.04 0.19 0.20
93 0.14 0.08 -0.04 0.20 0.20
94 0.14 0.08 -0.04 0.20 0.21
95 0.14 0.08 -0.04 0.20 0.20
96 0.14 0.07 -0.04 0.20 0.21
97 0.14 0.07 -0.04 0.20 0.21
98 0.14 0.07 -0.04 0.20 0.21
99 0.14 0.07 -0.04 0.20 0.21
100 0.14 0.07 -0.04 0.20 0.21

Figure 44 illustrates visual results for all distances with 15 clusters. We sorted
those data bases on visual inspection in Figure 45, 46, 47, 48, 49. Because we
do not identify optimal number of clusters, all clusters got some particular noise
shown as red circle. Based on Mopsi experiment, HC-SIM is expected to be
the best. The clusters using shape-based distances seem to be consistent as the
trajectories grouped better with less noise than warping-based distances. LCSS
gives the poorest result containing a lot of noise in each cluster.
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Figure 44: Caltrain Clusters.
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Figure 45: Caltrain Clusters (1, 2, 3).
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Figure 46: Caltrain Clusters (4, 5, 6).
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Figure 47: Caltrain Clusters (7, 8, 9).
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Figure 48: Caltrain Clusters (10, 11, 12).
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Figure 49: Caltrain Clusters (13, 14, 15).
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6 Conclusions

Clustering trajectories is heavily dependent on the selection of an appropriate
distance. In this thesis, we explored several distances (DTW, LCSS, Fréchet,
Hausdorff, and HC-SIM) concentrating on various characteristics of trajectories.
All distances seem to work well with the hierarchical agglomerative clustering
(HAC) method to cluster trajectories. Based on our experiment, shape-based
distances give better clusters than warping-base ones, especially HC-SIM enables
us to obtain good clusters that nearly match ground-truth data.

We used the Silhouette score and Pair Sets Index to validate trajectory clusters.
Both clustering and validation methods that we used in this thesis work well and
give good results. This may be used to address a variety of problems. From
learning moving objects’ behavior, many applications can recommend locations
to visit or arrange a city’s trip based on that result.
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