

University of Eastern Finland

School of Computing

Master Thesis

18.12.2020

Word Cloud on Mopsi

Yunlong Liu

 iii

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry,

Joensuu

School of Computing

Computer Science

Yunlong Liu: Word Cloud on Mopsi

Master’s Thesis

Supervisors of the Master’s Thesis: Pasi Fränti and Mariescu-Istodor

December 2020

Abstract: This thesis focus on develop a tool to generate word cloud on Mopsi web

application with the data geotagged photograph contains. The collision detection, shaped

word cloud generation and introduction of the tool are introduced in this thesis.

Keywords: word cloud, collision detection, data visualization

 iv

Foreword

I want to give thanks to God, he prepared the study experience in University of Eastern

Finland and he protect me all the way. I also want to thank God give me wisdom and

guidance to help me to complete my Master’s degree.

I want to give thanks to my Professor Pasi Fränti, he helped me to make my research

objective clear, review my writing and give me useful suggestions. I want to thank my

supervisors Mariescu-Istodor, he provided me Mopsi data for testing my application and gave

me many useful suggestion on my thesis writing and presentation. I also want to give thanks

to Ph.D. student Abu Sayem, who has left us and rest in peace, maybe God accept his soul

and bless his family. He helped me to integrate my work on Mopsi application and he helped

me to improve my application.

I want to give thanks to my family and my fiancée Dan Gao, they give me strength to go

through the hard time when I was under high pressure. They encourage me when I was

struggling. I want to thanks my friend Kimmo Kuikanmäki, he helped me proofread my

writing and gave me many useful suggestions.

 v

List of abbreviations

UEF University of Eastern Finland

AABB Axis-Aligned Bounding Box

TF-IDF Term Frequency-Inverse Document Frequency

HTML Hypertext Markup Language

URL Uniform Resource Locator

T-SNE T-Stochastic Neighbor Embedding

SEM Search Engine Marketing

SEO Search Engine Optimization

JS Java Script

API Application Programming Interface

GPS Global Positioning System

OSM Open Street Map

 vi

Contents

1 Introduction .. 1

1.1 Mopsi ... 2
1.2 Word cloud .. 2
1.3 Thesis structure ... 6

2 Word cloud on Mopsi ... 8

2.1 Preparation of input data ... 9
2.2 Generation of word cloud .. 11
2.3 Place word cloud on Google Maps ... 14

3 Word font size .. 16

4 Collision detection .. 22

4.1 AABB .. 23
4.2 Quadtree .. 26
4.3 Alternatives ... 32

4.3.1 Look up strategy .. 32

5 Word movement ... 35

5.1 Word position initialization ... 36
5.2 Archimedean spiral ... 40

6 Shaped word cloud ... 46

6.1 City shape .. 47
6.2 Shaped word cloud discussion .. 50

7 Word cloud implementation ... 58

References .. 60

Appendixes

Appendix 1: WordCloudOverlay calss

Appendix 2: Cities in Finland with their populations

Appendix 3: Joensuu city boundary in the geographic coordinate system.

Appendix 4: Number of words that cannot find a position to draw on heart-shaped word

cloud with linear font size function.

Appendix 5: Number of words that cannot find a position to draw on heart-shaped word

cloud with logarithmic font size function.

Appendix 6: Number of words that cannot find a position to draw on tree-shaped word cloud

with linear font size function.

Appendix 7: Number of words that cannot find a position to draw on tree-shaped word cloud

with logarithmic font size function.

Appendix 8: The function fromLatLngToPoint

 1

1 Introduction

In the early days, people used the Internet mainly for searching for information. The internet

could store static resources on the servers for users to search and query for specific

information. As the internet developed, there’s nowadays an increasing number of

smartphone users with Global Positioning System (GPS) applications. It allow GPS service to

identify the location of the phone and where photographs have been taken. It also allows

users to take geotagged photographs regardless of time and location. Photos can be stored on

the phone or uploaded to the web. There is a large number of photos taken by users every day

A geotagged photograph is a digital photograph that contains information on geographical

location. Usually latitude and longitude are assigned to geotagged photographs by GPS

service to identify the geographical location. Optionally geotagged photographs may contain

other information such as keywords or labels, to identify the content of geotagged

photographs. For example, geotagged photographs with keywords ‘coffee’ or ‘hiking’ tells

the functions or services shown in the geotagged photograph. It may also contain the time

record showing when the photograph was taken and a more detailed description than the

keywords.

Geotagged photographs are widely used on smartphones and web pages. Nowadays Android

phones, iPhones, and Windows phones support the functions of taking geotagged

photographs. Millions of users apply and upload geotagged photographs through web service

platforms such as Flickr1, Instagram2, Facebook, Google Earth every day. That can explain

the phenomenon that taking geotagged photos becomes common when using these mobile

applications and social network websites. For example, an iPhone application allows users to

view photos on Apple Maps. Instagram and Google Earth can display photos on Google

Maps.

Thumbnails of geotagged photographs can be displayed nicely on a map. One can open

thumbnails in a region and view nice photographs, but it is difficult to know what

photographs are about if there are many photographs in a region. For example, if there are

100 geotagged photographs showing on Google Maps in the region of Joensuu, a city in

1 https://www.flickr.com/
2 https://www.instagram.com/

https://www.flickr.com/
https://www.instagram.com/

 2

Finland, and I want to know what each photograph is about, I have to spend much time

clicking every photograph to check what the photograph is about and get a summary of

photographs in that region. If I want to know what is the keyword most photographs are

referring to, I have to check all photographs and get the result by a simple mathematics

operation. I have developed a tool to solve the following problems: (1) What geotagged

photographs, that are taken in a region, refer to. (2) Summary of keywords of geotagged

photographs that are taken in a region.

Word cloud is a wonderful method to visualize text strings and to give a summary of a

document. In my thesis, I will develop a tool to generate a word cloud with keywords

extracted from geotagged photographs in the selected regions and display them on Google

Maps. Instead of showing geotagged photographs in Google Maps, I show word clouds to

show the summary of geotagged photographs in a region. My major task in my thesis is: (1)

Generate word clouds with data from geotagged photographs. (2) Discuss the limitations of

displaying the word cloud in the shape of the selected region.

1.1 Mopsi

Mopsi3 is a location-based social network application developed by the Machine Learning

Unit, School of Computing at the University of Eastern Finland [1]. Mopsi features include

photograph sharing, bus timetable, and service recommendation among other services.

Service recommendation is to show the variety, availability of service, and what is around.

Mopsi will get user’s current location as default and show available services around that

location. The available services will be displayed as a list, each service contains service

name, description, street address, keywords, and distance to user’s current location. The

available services also display a snapshot image of the service on Google Maps.

1.2 Word cloud

Word Cloud, also called Tag cloud, is a weighted words list to present visual summary of text

data sets. In web technology, the word cloud is typically used to depict keywords metadata on

3 http://cs.uef.fi/mopsi

http://cs.uef.fi/mopsi
http://cs.uef.fi/mopsi

 3

websites or to visualize text data. Usually tags are single words and prioritized by font size in

two-dimensional word clouds where words are not allowed to overlap. [2].

In the early days, word clouds were used on geographic maps to show the magnitude of

different regions in font size, an early printed word cloud example is weighted English words

list Douglas Coupland's Microserfs [3]. Word cloud has become popular since the 2000s

because of its frequent usage on social media, especially on web pages [4]. With the

development of internet technology, millions of users signed up for web blogs and word

cloud became a tool of navigation to help users to reach the final web page quickly and to

summarize overviews of contents from web blogs [5]. Word cloud can be generated from any

document. During the process if a word appears in multiple documents the same words can

be placed in one location with the same color and orientation. With this idea, the comparisons

can be made easily for similar documents by utilizing similar word clouds [6]. A word cloud

can also be used for the assessment of comments and evaluate risks for public safety [7].

In a word cloud a group of words combines into one and the importance of a word is

demonstrated by font size with Hypertext Markup Language (HTML) elements applied. In

Mopsi I use HTML Canvas elements to present word clouds. Word font size in word cloud

indicates different meanings. Based on the definition of importance of words, the word

clouds can be classified into three types.

● Frequency-based word cloud

● Significance word cloud

● Categorization word cloud

In a common frequency-based word cloud the font size of a word represents the frequency of

occurrence of the words in a document. Frequency-based word clouds appear prevailing on

Social media. For example, we often see word clouds summarizing news and word font size

shows how frequently the words are used. Figure 1 (a) shows a frequency-based word cloud

of a public letter released on the White House official website. The data i used is the text of

the letter from the president to the speaker of the house of representatives and the president

pro tempore of the senate. The letter title is “Letter from the President -- Report with Respect

to Guantanamo”, released by the White House on January 19, 2017. In the word cloud the

word “Guantanamo” has the largest font size, which means the word “Guantanamo” was

mentioned the most often in this news. The word “States” has a smaller font size than the

 4

word “Guantanamo”, which means the word “States” was mentioned less often than the word

“Guantanamo”.

In significance word cloud, word font size represents the importance of words in all

documents. Term frequency-inverse document frequency (TF-IDF) is a technology to reflect

how important a word is to a document or corpus [8]. Scoring each word by TF-IDF and

showing word score distribution is one kind of significance word cloud. In [9], it shows

another kind of significance word cloud. The paper scores co-occurrences of words with

CoreNLP [10] and then draws words in two-dimensional space with t-distributed stochastic

neighbor embedding (T-SNE) [11]. CoreNLP is a Natural Language Processing (NLP)

toolkit which is developed by Stanford University. T-SNE is a technology to visualize high-

dimensional data in low-dimensional space [12]. Figure 1 (b) shows a word cloud ”Machine

Learning” article from Wikipedia. The word “unsupervised” is the most important word for

this article.

A categorization word cloud is another kind of word cloud in which words represent the

category and word font size shows the number of items in that category. Usually it is used in

search engine marketing (SEM) and search engine optimization (SEO). In SEM, words can

present a website category and the font size of the word shows how many websites that

category contains. In SEO, a website can be classified into different categories and each

category contains web pages. If we consider a website to be a document and categories are

words, then the number of the webpages where the word appears is the font size of the word.

Categorization word clouds can help users to navigate the content in the information system.

The website DigitalMeetsCulture uses the categorization word cloud. Figure 1 (c) shows the

categorization word cloud in DigitalMeetsCulture website. The word “digital preservation”

has larger font size than ”3D”, which means there are more articles on “digital preservation”

than articles on “3D”.

https://en.wikipedia.org/wiki/Text_corpus

 5

(a) Letter from the President (b) ”Machine Learning” article from Wikipedia

(c) Navigation service in website DigitalMeetsCulture

Figure 1: Three different types of the word cloud. (a) Frequency-based word cloud which is

generated from the data from the news. (b) Significance word cloud of an article. (c)

Categorization word cloud of content category in website DigitalMeetsCulture.

According to the different appearance of the word cloud there are two types of word clouds:

● Non-shaped word cloud

● Shaped word cloud

Non-shaped word clouds have shape, but I call it ‘Non-shaped word cloud’ because the shape

of this kind of word cloud is changing by different text data input. This is a kind of typical

word cloud, words usually will be packed into a square region. This kind of word cloud does

not have a fixed shape. For example, the web applications WordCloud4 and TagCrowd5 allow

one to generate a word cloud without shape online while WordClouds6 allows one to generate

shaped word clouds. In Figure 2, it shows three word clouds generated by these three web

applications with the same text data input. Figure 2 (a) and Figure 2 (b) are the non-shaped

word clouds, these two word clouds do not have fixed shapes. Figure 2 (c) is a heart-shaped

word cloud, the main idea of the heart-shaped word cloud is to pack all words into a two-

dimensional heart-shaped space. After all words are placed, the shape of all words is heart. In

the shaped word cloud the shape is usually a two-dimensional geometric space. In Section 6 I

4 https://www.jasondavies.com/wordcloud
5 https://tagcrowd.com
6 https://www.wordclouds.com

https://tagcrowd.com/
https://www.wordclouds.com/

 6

will illustrate the basic algorithm to generate a shaped word cloud with a given weighted

words list.

(a) Non-shaped word cloud by WordCloud. (b) Non-shaped word cloud by TagCrowd7

(c) Heart-shaped word cloud by WordClouds

Figure 2: Using the same text data input to generate word clouds by three different

word cloud generator web application tools. (a) and (b) are non-shaped word clouds

while (c) is a heart-shaped word cloud.

1.3 Thesis structure

My thesis consists of seven sections. Section 1 introduces what are Mopsi and word clouds.

Section 2 explains how basic word clouds are generated. Sections 3, 4, and 5 introduce how

word clouds are generated by steps. Section 3 shows linear font size function and logarithmic

font size function and also explains how these two font size functions can affect word clouds.

Section 4 shows primitive collision detection and its limitations. Because the function of

primitive collision detection is slow, I will introduce AABB and quadtree with faster

performance in collision detection. Also, I show how to find a new position when a word

collides with another one. In this section, I will introduce Archimedean Spiral that can solve

7 https://tagcrowd.com

 7

such problems. Section 6 illustrates how to create city shapes and word clouds in shapes. I

show how to generate word clouds in heart shape and tree shape while using various word

quantities, font size functions, and different word weight distributions to explore how these

elements affect word clouds and their visually recognizable shapes. In Section 7 I will

introduce how to apply word clouds on Mopsi. At the end there is the list of all references

that are cited in my thesis and the appendixes.

 8

2 Word cloud on Mopsi

In this section, I introduce the whole picture of the word cloud on Mopsi. The main idea of

word clouds on Mopsi is to generate word clouds in an image format with given input data

and draw it on Google Maps. To implement it, the word cloud on Mopsi contains three main

steps: (1) Preparation of input data, (2) Generation of a word cloud as an image within given

input data, (3) Drawing word cloud image on Google Maps. Mopsi will prepare data for input

for my tool. Section 2.1 will describe where data comes from and what input data looks like.

My main work in this thesis is to generate a word cloud and place word cloud on Google

Maps. I will introduce the main algorithm to generate a word cloud and place word cloud on

Google Maps in Section 2.2 and Section 2.3.

Figure 3 shows how the word cloud tool works in Mopsi. Figure 3 (a) lists many geotagged

photographs on the left side and it also shows same geotagged photographs on Google Maps.

One cannot see clearly what those photographs refer to. So, I will generate word clouds to

represent the photographs. After clicking the word cloud icon which is located at the top right

corner, a word cloud will be generated from geotagged photographs that are listed on the left

side and the word cloud will be placed on Google Maps. Figure 3 (b) shows how it looks.

The word cloud gives us a better summary of those photographs. In Figure 3 (b), we can see

that many of the photographs refer to “lounas” and “kahvila”.

 9

(a) Before click word cloud icon, the photographs are shown on Google Maps

(b) After click word cloud icon, the word cloud is shown on Google Maps instead

Figure 3: How to generate a word cloud with the tool in Mopsi

2.1 Preparation of input data

In my thesis, input data is extracted from Mopsi. Mopsi will provide each photograph’s

information and process it for my use. In this section, I am going to introduce what the source

data is and what the prepared data is.

 10

Geotagged photographs and trajectories are two types of Mopsi data. There were more than

35,000 geotagged photographs generated by 2,400 registered users in 2017, according to [13].

In Mopsi each geotagged photograph contains keyword property, latitude property, and

longitude property. Keyword property of geotagged photograph is a text describing the

geotagged photograph. Latitude property and longitude property form the location in the

geographic coordinate system, to show where the geotagged photograph was taken. Mopsi

will extract keywords, latitude, and longitude from geotagged photographs. Table 1 shows

the data structure of keyword property, latitude property, and longitude property.

Table 1. Source data properties

Column Type Description Example

Keyword String Text string of geotagged photograph kahvila, ravintola

Longitude Number Longitude value of geotagged photograph
23.184691 (23°

11' 4.8876")

Latitude Number Latitude value of geotagged photograph 62.926880 (62°

55' 36.7674")

Table 2. Properties of input data that Mopsi prepared

Column Type Description Example

Word String Unique text string kahvila

Frequency Number How many times the keyword appears in the

source date

5

Longitude Number Longitude value of geotagged photograph
23.184691 (23°

11' 4.8876")

Latitude Number Latitude value of geotagged photograph 62.926880 (62°

55' 36.7674")

 11

The input data that Mopsi provides is an object array. Each object contains word property,

frequency property, latitude property, and longitude property. The keywords of source data

are a series of text strings. The regular expressions, sequences of characters that define a

pattern and describe a certain amount of text, will create a list of unique keywords and

present their frequency in the source date8.

Table 2 shows the input data structure that Mopsi prepared. Word property is the content of

what the word cloud will draw. Frequency property will determine word font size in the word

cloud. I will use latitude and longitude properties to calculate where the word cloud is placed

on Google Maps.

2.2 Generation of word cloud

In this section, I will introduce how to generate the word cloud as an image with given input

data. The main idea is to draw all words into a two-dimensional space and save it as an

image. In this thesis, I will draw all words on an HTML canvas and save it in image format.

In the thesis, I will use frequency-based word clouds [14]. It means if a word has a higher

frequency value than other words, the word has largest font size in the word cloud. Section 3

will introduce how to calculate font size for each word with a given word’s frequency.

The amount of geotagged photographs can be different in different regions and the keywords

of each photograph can be modified. So, the number of words might be different in different

regions. To show all words in the word cloud, I will set a big two-dimensional space and

draw all words near the center of the two-dimensional space. After all words are drawn, the

program will crop the part with words and save it as an image. In this thesis, two-dimensional

space is a square where height and width are the product of the highest length of word among

the words multiplied by twice the number of words.

There are two main steps in generating word clouds with given data. (1) Calculate each word

weight and font size. (2) Find an optimized position where each word can be drawn in the

two-dimensional space. Generate Word cloud shows the algorithm to generate a word

cloud. Step 1 in Generate Word cloud is to calculate font size for each word, it shows how

8 http://www.regular-expressions.info/print.html

http://www.regular-expressions.info/print.html

 12

big each word will be drawn. Section 3 will introduce how to convert word frequency to the

word font size. Steps 2 to 22 illustrate how to find positions for drawing words. In step 7, 𝑣

and 𝜔 are the parameters of Archimedean Spiral which I am going to introduce in more detail

in Section 5.

Generate Word cloud: generate word cloud

Input: - 𝒘 = [𝑤1 . . . 𝑤𝑖]: the ordered words object array

Output: word cloud image

Algorithm:

 1: Calculate weight and font size for each word 𝑤

 2: Calculate highest length of word among 𝒘 and assign to 𝑙𝑒𝑛𝑔𝑡ℎ𝑊

 3: Calculate number of 𝑤𝑖 and assign to 𝑛𝑢𝑚𝑏𝑒𝑟𝑤

 4: Assign a square that side length is 𝑙𝑒𝑛𝑔𝑡ℎ𝑊 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟𝑤 ∗ 2 to 𝑷

 5: Initialize a square where length of each side equals 𝑙𝑒𝑛𝑔𝑡ℎ𝑊 and mark as 𝒔𝒒𝒖𝒂𝒓𝒆

6: Initialize a random position in 𝒔𝒒𝒖𝒂𝒓𝒆 for each word 𝑤

7: Set 𝑣, 𝜔 with fixed value

8: Draw first word at central position in 𝑷, add to 𝑾𝑝𝑙𝑎𝑐𝑒𝑑

9: Remove first word form 𝑾

10: Assign position of 𝑤 to [𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋 ,𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌]

 11: For each 𝑤 in 𝑾:

 12: Assign 1 to 𝑠𝑡𝑒𝑝

 13: If Word Overlap Placed Words (𝑤,𝑾𝑝𝑙𝑎𝑐𝑒𝑑, [𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋 ,𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌]) is 𝑡𝑟𝑢𝑒

 14: Add 𝑤 to 𝒘𝑝𝑙𝑎𝑐𝑒𝑑

 15: Draw 𝑤 at 𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 in 𝑷

 16: Else

 17: Increase 𝑠𝑡𝑒𝑝 by 1

18: Assign 𝑣 ∗ 𝑠𝑡𝑒𝑝 ∗ 𝑐𝑜𝑠(𝜔 ∗ 𝑠𝑡𝑒𝑝) to 𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋

19: Assign 𝑣 ∗ 𝑠𝑡𝑒𝑝 ∗ 𝑠𝑖𝑛(𝜔 ∗ 𝑠𝑡𝑒𝑝) to 𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌

20: go back to step 13

21: End If

 22: End For

 23: Return 𝑷 as image

 13

Word Overlap Placed Words: check whether current word overlaps with any placed words

when rotating current word 0 degree and 90 degree

Input: - 𝑤: the current word

 - 𝑾𝑝𝑙𝑎𝑐𝑒𝑑 : the placed word object array

 - [𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋 ,𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌]: the position of the current word in 𝑷

Output: 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

Algorithm:

 1: Assign 𝑡𝑟𝑢𝑒 to 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑

 2: For each word 𝒘𝑝𝑙𝑎𝑐𝑒𝑑 in 𝑾𝑝𝑙𝑎𝑐𝑒𝑑 :

 3: If 𝒘 overlap 𝒘𝑝𝑙𝑎𝑐𝑒𝑑

 4: Assign 𝑓𝑎𝑙𝑠𝑒 to 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑

 5: Break

 6: Else

 7: Assign 𝑡𝑟𝑢𝑒 to 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑

 8: End If

9: End For

10: If 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 is 𝑡𝑟𝑢𝑒

11: Return 𝑡𝑟𝑢𝑒

12: Else

13: Rotate 𝒘 90 degree

14: For each word 𝒘𝑝𝑙𝑎𝑐𝑒𝑑 in 𝑾𝑝𝑙𝑎𝑐𝑒𝑑:

15: If 𝒘 overlap 𝒘𝑝𝑙𝑎𝑐𝑒𝑑

16: Assign 𝑓𝑎𝑙𝑠𝑒 to 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑

17: Break

18: Else

19: Assign 𝑡𝑟𝑢𝑒 to 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑

20: End If

 21: End For

 22: If 𝑛𝑜𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 is 𝑡𝑟𝑢𝑒
 23: Mark as rotate 90 degree

 24: Return 𝑡𝑟𝑢𝑒
 25: Else

 26: Return 𝑓𝑎𝑙𝑠𝑒

 27: End If

 28: End If

 14

2.3 Place word cloud on Google Maps

In this section, I will introduce how to place the word cloud image on Google Maps. Google

Maps will provide an Application Programming Interface (API) to place images on Google

Maps as an overlay. I will show an algorithm to calculate the coordinate point at the

geographic coordinate system on Google Maps to place the word cloud image.

Google Maps is a web mapping service that was developed by Google [15]. Google Maps

offers real-time traffic conditions service, route planning service, satellite imagery service,

and so on. Google Maps also provides API for the maps for developers to customize maps

with their own content. API is a computing interface that defines how software interacts.

According to Google Maps documentation, there are at least Maps JavaScript API, Maps

Static API and Maps Embed API for developers to use. In this thesis, I am going to use Maps

JavaScript API that Google Maps provides to show word cloud images on Google Maps.

Maps JavaScript API has four basic map types:

● Roadmap: this is default map type to display default road map.

● Satellite map: this map will display Google Earth satellite images.

● Hybrid map: normal road map and satellite views are displayed on map.

● Terrain map: displays a physical map based on terrain information.

JavaScript API has three custom map types:

● Standard tile sets map: Standard tile sets consist of all tiles which constitute full

cartographic maps.

● Image tile overlay map: this type map usually displays images on the top of the

existing map.

● Non-image map: this map type allows developers to manipulate the display of map

information at the most fundamental level.

Google Maps overlays9 are the objects on the Google Maps that are tied to longitude and

latitude coordinates, it allows you to draw lines, areas, points, etc. There are many kinds of

overlays, such as markers, info windows, shapes, images, and so on. TNTgis is advanced

software for geospatial analysis. According to the release of TNTgis10 in 2012, Google Maps

consists of many pieces of tiles, which is called tileset structure. Google Maps overlay will be

9 https://developers.google.com/maps/documentation/javascript/customoverlays
10 https://www.microimages.com/documentation/TechGuides/78googleMapsStruc.pdf

 15

set on top of existing map as a piece of tile. In this thesis, I will use image tile overlay map

type. I will display an image on existing map at a specific location. In this thesis, each word

contains geographic coordinate points value. I use functions (1) and (2) to calculate where

the word cloud image will be placed on the map. In function (1), 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖 is latitude value

of 𝑖𝑡ℎ word while in function (2), 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖 is longitude value of 𝑖𝑡ℎ word. In both

function (1) and function (2) 𝑛 is the number of words. Average 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 value and

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 value are 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 . The word cloud image will be

placed at 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 on Google Maps.

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑖

𝑛
𝑖=1

𝑛
 (1)

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑖

𝑛
𝑖=1

𝑛
 (2)

In this thesis, I use Maps JavaScript API to place a word cloud image on Google Maps. Maps

JavaScript API provides an OverlayOverview class for creating my own custom overlays (see

Appendix 1). The algorithm Display Word Cloud gives a procedure on how to place the

word cloud image on Google Maps. 𝐿𝑎𝑡𝐿𝑛𝑔 is an array containing a geographic coordinate

point where each geographic coordinate point contains latitude value and longitude value.

The word cloud image is 𝒊𝒎𝒂𝒈𝒆, which is generated with given input data, which I

introduced in Section 2.2. The Google Maps object in the web application is 𝒎𝒂𝒑. The

Google Maps object is initialized by importing Maps JavaScript API and gets a map

document object model (DOM) element.

Display Word Cloud: display word cloud on Google Maps

Input: -𝑳𝒂𝒕𝑳𝒏𝒈 = [𝑙𝑎𝑡𝑙𝑛𝑔1. . . 𝑙𝑎𝑡𝑙𝑛𝑔𝑖]: The geographic coordinate points array

 -𝒊𝒎𝒂𝒈𝒆: word cloud image

 - 𝒎𝒂𝒑: Google Maps object

Output: map with image as overlay

Algorithm:

1: Assign all latitudes in 𝑳𝒂𝒕𝑳𝒏𝒈 to 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠

2: Assign all longitudes in 𝑳𝒂𝒕𝑳𝒏𝒈 to 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑠

3: Calculate summation of 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠 and assign to 𝑠𝑢𝑚𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠

4: Calculate summation of 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠 and assign to 𝑠𝑢𝑚𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑠

5: Calculate length of 𝑳𝒂𝒕𝑳𝒏𝒈 and assign to 𝑙𝑒𝑛𝑔𝑡ℎ
𝑙𝑎𝑡𝑙𝑛𝑔

6: Divide 𝑠𝑢𝑚𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠 by 𝑙𝑒𝑛𝑔𝑡ℎ
𝑙𝑎𝑡𝑙𝑛𝑔

 and assign to 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠

7: Divide 𝑠𝑢𝑚𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑠 by 𝑙𝑒𝑛𝑔𝑡ℎ
𝑙𝑎𝑡𝑙𝑛𝑔

 and assign to 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑠

8: Initialize 𝒎𝒂𝒑

9: Place 𝒊𝒎𝒂𝒈𝒆 at point [𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑠, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑠] on 𝒎𝒂𝒑 as overlay

 16

3 Word font size

In this section, I will discuss how to calculate word weight and font size for each word. In

Section 2.2, I introduced two main steps to generate word clouds with given data. (1)

Calculate word weight and word font size for each word, (2) Find the best position where

each word can be drawn in a two-dimensional space. In this section, two functions are

discussed to calculate font size for given input words.

In this thesis, I choose the frequency-based word cloud method to generate my word cloud. In

the frequency-based word cloud, word weight equals the value of the word’s frequency. The

basic idea of the frequency-based word cloud is that font size will represent how many times

the word appears in the source data. In this thesis, I use the Canvas API to draw words in

two-dimensional space through an HTML Canvas element. I use pixels as the unit of font size

in the HTML Canvas. There is a problem when I show the frequency-based word cloud on

the web. When word frequency is very low, the word font size on HTML Canvas will be too

small, and the word cannot be recognized by human eye. When word frequency is very high,

then the web page might not show all the words properly as some words will be outside the

physical device screen (such as mobile phone, laptop, and so on). I want my word cloud: (1)

Show all words on the web page. (2) Have all words easily recognizable by human eye. (3)

Increase word font size with word frequency.

Based on my considerations, I have two candidate monotonic functions. The first function is

a monotonic increasing linear function, which I mark with 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡). The Second

function is a monotonic increasing logarithm function, which I mark with 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡). The

parameter 𝑤𝑤𝑒𝑖𝑔ℎ𝑡 in both 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) and 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) is the weight of the word. I want

word font size change in a range, so I predefined the maximum font size of the word, 𝑀𝐴𝑋𝐹,

and the minimum word font size,𝑀𝐼𝑁𝐹. If all the words have the same weight, I will assign

𝑀𝐼𝑁𝐹 to each word as font size. In my word clouds, all the words have the same font size

when all the word weights are the same because the relative font size of the word represents

different word weight. How large word font size will be assigned when all the word weights

are the same depends highly on how one designs his word cloud application. Based on my, I

will check if all word weights are the same or not by comparing 𝑀𝑎𝑥𝑤𝑤𝑒𝑖𝑔ℎ𝑡 and

𝑀𝑖𝑛𝑤𝑤𝑒𝑖𝑔ℎ𝑡 . The parameter 𝑀𝑎𝑥𝑤𝑤𝑒𝑖𝑔ℎ𝑡 is the maximum word weight in a weighted word

list while 𝑀𝑖𝑛𝑤𝑤𝑒𝑖𝑔ℎ𝑡 is the minimum word weight in the same weighted word list.

 17

Figure 4 shows an example of how the word font size is changing with different words

weight. In this example, I use cities in Finland and their populations as input data. The city

name is the word while the population is the word weight. Appendix 2 shows the input data I

used in this example. In the word cloud in Mopsi, I want all words to be seen clearly on the

web page and all words to be visible on the screen. So, I predefined 𝑀𝐴𝑋𝐹 and 𝑀𝐼𝑁𝐹. The

value of 𝑀𝐴𝑋𝐹 and 𝑀𝐼𝑁𝐹 is determined by application itself. It depends on how one wants

the application to perform, if my application prioritizes just a few of the top biggest words,

then 𝑀𝐼𝑁𝐹 can be zero in the case of 𝑀𝑎𝑥𝑤𝑤𝑒𝑖𝑔ℎ𝑡 and 𝑀𝑖𝑛𝑤𝑤𝑒𝑖𝑔ℎ𝑡 are not equal. In this

thesis, I set 𝑀𝐴𝑋𝐹 is 55 and 𝑀𝐼𝑁𝐹 is 15 because:

(1) I want all words in the word cloud in Mopsi show on the screen.

(2) I want all words to be visible and to be seen clearly by human eye.

(3) Personal experience.

𝑀𝑎𝑥𝑤𝑤𝑒𝑖𝑔ℎ𝑡 is 648,650 in this example. It is not predefined but is determined by my input

data.

In Figure 4, when using 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) word font size increases dramatically with increasing

word weight at the beginning. After word weight is 100,000, word font size increases slowly.

In my example, word font size does not change much after word weight reaches 400,000. In

this example, the minimum word weight is 20,410 and corresponding font size is 45 after

rounding. The maximum word weight is 648,650 and corresponding font size is 55. In Figure

4, when using 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) word font size increases at a constant rate with increasing word

weight. In this example, the minimum word weight is 20,410 and corresponding font size is

16 after rounding. The maximum word weight is 648,650 and corresponding font size is 55.

 18

 19

Figure 4: Graph of function 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) and function 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) when 𝑀𝐴𝑋𝐹 is 55,

𝑀𝐼𝑁𝐹 is 15 and 𝑀𝑎𝑥𝑤𝑤𝑒𝑖𝑔ℎ𝑡 equals 648,650. The red line represents function

𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) while the purple line represents 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡).

 20

(a) 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) is applied. (b) 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) is applied.

Figure 5: Word clouds of cities in Finland with their populations. The two word clouds are

generated with the same input text data and the same word cloud generating algorithm,

except the font size function. See input text data in Appendix 2.

Figure 5 shows two word clouds that are generated with the same algorithm and the same

input text data, except the font size function. The left word cloud in Figure 5 use

𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) to calculate word font size with given word weight while 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) is

applied to the right word cloud in Figure 5. My input data is the cities of Finland with their

populations. The red words in the word cloud are some city names in Finland and the font

size represents the cities’ population. In the left word cloud in Figure 5, we can easily see

that Helsinki has the highest population. Espoo, Vantaa, and Tampere have the second

highest and roughly similar populations. From the data table that is shown in Appendix 2, it

can be seen that the population of Helsinki is 648,650 and it is the highest population among

the cities in that list. The populations of Espoo, Vantaa, and Tampere are 281,886; 226,160,

and 234,441 respectively. The population of these three cities are not the same, but quite

similar. This matches my requirements in my thesis. One cannot recognize quickly which city

has the highest population from the right word cloud in Figure 5. The red line in Figure 4

 21

shows that the word font size does not increase very much when word weight is over 20,000.

The city that has the smallest population is Hamina, which has population of 20,410

according to Appendix 2. From the right word cloud in Figure 5, if we check carefully, we

can see that the font size of the word Helsinki is a little bit larger than the font size of the

word Hamina. But it is not easy for human eye to recognized which one is bigger: the word

Helsinki or the word Hamina. Based on my consideration, I will use monotonic increasing

linear function 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) in this thesis, and I will predefine 𝑀𝐴𝑋𝐹 as 55 and 𝑀𝐼𝑁𝐹 as 15.

 22

4 Collision detection

In Section 2.2 I introduced the algorithm Generate word cloud which is to generate word

clouds. After that I presented the algorithm to calculate the font size for each word within

given wordlist. I will then place all the words in a two-dimensional space to find the best

position for each word. This step I call word placement, I will introduce it more thoroughly in

Section 5. The best position for a word in this thesis means:

(1) The word has a location in a two-dimensional space. I will draw words in HTML

Canvas and the location will be represented by a coordinate point. For example, (10,

10). The position of the word has to be inside the HTML Canvas, otherwise I am not

able to draw words on the HTML Canvas.

(2) The words do not collide with each other. If the word is placed with its font size at a

position in the HTML Canvas, the word cannot collide with any other words which

have already found a position in the HTML Canvas.

When two or more objects intersect with each other in a two-dimensional space or three-

dimensional space it is called collision. In digital imaging, pixels are the smallest controllable

elements of an image presented on screen. All objects on screen are made of group of pixels.

In this thesis, if a word shares one or more pixels with another word, then I determine the

word collides with another word. In Figure 6 square represents pixel. Letters H, D, H and I

are formed by groups of pixels. Letters H and D share one pixel, so I determine that letter H

collides with letter D. Another letter H does not collide with letter I, because they do not

share pixels.

Collision detection is a fundamental problem of detecting intersections of two or more

objects in the fields of computer graphics, surgical simulations and robotics. Normally

collision detection algorithms focus on two-dimensional collision detection and three-

dimensional collision detection. The collision detection is divided into broad-phase collision

detection and narrow-phase collision detection by Hubbard [16]. The broad-phase collision

detection will list all pairs of objects which have possibly collided while the narrow-phase

collision detection will determine if objects actually have collided or not and report only

those which have actually collided. There are many algorithms to detect whether two or more

objects collide. These algorithms are classified as [17]:

 23

● Feature-based algorithm: The featured based algorithm works on geometric primitives

of the objects directly. For example, V-Clip [18] and SWIFT [19].

● Simplex-based algorithm: The simplex-based algorithm works on convex hulls. It

calculates the Euclidean distance of two convex hull sets to determine if two objects

collide. The Gilbert–Johnson–Keerthi distance algorithm [20] is an example of this.

● Image-space based algorithm: The image space-based algorithm is to convert a three-

dimensional geometry into two-dimensional image and manipulate image pixels. The

Cider [21] is one of well-known examples.

● Volume-based algorithm: The Volume-based algorithm is the same idea as the Image-

space based algorithm, but it uses different methods to compute images. The Volume-

based algorithm will construct a geometry mesh by its vertices to represent object

image. Then compare images’ geometry to determine whether objects collide or not.

The Gundelman [22] introduced an example of the volume-based algorithm.

● Bounding Volume Hierarchies: The Bounding Volume Hierarchies is the data spatial

structure to recursively divide space or object itself. All objects are wrapped in

bounding volume as a leaf node in a tree data structure.

In this section, I will discuss how one checks collision detection in word clouds on Mopsi. In

Section 4.1 I will introduce my naïve collision detection method, Axis-Aligned Bounding

Box(AABB). AABB is a fast way to check if a word collides with another word or not, but it

has low accuracy. In order to improve accuracy, in Section 4.2 I will introduce quadtree, a

hierarchical spatial tree data structure.

(a) (b)

Figure 6: (a) Letter “H” and letter “D” collide. (b) Letter “H” and letter “I” do not collide.

4.1 AABB

In this section I will introduce my naïve collision detection method: Axis-Aligned Bounding

Box (AABB), one kind of bounding box, and how to do collision tests by comparing two

bounding boxes of the two words.

 24

A Bounding Volume (BV) is a common method to simplify object representation by using the

composition of geometrical shapes that enclose the object [23]. There are four common BV’s

according to previous research [24,25] which are shown in Figure 7: Spheres [26,27], Axis-

Aligned Bounding Box (AABB) [28,29,30], k-direction Discrete oriented polytopes (k-Dops)

[16], Oriented Bounding Box (OBB) [31,32].

Figure 7: Four common BV’s according to previous research [24,25].

AABB is an enclosed axis aligned rectangle that wraps a polyhedron. AABB is a common

and efficient method to detect if two or more objects overlap or not. The reasons why I

choose AABB to do collision detection tests in this thesis are: (1) AABB is easy to construct.

(2) It is straightforward to do collision tests with AABB. When I need to check if one word

collides another word or not, I just need to do a collision test between two AABB’s of

candidate words. Figure 8 shows three common AABB representations. They are: (a) min-

max, (b) min-width-height and (c) center-halfwidths. In this thesis, I will use (a) min-max to

present AABB. Figure 9 shows the AABB of the word JOENSUU in the HTML Canvas

coordinate system. In Figure 9 (a) the red rectangle is the AABB of word JOENSUU. The

values (0, 0) and (494, 96) are the representation of AABB of the word JOENSUU in the

coordinate system. Figure 9 (b) illustrates the coordinate system in HTML Canvas. If the

value is negative, the content will not be shown on HTML Canvas. So, I use only positive

values to construct AABB in my thesis.

 25

(a) min-max (b) min-width-height (c) center-halfwidths

Figure 8: The three common ways to represent AABB: (a) Using minimum and maximum

coordinate values along each axis to represent AABB. (b) The AABB is represented by the

minimum coordinate value, height and width of the object. (c) Using central coordinate value

and halfwidths to present AABB.

(a) AABB of word JOENSUU (b) Coordinate system in HTML canvas

Figure 9: The AABB of word JOENSUU and the coordinate system in HTML Canvas: (a)

Drawing word JOENSUU at the origin of HTML Canvas coordinate and constructing the

AABB for the word JOENSUU. (b) The coordinate system in HTML Canvas. The origin is at

the top left; from top to down and left to right are positive directions.

 26

Figure 10: All the situations when two AABB collide. The red rectangle and blue rectangle

are AABBs. The point A, B, C and D are the coordinate points.

Figure 10 shows all the situations when two AABB’s collide. Based on all these situations, I

have the conditions for collision of two AABB’s:

● 𝐴𝑥 ≤ 𝐷𝑥

● 𝐵𝑥 ≥ 𝐶𝑥

● 𝐴𝑦 ≤ 𝐷𝑦

● 𝐵𝑦 ≥ 𝐶𝒚

If two AABB’s match all the condition above, then the two AABB’s collide.

4.2 Quadtree

The AABB is easy to construct and to do collision detection, but why do I still need

quardtree? Because when words’ AABB’s collide, the words themselves might not collide. I

cannot list all such cases. Figure 11 shows three cases where the words themselves do not

 27

collide but words’ AABB’s collide. In Figure 11, the 𝐴𝐴𝐵𝐵𝑤𝑜𝑟𝑑 represents the AABB of the

word. The AABB of the word has the same color with the word. In Figure 11 (a), the word

JOENSUU collides the word APPLE if compared 𝐴𝐴𝐵𝐵𝐽𝑂𝐸𝑁𝑆𝑈𝑈 and 𝐴𝐴𝐵𝐵𝐴𝑃𝑃𝐿𝐸, but the red

word APPLE does not overlap the black word JOENSUU. The same situation happens in

Figure 11 (b) and Figure 11 (c). So, I will use quadtrees to do further collision tests in my

thesis. According to my consideration, my method to do collision detection between two

words is to compare AABB’s of the two words. If the two AABB’s do not collide then the

two words do not collide. If the two AABB’s collide, I will compare quadtrees of the two

words to determine whether the two words collide or not. The flowchart of collision detection

in my thesis is showing in Figure 12.

(a) 𝐴𝐴𝐵𝐵𝐽𝑂𝐸𝑁𝑆𝑈𝑈 collides with 𝐴𝐴𝐵𝐵𝐴𝑃𝑃𝐿𝐸 (b) 𝐴𝐴𝐵𝐵𝑂𝑅𝐴𝑁𝐺𝐸 collides 𝐴𝐴𝐵𝐵𝐴𝑃𝑃𝐿𝐸

(c) 𝐴𝐴𝐵𝐵𝐶ℎ𝑒𝑐𝑘 collides 𝐴𝐴𝐵𝐵𝐹𝑖𝑥

Figure 11: The three examples to show AABB’s of words collide but the words themselves

do not collide. (a) AABB of the word JOENSUU collide AABB of the word APPLE;

𝐴𝐴𝐵𝐵𝐽𝑂𝐸𝑁𝑆𝑈𝑈 is the black rectangle while 𝐴𝐴𝐵𝐵𝐴𝑃𝑃𝐿𝐸 is the red rectangle. (b) 𝐴𝐴𝐵𝐵𝑂𝑅𝐴𝑁𝐺𝐸

is the purple rectangle and 𝐴𝐴𝐵𝐵𝐴𝑃𝑃𝐿𝐸 is the blue rectangle. (c) 𝐴𝐴𝐵𝐵𝐶ℎ𝑒𝑐𝑘 is the blue

rectangle and 𝐴𝐴𝐵𝐵𝐹𝑖𝑥 is the green rectangle.

 28

Figure 12: The flowchart of collision detection of two words in my thesis.

Quadtree is a hierarchical spatial tree data structure in which each internal node has four

children. The name quadtree was given by Raphael and J.L. Bentley in 1974, in their paper

titled “Quad tree: A Data Structure for Retrieval on Composite Keys”. There are many types

of quadtrees and it can be generalized to any dimensional space. But the idea of quadtree is

always to decompose space recursively [33]. In quadtree, each node represents a unit of

important spatial information. In my thesis, quadtree stores information in two-dimensional

space. I will divide AABB of the word recursively into four regions. In my thesis, the

important spatial information means pixels of the word. Quadtree has already been proven to

be a simple and quick data structure for image manipulation [34] [35]. In my thesis, the

quadtree I will use is called Region Quadtree. The Region Quadtree represents a partition of

a two-dimensional space by decomposing the two-dimensional space into four equal regions.

Each node in standard Region Quadtree has exactly four children or no children. In the thesis,

I will use modified Region Quadtree to represent an image or AABB of the word that

consists of many pixels, where each pixel value is either 0 or 1. Figure 13 illustrates how to

divide a two-dimensional space during building a quadtree and Figure 14 shows

corresponding quadtree. All leaf nodes of quadtree in this thesis are AABB’s. If the AABB

does not contain any part of the word, I will mark it as 0, otherwise I mark it as 1, because I

am only interested about the AABB’s that contains parts of the word. Since decomposition

 29

strategy of quadtree is highly dependent on the application, and based on my consideration

above, I have some conditions on building a quadtree:

● If all the pixel values in a region are 0, the algorithm does not continue to divide the

region and does not add the region to the node as a child.

● If all the pixel values in a region are 1, the algorithm does not continue to divide the

region, but adds the region to the node as a child.

● If the size of the region is smaller than 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐵𝑜𝑥𝑠𝑖𝑧𝑒, the algorithm does not

continue to divide the region, but adds the region to the node as a child.

 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐵𝑜𝑥𝑠𝑖𝑧𝑒 is the predefined threshold in my thesis.

Based on the above conditions to build a quadtree, we can see that it is easy to construct a

quadtree. The Build Quadtree illustrates how to construct a quadtree for the 𝐴𝐴𝐵𝐵 of

the word.

(a) AABB of word Joensuu (b) Divide the AABB into four regions equally

(c) Divide sub-region into four regions equally

Figure 13: Illustration of dividing two-dimensional space to build a quadtree.

Figure 14: The quadtree of the AABB of the word Joensuu in a two-dimensional space.

 30

Build Quadtree: constructing the 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒 for the 𝐴𝐴𝐵𝐵

Input:

 -𝐴𝐴𝐵𝐵: the 𝐴𝐴𝐵𝐵 of the word

 - 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐵𝑜𝑥𝑠𝑖𝑧𝑒: a constant integer

Output: 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒

Algorithm:

 1: Divide current box equally into four sub-boxes

 2: For each sub-box:

 3: If size of the sub-box is bigger than 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐵𝑜𝑥𝑠𝑖𝑧𝑒

4: If every pixel’s value in the sub-box is 0

5: Do not store the sub-box and do not continue dividing

6: Else If every pixel’s value in the sub-box is 1

7: Store the sub-box to the current box as a child

8: Do not continue dividing

 9: Else

10: Store the sub-box to the current box as a child

11: Build Quadtree (sub-box, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝐵𝑜𝑥𝑠𝑖𝑧𝑒)
12: End If

13: Else

14: If every pixel’s value in the sub-box is 0

15: Do not store the sub-box and do not continue dividing

16: Else

17: Store the sub-box to the current box as a child

18: Do not continue dividing

19: End If

20: End If

 21: End For

In a two-dimensional space, I will try to place the word at a position in this space. If the word

does not collide with any other words already placed there, I will place the word at that

position. If the word collides with one or more words already placed there, I will find a new

position for it and do the collision test again. Figure 15 shows different collision situations of

the quadtree of the word Helsinki and the word Joensuu. In Figure 15 (a), when the word

Helsinki is located at Position A and the word Joensuu is located at Position B, the quadtree

of the word Helsinki does not collide with the quadtree of the word Joensuu. In Figure 15

(b), ‘i’, the last alphabet of the word Helsinki overlaps the AABB of the word Joensuu at

Position C, but the two words do not collide. In Figure 15 (c), when placing the word

Joensuu at Position D, the two quadtrees collide. It means the word Helsinki which is located

 31

at Position A collides with the word Joensuu which is located at Position D. The algorithm

Quadtrees Collide shows how to test whether two quadtrees collide or not

(a) The word Helsinki which is located at Position A does not collide with the word

Joensuu which is located at Position B

(b) The word Helsinki which is located at Position A does not collide with the word

Joensuu which is located at Position C

(c) The word Helsinki which is located at Position A does collide with the word Joensuu

which is located at Position D

Figure 15: Different quadtree collision situations of the word Helsinki and the word Joensuu

at a two-dimensional space. The green color means quadtrees do not collide while the pink

color means the quadtrees collide. The Position A, Position B, Position C and Position D

mean a position in the current two-dimensional space. (a) The quadtree of the word Helsinki

does not collide with the quadtree of the word Joensuu. (b) The quadtree of the word Helsinki

does not collide with the quadtree of the word Joensuu. (c) The quadtree of the word Helsinki

does collide with the quadtree of the word Joensuu.

 32

Quadtrees Collide: testing whether one quadtree collides with another quadtree

Input:

-𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴: Quadtree of the word A

-𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵: Quadtree of the word B

Output: true or false

Algorithm:

1. If 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴’s root AABB overlaps 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵’s root AABB

2. If 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴 does not have children

3. If 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵 does not have children

4. return true

5. Else for every child in 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵

6. Quadtrees Collide (𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴, 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵’s child)

7. End If

8. Else for every child in 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴

9. If 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵 does not have children

10. Quadtrees Collide (𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴’s child, 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵)

11. Else for every child in 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵

12. Quadtrees Collide (𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐴’s child, 𝑄𝑢𝑎𝑑𝑡𝑟𝑒𝑒𝐵’s child)

13. End If

14. End If

15. Else

16. Return false

18. End If

4.3 Alternatives

Quadtree can be used to check if a word collides with another word or not. But that is not the

only way to do collision detection in my case. My case is special, since I set a fixed size

HTML Canvas and work on pixels directly, so the look up strategy becomes possible to do

collision detection. In this section, I am going to introduce one alternative solution for my

case.

4.3.1 Look up strategy

The main idea of the look up strategy is to assign a unique color to the object, then look for

the object through its color. For example, I draw words Joensuu, Kuopio and Helsinki on a

fixed size HTML Canvas, as shown in Figure 16. Each word is drawn in a unique color,

represented as RGB (Red, Green, Blue) code. The words Joensuu, Kuopio and Helsinki have

 33

RGB colors (0, 0, 255), (255, 0, 0) and (0, 128, 0) respectively. When I click any location on

the canvas, I will read the color at that location. I can determine which word I clicked by

referring to the color code.

Figure 16: Words with different colors on HTML Canvas

How do I do collision detection by using look up strategy? First, I create a fixed size HTML

canvas with transparent background in RGBA (Red, Green, Blue, Alpha), background color

is represented as RGBA, (0, 0, 0, 0). The word color on canvas is black, represented as

RGBA, (0, 0, 0, 1). Then I need to get the bounding box and location of each pixel of the

word. When I want to know if a word collides with already placed words or not, I just need to

check candidate word pixel location on canvas: Is it transparent or not? If the corresponding

location on canvas is transparent, then the candidate word does not collide with any placed

words, otherwise, it collides with one or more placed words.

 34

Figure 17: A look up strategy to check whether the word Helsinki collides with the words

Kuopio and Joensuu or not.

For example, the words Kuopio and Joensuu are drawn on transparent HTML Canvas, as

shown in Figure 17. The red rectangular surrounding word Helsinki is a bounding box. The

dotted line rectangle is the corresponding location of the word Helsinki bounding box in

HTML Canvas. When I check whether the word Helsinki collides with placed words or not, I

get the pixel location of word Helsinki bounding box and pixel color of corresponding

location in dotted line rectangle. If all pixels of corresponding location in dotted line

rectangular are transparent, then word Helsinki does not collide with placed words,

otherwise, it collides.

 35

5 Word movement

In the word cloud on Mopsi, there are words with different weights to be placed in two-

dimensional space. Which word should be placed first and which word should be second? In

my thesis, my solution is simple. I arrange the sequence by word weight, the word with the

highest weight will always be placed first. To start with the first word placement, where

should I find the place for the first word? After the first word is allocated, where should I

place the second word? For example, I have the word Helsinki and the word Joensuu to

generate a word cloud. The word Helsinki is already placed, I need to place the word Joensuu

at the next step, but which position in this two-dimensional space should be the first position

for the word Joensuu to be tried? In this section, I will discuss how to initialize a word's

position and how to find a new position for a word that collides with placed words.

In Figure 18, the word Helsinki is already placed at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎, when trying to place the

word Joensuu at 𝑝𝑜𝑎𝑖𝑡𝑖𝑜𝑛𝑏, the word Joensuu collides with the word Helsinki. How can I

find a new position for the word Joensuu to try again? Should I try to place the word Joensuu

to a little bit the left, or would the right side has more chance to find a position that does not

collide with the word Helsinki. If the word Joensuu collides with the word Helsinki at the

new position, how can I find the next position for the word Joensuu? In my thesis, this

problem is called word movement.

In Section 5.1, I will introduce how I initialize the position for each word and explain the

reason why I chose this way to initialize the position. In Section 5.2, I will introduce the

Archimedean Spiral which is a method to solve the word movement problem in my thesis.

Also, I explain why I use the Archimedean Spiral to find new possible positions for words

instead of just simply moving the word to the left or to the right.

 36

(a) The word Helsinki is placed at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎

(b) The word Joensuu collides with the word Helsinki when the word

Joensuu is at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑏

Figure 18: Drawing words Helsinki and Joensuu in two-dimensional space. (a) Draw the

word Helsinki at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎, (b) Draw the word Joensuu at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑏 after the word

Helsinki has been placed at 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎.

5.1 Word position initialization

The frequency-based word cloud has been introduced previously in Section 1.2 and it is

applied to a word cloud on Mopsi. The font size of the word represents the appearing

frequency of the word. In my thesis, the word which has the highest appearing frequency is

most important in the application. So, the word with the largest font size is the most

important word for word cloud on Mopsi. Based on this principle, I make all the words

revolve around the word with the largest font size, so the word cloud is tight and easy to

 37

understand. When initializing the words, I always draw the largest font size word first and

then place other words around it one by one.

Before I initialize the position of each word in two-dimensional space, I need to initialize a

two-dimensional space where all words can be placed in. My two-dimensional space is a

square, where height and width are the product of the highest length of word among the

words multiplied by twice the number of words, marked as 𝑃. Then I initialize a square,

where height and width are the highest length of word among the words, marked as 𝑝. I place

𝑝 at center of 𝑃. Finally, I initialize a position for each word inside 𝑝 randomly. After word

position is initialized, words may collide with each other and words may be out of 𝑝, that is

acceptable. Because the main idea of initializing word position in 𝑝 is keeping all words

packed tightly and next section I will introduce a method which can find an ideal position for

each word in 𝑃. In Figure 19, my input words are Helsinki, Espoo, Joensuu, and Kuopio.

Corresponding font sizes are 50 pixels, 30 pixels, 14 pixels, and 14 pixels. The highest length

of words is 175 pixels and I have four words, so I initialize words positions inside a 175

pixels wide and 175 pixels high square. The red dots are the initial position of the words in 𝑝.

Figure 19: All the words’ initial positions will be within this square. The width is the product

of the highest length of word among the words. The red dots are the initial position of the

word in the square.

 38

The reason for giving each word a random initial position is that it can reduce collision times

of words except for when the worst case occurs. I use Archimedean Spiral (I am going to

introduce Archimedean Spiral in Section 5.2) to be my word movement solution and constant

parameters are assigned to it. It means if the words have the same initial position, then the

words will have the same movement locus in the same starting location. For example, Figure

20 (a) shows the procedure for the word Joensuu when the word Joensuu and the word

Helsinki have the same initial position. The black dot is the initial position of the word

Helsinki and the word Joensuu. When placing the word Joensuu at the black dot, it collides

with the word Helsinki, then I place the word Joensuu at the yellow dot and it still collides

with the word Helsinki. However, moving Joensuu to the red dot there is no collision that

occurred. Eventually, the word Joensuu does three times collision tests with the word

Helsinki. Figure 20 (b) shows the word Joensuu looking for a position to be placed when the

word Helsinki is already placed, these two words have different initial positions. The black

dot is the initial position of the word Helsinki while the red dot is the initial position for

Joensuu. The word Joensuu needs to do collision test just once with the word Helsinki. So, a

random initial position can reduce collision times in a good case.

 39

(a) The word Helsinki and the word Joensuu share same initial position

(b) The word Helsinki and the word Joensuu have different initial positions

Figure 20: Finding a position for the word Joensuu while the word Helsinki has already been

placed. (a) Helsinki and Joensuu share the same initial position; Joensuu needs to do three

times collision tests with Helsinki. (b) Helsinki and Joensuu have different initial positions;

these two words need only one collision test.

Another reason why assign each word a random initial position within a square is that I want

the word cloud to organize tight. The shape does not matter, I can randomly generate initial

positions within a rectangular, circle, or other shapes. Choosing the proper square size is also

important. Otherwise, the word cloud does not look tight. In Figure 21, on the left side is a

word cloud where all the words are black. This word cloud looks tight because the initial

position of each word is within a good size square. The word cloud where every word is red

in Figure 21 looks not so tight because the initial position of each word is within a too large

space.

Figure 21: On the left side is a word cloud where each word has a random initial position

within a relatively small fixed size square. On the right side is a word cloud where every

word has a random initial position within too large space.

 40

5.2 Archimedean spiral

During collision detection, if a word collides with any of the words which have already been

placed, then I need to find a new position for that word, Archimedean Spiral can determine

where the word will move to in my thesis. A point moves away from the fixed point with

constant horizontal speed and rotates with constant angular velocity at the same time, the

locus of this point is called an Archimedean Spiral. It is widely used in processing digital

light [36], bacterial determination in food microbiology [37], and processing medical images

[38]. In the polar coordinate system, it is described as equation [38]:

𝑟(𝜃) = 𝑎 + 𝑏𝜃 (5)

 Where:

𝑟: radial distance from origin.

𝑎: distance between starting point and central point of solar coordinate system.

𝑏: constant value, controls distance between successive spiral lines.

𝜃: polar angle, such as
𝜋

4
,

𝜋

2
, 𝜋 and 2𝜋.

Figure 22 shows one example of an Archimedean Spiral in polar coordinate system. In the

example, 𝑎 = 0; 𝑏 = 2 𝑎𝑛𝑑 0 ≤ 𝜃 ≤ 4𝜋 are given. The coordinate point is represented as

(𝑟, 𝜃). The point (0, 0) means the distance between original point and the moving point is 0

when moving point moves 0 radians. The point (4𝜋, 2𝜋) means the distance between original

point and the moving point is 4𝜋 when the moving point moves 2𝜋 radians around original

point. If 𝜃 is 2𝜋 then 𝑟 is 4𝜋. The parameter 𝑎 determines where the starting point is. The

parameter 𝑏 determines the distance between successive spiral lines. 𝜃 represents how many

radians the point moves around the starting point or the original point.

 41

𝑟(𝜃) = 2𝜃

Figure 22: Archimedean Spiral geometry in polar coordinate system when 𝑎 = 0; 𝑏 =

2 𝑎𝑛𝑑 0 ≤ 𝜃 ≤ 4𝜋.

 42

Figure 23: Archimedean Spiral can be described in both polar coordinate system and

Cartesian coordinate system

Considering that I will work on the Cartesian coordinate system in the thesis, I need to

convert the Archimedean Spiral equation from polar coordinate system to the Cartesian

coordinate system. Figure 23 shows how to express each equation in parametric form in the

Cartesian coordinate system. The x-coordinate and y-coordinate can be expressed as below.

𝑥 = 𝑟 ∗ 𝑐𝑜𝑠(𝜔𝑡)

𝑦 = 𝑟 ∗ 𝑠𝑖𝑛(𝜔𝑡)

Combined with equation 5, we will have equation 6 and 7:

𝑥 = (𝑎 + 𝑏𝜔𝑡) ∗ 𝑐𝑜𝑠(𝜔𝑡) (6)

𝑦 = (𝑎 + 𝑏𝜔𝑡) ∗ 𝑠𝑖𝑛(𝜔𝑡) (7)

x: X-axis value in Cartesian coordinate system

y: Y-axis value in Cartesian coordinate system

t: time

ω: constant angular velocity

 43

(a) (b)

(c)

Figure 24. How parameters a, b and ω affect Archimedean Spiral when t = 400

Figure 24 shows how the parameters a, b, and ω affect the shape of Archimedean Spiral.

Figure 24 (a) shows how the parameter b affects Archimedean Spiral when the parameter a

is 1 and the parameter ω is 0.1. From Figure 24 (a) one can see that if the value of parameter

 44

b is increased, the radial distance between moving point to the starting point will be

increased. Figure 24 (b) shows how the parameter a affects Archimedean Spiral when the

parameter b is 1,7 and the ω is 0.3. From Figure 24 (b) one can see that the starting point will

move to the right if the value of parameter a is increased. Figure 24 (c) shows how the

parameter ω affects Archimedean Spiral. In Figure 24 (c), the parameters a and b are 1, so

the starting point and distance between successive spiral lines are the same. When I increase

the value of the parameter ω, the moving point rotates faster around starting point and it

makes more revolutions in the same number of steps.

(a) Three words are already placed. (b) Looking for a position for the word Joensuu

Figure 25: How to move in steps when the word Joensuu collides with other words.

Figure 25 shows an example on how to use Archimedean Spiral with word clouds. The

example shows how the word Joensuu moves when the word Joensuu cannot be drawn at the

current position. In this example, my input data are the words Helsinki, Espoo, Vantaa and

Joensuu, their corresponding font sizes are 50px, 15px, 30px and 15px. The parameters of the

Archimedean Spiral I used in Figure 25 are 𝑎 = 12; 𝑏 = 5 𝑎𝑛𝑑 𝜔 = 0.7. The equations in

cartesian coordinate system are represented as:

𝑥 = (12 + 3.5 ∗ 𝑡) ∗ 𝑐𝑜𝑠(0.7 ∗ 𝑡)

𝑦 = (12 + 3.5 ∗ 𝑡) ∗ 𝑠𝑖𝑛(0.7 ∗ 𝑡)

Parameters x and y describe the location of the word Joensuu in a two-dimensional space.

The parameter t means moving steps of the word Joensuu. If Joensuu hasn't yet moved, the

value of t is 0. In this example, the words Helsinki, Vantaa, and Espoo have been placed, as

shown in Figure 25 (a). Red dots in Figure 25 (b) indicate the positions tried for Joensuu.

 45

The initial position of the word Joensuu is at position 1. When Joensuu is placed in position

1, it collides with other words, so I move Joensuu to position 2. It still collides with other

words, therefore I move Joensuu to position 3 and see the effect. After 11 times of trial, it is

found that the word Joensuu does not collide with any words which have already been placed.

So, how many times it has been tried become the value for the parameter t. In the beginning,

Joensuu has not moved, so t is 0. When Joensuu collides with other words at position 1 which

is the first time Joensuu needs to move, then t is 1 and Joensuu has a new position which is a

red dot with the number 2. This is how I use the Archimedean Spiral in my thesis. The main

function of the Archimedean Spiral is to help the word to find the next possible position near

starting point.

 46

6 Shaped word cloud

With the popularity of word clouds on social media, there are some tools that can create

shaped word clouds, for example, Tagxedo11 and WordArt12. Shaped word clouds are also

used in learning web apps, such as ABCya13 In this section, I will explain how to generate

shaped word clouds and discuss their limitations. Shaped word cloud is a type of word cloud

that has certain shape boundary for fitting words into it [39]. In Section 2.2, I have previously

introduced how to fit word clouds into proper two-dimensional space, which is to place the

largest font size word as the first step, then put the rest of words around the largest font size

word. The algorithm Generate Word cloud which is introduced in Section 2.2 is the main

algorithm to generate word clouds. In the algorithm Generate Word cloud, it’s not

necessary to check whether words exceed two-dimensional space or not, as the size of two-

dimensional space is large enough. The algorithm to generate shaped words cloud is almost

the same as the algorithm Generate Word cloud, however, there is an extra step which is to

check if the word exceeds the two-dimensional space.

Preparing shaped two-dimensional space and fitting words are two main steps to generate

shaped word clouds. I have introduced how to generate rectangular word clouds earlier. Since

generating shaped word clouds will adopt similar method I will pass the introduction for the

algorithm. Here I will focus on how to prepare a shaped two-dimensional space. In Section

6.1 I will present how to get a two-dimensional city shape.

Section 6.2 mainly discusses the limitations of shaped word clouds by a given example. In

the example, I classify five groups of words, each group has 5, 10, 20, 40, 80, and 100 words

and these words will be assigned with equal weight distributions, linear increasing weight

distributions, and exponential increasing weight distributions. The font size functions will be

monotonic increasing linear function, which I mark as 𝑙𝑖𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡) and monotonic

increasing logarithm function, which I mark as 𝑙𝑜𝑓(𝑤𝑤𝑒𝑖𝑔ℎ𝑡). The two-dimensional spaces

will be presented in heart shape and tree shape. I will demonstrate how the heart-shaped word

cloud and tree-shaped word cloud affect visually recognition of the shape by applying

different word quantities, weight distributions, and font size functions.

11 http://www.tagxedo.com/
12 WordArt.com. WordArt website. http://www.wordart.com/ last visited 11/2019.
13 ABCya.com.ABCya website. https://www.abcya.com/games/word_clouds last visited 11/2019.

http://www.wordart.com/
https://www.abcya.com/games/word_clouds

 47

6.1 City shape

In order to generate a shaped word cloud, I need to place words into a two-dimensional space

of a certain shape. The shape is determined by a boundary. If I want to obtain city shape, all I

should do is to get the city boundary. Figure 26 shows the city shape of Joensuu on Google

Maps. The orange line is the city boundary line. Figure 27 shows the two-dimensional space

that has the city shape of Joensuu. In this section, I will explain how to obtain the two-

dimensional space with city shape step by step.

Figure 26: The Joensuu city boundary on Google Maps.

 48

Figure 27: The two-dimensional space that has the shape of Joensuu city.

Nominatim API14 is a tool for searching OpenStreetMap (OSM) data by name and address,

and to generate synthetic addresses of OSM points. I will use Nominatim API to get the city

boundaries by providing city name. The output is a group of dots in the geographic

coordinate system. If I want to get the city boundary of the Joensuu city, the API15 is to

retrieve the Joensuu city boundary. The result is a group of geographic coordinate values

which represent latitude and longitude. Appendix 3 is the Joensuu city boundary in the

geographic coordinate system.

After receiving the city boundary in the geographic coordinate system, I need to draw all the

dots on the HTML Canvas and line them up to get the city shape. The latitude and longitude

I got here are in Spherical Coordinate System, so I have to translate latitude and longitude

from sphere to the points on plane, otherwise city shape will be twisted. The function

fromLatLngToPoint (see Appendix 8) that is provided by Google Maps API is used to get

14 https://nominatim.openstreetmap.org/search?q=CITYNAME&polygon_geojson=1&format=json
15 https://nominatim.openstreetmap.org/search?q=joensuu&polygon_geojson=1&format=json

https://nominatim.openstreetmap.org/search?q=joensuu&polygon_geojson=1&format=json
https://nominatim.openstreetmap.org/search?q=joensuu&polygon_geojson=1&format=json

 49

projected points. I marked projected latitude as latitudeProjected while longitudeProjected

represents projected longitude.

 The unit of HTML Canvas is one pixel. So, the location on HTML Canvas can be

represented as (𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟). The difference in latitudeProjected and

longitudeProjected are quite small, so, if I draw latitudeProjected and longitudeProjected

on HTML Canvas directly, the city shape will be small. So I have to zoom in the geographic

coordinate values. My idea is to zoom in the difference between the lowest latitudeProjected

value and the highest latitudeProjected value and the difference between the lowest

longitudeProjected and the highest longitudeProjected value. For example, I want either

the city shape width is between 600 pixels and 700 pixels or the city shape height is between

600 pixels and 700 pixels. If both cannot be satisfied at the same time, then the higher value

of the height and width will be between 600 pixels and 700 pixels and the other value would

be lower. When the projected coordinate point is

(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑), I will have the boundary condition (8) and

boundary condition (9). The difference between the lowest latitudeProjected and the highest

latitudeProjected is 𝑑𝑖𝑓𝑓𝑒𝑟𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 while 𝑑𝑖𝑓𝑓𝑒𝑟𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 is the difference

between the lowest longitudeProjected and the highest longitudeProjected. The number I

am looking for is 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 . When 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 matches the boundary condition (8)

or the boundary condition (9), I will choose the lowest 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒. After I have found

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 I let all the latitudes and longitudes be multiplied by 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒. For

example, 𝑑𝑖𝑓𝑓𝑒𝑟𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 and 𝑑𝑖𝑓𝑓𝑒𝑟𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 are 1.478642 and 0.7966174

respectively. There are many ways to get 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 in boundary condition (8) and

boundary condition (9). The algorithm in my thesis gives 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 437.5. I will get the

result shown in Figure 28 after I draw all the zoomed values on the HTML Canvas.

600 ≤ 𝑑𝑖𝑓𝑓𝑒𝑟𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 ∗ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 ≤ 700 (8)

600 ≤ 𝑑𝑖𝑓𝑓𝑒𝑟𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 ∗ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑣𝑎𝑙𝑢𝑒 ≤ 700 (9)

 50

Figure 28: Zoomed in Joensuu city shape on HTML canvas.

6.2 Shaped word cloud discussion

In this section, I will generate heart-shaped word clouds and tree-shaped word clouds with

different word quantities, weight distributions and font size functions. I will also examine

how the word quantities, weight distributions and font size functions affect the shaped word

cloud. To analyze how word quantities affect the shaped word cloud, I use the same font size

function to generate shaped word clouds and I will keep the word weight distribution the

same. Next I generate some shaped word clouds with the same word quantity and same word

weight distribution, but different font size functions to analyze how font size functions affect

the shaped word cloud. When I want to know how word weight distribution affects

generating shaped word clouds, I will generate shaped word clouds by using the same words

and same font size function. In Figures 31, 32, 33 and 34, wN means the quantity of input

 51

words (it is possible that all of them don’t fit into the word cloud), wS is the word font size

function and wD is word weight distribution. wN=5 means there are 5 input words. fS = lof

means the font size function is monotonic increasing logarithmic function while fS = lif

means the font size function is monotonic increasing linear function. wD = equal means all

word weights are equal. wD = linear means word weight is increased linearly while wD = exp

means word weight is increased exponentially.

wN=5, fS=lof, wD=equal wN=5, fS=lof, wD=linear wN=5, fS=lof, wD=exp

wN=10, fS=lof, wD=equal wN=10, fS=lof, wD=linear wN=10, fS=lof, wD=exp

wN=20, fS=lof, wD=equal wN=20, fS=lof, wD=linear wN=20, fS=lof, wD=exp

wN=40, fS=lof, wD=equal wN=40, fS=lof, wD=linear wN=40, fS=lof, wD=exp

 52

wN=80, fS=lof, wD=equal wN=80, fS=lof, wD=linear wN=80, fS=lof, wD=exp

wN=100, fS=lof, wD=equal wN=100, fS=lof, wD=linear wN=100, fS=lof, wD=exp

Figure 29: Generation of heart-shaped word clouds. The monotonic increasing logarithmic

font size function is applied to all the word clouds above. The number of input words is 5, 10,

20, 40, 80 or 100. The word weight distribution is equal, linear, or exponential distribution.

wN=5, fS=lif, wD=equal wN=5, fS=lif, wD=linear wN=5, fS=lif, wD=exp

wN=10, fS=lif, wD=equal wN=10, fS=lif, wD=linear wN=10, fS=lif, wD=exp

 53

wN=20, fS=lif, wD=equal N=20, fS=lif, wD=linear wN=20, fS=lif, wD=exp

wN=40, fS=lif, wD=equal wN=40, fS=lif, wD=linear wN=40, fS=lif, wD=exp

wN=80, fS=lif, wD=equal wN=80, fS=lif, wD=linear wN=80, fS=lif, wD=exp

wN=100, fS=lif, wD=equal N=100, fS=lif, wD=linear wN=100, fS=lif, wD=exp

Figure 30: Generation of heart-shaped word clouds. The monotonic increasing linear font

size function is applied to all the word clouds above. The number of input words is 5, 10, 20,

40, 80, or 100. The word weight distribution is equal, linear, or exponential distribution.

 54

wN=5, fS=lof, wD=equal wN=5, fS=lof, wD=linear wN=5, fS=lof, wD=exp

wN=10, fS=lof, wD=equal wN=10, fS=lof, wD=linear wN=10, fS=lof, wD=exp

wN=20, fS=lof, wD=equal wN=20, fS=lof, wD=linear wN=20, fS=lof, wD=exp

wN=40, fS=lof, wD=equal wN=40, fS=lof, wD=linear wN=40, fS=lof, wD=exp

 55

wN=80, fS=lof, wD=equal wN=80, fS=lof, wD=linear wN=80, fS=lof, wD=exp

wN=100, fS=lof, wD=equal wN=100, fS=lof, wD=linear wN=100, fS=lof, wD=exp

Figure 31: Generation of tree-shaped word clouds. The monotonic increasing logarithmic

font size function is applied to all the word clouds above. The number of input words is 5, 10,

20, 40, 80, or 100. The word weight distribution is equal, linear, or exponential distribution.

wN=5, fS=lif, wD=equal wN=5, fS=lif, wD=linear wN=5, fS=lif, wD=exp

wN=10, fS=lif, wD=equal wN=10, fS=lif, wD=linear wN=10, fS=lif, wD=exp

 56

wN=20, fS=lif, wD=equal wN=20, fS=lif, wD=linear wN=20, fS=lif, wD=exp

wN=40, fS=lif, wD=equal wN=40, fS=lif, wD=linear wN=40, fS=lif, wD=exp

wN=80, fS=lif, wD=equal wN=80, fS=lif, wD=linear wN=80, fS=lif, wD=exp

wN=100, fS=lif, wD=equal wN=100, fS=lif, wD=linear wN=100, fS=lif, wD=exp

 57

Figure 32: Generation of tree-shaped word clouds. The monotonic increasing linear font size

function is applied to all the word clouds above. The number of input words is 5, 10, 20, 40,

80, or 100. The word weight distribution is equal, linear, or exponential distribution.

From Figures 29, 30, 31 and 32, we can see that word quantity is the most important factor to

affect generating shaped word clouds. If there are not enough words, it is not easy to

recognize the shape of the word cloud. In Figure 29 and Figure 30, when the word quantity

is greater than 40, one can recognize heart shape from heart-shaped word cloud, regardless of

what the font size function and the word weight distribution is. One can see the same happen

to tree-shaped word clouds. Figure 31 and Figure 32 show that when the word quantity is

greater than 80, one can easily recognize tree shape from a tree-shaped word cloud. So the

word quantity is the main factor to determine whether word cloud shape can be recognized or

not.

Appendixes 4 and 5 show when using linear font size function and logarithmic font size

function, there are numbers of words that cannot find a position to draw on heart-shaped

word clouds. In Appendixes 6 and 7 there are the tables of how many words cannot be

drawn on tree-shaped word clouds. I made 20 tests for each shaped word cloud and collected

the number of words that cannot be drawn. From Appendixes 4, 5, 6 and 7, one can conclude

that when word weight is exponentially distributed, one can display more words on the word

cloud than linear word weight distribution word cloud. Almost all the words can be shown in

the word cloud if the word weight is the same.

From Figures 29, 30, 31 and 32, one can see that the linear font size function performs better

than logarithmic one in forming shaped word clouds. Linear font size function requires fewer

words than logarithmic one to generate shaped word clouds where the shape can be

recognized. From Appendixes 4, 5, 6 and 7, one can see that the linear font size function is

always able to shows more words on the word cloud than the logarithmic font size function.

 58

7 Word cloud implementation

I have already introduced how to generate basic word clouds and shaped word clouds in the

previous chapters. In this section, I will introduce how to use word cloud applications.

Currently, there are two word cloud applications on Mopsi. The first one is a diagnosis code

word cloud and the second one is a recommendation word cloud.

Figure 33 shows two word clouds of diagnosis code. Red marker ‘H’ indicates the location

of a health center where there are patients with certain disease (diagnosis) codes. Assume the

diagnosis code 18N means chronic kidney disease, I11 means hypertensive heart disease. I

apply diagnosis codes to generate word clouds for the purpose of analyzing geographical

distribution of the disease codes for patients. The font size represents the number of patients

who got the disease. In Figure 33 (a), the biggest font size diagnosis code is I69, which

means patients who suffer sequelae of the cerebrovascular disease are most common. The

smallest font size diagnosis code I95 means that the patients who have hypotension are least

common among all the patients. Figure 33 (b) shows the diagnosis code word cloud in

another health center, where a higher number of patients got E11 than any other disease.

(a) (b)

Figure 33: The diagnosis code word cloud

 59

Figure 34: Recommendation word cloud of the city Helsinki on Mopsi

The recommendation word cloud aims to show the services in a region. Figure 34 is a word

cloud generated in the Helsinki region on Mopsi for recommendation services, the word

cloud shows what is recommended around Helsinki city center. Red words in Figure 34 are

the keywords to represent the services. For example, the Finnish word ravintola means

restaurant and buffet is one kind of meal that a restaurant can offer. From this word cloud, we

can easily tell that there are many ravintola and kahvila (Finnish word for coffee shop) in

Helsinki city center. There are also ferries and parks but the numbers are small compared

with coffee shops and restaurants.

 60

References

[1] R. Mariescu-Istodor and P. Fränti, “Detecting user actions in location-based systems”,

Int. Conf. on Location Based Services (LBS), Adjunct proceedings, Zürich, Switzerland, 1-6,

January 2018.

[2] M. Halvey and Mark T. Keane, “An Assessment of Tag Presentation Techniques ”, 2017-

05-14 at the Wayback Machine, poster presentation at WWW 2007, 2007.

[3] D. Coupland, “Microserfs”, Harper Collins,1995.

[4] J. Stefan and S.Gerik. “TagSpheres: Visualizing Hierarchical Relations in Tag Clouds”,

International Conference on Information Visualization Theory and Applications, 15-26, 2016.

[5] M. Gupta, R. Li, Z. Yin, J. Han, “An overview of social tagging and applications”, Social

Network Data Analytics, pp. 447–97, 2011.

[6] Q. Castellà, C. Sutton, “Word Storms: Multiples of Word Clouds for Visual Comparison

of Documents”, Proceedings of the 23rd international conference on World wide web, 2014.

[7] K. Dressel and Steffen A. Schüle. “Using Word Clouds for Risk Perception in the Field

of Public Health – the Case of Vector-Borne Diseases”, European Commission, 7th

Framework Programme, 2014.

[8] A. Rajaraman, J. Leskovec, Jeffrey D. Ullman, “Mining of Massive Datasets”, Cambridge

University Press, 2011.

[9] E. Schubert, A. Spitz, M. Weiler, J. Geiß, and M. Gertz, “Semantic Word Clouds with

Background Corpus Normalization and t-distributed Stochastic Neighbor Embedding”,

CoRR, 2017.

[10] Christopher D. Manning, M. Surdeanu, J. Bauer, J. Rose, J. Finkel, Steven J. Bethard,

and D. McClosky, “The Stanford CoreNLP Natural Language Processing Toolkit”,

Conference: Proceedings of 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, 2014.

[11] G. Hinton and S. Roweis, “Stochastic Neighbor Embedding”, Advances in Neural

Information Processing Systems 15, 2003.

[12] Laurens van D. Maaten and G. Hinton, “Visualizing Data using t-SNE” Machine

Learning Research 9, 2579-2605, 2008.

[13] R. Mariescu-Istodor. “Efficient management and search of GPS routes”, University of

Eastern Finland, 2017.

[14] Y. Jin, “Development of Word Cloud Generator Software Based on Python”, Procedia

Engineering, 174: 788-792, 2017.

[15] P. Verma, and J.S. Bhatia, “Design and development of GPS-GSM based tracking

system with Google map-based monitoring”, International Journal of Computer Science,

Engineering and Applications, 2013.

[16] P. M. Hubbard, “Interactive Collision Detection”, In Proceedings of the IEEE

Symposium on Research Frontiers in Virtual Reality, pp.24-32, 1993.

[17] S. Kockara, T. Halic, K. Iqbal, C. Bayrak and R. Rowe, “Collision detection: A survey”,

IEEE International Conference on Systems, Man and Cybernetics, 2007

https://www.researchgate.net/project/Biology-and-control-of-vector-borne-infections-in-Europe-and-elsewhere-EDENext-European-Commission-7th-Framework-Programme
https://www.researchgate.net/project/Biology-and-control-of-vector-borne-infections-in-Europe-and-elsewhere-EDENext-European-Commission-7th-Framework-Programme

 61

[18] B. Mirtich, “V-Clip: Fast and Robust Polyhedral Collision Detection”, ACM Transactions on

Graphics, pp. 177-208, 1998.

[19] S. A. Ehmann, and M. Lin, “Accelerated Proximity Queries between Convex Polyhedra

by Multi-level Voronoi Marching”, IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 2101-2106, 2000.

[20] E. Gilbert, D. Johnson, and S. Keerthi, “A Fast Procedure for Computing the Distance

Between Complex Objects in Three-dimensional Space”, IEEE Journal of Robotics and

Automation, pp. 193-203, 1988.

[21] D. Knott and D. Pai, “Cinder: Collision and Interference Detection in Real–time Using

Graphics Hardware”, In Proc. of Graphics Interface ’03, 2003.

[22] E. Gundelman, R. Bridson, and R. Fedkiw, “Nonconvex Rigid Bodies With Stacking”,

ACM Transaction on Graphics, 2003.

[23] S. Dinas, José M. Banon, “A literature review of bounding volumes hierarchy focused

on collision detection”, Ingeniería y Competitividad, p. 49-62, 2015.

[24] A. Bade, Norhaida M. Suaib, Abdullah M. Zin, “Oriented convex polyhedra for collision

detection in 3D computer animation”, Proceedings of the 4th international conference on

Computer graphics and interactive techniques, 2006.

[25] Norhaida M. Sualb, A. Bade and D. Mohamad, “Collision Detection Using Bounding-

Volume for avatars in Virtual Environment applications”, The 4th International Conference

on Information & Communication Technology and Systems, 2008.

[26] R. Weller and G. Zachmann, “Inner Sphere Trees”, Clausthal University of Technology,

2009.

[27] F. A. Madera, A. M. Day and S. D. Laycock, “A Hybrid Bounding Volume Algorithm to

Detect Collisions between Deformable Objects”, Second International Conferences on

Advances in Computer-Human Interactions, 2009.

[28] C. Tu and L. Yu, “Research on Collision Detection Algorithm Based on AABB-OBB

Bounding Volume”, IEEE: First International Workshop on Education Technology and

Computer Science, 2009.

[29] X. Zhang and Young J. Kim, “Interactive Collision Detection for Deformable Models

Using Streaming AABBs”, IEEE Transactions on Visualization and Computer Graphics,

2007.

[30] R. Weller, J.Klein and G. Zachmann, “A Model for the Expected Running Time of

Collision Detection using AABB Trees”, Conference: Proceedings of the 12th Eurographics

Symposium on Virtual Environments, 2006.

[31] J.-W. Chang, W. Wang, and M.-S. Kim, “Efficient collision detection using a dual OBB-

sphere bounding volume hierarchy”, Computer-Aided Design, 2009.

[32] S. Gottschalk, M.c. Lin and D. Manocha, “OBBTree: a hierarchical structure for rapid

interference detection”, Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques, 1997.

[33] D. Angelo, “A Brief Introduction to Quadtrees and Their Applications”, CCCG, 2016.

[34] G. M. Hunter, “Efficient Computation and Data Structures for Graphics”, Princeton

University, 1978.

[35] G. M. Hunter and K. Steiglitz, "Operations on images using quad trees". IEEE

Transactions on Pattern Analysis and Machine Intelligence. 1979.

https://www.researchgate.net/journal/0123-3033_Ingenieria_y_Competitividad
https://www.researchgate.net/profile/Norhaida_Suaib
https://www.researchgate.net/profile/Abdullah_Zin

 62

[36] Glen M. Ballou,, “Handbook for Sound Engineers”, Focal Press, 2008.

[37] J. E. Gilchrist, J. E. Campbell, C. B. Donnelly, J. T. Peeler and J. M. Delaney, “Spiral

plate method for bacterial determination”, Appl Microbiol, 1973.

[38] L. Nanni, A.Lumini, and S. Brahnam, “Local binary patterns variants as texture

descriptors for medical image analysis”, Artificial intelligence in medicine, 2010.

[39] Y. Wang, X. Chu, K. Zhang, C. Bao, X. Li and J. Zhang, "ShapeWordle: Tailoring

Wordles using Shape-aware Archimedean Spirals”, IEEE Transactions on Visualization and

Computer Graphics, pp. 991-1000, 2020.

 63

Appendix 1: WordCloudOverlay class

class WordCloudOverlay extends google.maps.OverlayView {

 constructor(bounds, image, map) {

 super(bounds, image, map);

 this.bounds = bounds;

 this.image = image;

 this.map = map;

 this.div = null;

 this.setMap(map);

 }

 onAdd() {

 const div = document.createElement("div");

 div.style.border = "none";

 div.style.borderWidth = "0px";

 div.style.position = "absolute";

 const img = document.createElement("img");

 img.src = this.image;

 img.style.width = "100%";

 img.style.height = "100%";

 div.appendChild(img);

 this.div = div;

 const panes = this.getPanes();

 panes.overlayImage.appendChild(this.div);

 }

 draw() {

 const overlayProjection = this.getProjection();

 const sw = overlayProjection.fromLatLngToDivPixel(

 this.bounds.getSouthWest()

);

 const ne = overlayProjection.fromLatLngToDivPixel(this.bounds.getNorthEast());

 this.div.style.left = `${sw.x}px`;

 this.div.style.top = `${ne.y}px`;

 this.div.style.width = `${ne.x - sw.x}px`;

 this.div.style.height = `${sw.y - ne.y}px`;

 }

 onRemove() {

 this.div.parentNode.removeChild(this.div);

 }

 hide() { if (this.div) {this.div.style.visibility = "hidden"; }}

 show() {if (this.div) {this.div.style.visibility = "visible"; }

 }

 }

 64

Appendix 2: Cities in Finland with their populations

Region name in Finnish Population

Helsinki 648,650

Espoo 281,866

Vantaa 226,160

Kuopio 118,434

Joensuu 76,228

Tampere 234,441

Turku 190,935

Oulu 202,753

Lahti 119,999

Pori 84,566

Vaasa 67,465

Kokkola 47,723

Rovaniemi 62,667

Hamina 20,410

Rauma 39,410

Lappeenranta 72,801

Lohja 46,490

Hyvinkää 46,622

Hämeenlinna 67,713

Jyväskylä 140,812

Mikkeli 53,983

Nokia 33,403

Porvoo 50,224

Savonlinna 33,866

Seinäjoki 63,072

 65

Appendix 3: Joensuu city boundary in the geographic coordinate

system.

[29.6132972,62.650188],[29.6135623,62.6495318],[29.6245285,62.6467503],[29.6262394,6

2.6469752],[29.6282242,62.6465749],[29.6294816,62.6468596],[29.6306851,62.6465955],[

29.6317808,62.6453699],[29.6329853,62.6442937],[29.6332535,62.6441699],[29.6345144,6

2.643861],[29.6353778,62.6438494],[29.636201,62.6437859],[29.6367737,62.6434358],[29.

6370784,62.6428747],[29.63828,62.6421506],[29.6384997,62.6416316],[29.6382534,62.640

8827],[29.6378852,62.6402832],[29.6379313,62.6397925],[29.6374139,62.6395139],[29.63

75719,62.6392546],[29.6376475,62.6382931],[29.6380118,62.6377942],[29.63828,62.63661

06],[29.6377143,62.6354993],[29.6378616,62.6350947],[29.6375378,62.6345946],[29.6361

771,62.6344954],[29.6362147,62.6336008],[29.6356514,62.6325538],[29.6357963,62.63228

37],[29.635174,62.6316203],[29.635469,62.6312878],[29.6353135,62.6309103],[29.638344

4,62.6111662],[29.7179918,62.5507293],[29.7510543,62.5215082],[29.7611283,62.4669893

],[29.7629083,62.4589701],[29.7632206,62.4074414],[29.8306858,62.4042442],[29.835735

7,62.3995097],[29.8448499,62.3965351],[29.8455962,62.3929524],[29.8460686,62.3918436

],[29.851718,62.3875229],[29.8565091,62.3830477],[29.8827616,62.3758707],[29.8830849,

62.3745457],[29.945134,62.3676496],[29.9496635,62.3702152],[29.9525145,62.3720043],[

29.9696054,62.3751455],[29.9742258,62.3803936],[30.0384838,62.3881646],[30.0711485,6

2.3998894],[30.0875673,62.3934349],[30.1060947,62.3908399],[30.1309821,62.3895424],[

30.1453961,62.3914166],[30.1614347,62.3961418],[30.1781991,62.4015388],[30.192302,62

.3918651],[30.2104837,62.4116576],[30.2127305,62.412474],[30.2410745,62.4162675],[30.

2443928,62.4151471],[30.2519282,62.4021793],[30.2533454,62.397375],[30.2772304,62.35

10059],[30.2797537,62.3501237],[30.3167047,62.3579987],[30.3377553,62.3622161],[30.3

768839,62.3561705],[30.4071982,62.3373845],[30.4759378,62.3489387],[30.4931636,62.35

00916],[30.5133155,62.3541336],[30.5557279,62.3569082],[30.5699938,62.3725592],[30.6

123123,62.3591854],[30.6134184,62.356363],[30.6140751,62.3539733],[30.6147664,62.353

043],[30.6204698,62.3488243],[30.6660968,62.354695],[30.686387,62.327963],[30.688702

9,62.3241743],[30.7229577,62.3294719],[30.7617752,62.2835122],[30.7619135,62.2813418

],[30.7656811,62.2784638],[30.7778483,62.2646325],[30.7827913,62.2586477],[30.786011

8,62.2550086],[30.7895411,62.2510199],[30.8086553,62.2610043],[30.809476,62.2696122],

[30.8109585,62.2706919],[30.8344904,62.2753378],[30.8404391,62.2786442],[30.8472038,

62.282009],[30.8602311,62.2885747],[30.8865689,62.3016362],[30.9043505,62.310261],[3

0.9207199,62.3088002],[30.9307385,62.3067193],[30.9432722,62.3059688],[30.9551691,62

.3122652],[30.96225,62.32725],[30.9619598,62.3275432],[30.9619993,62.3277475],[30.961

2132,62.3281863],[30.9599971,62.3282108],[30.9584637,62.3283581],[30.9576177,62.3287

265],[30.9568774,62.3290211],[30.9556613,62.3290211],[30.9555027,62.3295368],[30.955

0268,62.3297578],[30.9539164,62.3299542],[30.953652,62.3303471],[30.9529647,62.33064

17],[30.9514842,62.3307645],[30.9506382,62.33101],[30.9511044,62.3313354],[30.950955

4,62.3315993],[30.9499372,62.3317538],[30.9498078,62.3320459],[30.948746,62.332244],[

30.9479609,62.3322566],[30.9473409,62.3325663],[30.9471002,62.3324601],[30.9471484,6

2.3321885],[30.9465139,62.332164],[30.9457208,62.332164],[30.9452449,62.332558],[30.9

449429,62.3325187],[30.944683,62.3322991],[30.9440288,62.332385],[30.9436058,62.3326

 66

059],[30.9424425,62.3329988],[31.0714363,62.4051672],[31.0773055,62.4073714],[31.091

9394,62.4198906],[31.0870055,62.4187439],[30.9543576,62.3886611],[30.9353118,62.4166

036],[30.9369018,62.4489968],[30.9427434,62.4498921],[30.9550835,62.452594],[30.9996

389,62.457725],[30.999708,62.4631429],[30.9364524,62.4918461],[30.9197226,62.4824411

],[30.8395297,62.5583464],[30.8090771,62.5509541],[30.7501768,62.5698771],[30.692624

6,62.6019453],[30.7129567,62.6215327],[30.6683939,62.6434632],[30.6346576,62.6519599

],[30.5914848,62.6676128],[30.5922107,62.6698347],[30.5806311,62.6906327],[30.551008

1,62.690252],[30.5168224,62.6951996],[30.5141263,62.7007805],[30.5120869,62.7070577],

[30.5098401,62.7113685],[30.5402927,62.7331668],[30.5529092,62.7494573],[30.5477589,

62.7658971],[30.5580596,62.7738685],[30.5565179,62.7767299],[30.5453393,62.7974693],

[30.5219382,62.814972],[30.5271576,62.8285974],[30.5232744,62.8267685],[30.5051641,6

2.8316286],[30.50113,62.8321773],[30.488234,62.8454401],[30.4847739,62.8449725],[30.4

84448,62.8450398],[30.4843139,62.8452406],[30.4838848,62.8454928],[30.4836139,62.845

8233],[30.4822728,62.8457939],[30.4816183,62.8458723],[30.4813179,62.8461758],[30.47

88288,62.8457547],[30.4775722,62.8461905],[30.4762351,62.8462419],[30.4763692,62.846

3974],[30.4763397,62.8464892],[30.4759562,62.84669],[30.4756517,62.8467328],[30.4746

459,62.8506527],[30.4734475,62.8554259],[30.4630598,62.8974439],[30.4650017,62.90010

82],[30.4542622,62.9003662],[30.4552492,62.901905],[30.4489299,62.9033494],[30.43616

26,62.9175614],[30.4349717,62.9181425],[30.4361841,62.9184609],[30.4363343,62.918872

4],[30.4333302,62.9453162],[30.4288456,62.9483208],[30.4179343,62.9523329],[30.41342

82,62.9550648],[30.4115078,62.9581175],[30.4104134,62.9583395],[30.3878185,62.970604

4],[30.3766283,62.9778198],[30.3772114,62.9785687],[30.3721651,62.9811978],[30.35888

28,62.9977608],[30.3613719,62.9984119],[30.351834,63.0034462],[30.3266094,63.0167505

],[30.3041218,63.0216546],[30.2859208,63.0257208],[30.2660467,63.0393436],[30.243327

9,63.041109],[30.2410705,63.0410973],[30.2394403,63.0424329],[30.2040909,63.0433801],

[30.186589,63.0439839],[30.1849335,63.0444112],[30.1826145,63.0443849],[30.1823607,6

3.044097],[30.1402667,63.0323534],[30.1191971,63.0369348],[30.0421843,63.0474023],[3

0.0338539,63.0476373],[30.027079,63.04676],[30.0256618,63.040508],[30.0204424,63.034

8973],[30.0032977,63.0354459],[29.9833186,63.0457416],[29.9578754,63.0347865],[29.95

814,63.0329212],[29.9585536,63.0300061],[29.959986,63.0195471],[29.9601822,63.018522

9],[29.9684929,62.9598347],[29.9527309,62.8810479],[30.0042686,62.836076],[30.005582

1,62.8308837],[30.0232107,62.8149697],[30.0252156,62.8115268],[30.0385234,62.7798748

],[30.0900958,62.7495974],[30.1970427,62.7213801],[30.2010177,62.7159933],[30.204992

8,62.7096863],[30.2106616,62.6997794],[30.2846672,62.6591818],[30.2805884,62.6293367

],[30.2547677,62.6389495],[30.2330603,62.6250138],[30.2108344,62.6213421],[30.203299

1,62.6174633],[30.1990129,62.6130752],[30.2105925,62.6068894],[30.2004992,62.5935751

],[30.1872605,62.5946729],[30.1394213,62.6052513],[30.1120105,62.6083047],[29.956083

8,62.5701613],[29.9437783,62.5668969],[29.9411513,62.5767846],[29.9109407,62.5730592

],[29.9039238,62.5826743],[29.9256842,62.592931],[29.9222054,62.6005318],[29.9277354,

62.6011546],[29.9254068,62.6046012],[29.9137577,62.6159665],[29.9085398,62.6182077],

[29.9101485,62.6191482],[29.9005427,62.628217],[29.7461305,62.63234],[29.7421771,62.6

327508],[29.6945928,62.6376944],[29.6650735,62.6417294],[29.6496916,62.6474474],[29.

6432278,62.6556254],[29.6373692,62.6546904],[29.6132972,62.650188]

 67

Appendix 4: Number of words that cannot find a position to draw

on heart-shaped word cloud with linear font size function.

Appendix 5: Number of words that cannot find a position to draw

on heart-shaped word cloud with logarithmic font size function.

 68

Appendix 6: Number of words that cannot find a position to draw

on tree-shaped word cloud with linear font size function.

Appendix 7: Number of words that cannot find a position to draw

on tree-shaped word cloud with logarithmic font size function.

 69

Appendix 8: The function fromLatLngToPoint

 fromLatLngToPoint: function (latLng) {

 const latRadians = (latLng.lat() * Math.PI) / 180;

 return new google.maps.Point(

 GALL_PETERS_RANGE_X * (0.5 + latLng.lng() / 360),

 GALL_PETERS_RANGE_Y * (0.5 - 0.5 * Math.sin(latRadians))

);

 }

	1 Introduction
	1.1 Mopsi
	1.2 Word cloud
	1.3 Thesis structure

	2 Word cloud on Mopsi
	2.1 Preparation of input data
	2.2 Generation of word cloud
	2.3 Place word cloud on Google Maps

	3 Word font size
	4 Collision detection
	4.1 AABB
	4.2 Quadtree
	4.3 Alternatives
	4.3.1 Look up strategy

	5 Word movement
	5.1 Word position initialization
	5.2 Archimedean spiral

	6 Shaped word cloud
	6.1 City shape
	6.2 Shaped word cloud discussion

	7 Word cloud implementation
	References

