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Abstract: Motion capture is a growing and significant field of research with many 

applications in sports. Exercise technology research helps top athletes and enthusiasts 

improve their performance, and on the other hand, it also helps scientists to 

understand human body activity during exercise performance. My thesis explores 

whether the traditional reflective marker based motion capture systems used in the 

skiing research, could be replaced by a video camera and machine vision algorithm 

in the pose estimation of an athlete skiing on a treadmill. The research environment 

is the University of Jyväskylä's Sport Technology Unit and its VICON motion 

capture system located in the skiing laboratory in Vuokatti. The work will shed light 

into the uses of motion capture, its implementation and the use of machine learning 

in motion capture. For the practical part of the work, a video recording event was 

held in Vuokatti to collect data from skiers of different levels. This data was used to 

form training data for the machine learning algorithms. Three different data sets were 

created for training, the first of which identifiable joint points were manually marked 

for each frame image. The joint points of the second data set were produced 

algorithmically by calibrating the 3D joint points of point cloud data produced by 

VICON into a two-dimensional view. A third, smaller than the previous, data set was 

created for the calibration algorithm. General-purpose models produced by 

AlphaPose pose estimation algorithms were fine tuned using self created data sets, 

and finally models trained using different data sets were compared with each other. 

The accuracy of existing pose estimation models was improved by fine tuning the 

models. However, the accuracy of the models produced was not good enough to 

replace VICON. More research is needed on the subject. The creation and calibration 

of training data rose to play a major role in the research. The summary will go 

through the lessons learned during the work, and what should be taken into account 

in future studies. My thesis has been conducted in collaboration with my employer 

CSC - IT Center for Sciences and the Department of Sport Technology of the 

University of Jyväskylä in the CEMIS Consortium HYTELI project funded by the 

Kainuun Liitto, the European Regional Development Fund, and municipality funding 

from Kajaani and Sotkamo. 
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Tiivistelmä: Liikkeentunnistus on kasvava ja merkittävä tutkimusala, jolla on monia 

sovelluksia urheilussa. Liikuntateknologinen tutkimus auttaa huippu-urheilijoita ja 

harrastajia parantamaan suorituskykyään ja toisaalta se auttaa myös tutkijoita 

ymmärtämään ihmisekehon toimintaa liikuntasuorituksen aikana. Tutkielmassani 

selvitetään, voisiko hiihtotutkimuksessa käytettyjä perinteisiä, heijastaviin 

markkereihin perustuvia liikkeenkaappausjärjestelmiä korvata videokameralla ja 

konenäköalgoritmilla rullasuksilla hiihtomatolla hiihtävän urheilijan 

asennontunnistuksessa. Tutkimuskohteena on Jyväskylän yliopiston 

Liikuntateknologian yksikön Vuokatissa sijaitseva hiihtolaboratorio ja sen VICON-

liikkeenkaappausjärjestelmä. Työssä tutustutaan liikkeenkaappauksen 

käyttötarkoituksiin, sen toteuttamistapoihin ja koneoppimisen hyödyntämiseen 

liikkeenkaappauksessa. Työn käytännön osuutta varten Vuokatissa järjestettiin 

kuvaustapahtuma, jossa kerättiin dataa eritasoisilta hiihtäjiltä. Tästä datasta 

muodostettiin koulutusdataa työssä käytetyille koneoppimisalgoritmeille. Koulutusta 

varten luotiin kolme eri datajoukkoa, joista ensimmäiseen tunnistettavat nivelpisteet 

merkittiin käsin kuvaruutu kerrallaan. Toisen datajoukon nivelpisteet tuotettiin 

algoritmisesti kalibroimalla VICONin tuottaman pistepilvidatan 3D-nivelpisteet 

kaksiulotteiseen näkymään. Kolmas, edellisiä pienempi, datajoukko luotiin 

kalibrointialgoritmia varten. Työssä jatkokoulutettiin yleiskäyttöisiä AlphaPose-

asennontunnistusalgoritmilla tuotettuja malleja itse luoduilla datajoukoilla ja lopuksi 

vertailtiin eri datajoukkojen avulla koulutettuja malleja keskenään. 

Jatkokouluttamalla olemassa olevia asennontunnistusmalleja asennontunnistuksen 

tarkkuutta saatiin parannettua. Tuotettujen mallien tarkkuus ei kuitenkaan ollut 

riittävän hyvä, jotta niillä voisi korvata VICONin. Aiheesta tarvitaan lisää 

tutkimusta. Koulutusdatan luominen ja kalibrointi nousivat merkittävään rooliin 

tutkimuksessa. Yhteenvedossa käydään läpi työssä opittuja, tulevissa tutkimuksissa 

huomioon otettavia asioita. Tutkielmani on tehty yhteistyössä työnantajani CSC - 

Tieteen tietotekniikan keskus Oy:n ja Jyväskylän Yliopiston Liikuntateknologian 

yksikön kanssa Kainuun Liiton, Euroopan aluekehitysrahaston sekä Kajaanin ja 

Sotkamon kuntien rahoittamassa CEMIS-konsortion HYTELI-hankkeessa. 
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1 Introduction  

This thesis was created in a cooperation project between CEMIS consortium 

members CSC - IT center for science (CSC) and the Sports Technology department 

of University of Jyväskylä (JYU) in Vuokatti, Kainuu, Finland. As a specialist 

working in CSC, the author's role in the project was to study possibilities to utilise 

machine vision in skiing coaching and research. Jyväskylä University is doing 

research in nordic snow sports in their laboratory in Vuokatti and cross country 

skiing is one of their subjects. The laboratory has a motion capture system created by 

Vicon Motion Systems Ltd. That system is later referred to as VICON, which uses 8 

infra-red cameras to track the small reflective markers attached to subjects’ joints 

and to collect the location information in three dimensional space. That data is later 

referred to as VICON data. Researchers use the data to detect skiers body position 

when the subject is skiing on a treadmill. The body position information is later used 

in coaching applications and scientific studies e.g. by calculating the forces skier 

applies to the treadmill. These forces are calculated from the body position and speed 

information and the skier's technique is fine tuned with the help of the coach to 

optimise the skiing performance. The body position as a set of joint location 

coordinates is later referred to as pose. 

VICON is a precise instrument but is expensive and difficult to operate. Attaching 

the reflective markers is a time consuming task and a specialist is needed to attach 

them to correct spots. A specialist is also needed to operate the system during 

measurement.  

In a former collaborative project between CSC and University of Jyväskylä it was 

discovered that machine vision algorithms can be used to estimate skier pose from 

video recorded with an ordinary video camera. One such algorithm is AlphaPose3 

 

 

3 https://www.mvig.org/research/alphapose.html (4.1.2021) 

https://www.mvig.org/research/alphapose.html
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(Fang et al. 2017). As such, the precision was however not sufficient compared to 

VICON and further research is needed in this topic. This thesis addressed needs and 

studies whether the existing models can be fine tuned to increase performance.  

The main research question of this work was to find out if there is a way to replace 

the VICON motion capture system with an ordinary video camera and a machine 

vision algorithm in context of skier pose estimation when skiing on a treadmill in a 

laboratory environment. In the current setup, detecting the skier pose is a difficult 

process. Even though VICON is a precise tool, it is difficult and time-consuming to 

set up and operate, which hinders the collection of skier pose data during daily 

operation of the skiing laboratory. We studied the possibility to streamline this 

process by finding alternative ways to accomplish skier pose estimation with a 

normal video camera and machine learning algorithms. Since we had in an earlier 

project benchmarked the existing models and found out that the resulting pose 

estimation accuracy was not high enough to challenge VICON, our approach was to 

create a custom dataset to fine tune those existing models to gain better results. An 

easier and faster measurement process was originally requested by the personnel 

using the skiing laboratory for research and coaching. 

Other issues to be addressed in this thesis are:  

• How to fine-tune an existing open source pose estimation algorithm to better 

work in pose estimation when skiing on a treadmill 

• How to create a training dataset by utilising accurate VICON data 

• How to compare pose estimation algorithm output to VICON data 

• How to decide whether the developed model is good enough to fulfil 

customers needs in the skier pose estimation task compared to VICON  

The work started with a data collection event where we had four volunteer skiers 

with roller skis according to a custom test protocol on top of a treadmill. We used 

VICON to collect so-called ground truth data and a video camera to collect data for 

machine vision training. We had to use reflective markers when recording the 

training data because of VICON data collection, even the markers can possibly alter 

algorithm performance. The markers were essential to collect VICON data from the 

same skiing runs as the video camera recording.  
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This thesis consists of 9 main chapters between Introduction and Conclusion. 

Chapter 2 sheds light on the background of this research by explaining the partners 

involved, introducing the skiing laboratory, what is the location this work is focused 

on and how the pose estimation fits into the field of cross-country skiing research.  

Chapter 3 dives into the topic of pose estimation, problems with traditional methods 

and then introduces how machine vision can be utilised for pose estimation tasks. 

Chapter 4 is about relevant machine vision algorithms and the kind of datasets used 

when applying machine vision to pose estimation. The AlphaPose algorithm used in 

this work is introduced and a short introduction to other similar algorithms and 

applications is given. 

The description of the practical part of this thesis starts in Chapter 5. First we go 

through the steps for gathering the data. In Chapter 6 we discuss the essential steps 

performed during the data pre-processing phase. This chapter includes the important 

Section 6.5 where we discuss the challenges encountered during pre-processing and 

how those affected the thesis. 

Chapter 7 is about the model training part of the work and Chapter 8 describes the 

performance evaluation and the results of the experiments. In Chapter 9 we discuss 

the findings, how well the research questions were answered during the work and 

give suggestions for future research in this topic. 
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2 Background of the sports research in Vuokatti 

This chapter gives a short introduction of sports science, and how it is studied at the 

Sports Technology department of Jyväskylä University located in Vuokatti. Section 

2.2 describes the skiing laboratory which is the environment where the data 

collection for this work was conducted and for which the machine vision system 

developed in this work is targeted. Section 2.3. is about a deeper explanation of the 

reason behind this work. If the studied machine vision method turns out to be precise 

enough to fulfil customers needs, it can be utilised in many use cases in the 

laboratory to analyse skier pose to improve performance instead of the VICON 

motion capture system. 

2.1 Sport science 

Sports science is a field of study aiming to maximise performance and endurance of 

an athlete. At the same time it studies ways to reduce the risk of injury. It applies the 

principles of science to sporting activities, like nordic ski sports. Sports science is a 

multidisciplinary field containing studies such as exercise physiology, biomechanics, 

motor control and motor development, exercise and sport psychology and 

combinations of those. The field of study is approached with a close collaboration 

with the athletes in a way that both are benefiting from the symbiosis. The researcher 

has a subject to study and the athlete can gain improvement in his or her performance 

from the results of the research4. One example of this is the training of cross-country 

skiing in the Vuokatti skiing laboratory where the coach can guide the athlete 

through a training routine while researchers are studying the biomechanics of the 

skier. The effectiveness of the skiing can be measured and two training runs can be 

compared. The researchers can get valuable data from real world use cases while 

athletes can get information about the performance and effect of different techniques. 

 

 

4 https://ssep.com.au/what-is-sport-science/ (12.3.2022) 

https://ssep.com.au/what-is-sport-science/
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2.2 Skiing laboratory in Vuokatti 

Jyväskylä University has a Sports Technology department in Vuokatti. The 

department is specialised in multidisciplinary and applied sports biology research. 

There are also masters and doctoral schools in Vuokatti. The Nordic Ski Sports 

laboratory in Vuokatti is focused for applied and technology research in the areas of 

cross country skiing, ski jump and biathlon. The researchers are able to study nordic 

snow sports in an advanced environment and in close cooperation with the coaches 

and athletes. There is also the Vuokatti-Ruka Sports Academy that trains young 

competitive athletes. In a laboratory environment the coach and the athlete can 

produce real world data for researchers to study with the latest computational 

methods. There is a skiing treadmill and a skiing tunnel where one can ski on a real 

snow track around the year. 

The skiing laboratory contains an advanced skiing treadmill that is used for athlete 

training and scientific studies. The treadmill can be tilted to simulate steep hills and 

its speed can be adjusted quickly and precisely. The athlete can monitor his or her 

speed and other environmental data from a screen in front of the treadmill. The 

treadmill can be programmed to follow the profile of some known race track while 

recorded video or an animation of that particular track is shown on screen. Figure 1 

is showing a subject skiing on the treadmill with 8° inclination during data collection 

for this thesis work. The faces of operating personnel in the background are blurred 

in this and forthcoming figures. 
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Figure 1: Athlete skiing on Vuokatti skiing laboratory treadmill during data collection event. Tread-

mill is set to 8° inclination. 

 

In addition to Vuokatti, nordic snow sports are studied in Paris Lodron University 

Salzburg (PLUS) in Austria5. Norway is also a major player in nordic ski sports, and 

research in this field is done in several Norwegian universities, such as the 

Norwegian University of Science and Technology (NTNU) in Trondheim.6 

2.3 Using pose estimation to improve skiing performance 

As a CSC employee I was tasked with participating in the HYTELI7 project as a 

machine learning consultant. HYTELI was a cooperation project between the CEMIS 

consortium members: Jyväskylä University, Oulu University, Kajaani University of 

Applied Sciences, Technology Research Center VTT and CSC - It Center for 

Science. The project was funded by Kainuun Liitto, European Regional 

Development Fund, and municipality funding from Kajaani and Sotkamo. The target 

 

 

5 https://www.plus.ac.at/research/plus/?lang=en (12.3.2022) 
6 https://www.ntnu.edu/inb (12.3.2022) 
7 https://www.jyu.fi/sport/fi/liikuntateknologia/hankkeet/hyteli (17.12.2021) 

https://www.plus.ac.at/research/plus/?lang=en
https://www.ntnu.edu/inb
https://www.jyu.fi/sport/fi/liikuntateknologia/hankkeet/hyteli
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of the project was to develop advanced innovation platforms and environments to 

increase regional competence in technology. The aim of our work package was to 

increase knowledge of participants on machine learning and create a pilot for 

applying machine learning to skiing research. 

The purpose of this work was to create a generic machine learning solution that 

could be used for any competitive skier in the skiing laboratory. The AlphaPose8 

machine vision algorithm was used for detecting skier body position from video 

camera recordings. AlphaPose was chosen because it was found to be the most 

promising in a former collaborative project between CSC and University of 

Jyväskylä where various algorithms for this task were compared. For this reason the 

algorithm was familiar to both research partners and it was observed that further 

research to improve its precision in skier pose estimation was needed. 

Ohtonen (2019) proposed that the effectiveness of cross-country skiers can be ana-

lysed with a novel propulsion component analysis method (Göpfert 2017) on tread-

mill skiing with motion capture equipment. Göpfert et al. used a VICON motion cap-

ture system at the Vuokatti Ski tunnel to detect skier joint locations in three-

dimensional (3D) space. The joint locations were used to calculate skiers Center of 

Mass (COM). The propulsion components that are used to calculate propulsion forc-

es are illustrated in figure 2. Based on COM and force sensors installed in ski bind-

ings and ski poles, the propulsion forces that affect the acceleration of the skier can 

be calculated. The force sensors were installed in custom-made ski bindings (Figure 

3) made in the Neuromuscular Research Center, University of Jyväskylä, Finland. 

The sensors measure the front and rear foot forces while skiing and thus provide di-

rectional force data from the appropriate directions. 

 

 

8 https://www.mvig.org/research/alphapose.html (4.1.2021) 

https://www.mvig.org/research/alphapose.html


 

 8 

 
Figure 2: Propulsion components used to calculate propulsion forces. COM means center of mass, 

PFA means point of force application. Fc, propulsion force with Göpfert et al. (2017) model; Fro, 

rotational force; Fr, resultant force; Ft, translational force; Fpropulsive, propulsion force calculated 

with earlier methods. (Ohtonen et al. 2020) 
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Figure 3: Schematics and photo of a custom force binding developed during Ohtonen’s research 

work. Dimensions in schematics are in millimetres. (Ohtonen. 2019) 

Pole sensors (Hottinger–Baldwin Messtechnik GmbH, Darmstadt, Germany) were 

installed on the pole grip (Figure 4). Pole sensors provide data about upper body 

forces. 

 
Figure 4: Pole force sensor (A) used in Ohtonen’s dissertation study Experiment I and (B) in Experi-

ment III. (Ohtonen. 2019) 

The measurements in Ohtonen’s work were conducted in the Vuokatti Ski tunnel. A 

conclusion of the work was that propulsion component analysis can offer valuable 
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technique and performance optimization tools for athlete diagnostics to the coach. 

These tools have been combined with the Coachtech instant feedback system created 

by JYU. Coachtech is a versatile system aimed for coaches and athletes to analyse 

and compare training trials in various sports. In addition to the video of two cameras, 

Coachtech includes wireless measurement nodes, access points, ethernet compo-

nents, a PC equipped with the application and a Web user interface. The wireless 

nodes collect data like, for example, the treadmill speed and angle, and force sensors 

from ski poles and ski bindings. The application combines and synchronises the sig-

nals from the various sources and provides the sport related feedback based on the 

inputs. In cross-country skiing, the parameters can be, for example, cycle length, the 

impulse of force and the side differences of impulses. The training recordings can be 

uploaded to a web server for athletes and coaches to access with credentials later. 

(Ohtonen. 2016)  

Ohtonen et al. (2020) used 12 infra-red cameras (T-Series T 40S, 100 Hz, Vicon, 

Oxford, UK) in their research. The same cameras (8 of those) were also used in this 

research to collect ground truth data to be used for training and validation. One part 

of this work was to study if it is possible to create a training and validation dataset 

from the infra-red cameras of the VICON motion capture system. This dataset is later 

referred to as VICON data. If a sufficiently accurate can be created in this way, it 

would speed up the other parts of this work significantly by removing the need for 

manual work in labelling the data and thus allowing more time to be used to fine tune 

the models and to compare results to the ground truth. The comparison part is essen-

tial for deciding the quality of the machine vision output and for studying the main 

research question: could the VICON be replaced with an ordinary video camera and 

machine vision algorithm. 
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3 Pose estimation 

In this chapter we briefly discuss what pose estimation is and why it is needed. First, 

we will review some traditional pose estimation methods, what are the problems with 

traditional approaches and then we will look how pose estimation can be approached 

with machine vision. 

3.1 What is pose estimation 

Pose estimation is a problem where the goal is to detect human body position and 

orientation precisely from the real world and simulate these in a virtual environment. 

Pose in this thesis means skier body position on top of a treadmill. The problem has 

been traditionally approached with marker-based motion capture systems like 

VICON. Motion capture systems are used e.g. for diagnosing clinical problems, 

biomechanical studies and animating characters in the movie industry. The most 

common way to capture body motion is to use reflective markers attached to skin and 

tracked with optical cameras. There are however problems related to the skin 

markers.  

In addition to the reflective marker-based motion capture systems like VICON, there 

are other ways to achieve the same goal. The markers can be passive, like the 

reflective ones, or active like LED or acoustic markers. Active markers need wires 

and electricity so those are even more difficult to use in sports science than the 

passive ones. There are also non-optical systems that collect the position from inertia 

or magnetic-based markers. Traditional optical tracking systems used to track 

airplanes and satellites consist of the camera, computer and the mechanical tracking 

platform.9 

Virtual reality is a promising and growing field of study because of its possibilities in 

both education and entertainment. Human pose estimation can be used to enhance the 

 

 

9 https://en.wikipedia.org/wiki/Motion_capture (12.3.2022) 

https://en.wikipedia.org/wiki/Motion_capture
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interaction of humans and the virtual reality environment. Pose estimation can also 

be utilised in video surveillance to track, identify and recognize the actions of people 

in a monitored area. Medical assistance can be provided with pose estimation by 

detecting the movement of physical therapy patients. In self-driving cars the 

detection of persons with very high accuracy is an essential task. (Chen et al. 2020) 

The latest video camera and machine vision based pose estimation methods have 

increased the number of possible applications of pose estimation. Since well-being 

has become a popular topic, pose estimation is used to create virtual personal trainers 

for yoga and other exercises. In robotics, pose estimation is used in simulated 

environments to train reinforcement learning algorithms. Motion capture and 

augmented reality are areas where pose estimation can be utilised in the 

entertainment sector. The most interesting application of pose estimation in the 

context of this thesis is athlete pose detection.10 Machine vision based pose 

estimation is discussed more in Section 3.3. 

 

3.2 Problems with marker-based pose estimation 

The reflective markers should be placed on the skin precisely on top of the 

underlying bone. During movement, the skin can move in relation to the bone. The 

markers are also difficult to attach and attaching them is time consuming. The 

markers can also be an impediment to the movement of the subject. (Corazza et al. 

2006) 

In the studied application, clothes are an additional problem. Since some markers are 

attached to clothes instead of skin, there is yet another moving layer between the 

bone and the marker. Figure 5 shows an example of an athlete with markers attached. 

Some markers are attached to skin, but others are in cloth. In this case clothes are 

also not very tight fitting. While athletes are usually wearing tight fit training clothes, 

it is still possible that the marker is moving in relation to bone. 

 

 

10 https://www.v7labs.com/blog/human-pose-estimation-guide (12.3.2022) 

https://www.v7labs.com/blog/human-pose-estimation-guide
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Figure 5: Example showing markers attached to the subject. Some markers are attached to skin and 

others to clothes. This subject is wearing loose clothes so there might be movement in the marker's 

position. 

3.3 Single and multi-person pose estimation with machine vision 

Detecting human pose from images or video is a fundamental challenge for machine 

vision. The image from a camera is a two dimensional representation of the three 

dimensional real world. When detecting human pose, there are unique characteristics 

and challenges, e.g. body positions can cause self-occlusions and body shapes vary 

depending on different clothes. Complex environments may cause foreground 

occlusions or occlusion from nearby persons. The camera view may impose 

limitations by occluding certain parts of the person. (Chen et al. 2020)  
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Two dimensional (2D) pose estimation utilises a single camera to record images or 

video from one side of the subject. Occlusion from the foreground objects or the 

subject's own body can significantly limit the performance. Three dimensional (3D) 

pose estimation on the other hand is not as prone to occlusion errors than 2D, but it is 

more difficult to achieve with a monocular camera. The need to also detect the depth 

of the joint increases the complexity of 3D pose estimation. There is also 

significantly less annotated material to train 3D models compared to single camera 

2D material. (Chen et al. 2020) 

There are two categories of human pose estimation algorithms for different purposes 

based on knowledge about the number of persons in the image: single person 

detection and multi-person detection. (Fang et al. 2017) 

Single person detection is not sufficient for many real-world cases. Photographs 

often include more than one person and it is not clear that a single person detector 

can generalise well enough to handle this. Pishchulin et al. (2016) argue that there is 

a need for more attention towards multi-person detection because of its importance in 

real-world tasks. They list partial visibility of persons, overlapping bounding box 

regions around people and unknown number of people in an image as key challenges 

in multi-person detection. (Pishchulin et al. 2016)  

All of the challenges described above are present in this work. Figure 6 shows one 

frame where the subject is skiing in the Vuokatti Skiing laboratory and there are a 

total of three persons in the frame even though we are only interested in the one in 

the foreground and the two partially visible persons should be ignored. The bounding 

boxes are overlapping and in some frames one of the background persons is behind 

the skier so there are only two bounding boxes in that frame. There are practical 

reasons why the video cannot be shot without the persons in the background. There 

has to be an operator controlling the treadmill and when performing real skiing 

practices, there is always a coach moving around the skier monitoring the 

performance. Room dimensions and the placement of the control desks do not allow 

changing camera to the other side of the room. 
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Figure 6: Three persons detected from image. Bounding boxes overlap and there are partially visible 

persons. Detected persons in the background are not relevant for the studied task and have to be ig-

nored. 

Recognizing multiple persons in an image is a lot more difficult problem than 

recognizing the pose of a single person. There are two approaches for this problem. 

One approach is to first detect the number of persons with bounding boxes and then 

estimate the poses for each person. This approach is known as the two-step 

framework. Pishchulin et al. (2016) argue that estimating bounding boxes first does 

not suit situations where there are many people close to each other. The other 

approach is to detect all parts of the human bodies separately and then connect the 

parts to form human body poses. Detecting bounding boxes correctly is a key task for 

accurate pose estimation in the two-step framework. A downside of the part-based 

approach is that if persons are too close to each other, it is difficult to decide which 

body each part belongs to. (Fang et al. 2017) 
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Only the relevant human pose should be detected in the task studied in this thesis. 

Figure 7 shows a frame from a video where there are three humans. The joints are 

marked and the skeleton is drawn only for the main subject. 

 

  

 

Figure 7: Joints are marked and connected only for the main subject in the frame. Humans in the 

background are ignored. 

Tree models and random forest models have demonstrated to be very efficient in 

single person pose estimation tasks. Recent progress in deep learning techniques 

have yielded great improvements in human pose estimation as well as all object 

detection tasks. (Fang et al. 2017) 

In multi-person pose estimation, so-called k-poselets are used by Gkioxari et al. 

(2014) to detect human joints and predict locations of human poses. Poselets are 

generalisations of poses like bigrams and trigrams are in natural language processing. 

K-poselets are based on spatial relations between parts the algorithm has learned. 

Pishchulin et al. (2016) used integer linear programming to label and assemble body 

parts detected by their proposed DeepCut method. They used a convolutional neural 
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network (CNN) to detect body parts. Their method uses integer linear programming 

to perform non-maximum suppression on the part candidate sets and forms a 

configuration of the body parts based on the candidates. CNN is explained in the next 

section. 

Insafutdinov et al. (2016) used a ResNet-based stronger part detector and an 

incremental optimisation strategy in their method. They used pairwise terms between 

the body part hypotheses to group those into a valid human pose configuration. They 

say earlier models benefit more from the pairwise terms, but even for recent models 

this seems useful, as they still see the benefit for them due to better grouping. 

In this work, the AlphaPose algorithm is used. It is built using the Regional Multi-

person Pose Estimation (RMPE) algorithm by Fang et al. (2017), which is based on 

convolutional neural networks (CNN). It utilises a two-step framework to first detect 

bounding boxes and then to detect the joints. This approach and the AlphaPose 

algorithm were chosen for the task because of good performance and relatively easy 

usage of the available implementation. AlphaPose will be discussed in more detail in 

Section 4.2. 

3.4 Machine Learning and Machine Vision 

Machine learning is a form of applied statistics. It emphasises the statistical 

estimation of complicated functions with computers. The most fundamental 

characteristic of machine learning is that it can estimate or predict results for a task 

by learning the rules from the data, instead of using hard coded rules. Machine 

learning can be used for tasks too complicated to solve using traditional rule-based 

logic. (Goodfellow et al. 2016. p. 95-96) 

In traditional computing, the programmer is crafting logic for the application by hand 

based on some rules and then feeding data into that application to get the result. In 

machine learning humans are feeding algorithms with data and correct answers and 

let algorithms figure out the rules. These rules can then be applied to new data to get 

answers. That leads into the reason why the paradigm is called machine learning. 

The algorithm is indeed trained with many iterations of the data and answers set so it 
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can find statistical structures to form a rule that can be applied to new data. (Chollet. 

2018. p. 4-5) 

Machine vision is a broad field of study that by definition of Myler (1999) is “an 

implementation of systems that allow machines to recognize objects from acquired 

image data and perform useful tasks from that recognition.” Machine vision can also 

be referred to as computer vision, image understanding, scene analysis and robot 

vision, among others. The used name depends on the field of study where it is 

practised. Myler defines the term machine vision in his book by including both 

hardware and software into it.  

Deep learning is the fast-growing subfield of machine learning. It is based on multi-

layer artificial neural networks. The word ‘deep’ comes from the fact that the 

increasing computing powers from massively parallel graphic processing units 

(GPU) have enabled researchers to combine multiple layers of artificial neural 

networks, leading to substantial advancements. The increased computing power and 

massive growth of the available training datasets have increased the application areas 

of deep learning. As a concrete example, Cao et al. (2018) argue that the 

advancements in object recognition, localization and segmentation have brought 

machine learning into medical image analysis, for example to detect tumour tissue 

from the images of a patient.  

Convolutional neural networks (CNN) are a special kind of neural network for 

processing images and other data that has grid-like topology. Image data can be 

thought of as a two-dimensional grid of pixels whereas e.g. time series data is 

forming a one-dimensional grid. The name “convolutional neural network” comes 

from the mathematical convolution operation. CNNs are neural networks that have at 

least one layer containing convolutional operations. CNNs have achieved significant 

success in several practical applications. (Goodfellow et al. 2016. p. 321) 
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4 Relevant algorithms for pose estimation 

Pose estimation problems can be approached with several algorithms with different 

strengths and weaknesses. One open-source algorithm, AlphaPose, has been taken 

into deeper inspection in this work. AlphaPose was found to be the most promising 

algorithm in an earlier study in this topic and for that reason we selected it to be used 

in this work. The other reasons for this selection are the open source licence, 

somewhat easy usage and the possibility to train models further. 

In Section 4.1 we discuss some relevant datasets for human pose estimation and 

which datasets we are using in this work. The AlphaPose algorithm is described in 

Section 4.2. We explain how it is used and what has been done in order to improve 

the results during this work. Some other relevant algorithms, like DeepLabCut, are 

discussed briefly in Section 4.3. 

4.1 Relevant datasets in human pose estimation 

The existing datasets described in this chapter are commonly used in machine vision 

research and they are publicly available on the internet. In addition to the selected 

theme-specific image files, the datasets consist of labels for object detection, and 

keypoints for pose estimation. In the scope of skier pose detection, we are interested 

in labelled body keypoints. There are some significant differences in keypoint 

formats that are very essential to understand. In skiing the foot keypoints are 

essential, because they are needed for the propulsion force calculations that are 

currently done based on motion capture system data. The foot keypoints are missing 

from Microsoft Common Objects in Context dataset (MS COCO) (Lin et al. 2014) 

but are present in HALPE (Li 2020). 

The MS COCO dataset is a collection of images of common objects in context. It 

consists of 2.5 million objects in 328 000 human labelled images about complex 

everyday scenes containing common objects. The dataset is collected by Microsoft 

and it is created with the goal of developing object recognition algorithms for 
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machine vision. The MS COCO dataset is used as validation data in annual machine 

vision contests.11 

We used MS COCO keypoint format in this work. MS COCO format was selected 

because it was most commonly used in the existing AlphaPose models and thus the 

easiest one to approach. The MS COCO keypoints are shown in Figure 8 where on 

the left-hand side there are all the 17 keypoints with the appropriate numbering and 

the skeleton model connecting the keypoints. On the right-hand side there are 

keypoints and the skeleton model drawn on top of a tennis player. 

 

 

Figure 8: The MS COCO keypoints connected with the skeleton model (left) and the keypoints and 

skeleton drawn on top of a photograph of a tennis player (right).12 

The HALPE dataset (Li 2020) is a joint project of AlphaPose and Human Activity 

Knowledge Engine (HAKE). It provides annotations of 136 human keypoints where 

26 keypoints are of body, 68 of face, 21 of left hand and 21 of right hand.13 

 

 

11 https://cocodataset.org (30.1.2022) 
12 https://viso.ai/deep-learning/openpose/ (30.1.2022) 

https://cocodataset.org/
https://viso.ai/deep-learning/openpose/
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The main difference between MS COCO and HALPE in the context of this work is 

that HALPE includes keypoints for feet. These keypoints are essential for skier pose 

estimation, because knowing the angle between foot and leg is important for analysis 

and force production calculations. In this work we are aiming to use only part of the 

body keypoints that are shown in Figure 9. We focused only on keypoints on the 

right side of the body, because we were recording video only from the right side of 

the skier. The keypoints we were tracking were 6, 8, 10, 12, 14, 16, 23 and 25.  

 

Figure 9: HALPE 26 body keypoints drawn on top of a human body shape.14 

The MPII dataset (Andriluka 2014) contains around 25 000 images of 40 000 

humans. The images are collected from YouTube videos and every image is 

 

 

13 https://github.com/Fang-Haoshu/Halpe-FullBody (30.1.2022) 
14 https://github.com/Fang-Haoshu/Halpe-FullBody (30.1.2022) 

https://github.com/Fang-Haoshu/Halpe-FullBody
https://github.com/Fang-Haoshu/Halpe-FullBody
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annotated with the body joint positions. The dataset consists of images of humans in 

everyday activities. A total of 410 annotated human activities are covered.15 

Our plan was to start by formatting our training dataset into the MS COCO format 

and as soon as we would have functioning Python scripts for data preparation, fine-

tuning the model and comparison, move on to the HALPE format that includes foot 

keypoints that are essential to our purpose. We started with MS COCO even though 

it did not include foot keypoints, because most of the available configuration files 

and models were using the MS COCO format and we assumed it would be easier to 

start the fine tuning of existing models with this format.  

4.2 AlphaPose 

AlphaPose (Fang et al. 2017) is a publicly available solution for multi-person pose 

estimation based on Regional Multi-person Pose Estimation (RMPE) algorithm. It is 

said to be the first open-source system to achieve 70+ mean average precision 

(mAP) on MS COCO and 80+ mAP on MPII dataset.16 

The RMPE algorithm follows a two-step framework. It is aimed at detecting accurate 

human poses even when the bounding boxes obtained by body detection are 

inaccurate. It addresses problems in single-person pose estimators (SPPE). However, 

it can detect human poses incorrectly even when the human is correctly detected and 

the bounding box placement is correct. Another problem with SPPEs are the 

redundant detections. If the human detector detects the body incorrectly, a redundant 

pose is then also produced. 

Fang et al. (2017) proposed their RMPE algorithm version 1 in 2016 and they have 

been improving it since then. The latest version 5 is from 2018. Their solution is 

based on three components: Symmetric Spatial Transformer Network (SSTN), 

Parametric Pose Non-Maximum-Suppression (NMS) and Posed-Guided Proposals 

 

 

15 http://human-pose.mpi-inf.mpg.de/ (30.1.2022) 
16 https://www.mvig.org/research/alphapose.html (4.1.2021) 

http://human-pose.mpi-inf.mpg.de/
https://www.mvig.org/research/alphapose.html
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Generator (PGPG). In their solution the SSTN is attached to the CNN-based SPPE 

for extracting a high-quality region for a single person even from an inaccurate 

bounding box. To tackle the pose redundancy issue, they introduce parametric pose 

NMS. It tries to eliminate redundant poses with a novel pose distance metric. PGPG 

is a novel way to augment training samples to produce large samples of data for 

training. 

RMPE is a general solution and can be applied to both single-person and multi-

person detection. The algorithm was able to achieve 76,7 mAP on the MPII dataset 

and it was able to handle inaccurate bounding boxes and redundant detections. 

4.3 Other relevant pose estimation algorithms 

In addition to AlphaPose, there are also other human pose estimation algorithms like 

OpenPose, DensePose and HRNet.17 OpenPose is an open source algorithm for real 

time multi-person keypoint detection in two dimensional space. It can also be used in 

3D as a real-time single-person keypoint detector. OpenPose has several keypoint 

configurations and it has a highly experimental and not production ready training 

repository for training own models.18 (Cao et al. 2019; Hidalgo 2019) 

DensePose (Güler 2018) is an algorithm to map all human pixels of an RGB image to 

the 3D surface based representation of the body. Since there has not been a labelled 

dataset for dense surface based pose estimation, one part of the DensePose project 

has been to create such a dataset. A MS COCO based training dataset has beens 

created by human labellers. DensePose is open source and it is based on 

convolutional neural network architecture. 

Sun et al. (2019) introduced the novel High-Resolution Network (HRNet) algorithm 

which is based on high-resolution representations through the whole network 

architecture. 

 

 

17 https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-human-pose-estimation/ 

(13.3.2022) 
18 https://github.com/CMU-Perceptual-Computing-Lab/openpose_train (13.3.2022) 

https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-human-pose-estimation/
https://github.com/CMU-Perceptual-Computing-Lab/openpose_train
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Human pose estimation functionalities have also been added to general machine 

learning libraries. For example in TensorFlow there is the Pose Detection package 

which provides three state-of-the-art models that can be used to run real-time pose 

detection tasks. Pose detection models are accurate and so fast that they can be run 

on laptops and smartphones.19 

There are also more complete solutions for pose estimation like DeepLabCut (Mathis 

2018), which is a markerless pose estimation toolbox originally developed for animal 

pose estimation. DeepLabCut is not just an algorithm, but it combines tools to handle 

the whole process from data manipulation and training dataset labelling. It uses 

ResNets and redout layers as feature detectors and DeeperCut algorithm for human 

pose estimation from Insafutdinov et al. (2016). The algorithm needs to be trained 

with a custom training dataset before use. Researchers in Vuokatti are studying 

DeepLabCut in the topic of skier pose estimation. 

 

 

 

 

19 https://github.com/tensorflow/tfjs-models/tree/master/pose-detection (13.3.2022) 

https://github.com/tensorflow/tfjs-models/tree/master/pose-detection
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5 Data acquisition 

This Chapter describes the methods used to collect training data to train skier pose 

tracking models. Section 5.1. describes the steps done in the practical work of this 

study. These steps are discussed in more detail in the forthcoming chapters. In 

Section 5.2. data collection methods and participants are described, Section 5.3 

describes the testing protocol. 

5.1 Work structure 

The work started with a data collection event in the Vuokatti skiing laboratory. The 

VICON system and a video camera were used to collect the data from which ground 

truth and training dataset were constructed.  

Next we started the data preprocessing which included three steps in the first part of 

the work: first we converted, trimmed and transformed the videos to sets of single 

frame images sorted into directories. Extra frames were removed from the beginning 

of the video and each set of frames started with the pole slam point which was used 

as the synchronisation mark. One of the videos was converted to Audio Video 

Interleave (AVI) format for the next step. 

The second step of preprocessing was to manually label the AVI formatted file. Each 

frame of the video was processed and each joint was manually pointed in a labelling 

application to collect its coordinates. 

The third step was to convert the manual labels into a MS COCO formatted JSON 

file. A Python script was created for this purpose. 

With the manually-created JSON labels and the image dataset we were able to start 

the AlphaPose training and fine tuning. First we experimented with training models 

from scratch and then we switched to fine tuning existing models.  

Then we returned to preprocessing the VICON data. The data had to be calibrated to 

match the video camera image coordinates. The Direct Linear Transform (DLT) 
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algorithm was used for this task. The calibrated data was then also formatted as MS 

COCO into JSON files.  

The last step was to run AlphaPose inference with different models and to compare 

the model outputs. All these steps are illustrated in Figure 10. 

 
Figure 10: All steps with short descriptions and example snippets of the step. 

 

 



 

 27 

5.2 Collecting training data 

There were four participants in the video recording session. There were one female 

and three males, and there was considerable variation in the body sizes of the 

participants. The participants were representing two categories: skiing enthusiasts, 

who are former competitive skiers, and active competitive national level skiers. The 

skiers were selected among volunteers to represent various body sizes and shapes 

and performance levels. The idea was to get more heterogeneous data by selecting 

skiers from two categories. 

Every participant had read through a document where the reason for the video 

recording session was stated. The participants were also asked to sign a paper to 

declare they are perfectly healthy. 

The videos were recorded using a Lilin UFG1122ex3 camera. Figure 11 is showing 

the used camera in its attachment position. The camera is attached to a movable arm 

and it was easy to move either on purpose or by accident. This may cause issues 

when calibrating the VICON point cloud data for training the dataset. The calibration 

process is discussed in Section 6.4. 
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Figure 11: Lilin UFG1122ex3 camera attached to its movable arm. The easily movable arm can cause 

problems with calibrating VICON and the camera, since the location of the camera needs to be fixed 

when calibrating point cloud data to video. 

 

5.3 Test protocol 

As the first step, the reflective markers for the VICON motion capture system were 

attached to the participants. Since the video is recorded from the side, there was no 

need to attach markers to both sides of the skier. Figure 12 is illustrating the marker 

positions and the attachment using sports tape with a whole body image and more 

precisely in the elbow.  
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Figure 12: There were a total of 8 markers attached to the right side of the subject: in the wrist, el-

bow, shoulder, hip, knee, ankle, heel and base of the fifth toe. The markers are attached using sports 

tape. 

The reflective markers are tracked by 8 infrared cameras of the VICON system that 

are located around the skiing treadmill. Figure 13 is illustrating the locations of the 

four infrared cameras in the other side of the room. 

 

Figure 13: VICON infrared cameras surrounded with red circles are installed to the ceiling of the 

laboratory room around the skiing treadmill. 
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The recording events started for each subject with a warm-up period where the skiers 

had the possibility to ski on the treadmill using various settings for speed and 

inclination, until he/she was ready to perform the actual test runs with the specified 

speeds according to the test protocol. The testing protocol consists of the following 

steps: 

All participants were supposed to perform about 10 full skiing cycles in four speed 

levels and with two different classic skiing styles: double poling, and diagonal 

skiing.  

A cycle in skiing means body movement from the rest position through propulsion 

generation movement back to the rest position. Figure 14 illustrates the one double 

poling cycle with four intermediate positions between the beginning and end 

positions. (Danielsen 2018) 

 

Figure 14: Illustration of a cycle in double poling. There are differences between the traditional and 

modern versions, but these differences are not relevant in this study. (Danielsen 2018 - page 5) 

Double poling is a skiing technique in which all propulsive force is applied through 

the poles and where the skis glide continuously forward parallel to track. It is mostly 

used on low declination downhill and flat track parts. Strong competitive skiers can 

even use double poling in steep uphills. Most of the propulsion output power is 

produced with upper extremities but also lower extremities play a significant role in 

power output by extending and raising the body before the swing phase. (Danielsen 

2018)  
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While double poling is mostly used in the flat parts of the track and lower inclines, 

diagonal stride is more of a steeper incline technique. The propulsion power is 

produced with both the poles and the skis. One cycle of diagonal stride skiing is 

illustrated in figure 15. From a kinematic perspective diagonal stride can be 

compared to running since the arms and legs are moving in anti-symmetrical 

synchronous fashion. (Danielsen 2018) 

 
Figure 15: One cycle of the diagonal stride skiing technique illustrated with three intermediate body 

positions between the beginning and end positions. The figure is modified from the original. (Welde 

2017)20 

 

Figure 16 visualises the difference between treadmill inclination angles. A 1° 

inclination angle can be considered flat, since it is commonly used in treadmill 

training to compensate for missing resistance from air flow. An 8° inclination was 

chosen for uphill skiing. 

 

 

20 http://dx.doi.org/10.1371/journal.pone.0187111 (18.4.2022) 

http://dx.doi.org/10.1371/journal.pone.0187111
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Figure 16: A visualisation of the difference between 1° and 8° inclinations used in the videos for this 

work. A 1° inclination is commonly used in indoor workouts to compensate for missing air resistance 

from outdoor training. 8° was used for uphill skiing. 

Double poling was done on 1-degree inclination and diagonal skiing was performed 

on an 8-degree inclination. Styles are shown in Figure 17 demonstrating differences 

in inclination angles and skiing techniques used. 
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Figure 17: Double poling on 1° inclination shown on the left figure, diagonal skiing on 8° incli-

nation on the right figure. 

In the first session double poling was used. For skiing enthusiasts the treadmill 

speeds were 10 km/h, 15 km/h, 20 km/h and 25 km/h and for competitive skiers the 

speeds were 15 km/h, 20 km/h, 25 km/h and 30 km/h. The speeds are presented in 

Table 1. The skiers had the possibility to take breaks as needed between runs. The 

breaks lasted a few minutes. The breaks were shorter between the early runs but as 

the speed of the treadmill increased and therefore the runs got more demanding, the 

breaks became longer. In the second session with diagonal skiing, the treadmill 

speeds for enthusiasts were 6 km/h, 8 km/h, 10 km/h and 12 km/h. For competitive 

skiers the speeds were a bit higher: 8 km/h, 10 km/h, 12 km/h and 14 km/h. (Table 1) 
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Table 1: Treadmill speeds in double poling and diagonal skiing. The treadmill was 

set on 1° inclination. 
 

Run 1 Run 2 Run 3 Run 4 

Double poling 
    

Skiing enthusiasts  10 km/h 15 km/h 20 km/h 25 km/h 

Competitive skiers 15 km/h  20 km/h  25 km/h 30 km/h 

Diagonal skiing 
    

Skiing enthusiasts 6 km/h 8 km/h 10 km/h 12 km/h 

Competitive skiers 8 km/h 10 km/h 12 km/h 14 km/h 

 

At the beginning of each run, the camera and VICON were started, and participants 

slammed the right pole to the treadmill for a synchronisation mark. Then the 

treadmill was started, and the skier performed about 10 cycles with the desired skiing 

style. This corresponds to about 20 to 40 seconds of video material with 30 frames 

per second.  

Some of the recorded runs had to be discarded because of failures in following the 

test protocol, i.e. the synchronisation slam was forgotten or the recording was not 

started at the correct time. The total number of collected frames after trimming the 

beginning of the videos was 34 333. Unfortunately we were not able to utilise all of 

the collected frames because of video quality issues. From Subject 1 we collected 

5344 frames from the five successful runs. From Subject 2 we managed to collect 

data from all eight runs with a total of 9607 frames. From Subject 3 seven successful 

runs were recorded but none of the recorded 8473 frames were used in the end. Most 

of the frames of Subject 3 suffered from flickering and artefacts leading to us 

discarding those frames. From Subject 4 we managed to capture nine runs with a 

total of 10909 frames after trimming but because of the same quality issues as with 

Subject 3 only 10 of those were used in the end. We manually picked 10 frames for 

the calibration dataset. All datasets are described in the next chapter. Subject 4 tested 

the highest speed twice which explains the one extra run.  
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It is noteworthy that the low number of used frames from Subject 4 was because we 

were unable to get the VICON calibration to work sufficiently, which caused us to 

have to rely on manually labelled data only. We manually selected 10 frames that 

were used for the calibration and in the end for the model performance evaluation 

dataset. These issues are discussed further in Section 6.5. 
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6 Data pre-processing 

This chapter describes the steps in collecting the video files and pre-processing the 

VICON point cloud data before it could be utilised in the training of the machine 

vision models. In Section 6.1 we discuss how the data from two different sources, 

video camera and VICON motion capture system was synchronised for calibration. 

The method for synchronisation had to be decided and added to the test protocol 

before the data collection event so the athletes could prepare for it. Section 6.2. 

describes the dataset structure. In Section 6.3 we explain how the data was labelled 

for training and Section 6.4 explains the process to calibrate VICON point cloud data 

points to match the video camera view and the problems encountered. 

To address the research question “How to create a training dataset by utilising 

accurate VICON data”, a Python script was created to modify VICON output to the 

MS COCO format for algorithms to understand as labels for video. All recorded 

material was supposed to be labelled so that different parts of it could be used for 

training and validation in different experiments. During the work we found out that 

calibrating the VICON data to match the two-dimensional space of the video camera 

view was more difficult than anticipated and in the end only small portions of the 

VICON data got labelled. The calibration process and issues with it turned out to be 

a significant part of the work and are discussed in detail in the Section 6.4. 

In Section 6.5 we explain the encountered challenges in the pre-processing phase and 

how different the pre-processing turned out to be than initially thought. Python 

source codes for dataset creation can be found from Hyteli-scripts GitHub 

repository.21 

 

 

21 https://github.com/juhahu/hyteli-scripts (9.4.2022) 

https://github.com/juhahu/hyteli-scripts
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6.1 Synchronising and converting the videos 

The Handbrake open source video transcoder application was used to process the 

videos. When we started to work with the video files, we noticed that the camera was 

set to use a variable frame rate. Variable frame rate (VFR) is a feature of some video 

containers where the frame rate of parts of the video where there is less movement is 

decreased to reduce the size of the video container (Waggoner 2013 p. 134). This 

frame rate inconsistency caused problems when we started to synchronise the data. 

VFR also prevented AlphaPose algorithm from working, since when framerate 

started to fluctuate, the AlphaPose run failed. This would have also caused 

synchronisation problems later. Therefore the framerate was changed to constant 30 

with Handbrake. The videos were also re-coded to H.264 for better usability. 

For training, the videos needed to be converted as frame images. The ffmpeg 

application was used as follows: 

ffmpeg -I input_video_name.mp4 -vf fps=30 frame_directory/frame-

%d.jpg 
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Ffmpeg application is a multimedia framework which can be used to decode, encode, 

transcode or play multimedia files in a wide variety of operating systems. Figure 18 

shows the converted frame from the video. 

 

Figure 18: A frame from the processed video. 

 

One video had to be converted to Audio Video Interleave (AVI) format for manual 

labelling, as the Fiji22 image processing application (Schindelin 2012) used for 

manual labelling did not work with QuickTime (MOV) or MPEG4 (MP4) file 

formats. ffmpeg was used for the conversion. 

ffmpeg -I input_vide_name.mp4 -codec:v rawvideo 

avi_directory/video.avi 

 

Finally, the unnecessary waiting times from the start of the videos were trimmed. 

The test protocol included a pole slam as a synchronisation mark to synchronise 

video with VICON data and this mark was used to trim the videos. All frames before 

the synchronisation mark were removed. The trimmed parts were frames where 

skiers stood still while waiting for the treadmill to start rolling. As a result, the total 

 

 

22 https://imagej.net/software/fiji/ (18.4.2022) 

https://imagej.net/software/fiji/
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amount of collected data was reduced, but no frames with actual skiing movement 

were lost during trimming. 

 

6.2 Datasets for skier pose estimation 

The dataset creation was an important part of the work. It was a requirement that the 

data is of good quality in order for the training to succeed and the accuracy of the 

model to be sufficient for the targeted application. In total, we created three MS 

COCO formatted datasets for skier pose estimation. The first one was the manually 

labelled dataset for the first training experiment and the second the VICON dataset 

for the next experiment. The last dataset was the calibration dataset used for VICON 

calibration and later for the validation of the models. The manually labelled dataset 

was called the handpicked dataset. 

For MS COCO, the correct file hierarchy is important. The data should be located in 

a dataset specific directory where it is splitted into three subdirectories: train2017, 

val2017 and annotations. For the first dataset we used 1000 frames. The first 700 

frames were used for training and were saved into the train2017 directory. The last 

300 frames were saved into the val2017 directory. All the datasets with subject 

counts, total image counts and the train / val -splits are presented in Table 2. The 

JSON formatted manually picked labels were saved into the annotations directory. 

For the second, the VICON dataset we collected the 700 and 300 frames from five 

videos so in total the second dataset had 3500 frames in the train2017 directory and 

1500 frames in the val2017 directory. In total there were 5000 frames. The 

annotation file to this dataset was created from calibrated VICON data.  

The naming of the frame files turned out to be important as well. We renamed the 

frame files of each directory to be six digit index numbers with leading zeros starting 

from 000001. Renaming functionality from Mac OS Finder was used for renaming 

and creating the file hierarchy. 

The third dataset, i.e. the calibration dataset, was a bit different. It contained a total 

of 30 frames, 10 from three subjects each, with five frames each from two different 
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videos. The videos were selected to represent different speeds and skiing techniques. 

No images from Subject 3 were used due to issues with the video quality. With these 

data splits the aim was to get as heterogeneous dataset for calibration and validation 

as possible from the collected material. We selected the 100th, 200th, 300th, 400th 

and 500th frame from each of the selected videos. The file hierarchy was also 

slightly different than in the two previous datasets since all 30 images were saved 

into the train2017 directory and val2017 was left empty. The labels were saved into 

the annotations directory like with the previous datasets.  

Table 2: Details of the datasets created: the count of subjects presented, the total 

image count, train / val -split used and the origin of labels. 

Dataset Subjects Images Train Val Labels 

Handpicked 1 1000 700 300 Manually labelled from the 

frames of 1 video  

VICON 2 5000 3500 1500 Calibrated VICON point cloud 

data from 5 videos with DLT 

algorithm 

Calibration 3 30 30 0 Manually labelled from the 

frames of 6 videos 

 

There were many issues within this part of the work. For example, there was 

uncertainty with the label file format because of missing documentation, causing pre-

processing to take us more time than anticipated. These issues are discussed in more 

detail in Section 6.5.  
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We used the Pandas23 library to manipulate data when pre-processing the label 

information into JSON formatted annotation files. Pandas is an open source Python 

library used in data manipulation and analysis. 

6.3 Labelling the training material 

The recording of the sessions was done using a Lilin UFG1122ex3 camera and the 

VICON motion capture system. One of the recorded videos was then labelled 

manually using the Fiji application. Figure 19 illustrates the manually picked labels 

in the Fiji user interface. Fiji is an open-source application for rapid prototyping of 

image-processing algorithms. It was originally developed for biological image 

analysis. Fiji is based on open-source software ImageJ and uses ImageJ plugin 

format to enable easy sharing of new algorithms between users. (Schindelin 2012). 

With Fiji, each frame of the video was processed and 8 joints were marked with 

mouse clicks to collect the corresponding location coordinates. A total of 9088 

precisely marked points were marked for that one video. Labelling data manually 

proved to be a very time-consuming task that could not be done for very long at a 

time. It also turned out that creating the markings precisely was very difficult. The 

frames had to be switched back and forth and earlier markings had to be edited 

because the motion blur effect caused markers in some of the frames to be more 

difficult to detect. At the end, Fiji processed the video and created a CSV output file 

containing one data row per each marked point.  

 

 

23 https://pandas.pydata.org/ (18.4.2022) 

https://pandas.pydata.org/
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Figure 19: Manual labelling with Fiji. 

 

The CSV file created by Fiji contained details of each marked joint (Figure 20). The 

relevant data columns for this work were the X and Y coordinates and Slice. Slice 

indicated which frame the row was about. This was used first in the script to 

determine if data for all 8 joints were present for each frame. 

 

Figure 20: CSV file containing manually labelled points. 
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There are also other supportive scripts that had to be crafted. One script was for 

detecting synchronisation frames from the label files so that the start of the label data 

and the video could be trimmed precisely correctly. Another script was to draw 

images and skeleton models from labels to verify that the frame synchronisation was 

correct for manually labelled and transformed VICON data. All of the scripts are 

written in the Python language and are stored in the Hyteli-scripts GitHub 

repository.24 

6.4 VICON data calibration 

One research question this work was supposed to answer was: is it possible to to use 

the point cloud data from the VICON motion capture system to create large amounts 

of training data. Since VICON collects coordinates of reflective markers (Figure 12, 

in Section 5.3) in 3D space with eight cameras and the video camera is filming a 

skier only on one side and in 2D, the coordinates have to be calibrated.  

The calibration was done using a modified version of a script denoted as Camera 

Calibration available with an open MIT licence in a Github repository.25 The Camera 

Calibration script is created for calibrating real-world 3D coordinates to match a 2D 

view. The script first calculates the camera projection matrix P using the Discrete 

Linear Transform (DLT) algorithm (Abdel-Aziz & Karara 1971; Zhang 2000) from 

the given calibration 3D-2D point correspondences. We used the point 

correspondences from 5 manually labelled frames. With the estimated projection 

matrix P, we can then calibrate the 3D coordinates from any VICON point cloud data 

frame to 2D image plane to match the camera field of view.  

DLT is a linear algorithm and as such is not capable of handling optical lens 

distortions. One possibility is to extend the standard 12 element 3D DLT with 5 

additional parameters, also the optical distortion and decentering distortion can be 

 

 

24 https://github.com/juhahu/hyteli-scripts (9.4.2022) 
25 https://github.com/sreenithy/Camera-Calibration (18.3.2022) 

https://github.com/juhahu/hyteli-scripts
https://github.com/sreenithy/Camera-Calibration
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addressed. 8 control points are needed in this case.26 Other more advanced 

algorithms include Tsai’s calibration method (Tsai 1987) and the calibrateCamera() 

function implemented in OpenCV.27 In this work we used the standard 12 element 

3D DLT which can be used with a minimum of 6 control points. The control points 

in this work are the joint coordinates. 

We used the original DLT functions from the Camera Calibration script but created 

our own script to preprocess the data and to call those functions. Usually the DLT 

calibration is done using some object whose dimensions are known such as the 

Rubik’s Cube or a Chess board pattern. We were not able to use an approach like that 

but instead created a script to utilise the location coordinates from VICON point 

cloud data. Python functions from the Pandas library were used for manipulation.  

The projection matrix P is calculated with the DLT algorithm by providing the 

known 2D image plane coordinates as x and the known coordinates of the 3D world 

from VICON data as X. The projection for the ith coordinates is shown in Equation 

1. 

(1) 

where 

(2) 

 

 

26 http://www.kwon3d.com/theory/dlt/dlt.html (18.3.2022) 
27 https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html (25.3.2022) 

http://www.kwon3d.com/theory/dlt/dlt.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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The elements x and y in the vector xi are the 2D image control points and the 

elements X, Y and Z in the matrix Xi are the 3D world coordinates. Both vectors are 

represented in homogeneous coordinates. 

The resulting P is a 3x4 projection matrix containing 12 unknowns, or actually 11 as 

the scale cannot be derived from a 2D image. We get two equations from each 2D 

point and since the 11/2 = 5.5 we need at least 6 known joint locations to estimate P. 

In our data we had eight joints manually labelled so we had enough coordinates for 

the calibration even on a single frame. More parameters can yield better performance 

though as the sensitivity for the errors would decrease. The longer the distance 

between the coordinate points of the joint between calibration images, the better the 

calibration result would be. For that reason we did not pick consecutive frames for 

the calibration dataset, but instead used every 100th frame starting from the frame 

100, for a total of five calibration frames. 

From P we calculated the RQ decomposition which gave us the intrinsic values K 

and extrinsic values R and t, which are the rotation matrix and the translation vector, 

respectively. The intrinsic values are the internal features of the camera i.e. focal 

length and principal points. Extrinsic values describe the environment, that is the 

location and orientation of the camera with respect to an external coordinate system. 

(3) 

We did not have to focus on calculating the intrinsic and extrinsic values and only 

used them for debugging purposes. Instead, we utilised the P matrix to translate 

VICON data to the 2D image plane and saved that data as MS COCO labels into 

JSON files to be used in the model training. The calibration step was an essential part 

in this work and there were major problems with it. The issues are discussed in the 

next section. 
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6.5 Challenges with data pre-processing 

Data pre-processing turned out to be a much more time-consuming and difficult task 

than we assumed when scheduled the work. There were lots of things to learn in data 

manipulation to modify data to correct format for processing with the used 

algorithms.  

Some of the videos got corrupted when saving to a file which was not noticed until 

we started pre-processing the data. There were flickering and artefacts in all videos 

of the two latter subjects. These issues were not visible in the real time video stream 

projected to the laboratory screen during the event but appeared after saving the 

stream as video files. For this reason most of the data from the latter subjects had to 

be discarded.  

We used the ffmpeg application to convert one video file into the AVI format for 

manual labelling. That conversion decreased the image quality which made the 

detection of the exact joint locations difficult. The reflective markers helped in 

detecting the correct locations. We claim that with better image quality the labelling 

process would have been easier and faster and probably the results would have been 

more accurate.  

When we started to pre-process the data for the training dataset, we renamed the 

images with the subject name and an index number but we found out that AlphaPose 

was unable to find images with that name pattern. After renaming the images to six 

digit index numbers with leading zeros, the images were found.  

We created a directory structure containing the images used for the training dataset 

and the test dataset and the labels in separate subdirectories. The labels are included 

in a MS COCO formatted annotation file. The path to the image location and to the 

annotation file were entered into the AlphaPose configuration file. Even though all 

the images were stored locally in the file system, the script also needed the URL of 

the images. Otherwise the training failed with the error message about missing data. 

However, the URL was not actually needed, since the issue was solved by adding 

any URL string with the correct directory structure, e.g.. 

“http://xxx/train2017/000001.jpg”, to the appropriate field in the label file. 
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Converting the keypoints to the correct format was a relatively easy task with the 

Python script but there were some things to note in creating the annotation file. After 

creating the file with the keypoint and file location information, there were still 

multiple issues before we managed to get the training to start. The algorithm 

appeared not to be completely ready for users to train models with custom data. It did 

not provide a clear error message about what was preventing the training from 

starting, and as a result it took some effort to figure all requirements out. 

In addition to the keypoint labels, we had to have bounding boxes of the persons in 

the images. The YOLO v3 algorithm was used to detect persons and to write the 

bounding box coordinates to a file. This file was then read by the script and the 

coordinates were written among the other data to the MS COCO formatted 

annotation file. The need to provide the bounding box information with the training 

labels was not known before the actual work and since the documentation did not 

contain anything about the dataset creation, this had to be figured out by ourselves. 

When reflecting back, this appears reasonable since AlphaPose is based on a two-

step framework where the bounding box detection comes before the joint detection. 

Therefore, it seems clear that the bounding boxes have to be provided with the 

training annotations.  

When detecting the bounding boxes with YOLO, some kind of file path length 

limitations were encountered. YOLO could not detect images from paths longer than 

some threshold, but after changing the hierarchy to be one level shallower the images 

were found. 

Difficult problem with shaping data from VICON to be used as training data for 

machine vision with a normal video camera was something we were not prepared for 

at all. Managing different aspect ratios and camera distances posed a significant 

challenge. Our initial thoughts about that problem were just to export, scale and crop 

x and y -axis data from VICON 3D-point cloud to match video camera field of view 

but it soon appeared that it would not be as easy as that at all.  

When creating the scripts to calibrate VICON data to match the video camera view, 

we noticed that during the recording session, the VICON-operator had to change the 

sample rate of VICON from 150 samples per second to 100. That did not sound a big 
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deal during the recording session but when creating the scripts that difference in 

videos caused yet another problem to solve. Since videos were recorded with 30 

frames per second and 100 samples per second is not divisible by 30, we were unable 

to get the exactly correct match between the VICON data and the video frames. We 

used a Python script to pick the nearest VICON data frame for each video frame. Of 

course this was not the perfect solution since the data was not from the exact same 

moment. We should have thought about what possible drawbacks there might be 

when the VICON operator said she changed the frequency but we did not. These 

frame rates are one issue to consider in the forthcoming studies. 

Variable frame rate (VFR) in video files was another major issue with the data 

quality when considering the VICON calibration. The frame rate of the video files 

was changed to a constant one in the pre-processing phase but the data integrity was 

suffering from the conversion as some of the original frames had to be duplicated to 

increase the number of frames to match the desired constant frame rate. That causes 

mismatches between the video camera frames and the VICON point cloud 

coordinates. We should have reviewed the camera settings before recording. We 

suspect that the data inconsistency caused by converting the VFR from the video 

saffected the calibration performance. 

Pre-processing phase took by far most of the time of the practical part of this work 

and that confirmed the known fact that data wrangling is the most time-consuming 

phase of data science workflow. 
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7 Model training 

In this chapter we go through the phases of training the machine vision model for 

skier pose estimation with AlphaPose. We go through how models are trained and 

how existing models were utilised in this work as a base model for our own tailored 

dataset. 

7.1 Training model from scratch 

Training models with existing algorithms such as AlphaPose and existing pre-

processed data can be very straightforward. This involves downloading a dataset 

consisting of relevant labelled images, like MS COCO, setting up a configuration file 

provided by algorithm developers and starting the training. We tested the training of 

one model from scratch with the full MS COCO dataset even though that was not 

necessary for this work since a similar pretrained model is provided in the AlphaPose 

model zoo. We used the configuration file Fast Pose (DCN)28 by the AlphaPose 

developer team. It uses a ResNet5029 - DCN30 backbone and YOLO version 331 as the 

detector. ResNet50 is a 50-layer deep convolutional neural network trained with the 

ImageNet database and used for image classification. DCN refers to a deformable 

convolutional network. In deformable convolutional networks, each grid node is 

moved by a learnable offset, compared to the fixed grid used in regular convolutional 

networks. Convolutional neural networks are discussed in Section 3.4. YOLOv3 is 

an algorithm created for real-time object detection in videos. It utilises deep 

convolutional neural networks and is implemented using the Keras or OpenCV 

 

 

28 https://github.com/MVIG-SJTU/AlphaPose/blob/master/configs/coco/resnet/256x192_res50_lr1e-

3_2x-dcn.yaml (18.4.2022) 
29 

https://se.mathworks.com/help/deeplearning/ref/resnet50.html;jsessionid=b7688a0fbe35f65703efa222

f862 (18.4.2022) 

 
30 https://towardsdatascience.com/review-dcn-deformable-convolutional-networks-2nd-runner-up-in-

2017-coco-detection-object-14e488efce44 (18.4.2022) 
31 https://viso.ai/deep-learning/yolov3-overview/ (18.4.2022) 

https://github.com/MVIG-SJTU/AlphaPose/blob/master/configs/coco/resnet/256x192_res50_lr1e-3_2x-dcn.yaml
https://github.com/MVIG-SJTU/AlphaPose/blob/master/configs/coco/resnet/256x192_res50_lr1e-3_2x-dcn.yaml
https://se.mathworks.com/help/deeplearning/ref/resnet50.html;jsessionid=b7688a0fbe35f65703efa222f862
https://se.mathworks.com/help/deeplearning/ref/resnet50.html;jsessionid=b7688a0fbe35f65703efa222f862
https://towardsdatascience.com/review-dcn-deformable-convolutional-networks-2nd-runner-up-in-2017-coco-detection-object-14e488efce44
https://towardsdatascience.com/review-dcn-deformable-convolutional-networks-2nd-runner-up-in-2017-coco-detection-object-14e488efce44
https://viso.ai/deep-learning/yolov3-overview/
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libraries. The model is trained with keypoints from 64115 images of MS COCO 

2017 training set and validated with 5000 images of MS COCO 2017 validation set. 

Configuration files are formatted as YAML, as configuration files commonly are. 

YAML is a digestible data serialisation language.32 The YAML acronym originates 

from the sentence: “Yet Another Markup Language”. Figure 21 shows the example 

part of the configuration file containing the paths to one dataset. 

 

Figure 21: Snippet of the original configuration file used to train the model with the MS COCO 

dataset. The only things to verify when training with the existing dataset and configuration file were 

the paths to data.  

Training this kind of neural network models with big image datasets is 

computationally very heavy. A powerful virtual machine from CSC cPouta cloud 

(Table 3) was used for the training but even with this kind of powerful GPU-

 

 

32 https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/ (18.4.2022) 

https://circleci.com/blog/what-is-yaml-a-beginner-s-guide/
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accelerated machine it took two and half days to complete. More powerful and faster 

computing systems should be used if the aim is to train the models with multiple 

datasets and each model multiple times with different hyperparameters.  

Table 3: Virtual machine specifications used in this study. The virtual machine is 

provisioned from CSC cPouta cloud and it is running Ubuntu 18.04. 

Flavor Cores GPUs Memory (GiB) Total disk (GB) Memory/core (GiB) 

gpu.1.1gpu 14 1 112 1080 8 

 

The AI partition of either the CSC Puhti supercluster or Mahti supercomputer33 was 

planned to be used for further training and hyperparameter optimisation because of 

the far superior computing power and parallelism than of a single virtual machine. 

This was not needed in the end because of problems in getting enough training 

material. The fine tuning of existing models did not take long enough that the 

supercomputers would have been needed. While the time for training from scratch 

was calculated in days, the fine tuning with as small datasets as we used took just 

minutes or hours.  

When training the model from scratch with our own custom dataset, only the same 

dataset paths and the number of half body keypoints to detect had to be changed. 

These changes are illustrated in Figure 22 with example paths used when training the 

first dataset. We used handpicked as the name of the directory and the model name 

for the first custom dataset described in Section 6.2. Changing the configuration file 

to work with the custom dataset was not complicated but to get the dataset to the 

correct format was a more complex task. The challenges with that were discussed in 

Section 6.5. 

 

 

33 https://research.csc.fi/csc-s-servers (30.1.2022) 

https://research.csc.fi/csc-s-servers
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Figure 22: Snippet from the beginning of the configuration file used for training a completely new 

model with our own manually labelled data. The notable parts are the paths for the data and the 

number of used joint keypoints. 

 

Since the Handpicked dataset consisted of only 1000 frame images and the second 

dataset VICON dataset was just 5000 frame images, they were not as heavy to train 

than with the full MS COCO dataset and therefore the supercomputers were not 

needed for the task. These trained models are later referred to as base models and the 

test results of those in skier pose estimation are compared in the Section 8.2.  

7.2 Fine-tuning existing models 

To modify existing solutions to be better in one specific task there often is no need to 

start the model training from scratch. There are many existing models available in 

algorithm developers' model zoos that can be used as starting points and for further 
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fine-tuning with own data. AlphaPose provides pre-trained models such as Simple 

Baseline, Fast Pose and HRnet and config files on how to utilise those.34 Fine-tuning 

existing models was done in this work. The model used as a baseline was the same 

Fast Pose (DCN) by AlphaPose developer team described in the previous section. 

Fine tuning was in the end a very easy task, but figuring out how to do it correctly 

needed some research. The documentation about fine-tuning on the AlphaPose 

GitHub page was lacking and apparently the code was supposed to be used with pre-

made models. As a result, there were hard-coded variables and values in the code and 

in the configuration files that needed to be discovered. The error messages from the 

AlphaPose training script were generic and the debugging of the errors was difficult.  

When fine tuning an existing model, the same configuration file was used than when 

training a completely new model. Only the dataset paths had to be modified and the 

used original model path had to be added to the ‘TRY LOAD’ field in the MODEL 

section. (Figure 23)  

 

Figure 23: Example snipped from the configuration file where the existing model was set for loading. 

The self trained model is used in that example case. 

In this work we trained two base models from scratch, one with the Handpicked 

dataset and one with the VICON dataset. These are described in Section 7.1. In 

addition to those, we created three fine tuned models. The first two fine tuned models 

were based on the original MS COCO model from the AlphaPose repository which 

was fine tuned with our custom datasets, the first one with the Handpicked dataset 

and the second with the VICON dataset. The last fine tuned model was the 

Handpicked model which was fine tuned with the VICON dataset. The performance 

of these models is discussed in Section 8.2.  

 

 

34 https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md (18.4.2022) 

https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md
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8 Experiments 

This chapter describes what experiments were performed, how they were measured 

and what are the results gained. Section 8.1 describes the used performance metric, 

Mean square error (MSE), which was used to compare models. Section 8.2 

introduces the results we got when we tested the models against a comparison 

dataset. 

8.1 Performance evaluation 

Performance evaluation was one of the things to study in this work. The existing 

pose estimation algorithms use their existing cost functions to measure accuracy and 

error during their training and validation processes. The performance is calculated 

against the given ground truth data and it is reported on dataset or batch level during 

training and in the end. Since in our work we wanted to verify the model 

performance in real world use cases, skier pose estimation in this case, a domain-

specific performance measurement method was developed. For the evaluation of the 

center of mass and the force component calculations, the joint specific errors would 

be needed. For this, the existing batch or dataset level accuracy and error metrics 

were not sufficient.  

The used metric to evaluate performance for comparison of models was the mean 

squared error (MSE) of the joints. It was calculated with the 

sklearn.metrics.mean_squared_error function from the ScikitLearn library. More 

specifically, the MSE value is the mean of summed and squared pixel distance of 

joint coordinates from the ground truth value. Ground truth in this context is the 

manually labelled coordinate. The function is run for every image, and the values 

from every image is summed and the result is divided with the total joint count from 

the test dataset (30 * 6 = 180 joints). The MSE error values reported in Table 5 are 

averages of all the joints in the test dataset.  

The comparisons were made between the original COCO model from the AlphaPose 

GitHub repository and self-trained models. VICON synchronisation was not good 
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enough for VICON models to be considered as a success, but those results were still 

accepted for the comparison table in Section 8.2. 

For measuring model performance, a small test dataset was used. This dataset was 

the same 30 frame calibration dataset described in Section 6.2 which was used when 

calibrating the VICON data to the 2D image plane. This dataset contains 5 images 

from 3 skiers with both skiing styles and different speeds, 30 images in total. These 

images were excluded from the training set, so the model had not seen them before 

testing. The images were labelled manually with the Fiji application as described in 

Section 6.2. 

8.2 Results 

The models created in the work were the three base models described in Section 7.1, 

and three fine tuned models described in Section 7.2. Table 4 shows the models cre-

ated. The first base model which was used as a reference in the comparison, was the 

original MS COCO model by the AlphaPose developers. It was trained from the MS 

COCO dataset collected by Microsoft for object recognition algorithm development. 

The dataset is described in Section 4.1. We compared the other two base models, the 

VICON model which was trained with the 5000 calibrated VICON data frames and 

the Handpicked model, which was trained with the 1000 manually labelled images of 

the one skier, against that reference model. The fine tuned models, MS COCO fine 

tuned with VICON data, MS COCO fine tuned with Handpicked data and Hand-

picked model fine tuned with VICON data. All the datasets used for training are de-

scribed in Table 2 in Section 6.2. 
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Table 4: The Original dataset column tells which dataset was used for training the 

base model. The Fine tuning dataset column tells which dataset was used to fine tune 

the model. 

Name Type Original dataset Fine tuning dataset 

MS COCO model Base model MS COCO dataset 

from Microsoft 

- 

VICON model Base model VICON dataset - 

Handpicked model Base model Handpicked dataset - 

MS COCO model fine tuned 

with VICON dataset 

Fine tuned model MS COCO dataset 

from Microsoft 

VICON dataset 

MS COCO model fine tuned 

with Handpicked dataset 

Fine tuned model MS COCO dataset 

from Microsoft 

Handpicked dataset 

Handpicked model fine 

tuned with VICON dataset 

Fine tuned model Handpicked dataset VICON dataset 

 

Table 5 shows a comparison of the models. Comparison metric is the MSE described 

in Section 8.1. Lower MSE value is better. We started testing with the three base 

models, and progressed to fine tuned models. The first tested model, MS COCO, 

yielded quite good results with all subjects. With the second, the VICON model, the 

results were worse than expected. The inferior performance was even clearly visible 

from the output images. The third model, the so-called Handpicked model, which 

was trained from scratch by using manually labelled material from one subject. This 

model showed great performance when tested with the other videos of that same 

subject, but yielded poor performance with the other subjects. By comparing these 

three base models we noticed that the original COCO model was clearly the best one. 

However the Handpicked model performed better than COCO for the other videos of 

the same subject which it was trained from. For the other subjects the performance 

was however worse than with the COCO. For forthcoming studies, more 

heterogeneous manually labelled dataset should be used for the training. The poor 



 

 57 

performance of the VICON model was not expected and that indicated that the 

calibration process was not successful.  

After comparing the base models we studied the performance of the fine tuned 

models. We used the COCO model as a base for fine tuning two models. Fine tuning 

the base with the VICON model decreased the results significantly but the results 

were slightly better than with the original VICON model. The result was still far 

from usable. Next we fine tuned the base model with the manually labelled 

Handpicked dataset. This model was the key indicator to observe how fine tuning 

can improve performance. A MSE of 49 was better than the original COCO model’s 

144. The handpicked dataset was collected from one person only, but still the fine-

tuned model worked better also for other persons than the original COCO model. 

Figure 24 shows a comparison of two frames from videos created with the original 

COCO model, and the best-performing fine-tuned model. 
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Figure 24: Comparison between A) Original COCO model from AlphaPose (MSE 143) and the best-

performing B) fine-tuned COCO model (MSE 48). The ground truth is marked with a dashed red line 

and the output of the model is marked with a solid blue line. 

Figure 25 demonstrates the difference between the best-performing model, the 

COCO model fine tuned with the Handpicked dataset and the worst-performing 

VICON model which was trained from scratch. At last we tried to fine tune the 

Handpicked model with the VICON data. When the result with this base model was 

also much inferior after fine tuning with the VICON data, we came to the conclusion 

that the quality of the calibrated VICON data was not good enough and using it for 

the training will reduce the quality of the models. As a result of this observation we 

decided not to try fine tuning the VICON model with other datasets. 

All six compared models were tested with the Calibration dataset, which is described 

in detail in Section 8.1. It was a 30-frame datasets which was more heterogeneous 
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than the larger training datasets. It included 10 frame images from each of a total of 

three skiers. Five images were from the double poling technique and five from 

diagonal skiing for each skier.  

 

Figure 25: Demonstration of the significance of the differences between the best-performing Original 

COCO model fine tuned with the Handpicked dataset (B) and the worst VICON model which was 

trained from scratch (C). The skeleton in image C is in the wrong location and the points are not even 

close to the pose of the skier. The ground truth is marked with a dashed red line and the output of the 

model is marked with a solid blue line. 
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Table 5: Model comparison table with the training dataset information. For fine 

tuned models both original dataset and fine tuning dataset are included. The table 

also includes the model descriptions and values of the used performance metric 

(Mean Squared Error). MSE is calculated by summing and squaring all coordinate 

errors as pixel distances across all images and calculating the mean value. A lower 

MSE value indicates more accurate detection of the skier joints. The calibration 

dataset is used for evaluating the performance. The datasets are described in detail in 

Section 6.2. 

Type Name MSE 

Base MS COCO model 143 

Base VICON model 8345 

Base Handpicked model 904 

Fine tuned MS COCO model fine tuned with VICON dataset 7920 

Fine tuned MS COCO model fine tuned with handpicked dataset 49 

Fine tuned Handpicked model fine tuned with VICON dataset 7272 

 

According to this comparison, fine tuning existing models with the carefully 

manually labelled domain-specific training data leads to better performance. The 

body joint detection accuracy of the existing general models might not be precise 

enough for the skier pose estimation task, but the accuracy can be improved by fine 

tuning the model with a self-created domain-specific dataset. For future research we 

suggest that the COCO or other relevant general purpose pose estimation model is 

used as a base, and it is fine tuned with carefully manually labelled domain-specific 

dataset which is crafted from the image frames of the multiple subjects. 
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9 Discussion 

The main research question in this work was to find out if there is a way to replace 

the VICON motion capture system with an ordinary video camera and machine 

vision algorithms in the studied application setting. The results suggest that skier 

pose estimation can indeed be done with an ordinary video camera and machine 

vision, but the joint detection accuracy is not good enough for customers needs with 

the existing pre-trained models. The accuracy can be improved by fine-tuning the 

models even with relatively small amounts of self-created domain-specific training 

data. In conclusion, VICON can probably be replaced but further research is still 

needed to increase the model accuracy. 

While studying the topic for the main research question also the additional questions 

got answered. Fine tuning AlphaPose was challenging due to lacking documentation 

and some hard-coded values in code and configuration files that had to be discovered 

when debugging runtime errors. Additional data to improve the results in skier pose 

estimation were gathered by arranging an event where four skiers were recorded 

while performing different skiing styles and speeds according to a test protocol 

created by a skiing coach. These videos were used to create the datasets to fine tune 

existing pre-trained pose estimation models. Datasets were created both with manual 

labelling and by calibrating VICON point cloud data. The Fiji image processing 

application was used for manual labelling and a developed tool based on an open 

source implementation of Direct Linear Transform was used to calibrate point cloud 

data to match the video camera field of view. The conversion from point cloud data 

turned out to be much more difficult than originally estimated. As a result, even 

though we were able to create a dataset from VICON data, the dataset could not be 

properly utilised for skier pose estimation and we could not use it as ground truth to 

compare the other models against. Instead, the comparisons were made against 

manually labelled data. Mean squared error in the joint level was used to compare all 

results to the manually-labelled ground truth.  

The final research question was about how to decide whether the model was good 

enough to replace VICON. We managed to get better results with our own trained 
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model compared to the original models provided by the AlphaPose team, but due to 

the problems in getting enough training data, more research is needed before that 

question can be fully answered. In the following we will discuss in more detail the 

problems encountered during the study and lessons learned. 

Dataset quality was a major problem during the work. To get better results we would 

have needed a bigger and more heterogeneous training dataset. More material should 

have been labelled manually and from multiple skiers and multiple videos instead of 

just the one video from one skier. This also caused the model comparison to lack a 

variety of the validation data. The reason to manually label all frames of a single 

video was the expectation of getting more accurate VICON-based data. Since the 

automatic labelling from the VICON data turned out to be not usable because of 

imprecise calibration, the resulting validation data was too homogenous. We noticed 

the need for more hand-labelled data too late in the project, so there was no time to 

do more manual labelling. There were also issues with video quality. The videos of 

the two latter skiers had been corrupted when saving to files and there were 

flickering in the frames as a result. The flickering was not present in the live view of 

the camera during the recording. So half of the material had to be discarded. We 

argue that a better quality dataset would have yielded better results in model 

performance. 

We used the MS COCO model in the work even though it was not what originally 

had been requested. The MS COCO pose model does not include feet, which is 

essential for the targeted skier pose estimation application. MS COCO was selected 

for the first experiments of the training because of the easier approach due to 

multiple existing models, datasets and annotation files. The aim was to develop 

scripts and processes with MS COCO and then progress into the HALPE model 

which would have better suited the need by including the foot keypoints. We had 

prepared the training data and scripts to work with MS COCO and as time was 

running low, we decided to focus on testing with MS COCO to determine whether 

this kind of training is even a possible option with the AlphaPose algorithm. Had we 

started to refactor our codes and to prepare the training data again, the remaining 

time budget in the project would have run low. MS COCO was easier to start with, 

because it had more pretrained models available, but since it lacked foot detection, it 
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was not suitable for the targeted application after all. In further studies of this topic it 

would be reasonable to start straight with the HALPE model to include foot detection 

from the start of the work. In that case the startup would need more work, but the 

extra steps and time to refactor the codes would be avoided.  

The image quality decreased when converting the video into single frame images for 

labelling. That caused some problems with hand picking the correct spots for the 

markers. Finding a better tool for converting video to images would have been worth 

spending some time. Image quality might have affected the training results as well. 

One way for creating a better training set could have been to manually pick the best 

frames from the calibrated VICON data and use those for training. In forthcoming 

studies, getting better tools for data manipulation and preparation would be worth 

spending more time and focus.  

VICON point cloud data can be used to create training data, but calibrating three-

dimensional point cloud data to two-dimensional image plane is a challenging task 

and that task was not solved to a sufficient level during the project. Probably the 

biggest issues in calibration were the video camera used. The camera was set to 

capture varied frame rate video and that had to be transformed to a fixed 30 frames 

per second framerate. This transformation caused some issues since it resulted in 

duplicate frames. Decreased image quality from the video to images conversion 

might also have negatively affected the calibration. 

The DLT algorithm on the basic level does not take lens distortions into account and 

those can affect the performance of the calibration. Some other algorithm could have 

performed better with the camera used. Using more calibration frames could have 

provided better results and if the calibration would have been approached iteratively, 

by calibrating first with a small set and then introducing more calibration frames, the 

results might have been better. More research is needed to improve the calibration in 

this context. During the data collection event the VICON frame rate had been 

changed from 150 fps to 100 fps and that also caused problems. Synchronising 100 

fps point cloud data to 30 fps video did not match very well. For some reason the 

calibration for one person succeeded much better than for the others, even though the 
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number of synchronisation images was the same. The reason for this was not studied 

in the scope of this work.  

In the forthcoming studies the quality and validity of the collected data should be 

verified immediately to avoid missing parts of valuable data because of corrupted 

video files or problems with data pre-processing because of changed settings during 

the collection event. 
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10 Conclusion 

In this work we showed that machine vision can be used for human pose estimation 

when skiing on a treadmill. Fine tuning an existing AlphaPose model with custom 

training data is possible and it can increase model accuracy in skier pose estimation 

problems. The results indicate that even though machine vision can work in skier 

pose estimation, this approach in practice requires very careful work in creating the 

training dataset for fine-tuning the existing models. The training data can be created 

manually by picking desired joint positions from every frame by hand but this is very 

slow and time consuming. 

The point cloud data from the VICON motion capture system can be calibrated to 

match the video data, but future research is needed to get the calibration to work 

better. The calibration method needs to be an iterative process and it requires careful 

fine tuning to find out the best synchronising point for every frame of the video. The 

synchronisation is possible to achieve, but there is much practical work to get it 

precise enough. The dataset used in the calibration might have been too small for the 

task and a bigger dataset would perhaps have yielded better results. Still, this would 

not have fixed issues with the frame rates. 

Even though the work did not provide a model that could replace VICON, we 

showed that existing general-purpose pose estimation models can be improved in 

detecting skier pose by fine tuning with a custom made training dataset. VICON data 

can be calibrated to be used as training data, but the calibration process needs more 

research. Research with this topic continues in Vuokatti supported by CSC. 

Data preprocessing or cleaning is an important and time-consuming part of any data 

analytics or machine learning project. Often the preprocessing phase is 

underestimated and it is the necessary evil before the tasks that are considered more 

important and interesting can be started. Andrew Ng (2021)35 has stated that the time 

 

 

35 https://www.youtube.com/watch?v=06-AZXmwHjo (7.4.2022) 

https://www.youtube.com/watch?v=06-AZXmwHjo
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spent in increasing the data quality in the preprocessing phase can be equally 

effective than doubling the training dataset size. According to our experiences from 

this thesis work, the preprocessing phase is really time consuming and important. It 

definitely should not be treated lightly. 
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