

Density-based clustering

Jarkko Piiroinen

Master’s Thesis

School of Computing

Computer Science

May 2018

ii

ITÄ-SUOMEN YLIOPISTO, Luonnontieteiden ja metsätieteiden tiedekunta, Joensuu

Tietojenkäsittelytieteen laitos

Tietojenkäsittelytiede

Piiroinen, Jarkko Mikael: Tiheyteen perustuva ryhmittely

Pro gradu -tutkielma, 71 s., ei liitteitä

Pro gradu -tutkielman ohjaaja: Professori Pasi Fränti

Toukokuu 2018

Tiivistelmä: Ryhmittely on eräs ohjaamattoman koneoppimisen muoto, jossa tavoit-

teena on muodostaa ryhmiä kohteiden samankaltaisuuksien perusteella. Tiheyteen pe-

rustuvat ryhmittelymenetelmät pyrkivät ryhmittelemään kohteita hyödyntämällä nii-

den tiheyttä. Tässä pro gradu -tutkielmassa tarkastellaan kirjallisuudessa usein viitat-

tuja tiheyteen perustuvat menetelmiä ja sitä, miten ne soveltuvat erityisesti sellaisten

datajoukkojen ryhmittelyyn, jotka sisältävät sisäkkäisiä eri tiheyksisiä klustereita. Tar-

kastellut menetelmät eivät sovellu kovin hyvin tällaisten datajoukkojen ryhmittelyyn,

sillä ne tyypillisesti ryhmittelevät datajoukot ryhmiin, jotka eivät voi olla sisäkkäin.

Lisäksi esitellään perinteiseen keskipistepohjaiseen ryhmittelyyn perustuva mene-

telmä, jossa klustereiden keskipisteille annetaan painot. Painoja hyödynnetään siten,

että kohteiden etäisyydet keskipisteisiin lasketaan kerrottuna kunkin keskipisteen pai-

nolla. Näin keskipiste, jolla on matala paino, voi vetää puoleensa datavektoreita kau-

empaa kuin sellainen, jolla on korkea paino. Tämä puolestaan mahdollistaa sen, että

klusterin sisällä olevat tiheämmät aliklusterit voidaan tunnistaa. Menetelmää testataan

kokeellisesti k-means ja random swap -algoritmien avulla. Johtopäätöksenä on, että

menetelmä toimii sisäkkäisiä klustereita sisältäville datajoukoille. Menetelmän haitta-

puolena on, että keskipisteiden painot on annettava algoritmille erillisenä parametrina.

Avainsanat: ryhmittely, tiheys, tiheyteen perustuvat ryhmittelymenetelmät, painotettu

pituus

ACM-luokat (ACM Computing Classification System, 2012 version):

• Computing methodologies~Cluster analysis

• Information systems~Clustering

iii

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, Joensuu
School of Computing

Computer Science

Piiroinen, Jarkko Mikael: Density-based clustering

Master’s Thesis, 71 p., no appendices

Supervisor of the Master’s Thesis: Professor Pasi Fränti

May 2018

Abstract: Clustering is an unsupervised form of machine learning where the objective

is to form groups from objects based on their similarity. Density-based methods seek

to group objects by utilizing the density of the objects in the clustering process. In this

thesis, existing density-based clustering methods commonly cited in literature are ex-

amined in terms of their behavior with data sets that contain nested clusters of varying

density. The existing methods are not ideal for such data sets, because they typically

partition the data into clusters that cannot be nested. An approach based on traditional

centroid-based clustering is introduced that assigns a weight to each cluster. The

weights are then utilized by calculating the distances from data vectors to centroids by

multiplying the distance by the centroid weight. As a result, a centroid with low weight

will attract objects from further away than a centroid with higher weight. This allows

dense clusters inside larger clusters to be recognized. The method is tested experimen-

tally using the k-means and random swap algorithms. The experimental results show

that this approach can be used to solve data sets with nested objects of varying densi-

ties. The drawback is that the centroid weights must be given as an extra parameter.

Keywords: clustering, density, density-based clustering methods, weighted distance

CR Categories (ACM Computing Classification System, 2012 version):

• Computing methodologies~Cluster analysis

• Information systems~Clustering

iv

Abbreviations

CI Centroid index, a cluster-level measure of clustering quality

CSI Centroid similarity index, a point-level measure of clustering quality

DBSCAN Density based spatial clustering of applications with noise

GT Ground truth

KDE Kernel density estimation

KM k-means, a clustering algorithm

PDF Probability density function

RS Random swap, a clustering algorithm

SSE Sum of squared errors

Notations

𝑁 Number of objects in a data set

𝑛𝑖 Number of objects in the partition 𝑝𝑖

𝐾 Number of clusters in a data set

𝐷 Number of attributes in a data set

𝑋 Set of 𝑁 data vectors {𝑥1, 𝑥2, … , 𝑥𝑁}

𝐶 Set of 𝐾 cluster centroids {𝑐1, 𝑐2, … , 𝑐𝐾}

𝐶𝑖 Set of data vectors in the cluster in the partition 𝑝𝑖.

𝑃 Set of 𝑁 cluster indices {𝑝1, 𝑝2, … , 𝑝𝑁}

𝑊 Set of centroid weights {𝑤1, 𝑤2, … , 𝑤𝐾}

dens(𝑖) Density of the cluster 𝑖 represented by the centroid 𝑐𝑖

d(𝑝, 𝑞) Distance between 𝑝 and 𝑞

v

Contents

1 Introduction ... 1

2 Clustering overview .. 5

2.1 Basic concepts ... 6
2.2 Problem definition .. 9
2.3 Distance measures ... 10

2.4 Objective function ... 11
2.5 Methods of clustering ... 12

3 Data sets and algorithms .. 15

3.1 Data sets .. 15
3.2 Algorithms .. 17

3.2.1 k-means ... 18
3.2.2 Random swap .. 20

4 Density-based clustering ... 25

4.1 Motivation ... 27

4.2 Existing approaches .. 29
4.2.1 DBSCAN .. 29
4.2.2 Mean shift ... 35

4.2.3 Density peaks .. 39

5 Clustering with weighted centroids ... 42

5.1 Problem definition .. 43

5.2 Distance measure .. 44

5.3 Objective function ... 45
5.4 Estimating cluster density ... 45

5.5 Calculating centroid weights .. 46
5.6 Modified algorithms ... 47

5.6.1 k-means ... 47
5.6.2 Random swap .. 48

5.7 Problems with calculating weights dynamically 49

6 Experiments ... 53

6.1 Evaluating clustering quality .. 53

6.1.1 Centroid index ... 53
6.1.2 Centroid similarity index .. 55

6.2 Experimental setup ... 56
6.3 SSE results .. 58
6.4 Weighted SSE results .. 62

7 Conclusion ... 66

References .. 68

1

1 Introduction

Clustering (or cluster analysis) is a form of unsupervised machine learning where the

objective is to group objects based on their similarity. (Bishop, 2007; Jain et al., 1999)

Organizing the objects into groups allows us to draw conclusions based on the groups

that were discovered. (Theodoridis & Koutroumbas, 2009)

Figure 1 shows a data set consisting of points that have been grouped into five clusters.

Here, the distance between two points is used as the measure of similarity – the shorter

the distance between them is, the more similar they are. The clusters are illustrated by

drawing a convex hull for each cluster. A convex hull envelops all points belonging to

a cluster.

Figure 1. Clustering a set of points set into five groups, illustrated by convex hulls.

Clustering is particularly useful for exploratory data analysis and in machine learning

contexts, including data mining and image segmentation. In such contexts, it is often

important to make as few assumptions about the data as possible. This is where cluster

analysis as a form of unsupervised machine learning is particularly appropriate. (Jain

et al., 1999)

Clustering has numerous applications within computer science as well as across many

different fields outside computing. In market research, clustering can be used to form

groups out of customers that have with similar needs. In bioinformatics, it is utilized

to identify gene groups with similar patterns of expression in order to study hereditary

2

diseases. In chemistry, it may be used for classifying chemical compounds. There are

countless other applications in fields including astronomy, psychiatry, archeology, and

climate science. (Everitt et al., 2011; Kaufman & Rousseeuw, 2005)

In general, cluster analysis provides a powerful set of tools for analyzing data. Data

analysis can be roughly divided into two categories: exploratory and confirmatory data

analysis. (Jain et al., 1999; Theodoridis & Koutroumbas, 2009)

In exploratory (or descriptive) data analysis, we want to understand and learn more

about the data and its structure without any predetermined hypotheses or models. (Jain,

2010) Clustering can therefore be used to describe and gain new insights from the data.

It can also be used as an instrument to suggest new hypotheses that can be investigated

later by other means.

In confirmatory (or inferential) data analysis, we seek to validate an existing hypoth-

esis, model, or assumptions about the data. (Jain, 2010) A clustering result can there-

fore be analyzed using various statistical techniques, including analysis of variance,

linear regression, and principal component analysis.

In addition to suggesting new hypotheses and testing existing ones, clustering may be

used to make predictions based on groups. Theodoridis and Koutroumbas (2009) il-

lustrate this with an example of patients with infectious diseases, and their reaction to

drug therapy. First, all patients are clustered based on how they react to different med-

ications. For a new patient, we can then determine the best medication by finding the

closest cluster.

Clustering can also be used for data reduction. Sometimes a data set can be unneces-

sarily large for its intended purpose, and representative objects for each cluster would

be sufficient. This is illustrated in in Figure 2, where sufficiently large clusters of map

markers have been reduced to a single representative object each.

3

Figure 2. Clustering used to reduce the number of map markers.

Finally, sometimes we are not interested in discovering something new about the data,

but rather we want to impose a new structure to it. For example, we might want to

divide a country into telephone areas. (Kaufman & Rousseeuw, 2005) In such cases,

the partitioning-based clustering methods can be used.

In this thesis, we are going to examine how to cluster data sets that contain nested

groups of objects. Figure 3 shows an example with two nested clusters inside a single

large cluster. The problem is how to detect each of the three clusters and group the

points accordingly.

Figure 3. Clustering a data set with nested clusters.

4

There are several existing methods that can be used to attempt to solve such data sets.

The problem is that while they are typically good at solving clusters of arbitrary sizes

and shapes, they struggle with nested clusters. Instead, they usually require the groups

to be at least somewhat separated from each other. Some of the common algorithms

and their behavior with such data sets are examined in chapter 4.

An attempt to solve this problem is introduced in chapter 5. The idea is that cluster

centers are given weights, and the weights are utilized when grouping objects: cluster

centers that have low weight will then attract points from further away than those with

higher weight. As a result, dense groups of objects would be detected inside large,

sparse ones.

The experiments in chapter 6 show that this method works, and may have potential

uses in any application where the problem is to find groups in data containing many

nested clusters.

5

2 Clustering overview

A typical clustering task consists of several subtasks. Jain et al. (1999) list the follow-

ing, the first three of which are illustrated in Figure 4:

(1) representation of patterns,

(2) definition of proximity measure,

(3) clustering or grouping,

(4) data abstraction (if needed), and

(5) output assessment (if needed).

Pattern representation refers to how the objects to be clustered will be represented as

data structures. It includes the choice of the type, scale and the number of features to

be given to the clustering algorithm. It may include feature selection, which is identi-

fying the features to be used for clustering. It may also include feature extraction,

which is creating new features by using transformations of the original features.

Figure 4. The different stages of clustering (Jain et al., 1999)

Proximity measure (sometimes called similarity measure or distance measure) refers

to how similarity is measured between any two input data objects. Different kinds of

measures are discussed further in the subchapter 2.3.

In the clustering or grouping step, the actual clustering is performed. There are many

different methods that can be used in this step. These include partitioning methods,

which produce a single clustering, and hierarchical methods which seek to produce a

hierarchy of clusterings. Different clustering methods are discussed further in the sub-

chapter 2.5.

Patterns Feature
Selection/
Extraction

Interpattern
 Similarity Grouping

Clusters Pattern

Representations

feedback loop

6

Data abstraction means extracting a representation of the data set that is compact and

easy for either a human or the computer (in the case of automatic analysis) to under-

stand and make analyses of. Often this kind representation is in the form of cluster

prototypes. Cluster prototypes are discussed further in the subchapter 2.1.

Finally, the assessment of the output is performed. The output can be assessed both

from the data domain point of view (i.e. does the clustering output reveal something

useful about the data, and if so, what?) as well as from the point of view of the clus-

tering algorithm (i.e. does the algorithm produce a “good” result). Kaufman &

Rousseeuw (2005) suggest that when interpreting the results, it should be based on

insight into the original data, as well as having some experience with the clustering

algorithm. They also advise trying multiple algorithms with the same data, as cluster

analysis is mostly used for exploratory purposes. This makes sense if multiple algo-

rithms are applicable to the data and the choice cannot be narrowed down to a single

algorithm. It is also worth noting that different cost functions may produce different

clusters for the same input. (Kaufman & Rousseeuw, 2005)

In Figure 4, the clustering process also includes an optional feedback loop. This means

that the clustering “output could affect subsequent feature extraction and similarity

computations”. (Jain et al., 1999)

2.1 Basic concepts

A group of similar objects is called a cluster. Coming up with a precise definition of a

cluster is difficult, as pointed out by Everitt et al. (2011). Intuitively, however, we can

say that objects that are in the same cluster are more similar to each other compared to

those in another cluster.

A cluster can also be defined by its internal cohesion or homogeneity, and external

isolation or separation. (Everitt et al., 2011) These characteristics can be witnessed in

Figure 5, which shows clusters in three different shapes.

7

Figure 5. Compact (left), elongated (middle), and spherical clusters (right)

(Theodoridis & Koutroumbas, 2009)

Although the three types of shapes are very different to one another, we can clearly

see that each cluster is either relatively homogeneous (objects in each cluster are close

to each other), or the clusters are separated (relatively distant from each other). How-

ever, coming up with precise mathematical definitions for the concepts of homogene-

ity and separation is difficult. (Everitt et al., 2011)

The chosen proximity measure, attributes, as well as the algorithm for the clustering

each affect the clustering result. (Theodoridis & Koutroumbas, 2009) Figure 6 shows

how a coarse clustering causes the data set to be grouped into two clusters (surrounded

by dashed lines), whereas a finer clustering results in four groups (surrounded by solid

lines).

Figure 6. Coarseness of clustering can affect the result. (Theodoridis & Koutroumbas, 2009)

In this thesis, the objects we are clustering will be called data vectors. A data set 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑁} is a collection containing 𝑁 data vectors. Data vectors can be any type

of objects, for example colors, animals, or movies. Data vectors have attributes that

describe them. For example, a movie could have attributes such as title, director, or

8

year of publication. For a point in Euclidean space, we can consider its coordinates to

be its attributes.

The dimensionality 𝐷 of a data set is the number of attributes its data vectors have.

The data vectors we will look at in this thesis will be mostly two-dimensional points,

in which case the value of 𝐷 is 2. An example of such a data set is shown in Figure 7.

Figure 7. A small, two-dimensional data set with three clusters.

The prototype of a cluster is a value that represents that cluster. Its purpose is to char-

acterize the cluster and the objects in it. A prototype can be part of the data set, but

does not have to be.

The choice of prototype depends on the nature of the data. For data sets whose attrib-

utes are continuous, the prototype is often the centroid of the cluster – the mean of all

data vectors in the cluster (Figure 8). In the case of categorical data where a mean or

centroid is not definable, the prototype could be the medoid – the data vector with the

shortest distance to the other members in the same cluster. (Everitt et al., 2011)

Figure 8. Cluster centroids.

In this thesis, we mostly deal with numerical data sets. Therefore, we use centroids as

the cluster prototypes, and the notation 𝐶 = {𝑐1, 𝑐2, … 𝑐𝐾} to denote the collection of

centroids for the 𝐾 clusters in the data set.

𝑥

𝑦

9

The partitioning 𝑃 = {𝑝1, 𝑝2, … 𝑝𝑁} of a data set is the mapping of data vectors to pro-

totypes: each data vector is associated with a prototype, and all data vectors that have

the same prototype belong to the same partition or cluster. Figure 9 shows the previous

data set partitioned into three clusters.

Figure 9. Partitioning of the data set.

Partitions and centroids are related to each other in the sense that it is possible to cal-

culate the one we are missing based on the other. If we know the centroid locations,

we can calculate the optimal partitioning by iterating over each data vector and finding

its closest centroid. On the other hand, if we know the partitioning, we can calculate

the optimal representative (centroid) for each partition by calculating the average of

the data vectors in that partition. (Fränti & Kivijärvi, 2000)

2.2 Problem definition

Given only a data set, the clustering problem can be defined in many ways and may

include several subproblems. For example, we could be interested in the number of

clusters in a data set, where the clusters are located, or how to identify the most effec-

tive subset of attributes to be used for clustering. (Jain et al., 1999)

In this thesis, we assume that the number of clusters is known in advance and that our

data sets consist of points in Euclidean space. Furthermore, we are interested in the

locations of the clusters. Thus, we formulate our clustering problem as follows:

Given a data set 𝑋 and the number of clusters 𝐾, find the centroid locations

𝐶 and the partitioning 𝑃 such that the objective function 𝑓 is minimized.

10

In general, this type of clustering problem has been shown to be NP-hard in D-dimen-

sional Euclidean space. (Mahajan et al., 2009) Therefore, most algorithms focus on

finding approximate solutions to the problem using various heuristics. There are sev-

eral such algorithms for solving the problem, two of which (k-means and random

swap) will be described in more detail later.

2.3 Distance measures

To be able to cluster data vectors, we must first define a measure for how similar a

data vector is to another. In other words, we need a distance function that tells how

close or far apart two given data vectors are.

The choice of a distance function depends heavily on the data, particularly the types

of the attributes. Common for all distance functions according to Kaufman and

Rousseeuw (2005) is that they must satisfy the following criteria:

(1) Distance between any two points is nonnegative

(2) Distance from a point to itself is zero

(3) Distance is symmetric; the order of the points does not matter

(4) Distance satisfies the triangle inequality; the distance from 𝑥 to 𝑦 to 𝑧 is never less

than the direct distance from 𝑥 to 𝑧.

For D-dimensional points in a Euclidean space, an obvious choice for a distance func-

tion is the Euclidean distance between given two points 𝑥1 and 𝑥2:

d(𝑥1, 𝑥2) = √∑(𝑥1
𝑖 − 𝑥2

𝑖)
2

𝐷

𝑖=1

= ‖𝑥1 − 𝑥2‖ (1)

Euclidean distance is commonly used when the attributes of the data vectors are coor-

dinates, color components or other numeric types that exist in a Euclidean space. In

this thesis, the data sets used are two-dimensional data sets with integer attributes, so

unless otherwise stated, Euclidean distance is assumed as the distance function.

Another type of distance function is edit distance, often used for strings. This is the

number of edit operations needed to transform one string into the other. (Ristad &

11

Yianilos, 1998) A single edit operation may be the insertion, deletion, or substitution

of a character. The precise definition of edit distance varies – typically some operations

are excluded, and the cost of the operations may vary.

The most common form of edit distance is the Levenshtein distance, which allows

insertions, deletions or substitutions, each having unit cost. For example, the Le-

venshtein distance between “depth” and “depend” is 3:

1. depth → depeh (substitute ‘e’ for ‘t’)

2. depeh → depen (substitute ‘n’ for ‘h’)

3. depen → depend (insert ‘d’)

Other popular forms include the longest common subsequence distance (LCS) which

only allows insertion and deletion operations, and Hamming distance where only sub-

stitutions are allowed. (Navarro, 2001) The LCS distance between “depth” and “de-

pend” would be 5: substitutions are not allowed, so any characters not shared by the

two strings must be deleted first. The Hamming distance for these strings is undefined,

since it requires the strings to be of equal length.

Other popular distance functions used in clustering are Jaccard distance and cosine

distance. The former measures the dissimilarity between two sets, while the latter

measures the similarity between two data vectors by taking the cosine of the angle

between the vectors. (Everitt et al., 2011)

2.4 Objective function

To evaluate the clustering, we need to define an objective function. Typically, the ob-

jective function is minimized: the lower the value of the objective function, the “bet-

ter” the clustering.

The choice of objective function is the most important choice in the clustering method.

(Fränti & Kivijärvi, 2000) The choice depends on both the data set and the domain of

application. For example, if our aim is to minimize the within-cluster variance, we can

use sum of squared errors (SSE) as the objective function. The SSE is calculated by

12

first taking the squared distance of each data vector to its nearest centroid, then adding

them all together:

SSE = ∑ d(𝑥𝑖, 𝑐𝑝𝑖
)

2
𝑁

𝑖=1

(2)

Here, 𝑁 is the total number of data vectors in the data set, 𝑑 is the distance function,

𝑥𝑖 is the data vector, 𝑝𝑖 is the index of the partition 𝑥𝑖 belongs to, and 𝑐𝑝𝑖
 is the centroid

of the partition 𝑝𝑖.

Minimizing SSE has the following properties. For a given partition 𝑃, the optimal cen-

troids 𝐶 can be calculated as follows:

𝑐𝑗 =
∑ 𝑥𝑖𝑝𝑖=𝑗

∑ 1𝑝𝑖=𝑗

(3)

For given centroids 𝐶, the optimal partitioning is the one with the nearest centroid:

𝑝𝑖 = arg min
1 ≤ 𝑗 ≤ 𝐾

d(𝑥𝑖 , 𝑐𝑝𝑖
)

2
(4)

2.5 Methods of clustering

A vast number of different clustering methods can be found in the literature. (Jain et

al., 1999) As a result, there are also several ways of dividing the different approaches

into categories. A common categorization has been to divide clustering methods into

hierarchical and partitioning methods (Figure 10). Both divide further into more fine-

grained categories. (Fraley & Raftery, 1998; Jain et al., 1999; Kaufman & Rousseeuw,

2005)

13

Figure 10. One way of categorizing different clustering methods. (Jain et al., 1999)

The key difference between the two main categories is that hierarchical methods pro-

duce “a sequence of partitions, each corresponding to a different number of clusters”

(Fraley & Raftery, 1998) by either a divisive (splitting) or agglomerative (merging)

approach, whereas partitioning methods start from an initial partitioning and then iter-

atively move data points from one group to another.

However, this binary division to hierarchical and partitioning methods is not perfect.

For example, it is not immediately obvious which category density-based methods

would belong to. Estivill-Castro (2002) has criticized such categorizations for being

misleading, having blurry boundaries, and more specifically that the partitioning

methods (as categorized by Jain) should more accurately be called representation-

based clustering.

Fahad et al. (2014) proposed a categorization of clustering from the algorithm de-

signer’s point of view. It attempts to divide the different clustering approaches based

on the technical details of each approach, resulting in a tree shown in Figure 11.

Figure 11. Clustering taxonomy from algorithm designer’s perspective. (Fahad et al., 2014)

Clustering

Hierarchical Partitional

Single

 Link

Complete

 Link

Square

 Error

 Graph

Theoretic

 Mixture

Resolving

 Mode

Seeking

k-means

Maximization

 Expectation

Clustering Algorithm

Partitioning-Based Hierarchical-Based Density-Based Grid-Based Model-Based

1. K-means

2. K-medoids
3. K-modes

4. PAM

5. CLARANS

6. CLARA

7. FCM

1. BIRCH
2. CURE

3. ROCK

4. Chameleon

5. Echidna

1. DBSCAN

2. OPTICS
3. DBCLASD

4. DENCLUE

1. Wave-Cluster
2. STING

3. CLIQUE

4. OptiGrid

1. EM
2. COBWEB

3. CLASSIT

4. SOMs

14

This taxonomy considers density-based (among others) algorithms to be its own cate-

gory. However, it could still be argued that a clustering algorithm can be both density-

based and partitioning-based. An example of such a method is introduced in chapter 5.

In this thesis, we simply say that a clustering method defines the problem we want to

solve. This problem is defined in terms of the objective function. A clustering algo-

rithm solves the problem and produces a set of centroids 𝐶 and the partitioning 𝑃 as

the results.

15

3 Data sets and algorithms

In this thesis, we will use two different algorithms to perform experiments on three

different data sets. These data sets and algorithms are introduced in this chapter.

3.1 Data sets

The data sets are computer-generated and consist of two-dimensional Euclidean points

spread across a varying number of Gaussian clusters. Each data set has slightly differ-

ent characteristics that are meant to examine and illustrate the behavior of the algo-

rithms. Since these data sets are synthetic, their ground truths (true centroid locations)

are known. In the following figures, the centroids are marked with red filled circles. A

summary of the properties of each data set is shown in Table 1.

Data set 1 contains fifteen Gaussian clusters and 15,000 data vectors in total. (Fig-

ure 12) It consists fixed-size clusters, each having the same density. The purpose of

this data set is to examine the behavior of the different algorithms when the density of

the clusters is constant.

Figure 12. Data set 1 with fifteen clusters of equal density.

16

Data set 2 contains three Gaussian clusters and 2,250 data vectors in total. (Figure 13)

It consists of one dense cluster enclosed by a larger, more widely spread cluster, as

well as a third, medium-density cluster separated from the other two. The purpose of

this data set is to study how the algorithms deal with some nesting and differences in

cluster densities.

Figure 13. Data set 2 with three clusters and some nesting.

Data set 3 contains six clusters and 5,500 data vectors in total. (Figure 14) It consists

of one very widely spread cluster that envelops four more dense clusters, as well as a

fourth medium-density clusters that is separated from the other clusters. The purpose

of this data set is to show how the algorithms behave with many nested clusters of

varying densities and sizes.

17

Figure 14. Data set 3 with several nested clusters.

Table 1. Data sets and their properties.

Data set

Number of clusters

𝑲

Number of data vectors

𝑵

1 15 15,000

2 3 2,250

3 6 5,500

3.2 Algorithms

Two different algorithms were chosen for this thesis: k-means and random swap. The

algorithms were chosen based on a couple of factors: k-means represents an algorithm

that is very widely used both as a stand-alone algorithm, and as part of other algo-

18

rithms. It can also produce reasonable results. Random swap on the other hand repre-

sents a well-performing algorithm while still being relatively simple to implement.

(Fränti & Kivijärvi, 2000)

3.2.1 k-means

The k-means algorithm is a simple, iterative, centroid-based clustering algorithm. It

was introduced by MacQueen in 1967. Since then, its variations have been used in

numerous machine learning applications.

The algorithm is given a data set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and the number of clusters 𝐾 as

parameters, and it returns the centroid locations 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} and the partition-

ing 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁} of the data points as the results. (Figure 15)

Figure 15. Pseudo code for the k-means algorithm.

The algorithm starts with an initial solution, and iterates until it cannot find any more

improvement. It consists of two main steps:

1. Partitioning step

2. Centroid step.

In the partitioning step, the algorithm will assign all data vectors to a partition by find-

ing the nearest centroid for each. The nearest centroid to a given point is found by

calculating the distance from the point to all centroids – the nearest centroid is the one

that has the lowest distance. (Figure 16)

K-means(𝑋, 𝑃, 𝐶): → (𝐶, 𝑃)
REPEAT
 𝐶prev ← 𝐶

 FOR 𝑖 ≔ 1 TO 𝑁 DO
 𝑝𝑖 ← FindNearestCentroid(𝑥𝑖, 𝐶)
 FOR 𝑗 ≔ 1 TO 𝐾 DO
 𝑐𝑗 ← CalculateCentroid(𝑋, 𝑃, 𝑗)

UNTIL 𝐶 = 𝐶prev

19

Figure 16. Pseudo code for finding the nearest centroid.

In the centroid step, the algorithm will calculate the new cluster centroids as the mean

vector of each partition calculated in the partitioning step. The mean vector is calcu-

lated by summing up the all the vectors in the partition, then dividing the components

of the result vector by the number of vectors in the partition. (Figure 17)

Figure 17. Pseudo code for calculating the cluster centroid.

There are several ways to initialize k-means. One of the most common ways is to pick

random data vectors as the initial centroids. This is the second initialization method

proposed by MacQueen (1967). Other popular techniques are examined and recom-

mended by Celebi et al. (2013).

The advantage of k-means is its simplicity: It is easy to implement while providing

relatively good results with many data sets. Jain (2010) also includes its “efficiency,

and empirical success” as some of the reasons why it has gained such popularity. Like

with many centroid-based clustering algorithms, the number of clusters must be given

to k-means as a parameter. We also assume that SSE is a sensible objective function

for the data.

FindNearestCentroid(𝑥, 𝐶): → 𝑖nearest
𝑑nearest ← ∞
FOR 𝑖 ≔ 1 TO 𝐾 DO
 𝑑 ← d(𝑥, 𝑐𝑖)
 IF 𝑑 < 𝑑nearest THEN
 𝑑nearest ← 𝑑
 𝑖nearest ← 𝑖
RETURN 𝑖nearest

CalculateCentroid(𝑋, 𝑃, 𝑗): → 𝑐
sum[1. . 𝐷] ← 0
count ← 0
// Calculate the sum of all vectors in the partition
FOR 𝑖 ≔ 1 TO 𝑁 DO
 IF 𝑝𝑖 = 𝑗 THEN
 sum ← sum + 𝑥𝑖
 count ← count + 1
// Calculate the mean
𝑐 ← sum / count
RETURN 𝑐

20

The disadvantage of k-means is its high dependency on the initial partitioning. (Fränti

& Kivijärvi, 2000; Jain, 2010; Celebi et al., 2013) Therefore, it tends to converge to a

local optimum instead of the global one. The clustering quality can be improved by

repeating the k-means several times. (Kinnunen et al., 2011) Each time, the algorithm

is initialized with a different random solution, and the result that provides the smallest

objective function value is kept as the final solution.

Figure 18 shows a comparison of a single run of k-means, and k-means repeated 100

times on data set 1. In the latter case, the best result among all k-means runs is retained.

With a single run, the algorithm can correctly identify many of the clusters but leaves

plenty of room for improvement. The result will be significantly improved after 100

repeats, but at the cost of higher runtime.

Figure 18. A single run of k-means and repeated k-means on data set 1.

The k-means algorithm suffers from the problems of parametric and partitioning algo-

rithms in general. Specifically, the number of clusters must be known in advance, and

the algorithm typically produces clusters that are convex. (Kriegel et al., 2011)

3.2.2 Random swap

Random swap (also known as randomized local search) is a swap-based clustering

algorithm introduced by Fränti & Kivijärvi (2000). It works by removing a random

centroid from the current solution and placing it on a random data vector. (Fränti,

k-means k-means repeated 100 times

21

2018) The result is then fine-tuning the result using k-means. If the clustering quality

improved after this trial swap, the new centroids and/or partitioning is accepted.

Like k-means, random swap is an iterative, centroid-based clustering algorithm. Given

a data set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and the number of clusters 𝐾 as parameters, it returns

the centroid locations 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} and the partitioning 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑁} of

the data points as the results. (Figure 19)

Figure 19. Pseudo code for the random swap algorithm. (Fränti, 2018)

Like k-means, the algorithm starts with an initial solution (such as using random data

points as the initial centroids) and iterates 𝑇 times. It consists of three main steps:

1. Random swap

2. Local repartition

3. Iteration by k-means.

In the random swap step, a centroid is chosen randomly from the current set of cen-

troids and it is moved to the location of a random data vector. (Figure 20) With some

luck, this will cause a centroid to move from a centroid-rich to a centroid-poor area.

Figure 20. Swap centroid to the location of a random data vector.

In the local repartition step, all the data vectors allocated to the swapped centroid will

be re-allocated to their nearest centroids. (Figure 21) Furthermore, the data vectors

near the swapped centroid must also be re-allocated, since it is possible that they will

be attracted by the swapped centroid.

RandomSwap(𝑋, 𝑃, 𝐶): → (𝐶, 𝑃)
REPEAT 𝑇 TIMES
 (𝐶new, 𝑗) ← SwapCentroid(𝑋, 𝐶)
 𝑃new ← LocalRepartition(𝑋, 𝐶new, 𝑃, 𝑗)
 (𝐶new, 𝑃new) ← K-means(𝑋, 𝐶new, 𝑃new)
 IF 𝑓(𝐶new, 𝑃new) < 𝑓(𝐶, 𝑃) THEN
 (𝐶, 𝑃) ← (𝐶new, 𝑃new)
RETURN (𝐶, 𝑃)

SwapCentroid(𝑋, 𝐶): → (𝐶, 𝑗)
𝑗 ← Random(1, 𝑘)
𝑖 ← Random(1, 𝑁)
𝑐𝑖 ← 𝑥𝑖
RETURN (𝐶, 𝑗)

22

Figure 21. Re-allocation of data vectors to centroids.

Finally, iteration by k-means is performed. This will fine-tune the result we achieved

in the previous steps and will find a new local optimum, given the new configuration

of centroids/partitioning. Fränti and Kivijärvi (2000) noted that only two iterations of

k-means were enough to achieve high quality clustering.

At this point, it is not guaranteed that the result is any better than the clustering before

the swap (in fact, it could be worse). Therefore, the new candidate centroids/partition-

ing is accepted only if it produces a better clustering determined by the objective func-

tion. For example, if SSE is used as the objective function, then the SSE of the new

candidate result must be lower than the SSE before the trial swap. If it is not, the result

will be discarded, and a new trial swap will be performed.

LocalRepartition(𝑋, 𝐶new, 𝑃, 𝑗): → 𝑃
FOR 𝑖 ≔ 1 TO 𝑁 DO
 IF 𝑝𝑖 = 𝑗 THEN
 𝑝𝑖 ← FindNearestCentroid(𝑥𝑖, 𝐶)
FOR 𝑖 ≔ 1 TO 𝑁 DO

 IF d(𝑥𝑖, 𝑐𝑗) < d(𝑥𝑖 , 𝑐𝑝𝑖
) THEN

 𝑝𝑖 ← 𝑗
RETURN 𝑃

23

Figure 22. Demonstration of centroid swapping. (Fränti, 2018)

The advantage of random swap is that implementing it is easy, and it is also efficient:

Fränti and Kivijärvi (2000) showed that the algorithm outperforms k-means and gives

results that are competitive with more complex techniques such as genetic algorithms

and tabu search. Unlike k-means, the algorithm is not dependent on the initialization

method: Centroid swapping enables the algorithm to fix situations where k-means

would get stuck, such as the highlighted regions in Figure 22 (current solution). As a

result, random swap can detect the clusters in data set 1, as seen in Figure 23. To

achieve similar results with k-means, the initial centroids have to be relatively close to

the correct locations, or the algorithm has to be repeated multiple times, retaining the

best solution over all runs.

One centroid, but

two clusters.

Two centroids, but

 only one cluster.
 Swap is made from

centroid rich area to

 centroid poor area..

Current solution Centroid swapping

Local repartition Fine-tuning by k-means

24

Figure 23. Random swap can solve data set 1.

25

4 Density-based clustering

Density-based clustering refers to identifying groups of objects that form contiguous,

high-density regions in the data space. (Kriegel et al., 2011; Rodriguez & Laio, 2014)

Typical for these density-based clusters is that they are separated from one another by

regions of low density. The low-density regions surrounding the high-density regions

are often considered to be noise.

The notion of density-based clustering was explored by Jain and Dubes (1988) in what

they call clustering by density-estimation and mode seeking. In their approach, the

high-density regions are called modes. Each mode corresponds to a cluster center, and

data vectors are assigned to the cluster that has its center nearest to them. Given any

data vector 𝑥, the number of data vectors inside a small region of space around 𝑥 is

used as an estimate of density.

We can get a rough idea of the density of the distribution of a data set by constructing

a histogram. (Ester et al., 1996) This is done by partitioning the data into a grid of non-

overlapping cells: Grid cells with high frequency of data vectors are potential cluster

centers, and the low-density areas between the clusters correspond to the minima in

the histogram. (Jain & Dubes, 1988)

Figure 24 shows a histogram of data set 3. The four clusters nested by the large, widely

spread cluster can be clearly recognized because of their high density. Since the den-

sity of these clusters is significantly higher than the sparse cluster that nests them, the

sparse cluster can be considered background noise. On the other hand, the larger,

sparse clusters are also faintly noticeable, since their density is also higher relative to

their neighborhood.

26

Figure 24. A histogram of data set 3, showing the density of the distribution of the data.

Density-based clustering is often defined to be a non-parametric approach to cluster-

ing, meaning that the number of clusters does not have to be given as an additional

parameter. It usually also does not require assumptions about the density distribution

of the data set, or the variance within clusters. (Kriegel et al., 2011) These kinds of

methods are typically able to detect clusters that have arbitrary shapes and sizes, since

the clusters can grow in any destination driven by density. Figure 25 shows of clusters

detected by the density peaks algorithm.

27

Figure 25. Density peaks can find clusters of arbitrary shapes and sizes.

Adapted from Rodriguez & Laio (2014).

However, density-based clustering methods do not necessarily have to be non-para-

metric. Melnykov et al. (2014) for instance calls this category of methods non-para-

metric clustering instead of density-based clustering, although they also note that clus-

ters in these methods are traditionally associated with density bumps or modes.

In this thesis, we consider density-based methods to be any clustering methods that

make use of the density of the data as the primary feature in clustering. As seen in

chapter 5, it is possible to utilize density even if we use parametric methods such as k-

means.

4.1 Motivation

For Euclidean data vectors, partitioning algorithms such as k-means and random swap

will partition the data space into non-overlapping groups. This follows naturally from

the fact that each data vector is assigned to the cluster represented by the nearest cen-

troid. As a result, nested clusters (i.e. clusters within clusters) are generally not de-

tected.

An example of this is shown in Figure 26. When the sum of squared errors (SSE) is

used as the object function, random swap can detect the rough locations of the cluster

centers. However, the partitioning it produces is far from perfect. Crucially, it fails to

28

group together the points belonging to the small, dense cluster within the larger, sparse

cluster. Instead, the large cluster is split roughly in half.

Figure 26. A clustering of data set 2 using random swap on the left.

The true centroid locations and partitioning are shown on the right.

When the number of nested clusters increases, the difference between the ground truth

and the partitioning produced by random swap becomes even more emphasized. The

partitioning shown in Figure 27 illustrates how the large cluster enveloping all the

other clusters has been divided into several non-overlapping sub-clusters.

Figure 27. A clustering of data set 3 using random swap on the left.

The true centroid locations and partitioning are shown on the right.

Even though the random swap algorithm typically produces results that are comparable

to some of the best clustering algorithms (Fränti & Kivijärvi, 2000; Fränti, 2018), these

examples show that for data sets with varying cluster densities and nested clusters, a

different objective function is needed in order to reach the correct clustering.

Random swap, SSE as objective function Ground truth

Random swap Ground truth

29

4.2 Existing approaches

Numerous density-based methods have been introduced in the literature for various

applications. (Kriegel et al., 2014) Common for many of the existing density-based

methods is that they calculate density by counting the number of data vectors per vol-

ume. The volume is often calculated based on a parameter such as a radius around a

data vector or based on the 𝑘 nearest neighbors (for example their mean distance).

In the following subchapters, some of the commonly cited algorithms are introduced.

Their behavior with the density-based data sets 2 and 3 is also examined.

4.2.1 DBSCAN

The most well-known density-based clustering algorithm is the density based spatial

clustering of applications with noise (DBSCAN) introduced by Ester et al. (1996). It

attempts to formalize the previously introduced notion of a cluster having higher den-

sity of data vectors than the areas outside the cluster.

The key idea is that for any data vector to belong to a cluster, there must be at least a

given number of data vectors within a specified radius. In other words, the density of

the neighborhood around the data vector must exceed a given threshold. In general,

the shape of the neighborhood depends on the choice of distance function.

The DBSCAN algorithm (Ester et al., 1996; Kriegel et al., 2014) takes two global

inputs: the radius 𝑟 and the minimum number of data vectors 𝑘. Given these two val-

ues, the local density of a data vector is defined as the number of data vectors 𝑘𝑖 that

lie within the radius 𝑟 from the data vector 𝑥𝑖. If the local density is greater than the

minimum number of points 𝑘, then 𝑥𝑖 is called a core point.

The concepts of density-reachability and density-connectivity are the basis for the no-

tion of cluster. Ester et al. (1996) define these as follows: A data vector 𝑝 is directly

density-reachable from another data vector 𝑞 if the distance between them is shorter

than 𝑟, and 𝑞 is a core point. A data vector 𝑝 is density-reachable from a vector 𝑞 if

they are joined by a sequence of data vectors 𝑥1, … 𝑥𝑛, 𝑥1 = 𝑞, 𝑥𝑛 = 𝑝 such that the

data vector 𝑥𝑖+1 is directly density-reachable from the data vector 𝑥𝑖, see Figure 28. A

30

data vector 𝑝 is density-connected to the vector 𝑞 if there is an intermediate data vector

𝑜 from which both 𝑝 and 𝑞 are density-reachable. Data vectors that are not core points

but are part of a cluster but are called border points. Finally, data vectors that do not

belong to a cluster are called noise points.

Examples of density-reachability and density-connectivity are shown in Figure 28. In

(a), the red border point 𝑝 is density-reachable from the blue core point 𝑞. However,

the reverse is not true because 𝑝 itself is not a core point. In (b), the data vectors 𝑝 and

q are density-connected to one another through the data vector 𝑜.

Figure 28. Density-reachability and density-connectivity, adapted from Ester et al. (1996).

Based on these definitions, Ester et al. (1996) define density-based cluster as a set of

data vectors that satisfy the following two conditions:

(1) All pairs of data vectors belonging to the same cluster are density-connected.

(Maximality)

(2) If a data vector 𝑥 is density-reachable from another that is part of the cluster, then

𝑥 is also part of the cluster. (Connectivity)

The procedure itself starts at an arbitrary data vector 𝑥 and calculates all data vectors

that are density-reachable from it given the chosen radius 𝑟 and number of data vectors

𝑘. If 𝑥 is a core point, then the algorithm produces a new cluster assigning to the cluster

all data vectors that are density-connected to 𝑥. (Kriegel et al., 2011) If 𝑥 is a border

point, DBSCAN will move on to the next data vector in the data set, since no data

vector is density-reachable from 𝑥.

𝑝

𝑞

𝑝

𝑞

𝑜

(a) (b)

31

The original DBSCAN algorithm gained widespread popularity because it was very

efficient for large data sets. According to Kotsiantis & Pintelas (2004), DBSCAN out-

performs hierarchical and partitioning algorithms. However, this seems to depend on

the dimensionality of the data: Kriegel et al. (2011) gives the time complexity of

DBSCAN as 𝑂(𝑁2) in the worst case, although they also claim that the average

runtime time complexity can be brought down to 𝑂(𝑁 log 𝑁) if the dimensionality of

the data is not too high and R*-trees are used for indexing the data. For comparison,

the worst case time complexity of k-means is 𝑂(𝐼𝑁𝐾), where 𝐼 is the number of itera-

tions, 𝑁 is the number of data vectors, and 𝐾 is the number of clusters. Hierarchical

agglomerative clustering can be performed in 𝑂(𝜏𝑁2), where 𝜏 is a small number that

refers to the number of nearest neighbors that need to be updated after merging clus-

ters. (Fränti et al., 2006)

DBSCAN does not require the number of clusters to be given as a parameter because

of the way the clusters are formed based on the connectivity of data vectors to each

other. The algorithm can generally be used for any data set where a distance function

between two data vectors can be defined. Like with non-parametric methods in gen-

eral, an important advantage is that it can discover clusters of varying sizes and shapes.

DBSCAN can also handle outliers because of to its concept of noise.

A disadvantage of DBSCAN is that it struggles with data sets that contain clusters of

varying densities. (Ertöz et al., 2003) An example of this is shown in Figure 29. If the

chosen distance threshold is too small, all the points belonging to the sparse cluster

will be considered noise. If the threshold is too large, all points will be in the same

cluster. A possible solution might be to run the algorithm multiple times and removing

the already found clusters from the data set after each run.

32

Figure 29. The distance threshold r defines the neighborhood of a point. (Ertöz et al., 2003)

High-dimensional data can also make clustering more challenging – distances between

data vectors become more uniform, effectively making them seem more similar. (Ertöz

et al., 2003) Furthermore, choosing the parameters for the distance and density thresh-

olds requires domain expertise, and the definitions of the algorithm such as density-

connectivity and border points are not very simple. A simplified version of the

DBSCAN algorithm was proposed by Campello et al. (2013) which gets rid of the

concept of border points.

With data sets 2 and 3 as input, DBSCAN cannot solve the correct clusters reliably

with small values of 𝑘. Example solutions with 𝑘 = 5 and different values of 𝑟 for

each data set are shown in Figure 30 and Figure 31. These were calculated using the

DBSCAN implementation from scikit-learn (Pedregosa et al., 2011) and by normaliz-

ing the attributes before clustering. Since DBSCAN labels noise points separately, they

are colored in red and do not belong to any cluster. DBSCAN also does not directly

give the centroid locations, so they are calculated based on the partitioning after the

clustering is performed.

With small values of 𝑟 there are too many clusters in the solution. This happens if the

distance between adjacent data vectors tends to be higher than 𝑟. As a result, you get

many clusters containing only a few data vectors, and lots of points labeled as noise.

33

Figure 30. DBSCAN solutions for data set 2.

The best results for data set 2 are achieved when the value of 𝑟 is about 0.03. However,

with this value you already get too few clusters, as the largest and smallest clusters are

merged into one. With 𝑟 = 0.04 all three clusters are merged into one.

The results are similar with data set 3. With 𝑟 = 0.005, almost all data vectors belong-

ing to the largest cluster are labeled as noise, and there are numerous clusters contain-

ing only a few vectors. However, with these parameters the algorithm does a relatively

good job at detecting the dense clusters.

𝑟 = 0.01, 𝑘 = 5 𝑟 = 0.02, 𝑘 = 5

𝑟 = 0.03, 𝑘 = 5 𝑟 = 0.04, 𝑘 = 5

34

Figure 31. DBSCAN solutions for data set 3.

With higher values of 𝑟, the behavior is similar to data set 2: the problem is that many

clusters are being merged into one, and too many points are being labeled as noise.

With this data set, it is difficult find a value of 𝑟 that would produce a result that re-

sembles the ground truth. Even with 𝑟 = 0.025 where all the clusters are merged into

one, there are still unwanted clusters containing only a few points.

The centers of the clusters can be located more reliably by carefully choosing 𝑟 and 𝑘.

Figure 32 shows solutions where both parameters were set high enough in order to not

create too many clusters with only few points. This results in lots points in each cluster

being labeled as noise but gives very precise locations for most of the cluster centers.

The drawback is that the largest clusters in each data set were not recognized but in-

stead labeled as noise.

𝑟 = 0.005, 𝑘 = 5 𝑟 = 0.012, 𝑘 = 5

𝑟 = 0.019, 𝑘 = 5 𝑟 = 0.025, 𝑘 = 5

60 clusters 32 clusters

13 clusters 6 clusters

35

Figure 32. Solutions for data sets 2 and 3 with carefully chosen r and k.

For these datasets, DBSCAN requires a lot of tweaking of the parameters to get good

results. It is possible to detect most of the cluster centers, but the quality of the parti-

tioning must be sacrificed as many points will be labeled as noise. A potential solution

to this could be to perform several runs of DBSCAN with different parameters and

then combine the results.

4.2.2 Mean shift

Mean shift (Cheng, 1995) is an iterative algorithm that works by shifting each data

vector to the average of its nearby data vectors. It is a generalization of the original

mean shift procedure introduced by Fukunaga and Hostetler (1975). It is based on the

concept of kernel density estimation (KDE), which is a non-parametric method for

estimating the probability density function (PDF) of a random variable. (Comaniciu &

Meer, 2002) The input data set is treated as a sample from the PDF. A more precise

mathematical formulation of the algorithm can be found in Cheng (1995) and Coman-

iciu & Meer (2002).

On a higher level, algorithm works as follows. For each data vector, a window of radius

𝑟 is defined, and the mean of the data vectors within the window is calculated. The

window is then moved towards the mean by a mean shift vector. This vector points in

the direction to which density increases the most. (Comaniciu & Meer, 2002)

The above steps are repeated until the mean converges to a stationary point. After each

iteration, the mean will shift towards a denser region of the data set, as illustrated in

𝑟 = 0.009, 𝑘 = 50 𝑟 = 0.012, 𝑘 = 20

36

Figure 33. The end result is that each data vector will converge to a local maximum

(mode) of the underlying PDF. The number of modes equals the number of clusters

discovered, and each data vector that converged to the same mode belongs to the same

cluster.

Figure 33. Illustration of the mean shift procedure.

Applications of mean shift in computer science include image segmentation, color

space analysis, and face tracking (Comaniciu & Meer, 2002). It has also been applied

in other fields such as microbiology. (De Brito et al., 2016)

Like many other density-based algorithms, mean shift does not require the number of

clusters to be given as input parameter. This is because the procedure essentially finds

the cluster center for each data vector, and the number of unique cluster centers equals

to the number of clusters. However, KDE and non-parametric techniques in general

may not be suitable for high-dimensional data sets because of the curse of dimension-

ality, which causes all objects to appear dissimilar to each other. (Comaniciu & Meer,

2002; Kriegel et al., 2011).

With data sets with nested clusters, mean shift is unable to find the correct centroid

locations reliably. Solutions for data sets 2 and 3 with different values of window ra-

dius 𝑟 are shown in Figure 34 and Figure 35. These were calculated using the mean

shift implementation from scikit-learn (Pedregosa et al., 2011) and the attributes were

normalized before clustering.

Initial window

Mean shift vector

New centroid location
New window

37

Figure 34. Mean shift solutions for data set 2.

Like partitioning methods, mean shift divides the data set into non-overlapping re-

gions. With small values of 𝑟, mean shift tends to split nested clusters in two or more

parts. With higher values it tends to merge them into larger clusters. With 𝑟 = 0.063,

the two smaller centroids are roughly in the correct locations, but the centroid of the

largest one is too low, and there are two extra centroids. As the value of 𝑟 is increased,

the clusters tend to merge together and the centroid locations also get less precise.

With data set 3 the results are similar, as seen in Figure 35. Although many of the

cluster centers are correctly placed, there are many extra ones, the partitions are mostly

wrong, and the algorithm is unable to detect the largest cluster. With small values of 𝑟

there are many of extra clusters. However, notable is that with

𝑟 = 0.062, the solution may be considered correct if you take into account only the

𝑟 = 0.063 𝑟 = 0.257

𝑟 = 0.300 𝑟 = 0.343

38

six largest partitions. As the value of 𝑟 is increased, more clusters are merged, which

again causes the centroid locations to get misplaced.

Figure 35. Mean shift solutions for data set 3.

With these data sets, mean shift produces poor results because of the nested clusters.

By choosing the parameter 𝑟 carefully, it is possible to find some of the cluster centers

precisely, but many are missed and placed in the wrong places. The algorithm tends to

produce solutions that resemble partitioning algorithms such as k-means, and as such

undesirable for such data sets.

𝑟 = 0.062 𝑟 = 0.075

𝑟 = 0.088 𝑟 = 0.101

23 clusters 12 clusters

4 clusters 9 clusters

39

4.2.3 Density peaks

The density peaks algorithm was proposed by Rodriguez & Laio (2014). Like density-

based methods in general, it is based on the assumptions that cluster centers are sur-

rounded by areas of relatively lower density and are relatively far from data vectors

with higher density.

The algorithm works as follows. First, for each data vector 𝑥𝑖 its local density and the

distance to the nearest data vector of higher density is calculated. The local density 𝑑𝑖

for the data vector 𝑥𝑖 is the number of data vectors that are closer to it than the radius

𝑟. The distance δ𝑖 is the minimum of the distances between 𝑥𝑖 and any other data

vectors 𝑥𝑗 that have higher density.

As an exception, for the data vector 𝑥ℎ with the highest density, δℎ = max(𝑑𝑖) is used.

According to Rodriguez and Laio (2014), this is based on the observation that δ𝑖 is

significantly larger for data vectors that are local or global maxima, causing data vec-

tors with exceptionally large δ𝑖 to be recognized as cluster centers.

A two-dimensional example of the algorithm in action is shown in Figure 36. The point

distribution shows data vectors ranked in order of decreasing density, 1 being the high-

est and 28 being the lowest density. There are two clusters whose density peaks are

points 1 and 10, respectively. The decision graph is a plot of δ𝑖 as the function of 𝑑𝑖.

It shows how the cluster centers 1 and 10 have significantly higher densities than the

rest of the points. Furthermore, the points 26, 27, and 28 also have relatively low local

densities and longer distances to the nearest vector of higher density, meaning that they

are isolated. These can be considered either as single-point clusters or outliers. (Rodri-

guez & Laio, 2014)

40

Figure 36. Point distribution (left) and decision graph (right).

Different clusters are shown in different colors. (Rodriguez & Laio, 2014)

After finding the cluster centers, the remaining data vectors are assigned to clusters.

This is done for each data vector by assigning it to the same cluster as the nearest data

vector of higher density. (Rodriguez & Laio, 2014) The assignment of vectors to clus-

ters is done in a single step, contrary to iterative methods such as DBSCAN or k-

means.

The advantages of density peaks are that it does not require the number of clusters to

be given as parameter. Instead, the number of clusters is inferred from the peaks in

local densities. It is able to find non-spherical clusters and requires only a way of meas-

uring distance between two data vectors. (Rodriguez & Laio, 2014)

A drawback of the algorithm is that for finite samples from randomly generated data

vectors, several density peaks may be detected, even though one would expect the

density to be uniform. Rodriguez and Laio (2014) claim that these density ripples can

be distinguished from the decision graph by looking at the distributions of δ𝑖 and 𝑑𝑖:

For genuine cluster centers, there are significant gaps in both axes compared to other

points, while for density ripples, Rodriguez and Laio observed a continuous distribu-

tion following a power law that depends on the dimensionality of the data set. How-

ever, if such an analysis works, it would have to be done manually after the clustering

has been performed, as the algorithm itself does not do so, and no automatic method

for doing such an analysis is proposed.

Additionally, the algorithm requires that the distance between each vector pair is cal-

culated, which becomes a bottleneck with large data sets. (Rodriguez & Laio, 2014)

The time complexity according to Xu & Tian (2015) is 𝑂(𝑁2).

41

With data sets with nested clusters, the algorithm fails to find all the cluster centers.

Solutions for data sets 2 and 3 are shown in Figure 37. Like the density-based algo-

rithms introduced so far, density peaks cannot detect the largest cluster either data set.

In data set 2, two clusters centers are somewhat precisely detected, but the third one is

completely misplaced.

Figure 37. Density peaks solutions for data sets 2 and 3.

In data set 3, four clusters are also somewhat precisely detected, but the largest one

and one of the smaller ones are not. The partitions are poor compared to the ground

truth. The density peaks algorithm seems better suited for data sets where the clusters

are clearly separated.

42

5 Clustering with weighted centroids

Centroid-based algorithms such as k-means and random swap have trouble detecting

the clusters in data sets that have nested clusters or clusters of varying densities. The

main problem these algorithms have is that they will always assign data vectors to the

cluster whose centroid is nearest. When there are nested clusters, this is typically not

desirable.

An example of this is shown in Figure 38, which shows the ground truth centroids and

partitioning for a part of data set 2. Ideally, the points surrounded by the convex hull

should be assigned to the cluster represented by 𝑐2, and all points outside it should be

assigned to 𝑐1. The data vector 𝑥 should therefore be assigned to the cluster represented

by 𝑐1, even though the Euclidean distance to 𝑐2 is shorter.

Figure 38. Cropped part of data set 2.

To achieve this kind of result, we introduce weighted centroids. Each centroid 𝑐𝑖 will

have a weight 𝑤𝑖 associated with it. The weight of a centroid is related to the density

of the cluster: a low weight means the cluster is sparse and a high weight means the

cluster is dense with many data vectors concentrated on a small area. The notation

𝑊 = {𝑤1, 𝑤2, … , 𝑤𝐾} is used to denote the collection of centroid weights.

The centroid weights are illustrated in Figure 39 for the ground truth centroids of data

set 2. The large, sparse cluster has the lowest weight while the cluster it envelops has

a significantly higher weight because of its high density.

𝑐1

𝑐2

𝑥
Centroid with shortest

Euclidean distance

Correct centroid

311

658

43

Figure 39. Example weights for the centroids of data set 2.

A similar idea is described by Koyuncu & Jafarkhani (2017). They approach the prob-

lem from the point of view that we want to allocate a given number of weighted points

optimally to an area, for example by finding the optimal locations for cellular network

towers in an area of subscribers. However, the authors do not provide an algorithm or

a method for calculating the weights.

5.1 Problem definition

Like in the traditional clustering problem defined in chapter 2.2, we assume that the

number of clusters is given, the data sets consist of Euclidean points, and we are inter-

ested in the locations of the clusters. Thus, we formulate the clustering problem with

weighted centroids as follows:

Given a data set 𝑋, the number of clusters 𝐾, and the centroid weights 𝑊,

find the centroid locations 𝐶 and the partitioning 𝑃 such that the objective

function 𝑓 is minimized.

Since the only addition to the clustering problem is the centroid weights, any centroid-

based clustering algorithm can be used to solve the problem, if they are modified take

centroid weights into account.

𝑤1 = 0.08

𝑤2 = 0.67
𝑤3 = 0.25

44

5.2 Distance measure

For measuring the distance between a data vectors 𝑥 and a centroid 𝑐𝑖, the weighted

squared Euclidean distance is used:

d(𝑥, 𝑐𝑖) = √∑(𝑥𝑗 − 𝑐𝑖
𝑗
)

2
𝐷

𝑖=1

= 𝑤𝑖‖𝑥 − 𝑐𝑖‖ (5)

During partitioning, this allows data vectors to be assigned to clusters whose centroid

is not necessarily the closest by Euclidean distance alone, but the one with the shortest

weighted distance. Effectively, this allows nested clusters to exist.

Figure 40 shows both unweighted and weighted distances calculated from the data

vector 𝑥 to centroids 𝑐1 and 𝑐2. On the left, unweighted Euclidean distances are used,

resulting in 𝑥 being assigned to the cluster represented by 𝑐2 since it is the nearest. On

the right, weighted Euclidean distances are used. Since the weight of 𝑐2 is very small

(0.08), the weighted distance between 𝑥 and 𝑐2 ends up being smaller than the

weighted distance between 𝑥 and 𝑐1, despite the latter unweighted distance being over

twice as large.

Figure 40. Comparison between unweighted and weighted distances.

𝑐1

𝑐2

𝑥

Shorter

208

53

𝑤1 = 0.08
𝑤2 = 0.67

𝑐1

𝑐2

𝑥

311

658

Unweighted Euclidean distances Weighted Euclidean distances

Shorter

45

5.3 Objective function

With this density-based approach, the objective function to minimize is still the sum

of squared errors (SSE) shown in Equation 2 in chapter 2.4. The only thing to note is

that squared distance is multiplied by the centroid weight:

Weighted SSE = ∑ (𝑤𝑖‖𝑥𝑖 − 𝑐𝑝𝑖
‖

2
)

𝑁

𝑖=1

(6)

5.4 Estimating cluster density

The density-based clustering method defined in chapter 5.1 requires the centroid

weights to be known in advance. In this subchapter, we will do it empirically during

the clustering process.

Assuming we know the ground truth partition of the data set, the density of the cluster

can be estimated with the mean distance between the centroid 𝑐𝑖 and the data vectors

belonging to this cluster:

md(𝑐𝑖) =
1

𝑛𝑖
∑‖𝑥𝑗 − 𝑐𝑖‖

𝑛𝑖

𝑗=1

(7)

The mean distance indicates how far the data vectors are from their centroid, on aver-

age. A small mean distance means that the cluster is dense while a long mean distance

means that the cluster is sparse.

The mean distances for the three clusters in data set 2 are visualized in Figure 41. The

radius of each circle equals to the mean distance for each cluster.

46

Figure 41. Mean distances from the cluster centroids for data set 2.

Since the mean distance is inversely proportional to the density of the cluster, we de-

fine the density dens(𝑖) of the cluster represented by the centroid 𝑐𝑖 to be the inverse

mean distance:

dens(𝑖) =
1

md(𝑐𝑖)
(8)

By this definition, the higher the density, the closer the data vectors are to its centroid,

on average. Conversely, a lower density means that the data vectors are on average far

away from the cluster centroid.

5.5 Calculating centroid weights

There are many ways in which centroid weights could be defined. In this thesis, the

centroid weights are calculated based on the densities of the clusters. We define the

weight 𝑤𝑖 of the centroid 𝑐𝑖 as the density of the corresponding cluster divided by the

sum of all cluster densities:

𝑤𝑖 =
dens(𝑖)

∑ dens(𝑗)𝐾
𝑗=1

(9)

376

189 61

47

Dividing the density of the cluster by the sum normalizes the weights to the range

[0, 1]. This is not strictly required, but makes the weights more human-readable. It also

means that all the weights sum up to one:

∑ 𝑤𝑖

𝐾

𝑖=1

= ∑ (
dens(𝑖)

∑ dens(𝑗)𝐾
𝑗=1

)

𝐾

𝑖=1

=
∑ dens(𝑖)𝐾

𝑖=1

∑ dens(𝑗)𝐾
𝑗=1

= 1 (10)

The process of estimating the cluster densities and the centroid densities is shown in

Figure 42. On the left, the density of each cluster is calculated based on the inverse

mean distance. On the right, each density is divided by the sum of all densities to get

the weight for each centroid.

Figure 42. Estimating cluster densities and centroid weights for data set 2.

5.6 Modified algorithms

Following are the k-means and random swap algorithms modified to use centroid

weights. These are used in the experiments in chapter 6.

5.6.1 k-means

The modified k-means algorithm (Figure 43) takes a data set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}, cen-

troids weights 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝐾}, and the number of clusters 𝐾 as parameters, and

it returns the centroid locations 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} and the partitioning 𝑃 =

{𝑝1, 𝑝2, … , 𝑝𝑁} of the data points as the results.

dens(2) = 1 61⁄
≈ 0.0164

dens(3) = 1 189⁄
≈ 0.0053

∑ 𝑑𝑖 ≈ 0.0243

𝑤1 = 0.0027 0.0243⁄
≈ 0.11

𝑤2 = 0.0164 0.0243⁄
≈ 0.67

𝑤3 = 0.0053 0.0243⁄
≈ 0.22

dens(1) = 1 376⁄
≈ 0.0027

∑ 𝑤𝑖 = 1

48

Figure 43. Pseudo code for the k-means algorithm with weighted centroids.

Compared to the original k-means algorithm (Figure 15), the centroid weights are

given as an additional parameter. Additionally, the weights are utilized when calculat-

ing the distances to centroids in the FindNearestCentroid function (Figure 44). The

CalculateCentroid function is identical to the original.

Figure 44. Pseudo code for finding the nearest centroid.

5.6.2 Random swap

The modified random swap algorithm (Figure 45) takes a data set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁},

the centroids weights 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝐾} and the number of clusters 𝐾 as parame-

ters, and it returns the centroid locations 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} and the partitioning 𝑃 =

{𝑝1, 𝑝2, … , 𝑝𝑁} of the data points as the results.

Figure 45. Pseudo code for the random swap algorithm with weights.

K-means(𝑋, 𝑊, 𝑃, 𝐶): → (𝐶, 𝑃)
REPEAT
 𝐶prev ← 𝐶

 FOR 𝑖 ≔ 1 TO 𝑁 DO
 𝑝𝑖 ← FindNearestCentroid(𝑥𝑖, 𝐶, 𝑊)
 FOR 𝑗 ≔ 1 TO 𝐾 DO
 𝑐𝑗 ← CalculateCentroid(𝑋, 𝑃, 𝑗)

UNTIL 𝐶 = 𝐶prev

FindNearestCentroid(𝑥, 𝐶, 𝑊): → 𝑖nearest
𝑑nearest ← ∞
FOR 𝑖 ≔ 1 TO 𝐾 DO
 𝑑 ← 𝑤𝑖‖𝑥 − 𝑐𝑖‖
 IF 𝑑 < 𝑑nearest THEN
 𝑑nearest ← 𝑑
 𝑖nearest ← 𝑖
RETURN 𝑖nearest

RandomSwap(𝑋, 𝑊, 𝑃, 𝐶): → (𝐶, 𝑃)
REPEAT 𝑇 TIMES
 (𝐶new, 𝑗) ← SwapCentroid(𝑋, 𝐶)
 𝑃new ← LocalRepartition(𝑋, 𝑊, 𝐶new, 𝑃, 𝑗)
 (𝐶new, 𝑃new) ← K-means(𝑋, 𝑊, 𝐶new, 𝑃new)
 IF 𝑓(𝐶new, 𝑃new, 𝑊) < 𝑓(𝐶, 𝑃) THEN
 (𝐶, 𝑃) ← (𝐶new, 𝑃new)
RETURN (𝐶, 𝑃)

49

The local repartition step (Figure 46) utilizes centroid weights when finding the nearest

centroid for each data vector. The random swap step SwapCentroid is identical to the

original.

Figure 46. Re-allocation of data vectors to centroids.

5.7 Problems with calculating weights dynamically

The obvious drawback of the method described in this chapter is that the weights for

each cluster centroid have to be known in advance. In practice, this means that a pre-

processing step that estimates the centroid weights is needed, and the estimated

weights are then given to the clustering algorithm as input. An alternative approach is

to try to calculate the weights dynamically during the clustering process.

The idea is to give equal weights for each centroid as the initial weights. Then, an

additional weight calculation step is performed after the new centroid locations and

partitions have been calculated. Figure 47 shows the random swap algorithm modified

with the weight calculation step.

Figure 47. Pseudo code for the random swap algorithm with the weight calculation step.

In this step, the weight for each centroid is calculated based on the corresponding par-

tition. During writing this thesis, the function CalculateWeights was implemented by

LocalRepartition(𝑋, 𝑊, 𝐶new, 𝑃, 𝑗): → 𝑃
FOR 𝑖 ≔ 1 TO 𝑁 DO
 IF 𝑝𝑖 = 𝑗 THEN
 𝑝𝑖 ← FindNearestCentroid(𝑥𝑖, 𝐶, 𝑊)
FOR 𝑖 ≔ 1 TO 𝑁 DO

 IF ‖𝑥𝑖 − 𝑐𝑗‖ < ‖𝑥𝑖 − 𝑐𝑝𝑖
‖ THEN

 𝑝𝑖 ← 𝑗
RETURN 𝑃

WeightAdjustingRandomSwap(𝑋, 𝑊, 𝑃, 𝐶): → (𝐶, 𝑃)
REPEAT 𝑇 TIMES
 (𝐶new, 𝑗) ← SwapCentroid(𝑋, 𝐶)
 𝑃new ← LocalRepartition(𝑋, 𝑊, 𝐶new, 𝑃, 𝑗)
 (𝐶new, 𝑃new) ← K-means(𝑋, 𝑊, 𝐶new, 𝑃new)
 IF 𝑓(𝐶new, 𝑃new, 𝑊) < 𝑓(𝐶, 𝑃) THEN
 (𝐶, 𝑃) ← (𝐶new, 𝑃new)
 𝑊 ← CalculateWeights(𝑋, 𝑃, 𝐶)
RETURN (𝐶, 𝑃)

50

using a variation of the mean distance based approach introduced earlier in this chap-

ter, where density is defined to be the number of data vectors in a cluster divided by

the mean distance of the data vectors from the cluster centroid. Pseudo code for this

approach is seen in Figure 48.

Figure 48. Pseudo code optimizing the centroid weights.

Figure 49 shows the how the random swap algorithm typically behaves with data set

2 with the additional weight calculation step. On the first iteration, each weight is ini-

tialized as 0.33, so the partitioning is the same as that produced by random swap. The

weights are then calculated based on each partitioning, giving the weights 0.11, 0.49

and 0.40 for the second iteration.

Figure 49. Behavior of random swap with the weight calculation step.

CalculateWeights(𝑋, 𝑃, 𝐶): → 𝑊
FOR 𝑖 ≔ 1 TO 𝐾 DO
 dens(𝑖) ← 𝑛𝑖 MeanDistance(𝑋, 𝑝𝑖, 𝑐𝑖)⁄
FOR 𝑖 ≔ 1 TO 𝐾 DO
 𝑤𝑖 ← dens(𝑖) ∑ dens(𝑗)⁄
RETURN 𝑊

Iteration 2 Iteration 1

Iteration 4 Iteration 3

𝑤1 = 0.33

𝑤2 = 0.33

𝑤3 = 0.33

𝑤1 = 0.11

𝑤2 = 0.49

𝑤3 = 0.40

𝑤1 = 0.07

𝑤2 = 0.72
𝑤3 = 0.21

𝑤1 = 0.04

𝑤2 = 0.84

𝑤3 = 0.12

51

In this example run, notable is that on the fourth iteration, the highlighted centroid was

swapped far from its correct location. This seems to happen because the centroid of

the large, sparse cluster has such a low weight (0.04) that although the centroid with

heavier weight (0.84) is at an incorrect position, the overall weighted SSE is lower

than during the previous iteration. Thus, the trial swap is accepted.

In some cases, the algorithm produces the correct result, as seen in Figure 50. How-

ever, more common is the situation seen in Figure 51.

Figure 50. Random swap with weight calculation producing the correct solution.

The behavior of the algorithm is similar with data set 3. Figure 51 shows how it can

reach an almost correct solution. One centroid is misplaced, causing the highlighted

area to contain two centroids.

Iteration 2 Iteration 1

Iteration 5 Iteration 4

𝑤1 = 0.33

𝑤2 = 0.33

𝑤3 = 0.33

𝑤1 = 0.13

𝑤2 = 0.53

𝑤3 = 0.34

𝑤1 = 0.04

𝑤2 = 0.84

𝑤3 = 0.12

𝑤1 = 0.04

𝑤2 = 0.87

𝑤3 = 0.09

52

Figure 51. Behavior of random swap with the weight calculation step and data set 3.

After 20 iterations, there was no improvement even after a total of 10,000 random

swap iterations. Similar to data set 2, the problem seems to be that once the weights of

certain centroids become low enough, it becomes more and more difficult to find lo-

cations for them that would result in a lower weighted SSE. For example, even if one

of centroids from the centroid-rich area (weights 𝑤2 and 𝑤3) were moved to the cluster

in the top-right corner with no centroids, the overall weighted SSE would not improve.

Iteration 6 Iteration 5

Iteration 20 Iteration 7

Iteration 4 Iteration 1

𝑤5 = 0.01

𝑤6 = 0.12

𝑤1 = 0.002

𝑤4 = 0.55

𝑤2 = 0.14

𝑤3 = 0.18

53

6 Experiments

Two sets of experiments were performed using the data sets and algorithms introduced

in chapter 3. The purpose of these experiments is to examine whether the method based

on weighted centroids would be suitable for clustering data sets with clusters of vary-

ing densities, especially when the data set contains nested clusters.

In the first set of experiments, the k-means and random swap algorithms were run with

data sets 2 and 3 as input. The sum of squared errors (SSE) was used as the objective

function. For the second set of experiments, both algorithms modified to use weighted

SSE as the objective function, as described in chapter 5.6.

Since the ground truth of each data set was known, the clustering solution of each run

was compared to the ground truth by inspecting the solution visually and by evaluating

the clustering quality using two different measures: an external validity indices called

centroid index (CI) for evaluating cluster-level differences, and centroid similarity in-

dex (CSI) for evaluating the point-level differences. These will be introduced in the

following subchapter.

All programs were written in C and were run on a desktop computer with an Intel Core

i5-6600K 3.5 GHz processor and 16 gigabytes of RAM.

6.1 Evaluating clustering quality

To compare the clustering results of different algorithms, we need a way to measure

the quality of the clustering. In these experiments, the centroid index (CI) and centroid

similarity index (CSI) were used for this purpose.

6.1.1 Centroid index

Centroid index is a cluster-level similarity measure proposed by Fränti et al. (2014)

that estimates the similarity of two clustering solutions based on their centroids. The

centroid index for two solutions 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾1
} and 𝐶′ = {𝑐1

′ , 𝑐2
′ , … , 𝑐𝐾2

′ } is calcu-

lated as follows. First, the nearest neighbor mappings 𝐶 → 𝐶′ are constructed:

54

𝑞𝑖 ← arg min
1 ≤ 𝑗 ≤ 𝐾2

‖𝑐𝑖, 𝑐𝑗
′‖

2
 ∀ 𝑖 ∈ [1, 𝐾1] (11)

A target centroid 𝑐𝑗
′ is an orphan if there are no centroids 𝑐𝑖 that consider it the nearest:

orphan(𝑐𝑗
′) = {

1, 𝑞𝑖 ≠ 𝑗 ∀ 𝑖
0, otherwise

(12)

The dissimilarity between 𝐶 and 𝐶′ is then defined as the number of orphans in the

target clustering solution:

CI1(𝐶, 𝐶′) = ∑ orphan(𝑐𝑗
′)

𝐾2

𝑗=1

(13)

This mapping is not symmetric, meaning that in general CI1(𝐶, 𝐶′) ≠ CI1(𝐶′, 𝐶). A

symmetric variant is defined by Fränti et al. (2014) as follows:

CI(𝐶, 𝐶′) = max {CI1(𝐶, 𝐶′), CI1(𝐶′, 𝐶)} (14)

The value CI = 0 means that each centroid 𝑐𝑖 is mapped to exactly one 𝑐𝑗
′ and vice

versa. In other words, the two solutions have the same global structure. A value of

CI > 0 gives the number of clusters that have been allocated differently between the

solutions.

Figure 52 shows an illustration of how the centroid index is calculated. The ground

truth centroids are shown in blue and the clustering solution is shown in red. Each

solution centroid is mapped to the nearest ground truth centroid. The numbers beside

the ground truth centroids indicate the number of solution centroids that are mapped

to each.

55

Figure 52. A clustering solution with CI = 2. The blue dots represent

the ground truth centroids and the red dots solution centroids.

If a ground truth centroid has no solution centroids mapping to it, it is considered an

orphan. The differences in the global clustering structure are highlighted with dotted

lines. In the above case, there are two orphan clusters, resulting in CI = 2.

6.1.2 Centroid similarity index

Centroid similary index (Fränti et al., 2014) is a generalization of centroid index that

is suitable for measuring point-level differences between two solutions. Like with cen-

troid index, first a nearest neighbor mapping is done both ways, from solutions 𝐶 → 𝐶′

and 𝐶′ → 𝐶. The distances between each pair of centroids are calculated as Euclidean

distances and each centroid in the source set is mapped to the nearest in the target set.

For each mapped pair, the number of shared points is then calculated, and the CSI value

is then obtained as follows:

CSI =
𝑆12 + 𝑆21

2
, where 𝑆12 =

∑ 𝐶𝑖 ∩ 𝐶𝑗
𝐾1
𝑖

𝑁
, 𝑆21 =

∑ 𝐶𝑗 ∩ 𝐶𝑖
𝐾2
𝑗

𝑁
(15)

While CI is used to evaluate the similarity of the global structure of two solutions on

cluster-level, CSI is more fine-grained as it measures the similarity at point-level.

𝟏

𝟎

𝟎 𝟏

𝟐

𝟏

𝟏

𝟏

𝟏

𝟏

𝟏

𝟏 𝟏

𝟏

𝟐

Orphan

clusters

56

CSI = 0 means that the two solutions are completely dissimilar, while CSI = 1 means

that the solutions are identical.

6.2 Experimental setup

Experiments were run with data sets 2 and 3, introduced in chapter 3.1. Each experi-

ment consisted of 100 runs. For the random swap algorithm, 1,000 iterations were

used. Each run used random data vectors as the initial centroids. For each set of repeats,

the following data was recorded:

• Success rate, i.e. the percentage of runs that reached CI = 0

• Average CI value for all runs

• Average CSI value for all runs

• Average number of iterations to reach CI = 0

• Average time to reach CI = 0

• Average SSE or weighted SSE

The centroid weights for the experiments were chosen by using the mean distance

based approach described in chapter 5.5. First, the mean distance md(𝑐𝑖) between each

cluster centroid 𝑐𝑖 and the data vectors belonging to that cluster was calculated based

on the ground truth of each data set. Then, the density estimate 𝑑𝑖 was calculated as

the inverse mean distance. Finally, the centroid weights 𝑤𝑖 were calculated based on

the density.

The calculated values for data set 2 are shown in Table 2, and the values for data set 3

are shown in Table 3. The resulting centroid weights for each data set are shown in

Figure 53.

57

Table 2. Mean distances and weights for data set 2.

Cluster

𝒊

Mean distance

md(𝒄𝒊)

Density

𝐝𝐞𝐧𝐬(𝒊)

Weight

𝒘𝒊

1 376 2.66×10−2 0.11

2 61 16.44×10−2 0.67

3 189 5.29×10−2 0.22

Table 3. Mean distances and weights for data set 3.

Cluster

𝒊

Mean distance

md(𝒄𝒊)

Density

𝐝𝐞𝐧𝐬(𝒊)

Weight

𝒘𝒊

1 1259 0.79×10−2 0.02

2 64 15.69×10−2 0.42

3 189 5.30×10−2 0.14

4 127 7.88×10−2 0.21

5 188 5.31×10−2 0.14

6 367 2.72×10−2 0.07

58

Figure 53. Calculated centroid weights for data sets 2 and 3 based on their ground truth partitions.

6.3 SSE results

For data set 2, the unweighted version of both k-means and random swap reach CI = 0

with a success rate of 100%, see Table 4. In fact, they both arrive at exactly the same

solution, as revealed by the SSE. The average CSI is 0.80, which is a mediocre result

compared to the ground truth partitioning.

Although the 100% success rate seems like a perfect result, we can see that the parti-

tions are far from the ground truth if we inspect the solution visually. The comparison

in Figure 54 illustrates how the centroids are roughly in the correct locations, resulting

in CI = 0. The CSI value of 0.80 tells that there is still room for improvement. Specif-

ically, the problem is that both algorithms partition the data set into non-overlapping

regions. Such partitions are undesirable in this case, because clusters within other clus-

ters will not be detected. Crucially, the largest cluster has been roughly divided in half

instead of enveloping the smallest cluster. Therefore, despite the high success percent-

age, the solutions cannot be considered good.

For data set 3, we already see some differences in the results, see Table 4. Neither

algorithm can reach the correct global clustering structure due to the higher number of

nested clusters. The unsuitability of SSE as the objective function is again illustrated

by the fact that k-means on average gets CSI value of 0.71 compared to 0.58 of random

swap. Random swap is better at optimizing the objective function and therefore

𝑤1 = 0.11

𝑤2 = 0.67

𝑤3 = 0.22

Data set 2 Data set 3

𝑤1 = 0.02

𝑤4 = 0.21

𝑤5 = 0.14

𝑤2 = 0.42

𝑤3 = 0.14

𝑤6 = 0.07

59

reaches a lower SSE, but this also makes the solution diverge further from the ground

truth, causing the decrease in CSI.

Typical solutions for both algorithms and data sets are shown in Figure 54. A notable

difference between the k-means and random swap results is that, on average, random

swap produces solutions with lower CSI value. This means that the clusters produced

by random swap share fewer data vectors with the ground truth than the clusters pro-

duced by random swap, on average. This is because random swap is better at optimiz-

ing the objective function, as seen from the average SSE value which is lower for

random swap. This in turn shows that SSE is not a good objective function for such

data sets, as it does not take into account the centroid weights. In other words, the

unsuitable objective function causes random swap to converge towards a solution that

is further from the ground truth compared to k-means.

60

Figure 54. k-means and random swap produce similar results for both data sets.

GT

Data set 3

KM

RS

Data set 2

61

Table 4. Results for data sets 2 and 3 using SSE as the objective function.

Algorithm Success % 𝐂𝐈 𝐂𝐒𝐈
Iterations

to 𝐂𝐈 = 𝟎

Time to

𝐂𝐈 = 𝟎 (ms)

SSE

(×108)

Data set 2

k-means 100% 0.00 0.80 4.3 3.1 1.51

Random swap 100% 0.00 0.80 1.7 2.4 1.51

Data set 3

k-means 0% 1.80 0.71 – – 1.72

Random swap 0% 1.03 0.58 – – 1.65

Table 5. Results for data sets 2 and 3 using weighted SSE as the objective function.

Algorithm Success % 𝐂𝐈 𝐂𝐒𝐈
Iterations

to 𝐂𝐈 = 𝟎

Time to

𝐂𝐈 = 𝟎 (ms)

SSE

(×108)

Data set 2

k-means 54% 0.47 0.83 1.9 2.5 1.26

Random swap 100% 0.00 0.91 5.6 5.9 2.73

Data set 3

k-means 5% 1.78 0.70 4.3 8.3 1.26

Random swap 62% 0.38 0.80 71 183.0 1.03

62

6.4 Weighted SSE results

For data set 2, the weighted version of k-means reaches CI = 0 in 1.9 iterations, on

average, with a success rate of 54%, see Table 5. The higher CI value of 0.47 can be

explained by two factors: the dependency of k-means on the initial solution, and the

differing weights for each centroid. Since k-means is only able to do local optimiza-

tions, it cannot solve problems in the global structure of the clustering. Therefore, if a

centroid is initialized too far from its globally optimal position, it may not be able to

find its way to the correct location, especially if its weight happens to be wrong. The

average CSI is 0.83, which is slightly better than with SSE as the objective function.

This reveals that although the CI is OK (0.47) compared to the unweighted results

(0.00), on average the weighted version of k-means produced a better clustering.

The weighted version of random swap reaches CI = 0 every time with an average CSI

value of 0.91. The clustering quality is significantly better compared to using un-

weighted SSE as the objective function. The solutions produced by random swap are

comparable to k-means, but on average the quality is better thanks to random swap’s

ability to solve problems in the global clustering structure. This is also evidenced by

the lower average weighted SSE for random swap. Examples of successful clustering

for both algorithms and data sets are shown in Figure 55.

With data set 3, k-means reaches the correct global clustering 5% of the time, on av-

erage. Notable here is that k-means can do it when we get lucky with the initial solution

and the centroids are located near their globally optimal locations. This allows k-means

to perform the necessary local fine-tuning to reach a good clustering. An example of

such a solution is shown in Figure 55, which shows a partitioning that is very close to

the ground truth.

63

Figure 55. Examples of good solutions by k-means and random swap with weighted centroids.

Random swap reaches the correct global clustering structure 62% of the time and has

an average CSI of 0.80. This is a significant improvement compared to using the un-

weighted SSE as the objective function.

Typical solutions by both algorithms to both data sets are shown in Figure 56. Notable

here is that k-means is able to find dense regions for many centroids, but the weights

are usually wrong. In both cases, the centroids had poor initial positions and k-means

was unable to find better locations for them.

Data set 3

KM

RS

Data set 2

64

Figure 56. Typical solutions by k-means and random swap with weighted centroids.

Note that that for both data set, it is not possible to reach CSI = 1 because they contain

overlapping clusters. An example of the overlapped clusters is shown in Figure 57 for

data set 2: a lot of the red data vectors belonging to the larger cluster are overlapped

with the blue cluster.

Data set 3

KM

RS

Data set 2

65

Figure 57. The ground truth clusters in data set 2 overlap.

Partitioning algorithms like k-means and random swap will assign all the points within

the convex hull to the blue cluster, thus making it impossible to reach CSI=1 with these

data sets.

Finally, notable in all the solutions is that the shape of the nested clusters is slightly

distorted. An example of this is seen in Figure 58, where the cluster has a distinct

asymmetric shape. This happens when data vectors that fall between the two clusters

are more easily attracted to the centroid 𝑐1 with lower weight. On the other hand, for

the data vectors behind 𝑐2 the weighted distance to 𝑐1 becomes too long despite its

lower weight. As a result, the nested cluster has asymmetric shape.

Figure 58. Asymmetry in nested clusters.

66

7 Conclusion

In this thesis, we have examined different density-based clustering methods for data

sets with nested clusters of varying density. Two such data sets were used to evaluate

some of the commonly cited algorithms found in literature. Nested clusters were found

to be challenging for the existing algorithms. In most cases, the algorithms either did

not detect the largest clusters, or simply divided large clusters into non-overlapping

regions. In the former case, it may be possible to detect all clusters by doing multiple

runs of the algorithm with different inputs, and then combining the results.

As a potential solution, we examined a method based on weighted centroids. We in-

troduced weights for each centroid and used the weighted Euclidean distance to calcu-

late the distance between data vectors and centroids. This way, data vectors are not

necessarily assigned to the cluster with the nearest centroid, but the cluster with short-

est weighted distance. Centroids with lower weight will therefore attract data vectors

from further away than centroids with higher weight. This allows dense clusters inside

larger clusters to be detected.

Experiments were performed using the k-means and random swap algorithms using

both unweighted and weighted centroid approach. The centroid weights were calcu-

lated based on the true partitioning of each data set and given to the algorithms as

additional parameters. Using unweighted centroids, the results were poor and neither

algorithm could solve the correct centroid locations. The partitions also did not resem-

ble the correct clustering. Large clusters were split into non-overlapping partitions in-

stead of nested ones. With the weighted centroids, both algorithms were able to solve

the correct centroid locations, with random swap doing so more reliably since it is

better at optimizing the objective function. By using weights, the partitions produced

by the algorithms also resembled the ground truth more accurately.

The drawback of this method is that the centroid weights must be given as an additional

parameter. The partitions it produces are also not perfect. In particular, the shapes of

nested clusters are slightly distorted, and the partitioning algorithms do not allow over-

lapping partitions.

67

Potential future research could include a more reliable method for calculating the cen-

troid weights dynamically during the clustering process. In this thesis, a method that

adds an additional weight calculation step to the clustering process was explored. It

seems to work moderately well for simple a data set with not too many nested clusters.

The problem with this approach is that it typically results in one or some of the cen-

troids in the data set having low enough weight to attract data vectors from other clus-

ters. For this method to work, a solution is therefore needed to address this problem.

An alternate approach could be to estimate the centroid weights as a pre-processing

step before the actual clustering process. A simple way of doing this would be to con-

struct histogram of the data. With two-dimensional data sets, this would essentially be

a grid. The modes of the histogram would represent the cluster centers, and the density

could be estimated based on how many data vectors fall within a cell. However, choos-

ing the appropriate grid size may be difficult, as it depends on the data.

68

References

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. New York, NY,

USA: Springer.

Campello, R. J., Moulavi, D., & Sander, J. (2013). Density-based clustering based on

hierarchical density estimates. Pacific-Asia Conference on Knowledge Discovery

and Data Mining (160–172). https://doi.org/10.1007/978-3-642-37456-2_14

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient

initialization methods for the k-means clustering algorithm. Expert Systems with

Applications, 40(1), 200–210. https://doi.org/10.1016/j.eswa.2012.07.021

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(8), 790–799.

https://doi.org/10.1109/34.400568

Comaniciu, D., & Meer, P. (1999). Mean shift analysis and applications. Proceedings

of the Seventh IEEE International Conference on Computer Vision.

https://doi.org/10.1109/iccv.1999.790416

Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5),

603–619. https://doi.org/10.1109/34.1000236

De Brito, D. M., Maracaja-Coutinho, V., de Farias, S. T., Batista, L. V., & do Rêgo,

T. G. (2016). A Novel Method to Predict Genomic Islands Based on Mean Shift

Clustering Algorithm. PLOS ONE, 11(1). https://doi.org/10.0.5.91/jour-

nal.pone.0146352

Ertöz, L., Steinbach, M., & Kumar, V. (2003). Finding clusters of different sizes,

shapes, and densities in noisy, high dimensional data. Proceedings of the 2003

SIAM International Conference on Data Mining, 47–58.

https://doi.org/10.1137/1.9781611972733.5

Ester, M., Kriegel, H. P., Sander, J., Wimmer, M., & Xu, X. (1998). Incremental clus-

tering for mining in a data warehousing environment. Proceedings of the 24th

https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1016/j.eswa.2012.07.021
https://doi.org/10.1109/34.400568
https://doi.org/10.1109/iccv.1999.790416
https://doi.org/10.1109/34.1000236
https://doi.org/10.0.5.91/journal.pone.0146352
https://doi.org/10.0.5.91/journal.pone.0146352
https://doi.org/10.1137/1.9781611972733.5

69

VLDB Conference (VLDB’98). New York, 323–333.

https://doi.org/10.1007/BFb0100982

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. Proceedings of the Sec-

ond International Conference on Knowledge Discovery and Data Mining

(KDD’96). AAAI Press, 226–231.

Estivill-Castro, V. (2002). Why so many clustering algorithms. ACM SIGKDD Explo-

rations Newsletter, 4(1), 65–75. https://doi.org/10.1145/568574.568575

Everitt, B. S., Landau, S., Leese, M., Stahl, D. (2011). Cluster Analysis (5th ed.).

Chichester, West Sussex, UK: Wiley. https://doi.org/10.1002/9780470977811

Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., Foufou, S. &

Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and

empirical analysis. IEEE transactions on emerging topics in computing, 2(3), 267–

279. https://doi.org/10.1109/TETC.2014.2330519

Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method?

Answers via model-based cluster analysis. The Computer Journal, 41(8), 578–588.

https://doi.org/10.1093/comjnl/41.8.578

Fränti, P. (2018). Efficiency of random swap clustering. Journal of Big Data, 5(1), 1–

29. https://doi.org/10.1186/s40537-018-0122-y

Fränti, P., & Kivijärvi, J. (2000). Randomised local search algorithm for the clustering

problem. Pattern Analysis & Applications, 3(4), 358–369.

https://doi.org/10.1007/s100440070007

Fränti, P., Rezaei, M., & Zhao, Q. (2014). Centroid index: Cluster level similarity

measure. Pattern Recognition, 47(9), 3034–3045.

https://doi.org/10.1016/j.patcog.2014.03.017

Fränti, P., Virmajoki, O., & Hautamäki, V. (2006). Fast agglomerative clustering using

a k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(11), 1875–1881. https://doi.org/10.1109/TPAMI.2006.227

https://doi.org/10.1007/BFb0100982
https://doi.org/10.1145/568574.568575
https://doi.org/10.1002/9780470977811
https://doi.org/10.1109/TETC.2014.2330519
https://doi.org/10.1093/comjnl/41.8.578
https://doi.org/10.1186/s40537-018-0122-y
https://doi.org/10.1007/s100440070007
https://doi.org/10.1016/j.patcog.2014.03.017
https://doi.org/10.1109/TPAMI.2006.227

70

Fukunaga, K., & Hostetler, L. (1975). The estimation of the gradient of a density func-

tion, with applications in pattern recognition. IEEE Transactions on information

theory, 21(1), 32–40. https://doi.org/10.1109/tit.1975.1055330

Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data: an introduction to

cluster analysis. Hoboken, NJ, USA: Wiley.

Kinnunen, T., Sidoroff, I., Tuononen, M., & Fränti, P. (2011). Comparison of cluster-

ing methods: A case study of text-independent speaker modeling. Pattern Recog-

nition Letters, 32(13), 1604–1617. https://doi.org/10.1016/j.patrec.2011.06.023

Koyuncu, E., & Jafarkhani, H. (2017). On the minimum average distortion of quantiz-

ers with index-dependent distortion measures. IEEE Transactions on Signal Pro-

cessing, 65(17), 4655–4669. https://doi.org/10.1109/TSP.2017.2716899

Kotsiantis, S., & Pintelas, P. (2004). Recent advances in clustering: A brief survey.

WSEAS Transactions on Information Science and Applications, 1(1), 73–81.

Kriegel, H. P., Kröger, P., Sander, J., & Zimek, A. (2011). Density-based cluster-

ing. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

1(3), 231–240. https://doi.org/10.1002/widm.30

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition

letters, 31(8), 651–666. https://doi.org/10.1016/j.patrec.2009.09.011

Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Upper Saddle

River, NJ, USA: Prentice-Hall, 118–119.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM com-

puting surveys (CSUR), 31(3), 264–323. https://doi.org/10.1145/331499.331504

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations. Proceedings of the fifth Berkeley symposium on mathematical statis-

tics and probability, 1(14), 281–297.

Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2009). The planar k-means problem

is NP-hard. International Workshop on Algorithms and Computation. Berlin:

Springer, 274–285. https://doi.org/10.1007/978-3-642-00202-1_24

https://doi.org/10.1109/tit.1975.1055330
https://doi.org/10.1016/j.patrec.2011.06.023
https://doi.org/10.1109/TSP.2017.2716899
https://doi.org/10.1002/widm.30
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1145/331499.331504
https://doi.org/10.1007/978-3-642-00202-1_24

71

Melnykov, V., Michael, S., & Melnykov, I. (2014). Recent developments in model-

based clustering with applications. Partitional Clustering Algorithms. 1–39.

https://doi.org/10.1007/978-3-319-09259-1_1

Navarro, G. (2001). A guided tour to approximate string matching. ACM computing

surveys (CSUR), 33(1), 31–88. https://doi.org/10.1145/375360.375365

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Ma-

chine Learning Research, 12(Oct), 2825–2830.

Ristad, E. S., & Yianilos, P. N. (1998). Learning string-edit distance. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 20(5), 522–532.

https://doi.org/10.1109/34.682181

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of density peaks.

Science, 306, 1910–1913. https://doi.org/10.1126/science.1242072

Theodoridis, S. & Koutroumbas, K. (2009). Pattern recognition (4th ed.) Burlington,

MA, USA: Academic Press.

Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals

of Data Science, 2(2), 165–193. https://doi.org/10.1007/s40745-015-0040-1

https://doi.org/10.1007/978-3-319-09259-1_1
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/34.682181
https://doi.org/10.1126/science.1242072
https://doi.org/10.1007/s40745-015-0040-1

