

University of Eastern Finland

School of Computing

Master’s Thesis

Location-based web crawler for

geotagged images retrieval

Nguyen Quang Khue

28th of May 2018

ABSTRACT

With the development of mobile devices with GPS sensor, there are more and more content

embedded with geographic information, or geotagged content, published in the Internet. The use of

geotagged content can be seen in many modern location-based applications on both web and mobile

platforms. O-Mopsi is a location-based game whose gameplay features require player to reach real-

world locations as fast as possible. It uses photos uploaded by community or game administrator to

support player in identifying places they travel to and for creating new game content. The main issue

of uploading location photos is it is exhaustive and time consuming. Thus, we developed a web crawler

system in attempt to automatize the process of retrieving location photos on the Internet. Our system

focuses on downloading geotagged images, which already contain GPS location in their metadata. In

this thesis we introduce the O-Mopsi game and its content creation process in general. Then, we study

the web crawler system, how it is structured, its working mechanism and crawling algorithms. The rest

of the thesis focuses on the crawler system implementation, in which we describe in detail all its

components, the method and algorithm we choose and how the system works in practice. In addition,

we study in brief about geographical information retrieval for determining location information of non-

geotagged images. At the end of the thesis, we present our experimental results and data collected

from running the system on real production environment. We also compare three crawling algorithms:

depth-first search, breadth-first search and best-first search to conclude which algorithm performs

best.

Keywords: Location-based application, GPS, web crawler, geotagged images, location photos, web

application.

ACKNOWLEDGEMENTS

I am grateful to University of Eastern Finland, Joensuu Campus and to all the teachers who helped me

obtain new knowledge and experience in computer science, especially machine learning and clustering

research areas. It was a good opportunity for me to be part of the IMPIT program where I had studied

with students from different parts of the world and learnt from the diversity.

I would like to express my gratitude and great thank towards my supervisor, Professor Pasi Fränti, for

his guidance and encouragements on my study and research. Without his dedications, useful

comments, remarks and advices, it would have been impossible for me to finish this thesis on time.

Through his teachings, I believe I have improved significantly my problem-solving, research and time

management skills that will be useful for my future career.

I would like to give my thanks to every member of the Machine Learning research group, especially Dr.

Radu Mariescu-Istodor and Dr. Najlah Gali for their supports in completing this thesis. I also want to

give my thank to Mr. Juha Hakkarainen for his patience and the time he spent, whenever I requested

his technical supports for deployment of the project associated to this thesis.

Finally, I want to thank my family, my friends and my fellow classmates Loc Cooc Khin and Nguyen Thu

Linh for their emotion and mental support when I got stuck or needed reclusion. They are always by

my side, supporting me any way they can. I appreciate all the discussion we had and all the good

advices they provide that brought me to the completion of this thesis.

LIST OF ABBREVIATIONS

MIC Mopsi Image Crawler
UEF University of Eastern Finland
DFS Depth-first search
BFS Breadth-first search
BEFS Best-first search
SQL Structured Query Language
GPS Global Positioning System
A-GPS Assisted GPS
S-GPS Synthetic GPS
EXIF Exchangeable Image File Format
LBS Location-based Service
LBG Location-based Game
URL Uniform Resource Locator
HTML Hyper Text Markup Language
DOM Document Object Model
SHA256 Secure Hash Algorithm 256
GUI Graphical User Interface
API Application Programming Interface
REST Representational State Transfer
GIR Geographic Information Retrieval
JSON Javascript Object Notation

CONTENTS

1 Introduction ... 1

2 O-Mopsi Game ... 5

3 Web Crawler ... 8

3.1 Architecture of Web Crawler ... 9

3.2 Working Mechanism of Web Crawler ..11

3.3 Types of Web Crawler ..13

3.4 Crawling Algorithms ...15

3.4.1 Breadth-first search ..15

3.4.2 Depth-first search ...16

3.4.3 Best-first search ..17

4 Mopsi Image Crawler ...19

4.1 System Architecture ...19

4.2 The Web-based Graphical User Interface ..20

4.3 The Downloader ...21

4.3.1 Heuristic Method for Determining Relevance of Links ..22

4.3.2 Extract keywords from title of a link ..24

4.3.3 Calculate keyword relevance score ..25

4.3.4 Rules for downloading image ...27

4.4 The Storage ..29

4.5 The Queue ..31

4.6 The Scheduler ...37

5 Geo Information Retrieval ..39

5.1 Determine Geographic Information of Image from Text Content ...40

6 Experimental Results ..42

7 Conclusions ..48

8 References ..49

1

1 INTRODUCTION

In the last decade, there has been a significant growth in mobile device usage, in which smartphone is

the most popular device. According to statistics collected by eMarketer 1 , the total number of

smartphone users is expected to increase from 2.1 billion in 2016 to more than 2.8 billion in 2020. Of

all features of smartphone, tracking geographical data is crucial and considered the indispensable

feature in almost every phone. It is estimated that at least 10 systems are in use or being developed

for location detection2. Within the scope of this thesis, we will describe in brief two most popular

systems, which are GPS and Wi-Fi.

GPS stands for Global Positioning System which was developed by U.S Department of Defense in 1973,

first introduced to cellular phones in the late 1990s and best-known for its capability to detect outdoor

user’s location. It was developed as a global navigation system in the form of a constellation of

satellites that sends geolocation and time information to any device equipped with a GPS receiver. The

system is independent from any telephonic or internet reception, it provides data to the user whenever

there is no blockage to the line of sight of four or more GPS satellites.

Figure 1: Illustration of the GPS satellite constellation3

GPS works well when user’s device finds three or four satellites in the satellite constellation as

illustrated in Figure 1. However, it is less effective or even not working when the user is indoor or in

area surrounded by buildings that reflect satellite signals. There are two technologies that enhance the

GPS system accuracy: Assisted GPS (A-GPS)4 and Synthetic GPS (S-GPS). Both A-GPS and S-GPS systems

are implemented as application software in the device. A-GPS is a system that downloads orbital data

from the internet via Wi-Fi or network connection when the device cannot directly receive signals from

satellites. For instance, when the user is indoor and network connection is available, the device can

1 https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
2 https://www.pcworld.com/article/253354/ten_ways_your_smartphone_knows_where_you_are.html
3 http://www.pcworld.com.vn/articles/cong-nghe/song-va-cong-nghe/2014/09/1235975/he-thong-dinh-vi-toan-cau-gps-
hoat-dong-the-nao/
4 http://www.gpsworld.com/wp-content/uploads/2012/09/gpsworld_Innovation_0302.pdf

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.pcworld.com/article/253354/ten_ways_your_smartphone_knows_where_you_are.html
http://www.pcworld.com.vn/articles/cong-nghe/song-va-cong-nghe/2014/09/1235975/he-thong-dinh-vi-toan-cau-gps-hoat-dong-the-nao/
http://www.pcworld.com.vn/articles/cong-nghe/song-va-cong-nghe/2014/09/1235975/he-thong-dinh-vi-toan-cau-gps-hoat-dong-the-nao/
http://www.gpsworld.com/wp-content/uploads/2012/09/gpsworld_Innovation_0302.pdf

2

get GPS information from the internet until the device can receive actual GPS signals. In contrast, S-

GPS system calculates the satellites’ locations in case the user is indoor and there is no internet

connection. A device embedded with this technology can identify its location in under two seconds.

The Wi-Fi system uses internet access points to determine device’s location. There are two methods

used for determining location using Wi-Fi. Received signal strength indication (RSSI) is the most

common method. Whenever user’s device detects signals from nearby access points, RSSI takes the

signals and matches against a database of access point locations. Based on the strength of the signals,

RSSI can determine the distance between the device and the nearby access point, hence give user’s

location in relation to the access point. The second method for determine location using Wi-Fi is called

wireless fingerprinting. Based on the pattern of Wi-Fi signals the device receives in a place, a

“fingerprint” profile of the place is built. The collection of such fingerprints is later used for detecting

location. The fingerprint can be created and stored to the device when the user visits a place for the

first time, or it can be provided by a service provider. Figure 2 illustrates differences between GPS

positioning and Wi-Fi positioning.

Figure 2: GPS positioning vs. Wi-Fi positioning5

The ability to track location of smartphone can be used to create content embedded with location

information, of which digital photos are the most popular content. A geotagged photo is a photo

associated with geographical location. Whenever an image is captured by the smartphone, it

automatically saves location information to the image’s metadata, which is a set of information

embedded inside the image’s file to describe characteristics of the image. While there exist several

types of image metadata, the most commonly used metadata type that contains geographic

information is Exchangeable Image File Format (EXIF)6. Figure 3 shows an example of EXIF metadata

with location information included in a photo image we captured in Joensuu, Finland.

5 http://radupoenaru.com/gps-vs-agps-vs-wifi-vs-gsm-localization/
6 https://www.photographymad.com/pages/view/exif-data-explained

http://radupoenaru.com/gps-vs-agps-vs-wifi-vs-gsm-localization/
https://www.photographymad.com/pages/view/exif-data-explained

3

Figure 3: Example EXIF metadata from an image we captured, extracted using an online web application7

The above process of adding geographic information to metadata is called geotagging. Geographical

coordinates, known as latitude and longitude, are the minimum required location information needed

for geotagging. GPS data and geotagged photos are valuable content for location-based software as

they help visualizing locations on map, which encourage user to use the application or visit the real

locations. There are two types of location-based software which are Location-based Service and

Location-based Game.

Location-based Service (LBS) is a service or an application software that uses geographical position of

mobile device for operation of its features [1]. The usage of LBS systems are mostly practical, especially

in business and tourism areas8. Some examples of LBS in daily life includes: finding shopping locations,

providing traffic updates and weather reports, suggesting tourist attractions or even credit card fraud

prevention. Nowadays, there are many location-based applications available as web application or

mobile application which use GPS data. Figure 4 illustrates a use case of Google Trip 9 mobile

application, in which user can use their own location as input to request for suggestions of nearby

places to visit. The application uses geotagged photos other users contributed to help provide good

visual information about the suggested place.

7 https://www.verexif.com/en/ver.php
8 https://www.businessnewsdaily.com/5386-location-based-services.html
9 https://get.google.com/trips/

https://www.verexif.com/en/ver.php
https://www.businessnewsdaily.com/5386-location-based-services.html
https://get.google.com/trips/

4

Figure 4: Example of Google Trip mobile application for suggesting things to do near Vantaa, Finland (left) and example of
user photo contributed to google trip location information (right)

Location-based game (LBG) is a type of pervasive game whose gameplay evolves and progresses based

on the player location. Most modern LBGs are implemented for mobile device with extensive use of

GPS sensor to determine the location. Some notable LBGs on the market recently are Pokemon GO10,

CodeRunner11, Ingress12 and Zombies, Run13. Player experience in the LBG depends mostly on how well

location data are used to represent the physical world. As players of the game must travel in the real

world to make progress, visual information of the locations is essential for many LBG.

O-Mopsi [2] is a location-based game that is based on the classical concept of orienteering and exploits

user geotagged photo collection14. The game is currently available as mobile client on four different

mobile platforms including Nokia Symbian, Windows phone, Android and iOS. In O-Mopsi, a game is

created by specifying a set of targets for the user to visit to complete the game [3]. The mobile client

can plot targets for travelling, display compass data and give audio clue in different pitch and frequency

about the distance between player and the target. Photos are used for aiding the user in identifying

the target. Since O-Mopsi uses real world locations as its targets, gathering location photos for the

10 https://www.pokemongo.com/
11 https://itunes.apple.com/us/app/coderunner/id463639902?mt=8
12 https://www.ingress.com/
13 https://zombiesrungame.com/
14 http://cs.uef.fi/mopsi/photos/

https://www.pokemongo.com/
https://itunes.apple.com/us/app/coderunner/id463639902?mt=8
https://www.ingress.com/
https://zombiesrungame.com/
http://cs.uef.fi/mopsi/photos/

5

game content creation can be a challenging task. Currently, the game depends on its user and system

administrators for uploading the location photos, which consume considerable time and effort.

To find solution for the photo content issue of O-Mopsi, we have developed a system called Mopsi

Image Crawler (MIC)15 for automated retrieval of geotagged photos on the Internet. Our system is

developed based on the concept of web crawler, a software application that systematically browses

the World Wide Web and download content. The photos collected by our system are expected to

provide material for the O-Mopsi game’s content creation. Currently, the system is running

automatically on University of Eastern Finland’s Mopsi server with the web GUI accessible through

subdomain of Mopsi system website16. At the time of writing, the system visited 29788 URLs and

downloaded 65525 of images, of which there are 571 geotagged images from places around the world.

We organize the remainder of the thesis as follows. In Section 2, we give an overview of the O-Mopsi

game and challenges in its content creation process. In Section 3, we provide background information

about the concept of web crawler. We will describe in detail about our MIC system in Section 4, with

the information about the system architecture, its components and method we use for crawling. In

Section 5, we provide additional description about Geo Information Retrieval, which can be useful for

future development of the system for automatic geotagging of photo content. Finally, in Section 6, we

show our experiment results and draw final conclusions in Section 7.

2 O-MOPSI GAME

O-Mopsi is a mobile location-aware gaming system, which is based on the classical concept of

orienteering. The game was first introduced in Science Festival (SciFest) in Joensuu, Finland and has

been played since 2011. Its main target audience is school kids. The festival helps them get familiar

with science. Overall experience and feedback shows the game’s potential to become popular in the

future. Figure 5 shows the user interface of O-Mopsi game on Android platform before starting the

game and while playing.

15 http://mopsi.uef.fi/crawler/
16 http://mopsi.uef.fi/

http://mopsi.uef.fi/crawler/
http://mopsi.uef.fi/

6

Figure 5: User interface of O-Mopsi on Android platform before starting the game (left) and while playing (right)

To initialize a new game, a player can either choose from one of the game made by other players or

create their own. A game is an unordered set of goals, which are real-world locations on a map. There

are three playing scenarios:

• Competition

• Educational

• Sight-seeing

Among the three modes, competition mode has been already implemented and the other modes are

under consideration. In competition mode, the player completes a game by travelling to the

designated location by either walking, using private vehicle, taking public transport or any means

necessary. To get top rank the player also needs to travel faster than other.

While being developed as a game, O-Mopsi is not all about competition but also sharing travelling

experience. The idea of sight-seeing mode is based on assumption that when people travel, they might

not always interest in standard tourist attractions but thematic tours such as discovering historical

places, viewing natural sceneries or simply enjoying top restaurants in town. O-Mopsi’s players would

create tours for others to choose based on their own interest or friend recommendations. A sight-

seeing tour can be made by suggesting the order of travel using the same start and end location or

7

point-to-point trips between locations. Such sharable tours are also known as game scenarios, which

are crucial content of the O-Mopsi system.

From the description of O-Mopsi, it is clear that unlike other location-based games such as Pokémon

Go17 or Ingress18, O-Mopsi game’s targets are not artificial creatures or computer-generated areas but

real-world locations. Multiple targets can be organized into different game scenarios, which are the

sharable tours discussed previously. Thus, quality of the targets is crucial for creating content that

motivate user to play O-Mopsi. A target in O-Mopsi is created from three entities: name, photo and

location in the form of geographical coordinates. According to [2], the quality of a target depends on:

• Quality of its photos

• Accessibility of the location

• Attractiveness of the location

Quality of a photo can be determined by multiple factors such as whether it is the right image of the

target’s location or the amount of detail in the photo that describe the location. Accessibility of the

target’s location depends on its geographic coordinates, for example a temple on top of a mountain is

harder to reach than a restaurant in urban area. Finally, whether the target’s location is attractive

enough depends on its public popularity, how frequent it is visited and recommended by people

travelling there. All of the three factors are important for creating good content for the O-Mopsi

system.

When creating game scenarios manually or automatically, the biggest challenge is to establish a huge

database of potential targets on earth as it is the playground of the game. There are three possible

approaches to the challenge of collecting material for target creation:

• Collect the material manually

• Utilize existing geotagged database

• Use web mining to search for material

• Use a web crawler to download material from the web

The first approach is time-consuming since it requires human efforts to travel and gather information

in different parts of the world. Contribution from community is also possible in this approach but it

would introduce another challenge of managing quality of uploaded material. The second approach is

to use existing geo-tagged databases of photos from various providers. Currently, geo-tagged data

from AViewOnCities19 have been permitted to be used in O-Mopi, but the database lacks diversity since

it only convers a few European cities. The third approach is to search as much targets as possible

around a given approximate location where a new game is initialized. Only the name or the address of

the place is required for searching for targets. However, the amount of information returned by a web

search is huge and determining which information is relevant for constructing potential targets can be

challenging.

In this thesis, we focus on the last approach: to build a system that downloads material from web

content automatically. Similar system called Never Ending Image Learner (NEIL) has been developed

in [4] that utilizes semi-supervised learning techniques to find images of certain categories, based on

visual knowledge base. The visual knowledge base of NEIL consists labeled examples of three

17 https://www.pokemongo.com
18 https://www.ingress.com/
19 http://www.aviewoncities.com/

https://www.pokemongo.com/
https://www.ingress.com/
http://www.aviewoncities.com/

8

categories Object (e.g. car, road, ball), Scene (e.g. beach, mountain, forest) and Attribute (e.g. color or

size), and their four types of relationships including:

1. Object-Object (e.g. keyboard is a part of computer)

2. Object-Attribute (e.g. the cup is big)

3. Scene-Object (e.g. a cow is on the rice field)

4. Scene-Attribute (e.g. the alley is narrow)

The NEIL’s semi-supervised algorithm has four main steps. The first step is to build classifiers for the

mentioned categories. It uses Google Image Search to find and download thousands of images. In the

second step, the visual data of the images are clustered into categories using affinity propagation

algorithm. Three-quarters of the clustered images are used for training classifier and the remaining

quarter is used as validation set. In the third step, the trained classifier automatically discovers the

relationships between the image categories and use such information to find new instances of

different objects and scene categories. In the fourth step, the new instances are used as updated data

for training new classifier. The entire process repeats and continues forever.

While useful for retrieving objects and scene images, the NEIL system is complicated in structure and

dependent on initial image data with limited categories and no consideration for location-based data.

Our system is simpler, it aims to get as many images as possible, regardless of their topic, from web

content with focus on those that are geotagged. The web crawler system has some benefits over other

approaches. First of all, it requires less human interaction or manual efforts to collect data like the first

approach. Secondly, system architecture and crawling algorithm is customizable, which gives us some

control of the method used for collecting data. Third, there is an obvious increment in usage of geo-

tagged data for web pages. From 2004, only less than 0.1% of Finnish websites used the meta tag for

geo-coordinates according to study in [5], in another report 4 years later this number rose to nearly

1% [6]. In 2017 [2], already 7% of the web pages had geo-coordinates in their online data. The growth

in size of web content guarantees that this number will continue to increase in the future.

Furthermore, modern websites tend to use more image content, including digital photos taken by

camera or mobile devices with GPS functionality. Thus, downloading images on the web may provide

better chance to collect good quality and relevant material. Regardless, there are challenges existing

in this approach relating to the following factors:

• Performance of the crawler

• Quality of downloaded images

• Potential copyright issues

The goal of this thesis is to apply the concept of web crawler for traversing the web and gathering

required material for the O-Mopsi game, which will be discussed in the next section of this thesis.

3 WEB CRAWLER

A web crawler has been called by different names such as Web spider20, ant, automatic indexer [7] or

Web scutter in Friend of a Friend (FOAF)21 software context. It is defined as a system for the bulk

downloading of web pages [8] or a program that retrieves Web pages [9]. Elyasir et al. [10] defined it

as a tool to download web pages or their partial content in an automated manner. Web crawler

basically operates based on a simple graph search algorithm, such as depth-first or breadth-first search,

20 https://web.archive.org/web/20040903174942/archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents/spetka/spetka.html
21 http://xmlns.com/foaf/spec/

https://web.archive.org/web/20040903174942/archive.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents/spetka/spetka.html
http://xmlns.com/foaf/spec/

9

with the assumption that all web pages are linked together and there are no multiple links and nodes

[11].

There are three main applications of web crawler, which are:

• Web indexing

• Web archiving

• Web data mining

Web indexing is a collection of methods for collecting and organizing content of a website or the

Internet systematically according to a set of predefined criteria22. It is the core of modern search

engines, where their base components are built on. In search engines, the web crawler component

browses web pages systematically, and organizes visited pages by keywords or metadata and store

them to a local repository or a database. Instead of real-time search, when receiving input from users,

the search engines analyses their indexed information to produce a list of matching web pages [11].

A closely related application to web indexing is web archiving, a process in which copies of website

content are periodically gathered and preserved for different purposes [12]. Like web indexing, web

archiving systems utilize web crawlers for capturing massive amount of web content automatically.

Web data mining systems extract statistical properties of web pages. Data collected from the mining

process are analyzed to reveal information of interests for business, e.g. copyright infringements or

marketing trends [8]. In web data mining systems, a web crawler does not only handle retrieval of raw

web content but also perform additional steps to obtain statistical information, such as counting

frequency of a set of terms in the web page, collecting the number of visitors or analyzing the balance

between text and multimedia content in a web page based on percentage of each content type over a

website or the whole web.

More often, crawling techniques and algorithms are kept as business secrets and not release to the

public [10], which means there exists many research possibilities surrounding web crawler. Meanwhile,

thanks to the development of mobile phones and digital cameras with ability to keep track of user’s

location, uploading image content with location information becomes a frequent activity for the

Internet users. Thus, research on web crawler for location-based image retrieval helps enhancing

current applications in social network, education, tourism and entertainment.

3.1 ARCHITECTURE OF WEB CRAWLER
Standard web crawler consists of four main components [13] as illustrated in Figure 6:

1. The queue

2. The downloader

3. The scheduler

4. The storage

22 American Society for Indexing, “Indexing the Web” at https://www.asindexing.org/reference-shelf/indexing-the-web/
(Accessed 24th August 2017)

https://www.asindexing.org/reference-shelf/indexing-the-web/

10

Figure 6: High-level architecture of a standard web crawler [13]

The queue is a data structure that stores a list of URLs that link to different web pages. Within web

crawler context, the queue performs two operations which are adding an input URL into the queue

and getting the next URL for continue the crawling process. In practice, the queue can be either a

normal queue or a priority queue. A normal queue organizes the URLs following the first in, first out

(FIFO)23 method, in which URL that is put to the queue first is chosen as the next URL to continue the

crawling process. Meanwhile, a priority queue organizes the URLs by a priority value, meaning that the

next is always the highest-priority URL. Priority of a URL is determined by predefined criteria, it can be

either the URL’s relevance to the content of crawled web pages or how frequent its associated web

page is visited. The choice of normal or priority queue depends on the crawling algorithm used for

implementation and the purpose of the web crawler.

The downloader is central component of the crawling system as it performs actual crawling task. It is

basically a program that performs crawling algorithms such as depth-first search, breadth-first search

or similar alternatives to explore the Internet for web pages and downloads their content recursively.

Given a set of URLs as input, the downloader retrieves content of their associated web pages and save

them to corresponding physical files as output. Its working principle follows the basic crawling

mechanism, which will be described in the next part of this section. The downloader may contain

additional sub-components to read Hyper-Text Markup Language (HTML)24 or perform processing

steps to produce meaningful output data.

It is technically possible for the crawling process to run indefinitely. However, the environment in

which the crawler operates in usually has certain constraints on computing resources, such as

processing power, amount of system storage or memory. Thus, in practice the whole crawling process

is not continuous but a combination of smaller crawling tasks. The scheduler is a program that manage

23 https://techterms.com/definition/fifo
24 https://www.w3.org/TR/html/

https://techterms.com/definition/fifo
https://www.w3.org/TR/html/

11

execution of the crawling tasks. It ensures that there are adequate computing resources for the

crawling process to continue and decides when the next task in the crawling process happens. There

are three inputs for the scheduler. The first input is status of crawling process from the web crawler,

which provides information on whether a crawling task is running or not. The second input are current

system resource usages, which is provided by the operating system. The final input is a set of

predefined schedules for continuing the current crawling task or executing subsequent crawling tasks.

If system resources are inadequate, the scheduler terminates the current crawling task if it is running

or ignore execution of subsequent crawling tasks, which in turn stops the whole crawling process

completely. It should be noted that the last input is optional as the scheduler can execute the next

crawling task as soon as system resources are available or it can be implemented to setup schedules

automatically.

The storage is a data structure that can store and manage result data from the crawling process. The

result data can be text content, metadata or multimedia resources. In practice, the storage can either

be the file system or the database system connect to physical data storage devices such as hard disk,

physical memory unit or magnetic tape. Modern web crawler often uses database systems capable of

managing an enormous collection of data.

3.2 WORKING MECHANISM OF WEB CRAWLER
Before going into details about how the web crawler works, it is good that we go through some basic

concepts of the Internet and World Wide Web. The World Wide Web (WWW) or the web is defined as

“an information space in which the items of interest, referred to as resources, are identified by global

identifiers called Uniform Resource Identifiers (URI)” [14]. The web is commonly visualized as a huge

graph or tree structure named the web graph. A web graph is a directed graph, in which each vertex

or web node represents a web resource. Web nodes are connected by hyperlinks, usually referred to

as links, which are pointers to their URL references. Thus, in the web graph context the term hyperlink,

link or URL are interchangeable in this thesis. Illustration of web graph can be seen in Figure 7.

12

Figure 7: Illustration of a web graph25

Being an information space, the web contains a huge amount of resources. When a resource is given

an identifier, it is called a web resource [15]. Examples of resources are text documents, digital images,

e-mail messages, programming scripts or audio files. Within the scope of this thesis, only two types of

web resources are considered which are web pages and images.

The most important and commonly accessed web resources are hypertext documents [16]. Hypertext

documents on the web are called web pages, which are typically written in a structural language

named Hypertext Markup Language (HTML). A set of related web pages forms a website. Like any other

web resources, each web page is identified by a Uniform Resource Locator (URL)26, also known as web

address which is a unique text used for accessing the web page through web browser software.

Based on the high-level architecture described in the previous part of this section, the general working

mechanism of a web crawler can be described as follows: the crawler receives a list of URLs as input,

also known as the seeds, and add them into a priority queue. For each of the seeds, the crawler scans

through the corresponding web page to collect content of interest. Scanned pages are then indexed

by a client which is also responsible for saving, summarizing or analysing crawled content [9]. A

25 http://www-inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/world-wide-web.html?topic=lab24.topic&step=6&course
26 http://searchnetworking.techtarget.com/definition/URL

http://www-inst.eecs.berkeley.edu/~cs61bl/r/cur/graphs/world-wide-web.html?topic=lab24.topic&step=6&course
http://searchnetworking.techtarget.com/definition/URL

13

crawling task generally does not terminate as long as the crawler is designed to follow all links in every

web page it crawls. Such design may introduce resource constraint issue as operating environment of

the crawler often has limited storage, memory and processing power. Hence, web crawlers are usually

designed to stop current crawling task when reaching a certain threshold or a resource usage limit

manually defined by system administrator. In practice, the mentioned threshold can be a limit on

number of web pages for each crawling task or how deep the crawler should navigate the web

structure.

Once the crawler completes a crawling task, the scheduler component queries for operating

environment’s resources to decide whether the system can continue the crawling process. Should the

crawling process continue, the scheduler plans the next task in advance. At a specific timestamp after

the termination of previous crawling task, the scheduler executes a new task with a new input seed

obtained from the seed queue, which is the URL with highest priority, and repeat the whole crawling

process until the seed queue is empty.

Since web pages are connected interchangeably, it is possible for the crawler to retrieve the same web

page more than once. Additionally, there exists the possibility that multiple URLs link to a same web

page. To avoid retrieving the same web page twice, the crawler can be implemented such that it

maintains a cache of URLs and possibly page content for checking content similarity or use different

hashing techniques [17].

3.3 TYPES OF WEB CRAWLER
 Based on functionality, we can classify web crawlers into two main types [10]:

• Generic web crawler

• Focused web crawler

Generic web crawler tends to traverse the web graph in all directions and retrieves as much web

resources as possible. Due to the termination point is unknown, the generic web crawler stops only

when it reaches all pages of the web and criteria to halt the crawling process must be defined manually.

Given a web page URL as seed, the crawler analyses its content and extracts every URL on the page

and puts them into its queue without concern about how relevant the content of the URL’s associated

page is to the previously crawled pages. The next URL chosen to continue the crawling process is the

first URL found on the page. There is no limit to the crawling scope, which means the crawler may get

pages from websites outside of the seed page’s domain.

The generic crawler is simple to implement with commonly used graph traversing algorithms such as

breadth-first or depth-first. Since the crawler does not need to evaluate the relevance of each URL it

collects, it requires less computational resources with high performance of execution. In addition,

generic crawler is also highly customizable by changing the algorithm or crawling options. Despite the

large quantity of output results, pages retrieved by the generic crawler do not necessarily have any

relationship with each other. For instance, an online news may have links in different topics and to

different websites on the same page, an article about sport thus may have links pointing to another

article about movies. In practice, this means generic crawler can download data from any web pages,

even ones with advertisements or adult content, which lead to lower quality of the crawling results.

14

Figure 8: Illustration of generic web crawler

Unlike the generic web crawler, focused web crawler [18] explores the web based on a specific set of

predefined rules. In contrast to the random crawling process of the traditional crawler, the focused

crawler only retrieves content from pages relate to one another. The crawler evaluates each web page

based on certain criteria and produce a weighted value or score that helps determining whether the

page is relevant or important enough to be visited next. The crawler then simply chooses the page with

highest relevance or importance score from the queue to continue the crawling task.

Focused crawler also provides more control over stopping criteria of a crawling task. For instance, a

certain web page or a specific level of the web graph can be set as a goal to terminate a crawling task.

In comparison to the generic crawler, the focused crawler has a more complex and less flexible system

design that utilizes classification techniques for determining link’s relevance [10]. The focused crawler

thus requires higher computational resources. However, since focused crawler considers relationship

between web pages, its final crawling results are often considered as higher in quality.

15

Figure 9: Illustration of focused web crawler

Figures 8 and 9 illustrate how generic and focused web crawler operate, given the home URL of Tech

Viral27 website as input seed. The arrowed lines represent the links between web pages, each link has

a unique URL associated to it that leads to a specific web page. Unvisited links are displayed in black,

green links are the chosen links for continuing the crawling process and orange links are irrelevant links

ignored by the crawler. Crawled web pages are displayed with green check mark while pages that are

not meant to be retrieved are marked with a red cross.

As can be seen from the illustrations, the generic crawler exhaustively traverses all web pages

regardless of their host name and retrieves content outside the website’s domain. As a result, links

chosen for subsequent crawling tasks are scattered as all links are considered as relevant. Meanwhile,

the focused crawler is configured to forward only links that lead to web pages with the same host name

as the seed in this example. Thus, the links chosen for crawling are not scattered and the crawler gather

more pages related to the seed. In case the crawling process is interfered and terminated in the middle,

the last page crawled by generic crawler is likely to not have any relationship to the seed or previous

pages, while it is not the case with focused crawler.

3.4 CRAWLING ALGORITHMS
In the previous part of this section, we have discussed about two web crawler types which are generic

and focused web crawlers. Even though having the same working mechanism, generic and focused

crawlers are fundamentally different in the order of web pages they choose to visit when traversing

the web graph. Such order is actually determined by the algorithm used for implementing the crawler.

Two most commonly used algorithms for web crawlers are breadth-first search (BFS) and depth-first

search (DFS).

3.4.1 Breadth-first search

BFS follows first in, first out (FIFO)28 method for navigating the web graph. Given a link, a crawler

implements BFS algorithm retrieves content of its associated web page and extracts links to other web

pages. Each extracted link is appended to the end of the queue if not there already. Thus, the next link

27 https://techviral.net/
28 https://techterms.com/definition/fifo

https://techviral.net/
https://techterms.com/definition/fifo

16

chosen for continuing the crawling process is the neighbor link of the current link that points to a web

page of the same level as current link’s web page. While it is slow in terms of performance and

memory-intensive29, BFS provides efficient web graph traversal strategy. It ensures coverage of all

possible web pages in each level of the graph, thus avoid getting trapped at one web branch forever.

The worst time complexity of the BFS algorithm is 𝑂(𝑁), where 𝑁 is the number of web pages the

crawler visits. Figure 10 provides illustrations of breadth-first search.

Figure 10: Illustration of breadth-first search30

3.4.2 Depth-first search

A crawler implementing DFS algorithm tends to travel deeper into the web hierarchy whenever

possible. This method of traversing the web graph is known as first in, last out (FILO) method31. Instead

of appending extracted links to the end of the queue, the crawler prepends them to the beginning of

the queue, consequently prioritizes links to web pages of the same web branch. When the crawler is

unable to get any unvisited link from the current web page or reaches the end of a web branch, it

continues the crawling process with the next unvisited link in the queue, which points to web page of

different web branch. In comparison to BFS, DFS is less memory-intensive as it needs to keep track of

fewer visited links when traversing the web graph. However, if we set a web page as a goal and

configure the crawler to stop when reaching the page, DFS may take longer time to finish a crawling

task when the goal page is on some arbitrary branch in the middle of the web graph. The worst time

complexity of DFS algorithm is 𝑂(𝑁 + 𝑀) where 𝑁 is the number of web pages the crawler visits and

𝑀 is the number of links in the web graph. Figure 11 illustrates the depth-first search algorithm.

29 http://intelligence.worldofcomputing.net/ai-search/breadth-first-search.html#.WpG-MKhubtW
30 https://80legs.groovehq.com/knowledge_base/topics/how-80legs-crawls-urls-depth-first-vs-breadth-first-vs-greedy
31 https://techterms.com/definition/filo

http://intelligence.worldofcomputing.net/ai-search/breadth-first-search.html#.WpG-MKhubtW
https://80legs.groovehq.com/knowledge_base/topics/how-80legs-crawls-urls-depth-first-vs-breadth-first-vs-greedy
https://techterms.com/definition/filo

17

Figure 11: Illustration of depth-first search32

Thus far we have explored the two most common algorithms that are suitable for generic web

crawlers. Both BFS and DFS are simple to implement and either algorithm may satisfy our system basic

requirements for navigating the WWW. However, implementing a web crawler with either DFS or BFS

algorithm at its core does not guarantee high-quality crawling results. We want our system to retrieve

only web pages that have high possibility of containing images with location information, while neither

algorithm considers the relation between web pages. Hence, the crawler is more likely to visit random

web pages with unexpected content such as advertisements, pornographies or simply non-location

content. We considered results from the crawler in such case as unimportant or low-quality.

3.4.3 Best-first search

Neither DFS nor BFS algorithm is suitable for our system due to the issue of low-quality crawling results

mentioned above. We found many variants of either BFS or DFS algorithm such as Fish Schools Search

[19] or BFS with Google’s Page Rank [20] measurement can solve the above issue. However, Fish

Schools Search is highly influenced by manually defined parameters [21], while applying PageRank for

a large set of web data can be overly complicated33.

In fact, the above issue can be solved by creating a function, known as a heuristic, to evaluate relevance

between web pages. Then, instead of following FIFO or FILO ordering, the algorithm chooses the

highest-priority in the queue to visit next. This method is known as best-first search (BEFS) 34, which is

the algorithm we choose as the main algorithm of our crawler. DFS and BFS are also implemented but

solely used for experimental purpose. The main advantage of BEFS is its simplicity in implementation

and is not restricted to only exploring a small subset of the web graph like BFS or DFS. There is also no

dead-end situation for BEFS as it makes it possible to continue with other links, as long as they are

unvisited [22].

32 https://80legs.groovehq.com/knowledge_base/topics/how-80legs-crawls-urls-depth-first-vs-breadth-first-vs-greedy
33 http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
34 https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bestfirstsearch.html

https://80legs.groovehq.com/knowledge_base/topics/how-80legs-crawls-urls-depth-first-vs-breadth-first-vs-greedy
http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bestfirstsearch.html

18

Pseudocodes for our best-first crawling algorithm is shown in Figure 12. We will discuss in more details

regarding how we apply the algorithm in Section 4 of this thesis.

The worst time complexity for the BEFS algorithm is 𝑂(𝑁 ∗ 𝑙𝑜𝑔𝑁), where 𝑁 is the number of web

pages the crawler visit. Note that the priority queue used for this algorithm is in a min or max heap

structure so insert and remove operations take 𝑂(𝑙𝑜𝑔𝑁) time. The overall performance of the

algorithm depends largely on the performance of the relevance calculation function, which can make

the algorithm slower than DFS and BFS. We will discuss about the relevance calculation function in

function befsCrawl(seed, limit)

{

 // Initialize the queue

 createPriorityQueue();

 // Add the seed link as first link in the queue

setRelevance(seed, 1.0);

 addToQueue(seed);

 // Keep track the number of downloaded pages

 noOfPages = 0;

 while (queueIsNotEmpty() and noOfPages < limit)

 {

 // Get the most relevant link out of the queue

 current = getMostRelevantLink(queue)

 // Download web page’s content from the link

page = requestWebPage(current);

// Extract all links contain in the web page

links = extractLinks(page);

// For each extracted link

for (i = 0; i < size(links); i++)

{

 // If the link has not been visited and not in queue

 if (notVisited(links[i]) and notInQueue(links[i]))

 {

 // Calculate relevance of the link

 relevance = calculateRelevance(page, links[i]);

 setRelevance(links[i], relevance);

 // Add the new link to the queue

 addToQueue(links[i]); // Add the link to queue

 }

}

// Mark current link as visited and repeat the procedure

markAsVisited(current);

noOfPages = noOfPages + 1;

 }

}

Figure 12: Pseudocodes of the best-first search algorithm with link relevance calculation

19

Section 4. In Section 6, we will compare the algorithms performance and quality of output results in

one of the experiment.

4 MOPSI IMAGE CRAWLER

Mopsi Image Crawler (MIC) is an application implemented for automatic retrieval of location-based

material for the O-Mopsi game’s content creation. It aims to build a focused web crawler, whose target

web resources are digital images with geographical information. The downloaded images and their

location information are used for generating goals for the O-Mopsi game, thus reducing the manual

works for the game’s administrators. Integration to O-Mopsi game platform can be done via client-

server HTTP request for data from our system’s Application Programming Interface (API), created

based on REpresentational State Transfer (REST) 35 architecture standard. The crawling process

operates in the background automatically, while user can access and manage crawled photos using

web-based graphical user interface that is accessible from web browser application of desktop

computer and mobile devices.

4.1 SYSTEM ARCHITECTURE
We designed the MIC system loosely based on standard web crawler system architecture described

previously in Section 2. Its high-level architecture consists of five main components, which are the

downloader, the queue, the scheduler, the storage and the web-based graphical user interface.

Figure 13 illustrates the architecture of MIC and interactions between the components. In general, the

system starts when the scheduler initializes a crawling task that is scheduled to run at a certain time.

A predefined seed URL is sent to the top of the queue, which is then selected as initial input for the

downloader. The downloader requests for web page associated with the URL from the web and

receives response data in the form of HTML document. Then, it extracts all URLs in the document and

downloads all potential geotagged images. The extracted URLs are sent to the queue where they are

organized by priority, while the images and their metadata are stored in the storage. The above process

repeats with the next URL from the queue, which is the highest priority URL. Once the queue is empty

or the number of visited URLs reaches a certain limit, the current running crawling task is terminated.

The crawled data saved to the storage can be requested by the web-based graphical user interface

component and shown to the user on demand.

35 https://www.codecademy.com/articles/what-is-rest

https://www.codecademy.com/articles/what-is-rest

20

Figure 13: System architecture of Mopsi Image Crawler and interactions between components

4.2 THE WEB-BASED GRAPHICAL USER INTERFACE
We implemented the web-based graphical user interface (web GUI) as a standalone web application

that consumes the data obtained from our system’s crawling outcomes. Through the web GUI, user

can view the digital photos and their location on a world map. They can perform basic data

manipulation operations such as viewing a downloaded photo and its metadata, updating metadata

of a downloaded digital photo and removing an existing photo from the system. User can also view the

summary of the crawling results through statistics collected by the system organized in charts and

tables. The web GUI is designed such that it is accessible via different web browsers on desktop

computers or mobile devices as shown in Figure 14 and 15.

21

Figure 14: Graphical user interface of the Mopsi Image Crawler system on mobile (left) and on web (right)

Figure 15: Crawling results as statistical data collected by the system

4.3 THE DOWNLOADER
The downloader component handles the actual crawling process. It receives a URL as input and

navigates the web to download digital photos and extract their metadata to save to storage

component. Before actually processing a web page, the downloader converts the HTML content to a

22

tree-like structure called the Document Object Model (DOM) tree36. The conversion process is handled

by calling the built-in library of the software development framework we used for developing the

project37. As previously discussed, the downloader utilizes a version of best-first search with a heuristic

method for determining relevance of links. An example of the DOM tree can be seen in Figure 16.

Figure 16: An example of the DOM tree, in which each HTML element is represented as a tree node [23]

4.3.1 Heuristic Method for Determining Relevance of Links

In our work, we aim to design a system that can download as many web images from as many websites

as possible. Therefore, we do not strictly require that all web pages to be highly related to the initial

seed page or to the whole crawling result set. We instead expect that each pair of web pages in the

crawling results are related because of two reasons. First of all, if two web pages are of the same

website, they are already related via the same host domain and their content are more likely relate to

the same topic. Secondly, even when the two web pages are not of the same website, they should still

be related in order to satisfy Search Engine Optimization (SEO) metrics for external link38, which

determine ranking of modern websites in search engine.

From the above requirements, we designed our own heuristic method for the BEFS algorithm based

on relevance of links to the web page contains it. We expect our system to be able to determine

relationship between a web page and another connected to it without downloading its content. We

found that per W3C standards39, links on modern websites need to be created with descriptive text

title. We can take advantage of such title for calculating relevance score to increase the crawling speed.

36 https://developer.mozilla.org/vi/docs/Web/API/Document_Object_Model
37 https://symfony.com/doc/2.8/components/dom_crawler.html
38 https://moz.com/learn/seo/external-link
39 https://www.w3.org/TR/html4/struct/links.html

https://developer.mozilla.org/vi/docs/Web/API/Document_Object_Model
https://symfony.com/doc/2.8/components/dom_crawler.html
https://moz.com/learn/seo/external-link
https://www.w3.org/TR/html4/struct/links.html

23

Thus, the relevance between links and the web page is important. A link is considered relevant to the

web page if it satisfies one of the following criteria:

1. External relevance

2. Internal relevance

The first criterion means that both the web page associated to the link and the web page containing

the link should be of the same website through similarity in their URL’s hostname. In our system, links

to web pages of the same website are preferable over links to external websites since such web pages

are more likely related as discussed previously. We define this criterion based on assumption that

pages of the same website are more likely to be related and thus should be given higher priority. The

second criterion influences the degree of relevance between the link and the page. We look for some

words in the text that describes the link, or link title, that occur more than once in the content of the

web page. The link title is obtained from the text surrounded by the HTML anchor tag <a/> through

the use of DOM tree. Then, some significant words of the link title, called keywords, are extracted by

a method based on the candidate keyword extraction framework described in [24].

For each extracted keyword, we calculate the number of times it occurs in web page content, this is

called term frequency (TF)40. The higher the number of high-frequency keywords, the more relevant

the link is to the web page. As keywords in the link’s title obviously occur at least one time in the web

page’s content, only keywords that occur more than once (𝑇𝐹 > 1) contribute to the degree of

relevance of the link. Details of the method to extract link title’s keywords and calculate TF value of

each keyword will be discussed in the next section. Our process for calculating link relevance is

described in Figure 17’s pseudo codes.

40 http://www.tfidf.com/

function calculateRelevance(link, page)

{

 score = 0.0;

 if (sameHostname(link, page))

 {

 score = score + 1;

 }

 words = getKeywords(getTitle(link));

 for (i = 0; i < size(words); i++)

 {

 tf = countWordOccurrence(words[i], getContent(page));

 if (tf > 1)

{

 score = score + 1;

 }

 }

 return score / (1 + size(words));

}

Figure 17: Pseudocodes of link relevance calculation algorithm

http://www.tfidf.com/

24

As discussed in Section 3, the performance of BEFS algorithm we use depends on the performance of

the relevance calculation. Our relevance calculation time complexity is O(N ∗ M), where N is the

number of keywords extracted from the title of a link appears in a web page, and M is the number of

words in the extracted text content of the web page. This means the length of the text content in a

web page has an impact on the time needed for processing the page. Our algorithm thus runs best

when the only text in the web page is the title of the link.

4.3.2 Extract keywords from title of a link

A link title is the text surrounded by HTML tag <a/> or the value of the tag’s title attribute. This text

provides descriptive information about the topic of the link. Figure 18 shows an example of a link and

its corresponding HTML element, which has a text title associated.

Figure 18: Example of a link and its HTML element, the title of the link is placed inside HTML tag <a/>41

Since link title may contain stop words which are high-frequency and less descriptive words such as a,

an, the… or special characters, we apply a generic keyword extraction method to extract only

meaningful keywords that can be used for the calculation in the heuristic function. We implemented

our own version of the method described in [24] for extracting link title’s keywords. Since title of a link

is short, we do not include the ranking step for keyword candidate in our implementation. The keyword

extraction procedure has three steps:

1. Normalize

2. Purify

3. Tokenize

In normalize step, we simply convert all alphabet characters in the link title text to lower-case

characters and trim all white spaces before and after the link title’s text.

In purify step we replace all special characters and stop words to white spaces. This step is important

since it filters out all special characters and high-frequency words. While special characters are not

necessary for relevance calculation, stop words do not have any explicit meaning in the content of the

text, but happen frequently in all texts. Without removing stop words, our relevance calculation may

potentially give higher priority to irrelevant links whose title texts contain more stop words than other

relevant links. To be able to detect as many stop words as possible, we import the pre-defined list42 of

7439 stop words from 28 different languages. Replacing these special characters and stop words to

white spaces allow us to apply regular expressions43, which is a method to find matching patterns in

text, to break the link title into a set of individual words for relevance score calculation.

41 https://www.japantimes.co.jp/
42 https://sites.google.com/site/kevinbouge/stopwords-lists
43 http://www.regular-expressions.info/tutorial.html

https://www.japantimes.co.jp/
https://sites.google.com/site/kevinbouge/stopwords-lists
http://www.regular-expressions.info/tutorial.html

25

After the purify step, the remaining words in link title are considered as keywords and ready to be

separated into individual words, called tokens. We use regular expression to detect all white spaces

and use them as delimiters to separate our keywords to individual words called tokens and put them

into a list used for previously mentioned relevance score calculation of links. Figure 19 demonstrates

the process of extracting keywords from a real link title of The Japan Times online newspaper44.

Figure 19: Demonstration of keyword extraction method for link title

4.3.3 Calculate keyword relevance score

The general equation for calculating relevance score of a link is as follow:

𝑅 =
ℎ + ∑ 𝑘𝑇𝐹(𝑘)>1

1 + ∑ 𝑘∀𝑇𝐹(𝑘)

Where ℎ takes either value 0 or 1 depends on whether the link has the same host name as the web

page or not. ∑ 𝑘𝑇𝐹(𝑘)>1 is the total number of keywords with TF > 1 and ∑ 𝑘∀𝑇𝐹(𝑘) is the total number

of all keywords.

44 https://www.japantimes.co.jp/

https://www.japantimes.co.jp/

26

As an example, we consider a web page entitled “The birth of the web” 45 from The European

Organization for Nuclear Research (CERN) website, with links as shown in Table 1. Main content of the

web page is assumed to be extracted as shown in Figure 20.

Table 1: Example links for relevance calculation

Link URL Title Title’s keywords

L1 http://first-website.web.cern.ch/ project to restore the first
website

project, restore, first,
website

L2 http://line-mode.cern.ch/ basic browser basic, browser

L3 http://home.cern/students-
educators

Students & Educators students, educators

Among the links in Table 1, only link L3 points to a web page of the same website with the web page

in consideration. Therefore, hostname relevance score for links L1, L2 and L3 are 0, 0 and 1

45 http://home.cern/topics/birth-web

CERN Accelerating science

Sign in

Directory

CERN

Main menu

About CERN

Students & Educators

Scientists

CERN community

English

Français

Topic The birth of the web

This content is archived on the CERN Document Server

Tim Berners-Lee, a British scientist at CERN, invented the World Wide Web (WWW) in 1989. The

web was originally conceived and developed to meet the demand for automatic information-

sharing between scientists in universities and institutes around the world.

The first website at CERN - and in the world - was dedicated to the World Wide Web project itself

and was hosted on Berners-Lee's NeXT computer. The website described the basic features of the

web; how to access other people's documents and how to set up your own server. The NeXT

machine - the original web server - is still at CERN. As part of the project to restore the first website,

in 2013 CERN reinstated the world's first website to its original address.

On 30 April 1993 CERN put the World Wide Web software in the public domain. CERN made the

next release available with an open licence, as a more sure way to maximise its dissemination.

Through these actions, making the software required to run a web server freely available, along

with a basic browser and a library of code, the web was allowed to flourish.

Figure 20: Sample web page's text content for link relevance calculation

http://first-website.web.cern.ch/
http://line-mode.cern.ch/
http://home.cern/students-educators
http://home.cern/students-educators
http://home.cern/topics/birth-web

27

respectively. Calculating the TF values of each link title’s keywords, we count the number of keywords

that has TF value higher than 1 to produce the keyword relevance scores shown in Table 2.

Table 2: Keyword relevance scoring for the sample links

Link L1 L2 L3

Keyword & Frequency project: 2 *
restore: 1
first: 3 *
website: 4 *

basic: 2 *
browser: 1

student: 1
educators: 1

Score 3 1 0
* Keywords with TF larger than 1

Finally, we divide the sum of host name relevance score and keyword relevance score by the total

number of keywords plus one and get the final relevance score 𝑅𝐿1
, 𝑅𝐿2

 and 𝑅𝐿3
 for links L1, L2 and L3

respectively as follow:

𝑅𝐿1
=

0 + 3

1 + 4
= 0.6

𝑅𝐿2
=

0 + 1

1 + 2
≈ 0.3

𝑅𝐿3
=

1 + 0

1 + 2
≈ 0.3

From the above example, the most relevant link is L1 although it points to external website of different

hostname, while L2 is less relevant and L3 is somewhat relevant thanks to its matching hostname.

4.3.4 Rules for downloading image

A web page may contain various types of images that are classified efficiently into five different

categories based on their functionality in [25]: representative, logo, banners, advertisement and

formatting and icons. However, as the five categories are overlapping, and we aim for simplicity, our

system organizes web images into only two categories representative and non-representative that are

described below with example shown in Figure 21.

• Representative: Images whose size meets standard aspect ratio46, known as the ratio between

image’s width and height, of a photograph, or images that are directly related to the content

of the website;

• Non-representative: Small images, images whose size does not meet the photographic aspect

ratio or those are not directly related to the website’s content, such as logo, banner or

advertisements.

Table 3 provides the rules we use for categorizing website images and Table 4 lists the standard aspect

ratios our system supports. The idea of using aspect ratio for downloading specific type of image is

already introduced in [25], in which it is used for detecting logo and banner images and is highly

experimental. In our system, we aim to use aspect ratio as a base for detecting representative images

that are potentially photographs. Our method is based on the following assumption: digital cameras

or smartphone’s built-in cameras have output image sizes subjected to international standards

described in [26]. Meanwhile, web images created manually by human, especially icons or banners,

follow different standards or no standard, thus making them unlikely photographic images.

46 https://en.wikipedia.org/wiki/Aspect_ratio_(image)

https://en.wikipedia.org/wiki/Aspect_ratio_(image)

28

Furthermore, since most modern digital cameras can capture images with resolution higher than 2

Megapixels, or 1600 pixels in width and 1200 pixels in height, the possibility that a large-size image is

a photograph is higher than other small images. The only issue we have with analyzing aspect ratio is

we need to download the image before knowing its size, which impacts the crawling speed. Currently,

there is no known method for analyzing an image’s size without downloading the image.

For detecting keywords of the image, we use the same keyword extraction method described in the

previous part of this section. This time, the input for keyword extraction is the text in the web page

that describes the image, or image description. We will describe in detail the method for extracting

such description text in Section 5.

Our crawler system only seeks for images of representative type because of two reasons. Firstly, if an

image is an actual photograph, it more likely contains location information in its metadata. Secondly,

since the image relates to the content of the website, even if the image contains no location

information in its metadata, we can still determine its relative location by analyzing the text content

of the web page contains it. If the system finds an image in HTML tag that falls into

representative image category, it is downloaded to the web server’s storage and the system proceeds

necessary action to determine its location information either from metadata or web page’s text

content. The process for determining image location information will be described in Section 5.

Table 3: Rules for categorizing web images

Category Features Keywords

Non-representative Width < 400px or Height < 400px
Non-standard aspect ratio

Logo, banner, header, footer, button,
free, adserver, advertisement, ads,
now, buy, join, click, affiliate, adv,
hits, counter, sprite

Representative Not in the non-representative
category

Table 4: Supported standard aspect ratios of digital image, grouped by image orientation

Orientation Aspect Ratio Decimal Example image resolutions in pixels (width x
height)

Rectangle 1:1 1.00 480 x 480, 512 x 512, 1024 x 1024

Landscape 4:3 1.33 640 x 480, 800 x 600, 832 x 624

5:4 1.25 600 x 480, 1280 x 1024, 1600 x 1280

3:2 1.50 960 x 640, 1152 x 768, 1440 x 960

5:3 1.67 800 x 480, 1280 x 768

16:9 1.78 960 x 540, 1024 x 576, 1280 x 720

3:1 3.00 1200 x 400, 1500 x 500, 1800 x 600

Portrait 1:3 0.33 700 x 2100, 800 x 2400, 900 x 2700

3:4 0.75 720 x 960, 768 x 1024, 864 x 1152

3:5 0.60 480 x 800, 768 x 1280

4:5 0.80 1280 x 1600, 1440 x 1800, 2048 x 2560

9:16 0.56 900 x 1600, 1080 x 1920, 1440 x 2560

2:3 0.67 1280 x 1920, 1440 x 2160, 1824 x 2736

29

Figure 21: Example of image categorization for representative and non-representative images

4.4 THE STORAGE
MIC storage component is composed of two sub-components namely the file storage and the

metadata database. The file storage is a partition of the web server’s hard disk used for storing

downloaded images. Data management functionalities are provided by the Linux operating system.

The image files are organized into different directories whose name are domain names of the websites

contain the photos. For example, in MIC project, all images belong to the web pages of website

www.locationscouts.net are saved into images directory in the project’s source codes directory. The

directory is located under the path /var/www/html/crawler/imc/web/downloaded/, where we have

full access permission provided by server administrator. The directory structure is illustrated in Figure

22.

30

Figure 22: Illustration of directory structure for storing physical image file on server's storage

The metadata database aims to keep cache records of information about the downloaded web

resources. It is because we do not want to perform extraction of web resource metadata twice. When

we want to display web resources information on the GUI, reading data available from a database is

faster. We use Structured Query Language (SQL)47 for querying the data with support of MySQL48

system as our database management system. The SQL database stores data in table structure, in which

data are stored in different rows with each row has its own index as identifier. Figure 23 shows example

of table Image, in which store metadata extracted from the web images.

Figure 23: The Image table in MIC database, where extracted image metadata are stored

There are two types of metadata saved to the database storage: The first type is link data, which are

the links of the visited URLs, their title and description. Keeping track of visited URLs is particularly

useful to avoid crawling the same URL more than once as the system continuously check for existence

of visited URL during a crawling task. The second type of metadata is image’s EXIF metadata obtained

from downloaded images. We specifically extract the geographical coordinates in the EXIF metadata,

then use Google’s geocode API49 to determine address of the location to save to the database. We

47 https://docs.microsoft.com/en-us/sql/odbc/reference/structured-query-language-sql?view=sql-server-2017
48 https://www.mysql.com/
49 https://developers.google.com/maps/documentation/geocoding/intro

/var/www/html/crawler/imc/web/
downloaded/

www.locationscouts.net

alpe-di-siusi-
italy_b.jpeg

altmuenster-
austria_m.jpeg

bielerhoehe-
austria_m.jpeg

www.wall-art-4-u.com

basel-zolli-
switzerland_m.jpeg

big-lakes-viewpoint-
switzerland_b.jpeg

blausee-switzerland_m.jpeg

licensing.pixels.com

vivienne-gucwa-1332706648-
square.jpg

...

https://docs.microsoft.com/en-us/sql/odbc/reference/structured-query-language-sql?view=sql-server-2017
https://www.mysql.com/
https://developers.google.com/maps/documentation/geocoding/intro

31

consider location address necessary because when integrating the image content to O-Mopsi, address

information can be of more interest to users rather than the coordinates.

4.5 THE QUEUE
We implemented the queue as a priority queue, which uses the web server’s memory unit as storage

for URLs. It is based on the concept of binary heap [27], an abstract data structure in the form of a

complete binary tree50, in which each node should always have two child nodes and all tree levels are

fully filled. The only exception is for the last level of the tree, if it is incomplete it can be filled with

nodes from left to right. Each node in the binary heap has its own data or value that is comparable.

The binary heap must be either a max-heap or a min-heap. In case of max-heap, the value of each

element is greater than or equal to the value of its children. In contrast, nodes in min-heap have their

value less than or equal to their children’s values.

MIC’s queue is a max-heap in which URLs resemble binary tree’s nodes and their relevance score are

node values. URLs in higher level of the heap are more relevant to the crawler and the next URL chosen

for a crawling task is always the top most URL in the heap. We implement the queue to save link data

to server’s memory unit during execution of a crawling task. When the crawler is halted, link data in

the queue are saved to the database since they will be freed from the server’s memory and lost. The

next crawling task starts with the URL of the best link from the database as seed.

The queue supports two main operations:

• Add URL

• Get most relevance URL

To add a new URL to the queue, we perform an operation called up-heap, which repeatedly compares

relevance score of the newly inserted URL to that of other URLs in the queue to determine what URL

is more relevant and swap their positions until all URLs are in correct order. The worst time complexity

of up-heap algorithm is 𝑂(log 𝑛) where 𝑛 is the number of nodes in the queue51. Up-heap algorithm is

described as pseudocodes in Figure 24, assuming the new URL does not exist in the queue’s heap.

50 https://xlinux.nist.gov/dads/HTML/completeBinaryTree.html
51 http://wcipeg.com/wiki/Binary_heap

https://xlinux.nist.gov/dads/HTML/completeBinaryTree.html
http://wcipeg.com/wiki/Binary_heap

32

Figure 25: Heap structure of the queue, where each node represents a link with its relevance scores

function upHeap(queue, newNode)

{

 // If a node of the url already exist in queue, we do not need to

// do anything

 if (hasNode(queue, newNode))

 {

 return;

 }

 // Add the URL as a new node to the end of the heap

queue[size(queue)] = newNode;

 currentIndex = size(queue) - 1;

 // Compare the new URL node’s relevance score with that of its

// parent node

 parentIndex = floor((currentIndex - 1) / 2);

 while (parentIndex > 0)

 {

 current = queue[currentIndex];

 parent = queue[parentIndex];

 // If relevance score of the new URL node is more than its

// parent node’s

 if (getRelevanceScore(parent) < getRelevanceScore(current))

 {

 // Swap the new URL node with its parent

 currentIndex = parentIndex;

 parentIndex = floor((currentIndex - 1) / 2);

 }

 }

}

Figure 24: Pseudocodes of up-heap operation

33

As an example, let the queue’s heap structure be as illustrated in Figure 25. Suppose we want to add

a URL with relevance score 0.83 to the heap and we assume that the new URL is not already in there.

The main procedure for up-heap is to add the new URL as new node to the last level of the heap

following the filling rule from left to right described previously. Thus, the new node is initially the left

child of the node with relevance score 0.83 on the second level of the heap. Since the max-heap

property is violated as the new URL node is more relevant than its parent node, we need to swap them.

After the swap, the algorithm again compares the new node to its immediate parent node, which is

now having greater relevance score. As the heap structure is a valid max-heap, the algorithm stops

performing additional swap. Figure 26 demonstrates the up-heap operation of the queue.

Figure 26: From left to right, the two steps of the up-heap operation. In the first step, the new URL node is placed on the last
level of the queue. In the second step, the dotted line indicates the swap between new node and its parent

Getting the most relevant URL from the queue performs the down-heap operation, which extracts URL

from the top most node, or root node, and removes it from the queue’s heap, then reorganize the

heap to preserve its max-heap properties before return the copy of root node as output. Same as up-

34

heap operation, down-heap has worst time complexity 𝑂(log 𝑛) where 𝑛 is the number of nodes in

the queue. The down-heap algorithm pseudocodes are shown in Figure 27:

Continue from the result of the up-heap algorithm, we now perform down-heap operation on the

queue’s heap to get the most relevant URL. Assume we keep the URL of the root node in the memory,

function downHeap(queue)

{

 nextNode = queue[0];

 if (notEmpty(queue))

 {

 if (size(queue) > 1)

 {

 queue[0] = queue[size(queue) - 1];

 maxHeapify(queue, 0);

 }

 }

 return nextNode;

}

function maxHeapify(queue, i)

{

 // Get the max node at index i

 // and its left and right children

 leftIdx = 2 * i + 1;

 rightIdx = 2 * i + 2;

 maxIdx = i;

 leftNode = queue[leftIndex];

 rightNode = queue[rightIndex];

 maxNode = queue[maxIdx];

 if (leftIdx < size(queue) && getRelevanceScore(leftNode) >

getRelevanceScore(maxNode))

 {

 maxNode = leftNode;

 maxIdx = leftIdx;

 }

 if (rightIdx < size(queue) && getRelevanceScore(rightNode) >

getRelevanceScore(maxNode))

 {

 maxNode = right;

 maxIdx = rightIdx;

 }

 if (maxIdx != i)

 {

 queue[maxIdx] = queue[i];

 queue[i] = maxNode;

 maxHeapify(queue, maxIdx);

 }

}

Figure 27: Pseudocodes of the down-heap algorithm

35

we remove it from the heap and replace it with the last node, which is the node whose relevance score

is 0.8. The max-heap is not valid, so the algorithm compares the new root node’s relevance score with

its children. Of the two child nodes, the child node with relevance score 0.83 is more relevant so a

swap is performed to switch the root node with its child node on the right. The queue’s heap is now

valid, the algorithm stops and return the old root node’s URL that is later used for the downloader

component. Figure 28 demonstrates the down-heap operation on our sample heap.

Figure 28: From left to right, the illustration of down-heap operation. First, the root node is removed, and the last node is
changed to root node. In the second step, the new root node is swapped with its right child node, which is the more relevant

node

We observe that on a website, shared links such as link to homepage, menu links or social network

links are more likely to be duplicated when adding to the queue. Table 5 shows results of some test

runs on 5 websites as seeds. In the tests, we gather information about the number of times the link to

homepage, which is also the seed, appears in the queue over the total number of links regardless of

duplications. For each of the seed, we let the crawler visit and extract links of 10 pages.

Table 5: Occurrences of homepage link in the queue which lead to URL duplication issue

Website Links in queue Occurrences of homepage link

http://www.siliconera.com/ 1034 14

https://imagelocations.com/ 733 8

https://techviral.net/ 589 14

http://sea.ign.com/ 1904 21

https://www.japantimes.co.jp/ 2479 25

While the metadata database provides a layer to prevent duplication of URL for the entire system, we

still need to ensure that no URL is added to the queue more than once. The heap structure of our

queue component is represented as a list of URLs with their respective relevance scores. When we

want to check whether a URL already exists in the queue, it is inefficient to go through every entry of

the list and do string comparison. Therefore, we encrypt each URL using the Secure Hash Algorithm

256 (SHA-256)52 to receive a unique series of 64 characters called the hash string. We then use the

hash string as unique identifier and index of the link entry in the list. Our queue thus becomes a list of

key-value entries, called a hash table, in which the key is the hash string and the value composed of a

URL and its relevance score.

52 https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/

http://www.siliconera.com/
https://imagelocations.com/
https://techviral.net/
http://sea.ign.com/
https://www.japantimes.co.jp/
https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/

36

The benefit of this encryption method is we can use the hash as index to check for existence of URL.

The process of searching URL by hash index is fast since accessing an element of the hash table is a

constant-time operation on average53. In addition, regardless of the URL’s length, the hash produced

by SHA256 algorithm always has the length of 64 alphanumeric characters and is unique with low

collision probability54. Table 6 shows a few examples of encrypted URLs using SHA256. A sample of our

queue as a hash table is illustrated as in Figure 29.

Table 6: Example of hashes produced from URL encryption using SHA-256

Original URL SHA-256 encrypted string identifier

https://www.locationscout.net/ 901347838dd47f1266b708382b4e1c8012b81
5a9a0f9b7b7aa5700259a1508a2

https://www.locationscout.net/germany b47842630880fc38536ff12f4c84c975f05050d
dc4551e739db19b5c45100179

https://www.locationscout.net/locations/4-paris 3c008b8fd5ab9c4f6a7cd721ecaa38c9c8e1996
607542118b4122a00276dd9ea

https://www.locationscout.net/sign-up bd7b5094bed1b05aaa0ec74498276effc5e18f
4c4c7d83374d6352c6d671199e

Figure 29: Illustration of the hash table stored in server's memory used for heap structure of the queue

Whenever the downloader put a URL to the queue, it must go through two layers of duplication

detection. The first layer checks whether the URL is already in the metadata database, e.g. it is already

visited, and the second layer checks whether the URL’s hash already exists in the hash table previously

described.

Since the queue component is an in-memory data structure, the number of links saved into the queue

grows quickly after each of crawling algorithm iterations, while one iteration only gets the most

relevant link out of the queue. To avoid exceeding the web server’s memory, we limit the number of

53 http://www.programming-algorithms.net/article/50101/Hash-table
54https://crypto.stackexchange.com/questions/24732/probability-of-sha256-collisions-for-certain-amount-of-hashed-
values

http://www.programming-algorithms.net/article/50101/Hash-table
https://crypto.stackexchange.com/questions/24732/probability-of-sha256-collisions-for-certain-amount-of-hashed-values
https://crypto.stackexchange.com/questions/24732/probability-of-sha256-collisions-for-certain-amount-of-hashed-values

37

visited links for a crawling task to 1000. After visiting 1000 links, the algorithm stops, which in turn

stopping a crawling task. Figure 30 shows the size of the queue growing after each algorithm iteration.

Figure 30: Size of the queue after each algorithm iteration

4.6 THE SCHEDULER
Unlike the downloader, the storage, the queue and the GUI, the scheduler is not an internal component

of the MIC system but rather a part of the server’s operating system. As we implement the MIC system

on Linux-based operating system, we take advantage of the Linux’s Cron Scheduler55, which is an

operating system’s background program, also known as a daemon56, for scheduling and executing

other programs in the system.

The Cron Scheduler runs at the time of the operating system boot. In every minute, it examines the

Cron Table (crontab) file, in which contains a list of the schedule of cron jobs. Each cron job is a set of

execution instructions for executing program in specific day and time. If the cron job schedule match

the moment of time when it is checked, the Cron Scheduler automatically executes it and in turns

triggers the command that runs the program associated with the job.

The instructions for scheduling executions of program must follow a strict syntax contains five fields:

minutes, hour, day of month, month and day of week and followed by the program command to be

run at the interval. For the MIC system, we schedule crawling tasks to run four times a day at 00:00,

06:00, 12:00 and 18:00 every day. Figure 31 illustrates the syntax of the cron job instruction used for

scheduling the crawling task in practice.

55 https://www.pantz.org/software/cron/croninfo.html
56 http://www.linfo.org/daemon.html

0

200

400

600

800

1000

1200

1400

1 10 20 30 40 50 60 70 80 90 100

LI
N

K
S

ITERATIONS

https://www.pantz.org/software/cron/croninfo.html
http://www.linfo.org/daemon.html

38

Figure 31: Illustration of cron job instruction syntax for scheduling execution of the MIC system's crawling task

The instruction syntax in Figure 29 can be literally translated to: “Run a crawling task every day for

every 6 hours at minute 0 and save the output to output.txt file”. Note that the instruction syntax has

two fields for specification of days which are month day and weekday as seen above. If both are

defined, then they are cumulative and both entries will be executed. For example, if we define day of

month as 27 and weekday as 4 in the instruction schedule above, when the current date is day 27th of

the month or it is Thursday then the crawling task will be executed. The asterisk sign * in the

instructions means the field should match all the valid values specified in the braces of the field’s

description. The slash sign means repeat pattern such as /6 for execution of the crawling task every 6

hours. Ranges of numbers are allowed in the instructions, separated with a hyphen, i.e. 0-6 or 8-11. A

list of number is also allowed, separated with a comma, for example 5,10,15 or 0,15,30. Table 7 shows

more examples of cron job instruction syntax and their meanings.

Table 7: Examples of cron job instructions and their meanings

Instruction syntax Meaning

30 0 1 1,2,3 * Execute at 00:30 on the 1st of January, February and March

*/5 3 * * * Execute every day and every 5 minutes between 03:00 and 04:00

0 0 1-7 * * Execute at midnight on the first week of every month

15,30 12 20 * 1 Execute at 12:15 and 12:30 every Monday and on the 10th of every month

While the built-in Cron Scheduler provides a convenient way for scheduling the crawling tasks, it has a

drawback in managing crawling task executions. Since we allow only one crawling task to run at a time,

there can be overlap between crawling tasks as their execution times are varied. It is because the BEFS

algorithm performance depends on relevance calculation function, which in turns depends on the size

of web page content we crawl. As an example, consider a crawling task A starts at 06:00 and crawling

task B scheduled to start at 12:00 based on the above cron job definition. If the crawling task A runs

for approximately 8 hours, there will be overlap between tasks A and B.

To solve this issue, we save information of a crawling task in the metadata database with three

information: its start time, its end time and whether it is running or not. When a crawling task starts,

we create a record of its execution in the database as unfinished task. The database record is updated

before the crawling task is terminated to inform the system that it is done. When Cron Scheduler starts

a new crawling task, the new task must check the metadata database to see if there exists a running

task. If that is the case, the new crawling task exit, otherwise it runs according to cron job schedule.

39

5 GEO INFORMATION RETRIEVAL

Even though image metadata provides the most convenient way for extracting geographical

information from images, we found that most images on the web do not have location information in

their metadata [23]. In fact, not all imaging devices used for capturing photos to digital image have

sensor to record geographical information. The owner of the images may also intentionally turn off the

GPS functionality of the imaging device or remove geographical information from the image’s

metadata for privacy protection. Furthermore, authors of many modern websites may also use image

editing application to remove image’s metadata in attempt to reduce image’s size. The main reason

for removing image’s metadata relates to website’s performance optimization. When there are large

number of metadata stored in an image, its file size becomes bigger which in turns increase browser

loading time57. An independent experiment online recently reported that removing image’s metadata

leads to about 8.5% smaller image size58. In a small experiment, we collected 20 geotagged images

from Locationscouts59 website and use a software called ExifPurge60 to remove EXIF metadata from

the images. The images occupy 25.4 Megabytes of storage in total and after removing EXIF metadata

they only occupy 13.1 Megabytes, which is 51.6% reduction of size. For individual image, the reduction

percentage ranges from 2% to 73% and on average image without EXIF has 54% less in size.

We performed some test crawling tasks with 8 input seeds from different websites. For each of the

websites, our crawler visited 100 web pages. The final crawling results showed that out of 6845 images

downloaded, only 14 images have geographical information in their metadata, or 0.2% of total number

of images. Later in Section 6, our statistics also show that no more than 2% of downloaded images in

our experiments are geotagged. Our experiment results are displayed in Table 8.

Table 8: Number of images with geographical information in their metadata versus number of downloaded images

Website Images Geotagged

https://www.locationscout.net/ 922 5

http://www.foxnews.com/travel.html 150 1

http://www.lonelyplanet.com/ 303 5

http://businessinsider.com/travel/ 1714 2

http://www.vogue.com/living/travel/ 4 0

http://www.dailymail.co.uk/travel/ 3449 1

http://www.bbc.com/travel/ 217 0

http://www.visitfinland.com/ 86 0

Total 6845 14

To increase the number of geotagged images in the crawling results, we need a method to determine

actual location of the downloaded images based on information associated to them. Such information

can be found by visually inspecting the image or use the text descriptions of the images found on web

pages they belong to using Geographic Information Retrieval techniques.

Geographic Information Retrieval (GIR) is an activity of acquiring geographic information from a

resource collection, particularly a collection of texts [28]. The process in which geolocation information

is determined and extracted from a text resource is called geoparsing.

57 https://www.keycdn.com/blog/image-metadata/
58 https://blog.shortpixel.com/how-much-smaller-can-be-images-without-exif-icc/
59 https://www.locationscout.net/
60 http://www.exifpurge.com/

https://www.locationscout.net/
http://www.foxnews.com/travel.html
http://www.lonelyplanet.com/
http://businessinsider.com/travel/
http://www.vogue.com/living/travel/
http://www.dailymail.co.uk/travel/
http://www.bbc.com/travel/
http://www.visitfinland.com/
https://www.keycdn.com/blog/image-metadata/
https://blog.shortpixel.com/how-much-smaller-can-be-images-without-exif-icc/
https://www.locationscout.net/
http://www.exifpurge.com/

40

The geoparsing process takes an unstructured text description of places as input and produce

geographic coordinates in the form of latitude and longitude values as output [29]. For instance, the

following string of text: “Cherry Blossom Heerstrasse, Bonn. Photo by Anirban Chakraborty” produces

latitude value of 50.723920 and longitude value of 7.103690, that correspond to Heerstrasse Avenue

in Bonn, Germany.

The idea of geoparsing text for determining address has been discussed by Tabarcea et al. in [23], in

which a framework for location-aware search engine, called LBS, was introduced. One of the

components of the LBS framework is the address detector, where downloaded web content is

searched for postal addresses. The idea of the address detector is to identify individual address

elements such as street, city and post code and then aggregate to build an address candidate. Then,

gazetteer data from OpenStreetMap data is used to validate the address candidate.

While using geoparsing for extracting location address is an interesting approach, it is not the main

focus of this thesis. Furthermore, we do not have access to the source codes of the LBS framework

available for testing. Hence, we decide not to replicate the mentioned work but to implement a

geoparser component that take advantage of 3rd party geoparsing API for experimental purpose only.

The component can be executed independently from the MIC system through command line interface

on the web server.

5.1 DETERMINE GEOGRAPHIC INFORMATION OF IMAGE FROM TEXT CONTENT
Geoparsing text description of image is a non-trivial task that requires a huge database of locations

and complex process that increase resource usage of the image crawling system if implemented. Thus,

a 3rd party geoparsing web service is used to handle the task, while the image crawler is responsible

for extracting relevant text description of image. We utilized the free geoparsing service61, serves as

the geoparser, through its Application Programming Interface (API). Whenever the crawler successfully

downloads an image whose metadata contains no geolocation information, our system triggers the

following actions:

1. Extract image description

2. Request geolocation output from geoparser service

3. Save extracted geolocation to the metadata database

Our first action is attempting to describe the image using textual content found in the DOM structure.

According to standard62 defined by the World Wide Web Consortium (W3C), an image element should

have its “alt” attribute defined with meaningful text content. However, many websites do not define

value of such attribute or provide image description in surrounding HTML elements. In addition, some

modern websites take advantage of automatic captioning method such as Cloud Vision 63 API by

Google. This method produces only description of how the image looks like rather than where the

image is taken. Consequently, image description found only in the “alt” attribute are not reliable and

informative for the geoparser. From our own observation, textual information used for describing an

image likely comes from three sources: the previously mentioned alt attribute, its file name and the

nearest DOM element to the image element, called caption elements, matching either one of the

following HTML tags:

1. The heading tag <h1/> to <h5/>

61 https://geocode.xyz/api
62 https://dev.w3.org/html5/spec-preview/the-img-element.html
63 https://cloud.google.com/vision/

https://geocode.xyz/api
https://dev.w3.org/html5/spec-preview/the-img-element.html
https://cloud.google.com/vision/

41

2. The paragraph tag <p/>

3. The anchor tag <a/>

Figure 32 illustrates how we produce an image description text. Our method is simple: using white

space as delimiter, we concatenate each of the texts found in the DOM element attribute, the image’s

file name (without file extension) and the caption element (with inner HTML tags stripped out) to

produce a new text string. The benefit of our method is it helps providing image description

information for even non-standard web image without using all the texts found on the web page.

Furthermore, the method ensures richness of information as we collect texts from different elements

of the web page’s DOM structure. However, our method fails to work on websites with low amount of

text content or dynamic websites, in which text content is likely generated by interactive web script

such as JavaScript.

In the second step, we create a HTTP request to the geoparser and receive some JSON responses that

give determined location coordinates and address. A typical request URL string is composed of two

parts: the service’s address and input HTTP query parameters which are a free-form text and a flag for

receiving JSON data as output. Figure 33 provides a sample URL for our system HTTP request to the

geoparser.

Figure 33: Geoparser request URL parts explained

Figure 32: Illustration of the method for producing image description

42

Where parameter json indicates that the service should produce output data in JavaScript Object

Notation (JSON)64 format and parameter scantext is the description of the image. Once the HTTP

request to the service is successful, it returns output data in which we may find a list of matching. To

simplify the geoparsing process, we configure the system to select only the first matching item from

the output as it is the most relevant geolocation. Sample output from the service is shown in Figure

34.

Figure 34: Result output of the geoparser service, in which we select the first item from all matching geolocation items of
“match” response data object

Of all the output information, our system uses only the geolocation coordinates and its address. Once

it receives response from the geoparser, the system updates the metadata of the downloaded image.

In case there are errors, or the service cannot determine geolocation information of the image, our

system allows user to manually update the geolocation information through GUI frontend.

6 EXPERIMENTAL RESULTS

For experiment purpose, we have setup the MIC system on a personal computer running Ubuntu Linux

distribution with the technical specifications shown in Table 9. There are three aspects of the crawling

results that we aim to evaluate from the experimental results:

1. Quality of the crawling results

2. Performance of the crawler

3. Impact of seed selection to crawling results

The quality of the crawling results is measured by the number of geotagged images over the total

number of images our system retrieves. We do not take accuracy of GPS coordinates information in

the images into consideration when evaluating quality, since we assume GPS information are always

accurate in our experiments. Moreover, according to the official U.S. government information about

64 https://www.json.org/

https://www.json.org/

43

the GPS, its accuracy is very high and reliable65. The performance of the crawler is evaluated by

collecting data about average execution time of a crawling task, average time for processing a web

page and average time of each main step in the crawling process. In addition to the average execution

time, average maximum memory usage of the crawler is also taken into consideration for performance

evaluation. The impact of seed selection to crawling results is evaluated by counting the number of

geotagged images the system retrieves for different seeds.

Table 9: Technical specifications of the computer used for experiment purpose

Processor 7th Generation Intel Core i7-7200U

Memory 16Gb DDR4-2400

Storage 256Gb SSD

We setup experiments to compare the performance between three crawling algorithms implemented

in the system: DFS, BFS and BEFS algorithms. In the experiments, we set the limit of 1000 links in total

for the crawler to visit by executing 10 consecutive crawling tasks, each task stops after visiting 100

links. The performance experiments are performed on all the three algorithms with Locationscouts66

website as seed. We gather four pieces of information from each crawling task results:

1. Execution time

2. Memory usage

3. Total number of images

4. Number of geotagged images

Figure 35 shows the comparison chart of execution time between the three crawling algorithms. On

average, DFS takes around 14 minutes and BFS takes around 10 minutes to finish a crawling task of

100 pages. Meanwhile, BEFS is slower as it takes around 26 minutes to complete the same crawling

task. Based on the shape of the chart, we found that execution times of crawling tasks use BEFS

algorithm are not as stable as those use DFS or BFS as its performance depends on the size of content

used for calculating relevance between a web page and its links.

65 https://www.gps.gov/systems/gps/performance/accuracy/#how-accurate
66 https://www.locationscout.net/

https://www.gps.gov/systems/gps/performance/accuracy/#how-accurate
https://www.locationscout.net/

44

Figure 35: Comparison of execution time between crawling algorithms

Figure 36 shows the comparison of maximum memory usage between the three crawling algorithms.

BEFS consumes around 128Mb of memory on average, while BFS and DFS consumes only around 63Mb

and 81Mb respectively. Based on the shape of the chart, the amount of memory usage and execution

time have a close relation to each other.

Figure 36: Comparison of maximum memory usage between three crawling algorithms

Our report statistics also shows an average time to process a single web page takes 9.41 seconds for

BEFS, 9.23 seconds for BFS and 6.52 seconds for DFS. The process that takes most of the time is

downloading images and handling their metadata. This process takes around 86% of the processing

time with average time ranges from 5 to 8 seconds for a page contains around 10 images. The other

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

H
o

u
rs

Crawling tasks

BEFS

BFS

DFS

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

M
eg

ab
yt

es

Crawling tasks

BEFS

BFS

DFS

45

processes include processing of page’s text content, link extraction, queue operations and database

reading and writing takes about one second in average for all algorithms. Figure 37 illustrates the

proportion of execution times of the steps for processing a single web page in of each crawling

algorithm.

Figure 37: Proportion of execution times of steps for processing a single web page (in seconds)

We can conclude from the above charts and statistics that overall performance of BEFS is lower than

BFS and DFS. While BFS and DFS do not have relevance calculation steps, BEFS takes about 1.5

milliseconds to calculate the relevance score of a link. Thus, the number of links and the length of text

content in the web page have significant impact on BEFS performance. Figure 38 shows execution

times of the crawler running BEFS on 10,000 links through 100 consecutive crawling tasks.

46

Figure 38: Fluctuation of BEFS algorithm execution times

While BEFS performance is worse than BFS and DFS, it helps retrieving more geotagged images

according to the statistics we collected as shown in Table 10. Specifically, BEFS is more likely to discover

geotagged images with around 2% of the total images it discovers are geotagged. This percentage is

only 1.33% for BFS and DFS has the lowest percentage of geotagged image with about 0.36%.

Table 10: Crawling result statistics of the three crawling algorithms

 BEFS BFS DFS

Images Geotagged Images Geotagged Images Geotagged

1 645 23 811 21 972 3

2 222 0 45 0 589 0

3 1272 23 407 0 470 3

4 1170 15 440 5 261 0

5 1295 27 383 10 817 4

6 1280 57 816 5 388 3

7 1360 18 12 0 1 0

8 1390 30 420 9 6 0

9 18 0 306 1 0 0

10 1180 8 258 1 72 0

Total 9832 201 3898 52 3576 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

H
o

u
rs

Crawling tasks

47

Reason for the better crawling results of BEFS come from the fact that it considers the relation between

individual web page and its associated links as discussed in Section 3, while this is not the case with

DFS or BFS. As the seed we chose for the experiment is a website dedicated to images of locations

around the world, BEFS has a clear advantage as it likely visits more web pages with the same topic of

content.

In the experiment for evaluating seed quality impact on BEFS algorithm, we manually select 20

websites of different topic domains as seeds to our crawler. For each of the seeds, we run only one

crawling task that is limited to visit 100 links. Results of the experiment are shown on Table 11.

Table 11: Crawling results of different seeds

Seed Description Images Geotagged

1 https://www.locationscout.net/ Geo photo sharing service 945 52

2 https://www.pexels.com/ Photo search & sharing
service

781 14

3 https://imagelocations.com/ Photo search service 336 21

4 http://www.foxnews.com/travel.html Travel news 129 5

5 http://businessinsider.com/travel/ Travel news 1442 2

6 https://www.theguardian.com/uk/travel/ Travel news 59 1

7 http://www.vogue.com/living/travel/ Travel news 5 0

8 http://www.dailymail.co.uk/travel/ Travel news 3296 2

9 http://www.bbc.com/travel/ Travel news 185 5

10 http://www.visitfinland.com/ Finland travel guide 88 4

11 http://www.kausalanautotarvike.fi/ Car accessories 368 1

12 http://www.utranuittotupa.fi/ Restaurant service 42 0

13 https://pkamknkirjasto.wordpress.com/t
ag/wartsila-talo/

Blog 29 0

14 http://pippurimylly.fi/ Restaurant service 110 0

15 http://vaarakirjastot.fi/paakirjasto Location information page 9 0

16 http://javerstok.fi/ Catering service 42 0

17 http://www.lahdenmuseot.fi/museot/fi/
hiihtomuseo/

Lahti City Museum
website

397 17

18 https://news.zing.vn/du-lich.html Travel news 433 1

19 http://www.huanqiu.com/ World news 749 3

20 https://visitkouvola.fi/ru Kouvola travel guide 16 0

As can be seen from above data, websites about photo search and sharing service, as well as travel

news and information have higher chance to have geotagged images in their content. In contrast,

websites about blogs and businesses usually contain no geotagged images. We conclude that the seed

plays a vital role in our system operation.

https://www.locationscout.net/
https://www.pexels.com/
https://imagelocations.com/
http://www.foxnews.com/travel.html
http://businessinsider.com/travel/
https://www.theguardian.com/uk/travel/
http://www.vogue.com/living/travel/
http://www.dailymail.co.uk/travel/
http://www.bbc.com/travel/
http://www.visitfinland.com/
http://www.kausalanautotarvike.fi/
http://www.utranuittotupa.fi/
https://pkamknkirjasto.wordpress.com/tag/wartsila-talo/
https://pkamknkirjasto.wordpress.com/tag/wartsila-talo/
http://pippurimylly.fi/
http://vaarakirjastot.fi/paakirjasto
http://javerstok.fi/
http://www.lahdenmuseot.fi/museot/fi/hiihtomuseo/
http://www.lahdenmuseot.fi/museot/fi/hiihtomuseo/
https://news.zing.vn/du-lich.html
http://www.huanqiu.com/
https://visitkouvola.fi/ru

48

7 CONCLUSIONS

In this thesis we presented the Mopsi Image Crawler system for retrieval of photo images on the web,

based on the concept of web crawler. Our system targets geotagged images, which have geographical

coordinates information embedded in their EXIF metadata. The geotagged images retrieved by the

system can be use as material in O-Mopsi, which is a mobile location-based orienteering game. The

system is now running fully automatic on UEF’s Mopsi server and its web GUI is available on both

desktop computer and mobile platforms.

To study the working mechanism of web crawler, we discussed in detail its concepts and architecture,

as well as available crawling algorithms. Then we describe our system architecture components and

methods we used. We also developed a set of rules for extracting representative images. Based on the

knowledge we learnt from other crawling algorithms, we designed our own system architecture and

our own version of best-first search algorithm.

Our best-first search algorithm relies on content of web page to calculate relevance score between

two connected pages, of which make our system a focused web crawler. The relevance calculation

algorithm we design aims to get a score between a web page and its associated links. Our algorithm

compares hostname of the link against the hostname of the page and count frequency of keywords in

the link title to contribute to the relevance score. The experimental results show that while our

crawling algorithm is slower than depth-first search and breadth-first search, it retrieves more

geotagged images. As our system can schedule multiple executions of crawling tasks, the disadvantage

in crawling speed of the algorithm can be compensated and the system can run in a long period of

time. Thus, we choose our best-first search as the main algorithm used for crawling, while leaving

depth-first search and breadth-first search as option for research purpose.

At the end of the thesis, we introduce briefly a method for determining location information from

image text description based on geographic information retrieval. Since there are only 1% of web

images are geotagged, the method can be useful for future development of the system to produce

more location-based image content for the O-Mopsi game or other location-based services.

49

8 REFERENCES

[1] D. Quercia, N. Lathia, F. Calabrese, G. Di Lorenzo and J. Crowcroft, Recommending Social Events

from Mobile Phone Location Data, in 2010 IEEE International Conference on Data Mining, 2010.

[2] P. Fränti, R. Mariescu-Istodor and L. Sengupta, O-Mopsi: Mobile Orienteering Game for

Sightseeing, Exercising, and Education, ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMM), vol. 13, no. 4, 2017.

[3] A. Tabarcea, Z. T. Wan, W. K. and P. Fränti, O-Mopsi: Mobile Orienteering Game using Geotagged

Photos, in International Conference on Web Inoformation Systems & Technologies (WEBIST' 13),

Aachen, 2013.

[4] X. Chen, S. Abhinav and G. Abhinav, NEIL: Extracting Visual Knowledge from Web Data, in IEEE

International Conference on Computer Vision (ICCV), Sydney, NSW, Australia, 2013.

[5] I. Vänskä, Using Location Information in Web Documents (MSc. Thesis), University of Eastern

Finland, 2004.

[6] D. Ahlers and S. Boll, Retrieving Address-based Locations from the Web, in Proceedings of the 5th

International Workshop on Geographic Information Retrieval, New York, 2008.

[7] M. Kobayashi and K. Takeda, Information retrieval on the web, ACM Computing Surveys (CSUR),

vol. 32, no. 2, pp. 144-173, 2000.

[8] C. Olston and M. Najork, Web Crawling, Foundations and Trends in Information Retrieval, vol. 4,

no. 3, pp. 175-246, 2010.

[9] J. Cho, H. Garcia-Molina and L. Page, Efficient Crawling Through URL Ordering, Computer

Networks and ISDN Systems, vol. 30, no. 1-7, pp. 161-172, 1998.

[10] A. M. H. Elyasir and K. S. M. Anbananthen, Focused Web Crawler, in 2012 International

Conference on Information and Knowledge Management (ICIKM 2012), Singapore, 2012.

[11] Z. Markov and D. T. Larose, Crawling the Web, in Data Mining the Web: Uncovering Patterns in

Web Content, Structure and Usage, New Britain, Wiley, 2007, pp. 6-12.

[12] P. Habibzadeh and S. G. Sciences, Decay of References to Web sites in Articles Published in

General Medical Journals: Mainstream vs Small Journals, Applied Clinical Informatics, vol. 4, no.

4, 2013.

[13] C. Castillo, Effective Web Crawling (Ph.D thesis), University of Chile, 2004.

[14] The W3C Technical Architecture Group, Architecture of the World Wide Web, Volume One, The

World Wide Web Consortium (W3C), 2004.

[15] The World Wide Web Consortium (W3C), Web Characterization Terminology & Definitions Sheet,

1999.

50

[16] B. Shneiderman and G. Kearsley, Hypertext Hands-On! An introduction to a New Way of

Organizing and Accessing Information, Addison-Wesley, 1989.

[17] Z. Markov and D. T. Larose, Data Mining the Web: Uncovering Patterns in Web Content, Structure,

and Usage, John Wiley & Sons, 2007.

[18] Chakrabarti, Soumen, M. v. d. Berg and B. Dom, Focused crawling: a new approach to topic-

specific Web resource discovery, Computer Networks, vol. 31, no. 11-16, pp. 1623-1640, 1999.

[19] P. De Bra, G.-J. Houben, Y. Kornatzky and R. Post, Information Retrieval in Distributed Hypertexts,

in Proceedings of RIAO'94, Intelligent Multimedia, Information Retrieval Systems and

Management, 1994.

[20] S. Brin and L. Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine, in

Proceedings of the seventh international conference on World Wide Web 7, Brisbane, Australia,

1998.

[21] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim and S. Ur, The shark-search

algorithm. An application: Tailored web site mapping, Computer Networks and ISDN Systems, vol.

7, no. 1, pp. 317-326, 1998.

[22] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 1984.

[23] A. Tabarcea, N. Gali and P. Fränti, Framework for location-aware search engine, Journal of

Location Based Services, vol. 11, no. 1, pp. 50-74, 2017.

[24] N. Gali and P. Fränti, Content-based Title Extraction from Web Page, in 12th International

Conference on Web Information Systems and Technologies, 2016.

[25] N. Gali, A. Tabarcea and P. Fränti, Extracting Representative Image from Web Page, in

International Conference on Web Information Systems and Technologies (WEBIST 2015), 2015.

[26] International Organization for Standardization, ISO 18383:2015 - Photography -- Digital cameras

-- Specification guideline, 2015. [Online]. Available: https://www.iso.org/standard/62322.html.

[Accessed 14 April 2018].

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, 3rd ed., MIT

Press and McGraw-Hill, 2009.

[28] C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, Cambridge

University Press, 2008.

[29] J. Gelernter and W. Zhang, Cross-lingual geo-parsing for non-structured data, in GIR '13

Proceedings of the 7th Workshop on Geographic Information Retrieval, Orlando, Florida, 2013.

[30] T. Berners-Lee, Uniform Resource Locators (URL): A Syntax for the Expression of Access

Information of Objects on the Network, World Wide Web Consortium (W3C), 1994.

51

[31] I. R. Brilhante, J. Macedo, F. M. Nardini and R. Perego, TripBuilder: A Tool for Recommending

Sightseeing Tours, in Advances in Information Retrieval - 36th European Conference on IR

Research 2014, Amsterdam, 2014.

[32] Y.-H. Hu and L. Ge, Chapter 11: GeoTagMapper: An Online Map-based Geographic Information

Retrieval System for Geo-Tagged Web Content, in M. P. Peterson, ed. International Perspectives

on Maps and the Internet Lecture Notes in Geoinformation and Cartography, Berlin, Germany,

Springer Berlin Heidelberg, 2008, pp. 153-164.

	1 Introduction
	2 O-Mopsi Game
	3 Web Crawler
	3.1 Architecture of Web Crawler
	3.2 Working Mechanism of Web Crawler
	3.3 Types of Web Crawler
	3.4 Crawling Algorithms
	3.4.1 Breadth-first search
	3.4.2 Depth-first search
	3.4.3 Best-first search

	4 Mopsi Image Crawler
	4.1 System Architecture
	4.2 The Web-based Graphical User Interface
	4.3 The Downloader
	4.3.1 Heuristic Method for Determining Relevance of Links
	4.3.2 Extract keywords from title of a link
	4.3.3 Calculate keyword relevance score
	4.3.4 Rules for downloading image

	4.4 The Storage
	4.5 The Queue
	4.6 The Scheduler

	5 Geo Information Retrieval
	5.1 Determine Geographic Information of Image from Text Content

	6 Experimental Results
	7 Conclusions
	8 References

