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Abstract: Clustering is a form of unsupervised machine learning that seeks to find
groups similar to each other in the targeted dataset. k-means is a well-known clustering
algorithm that searches iteratively for k groups in a dataset by selecting k centroids and
moving them to the correct places. However, k-means has weaknesses, such as the fact
that it is a greedy algorithm. This means that it finds a locally optimal result rather than
a global optimum. This work introduces the split k-means algorithm, which aims to
solve the above problem by dividing the generated clusters until k clusters are found.
The algorithm can be implemented in three different variations. The three variations
of the algorithm presented in the work are compared with each other and performance
is tested against the random swap algorithm. The conclusion is that it is possible to
enhance the k-means algorithm by splitting clusters iteratively using a heuristic method.
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Tiivistelmä: Ryhmittely eli klusterointi on ohjaamattoman koneoppimisen muoto,
jossa pyritään löytämään kohteena olevasta datajoukosta keskenään samankaltaisia
ryhmiä. k-means on tunnettu ryhmittelyalgoritmi, joka etsii iteratiivisesti k ryhmää
datajoukosta valiten k sentroidia ja siirtämällä ne oikeisiin paikkoihin. k-meansilla on
kuitenkin heikkouksia, kuten se, että se on ahne algoritmi. Tämä tarkoittaa sitä, että se
löytää paikallisesti optimaalisen tuloksen globaalin optimin sĳaan. Tässä työssä esitellään
split k-means -algoritmi, joka pyrkii ratkaisemaan edellämainitun ongelman jakamalla
syntyneitä klustereita, kunnes k klusteria on löytynyt. Algoritmi voidaan toteuttaa
kolmena eri variaationa. Työssä esitellyn algoritmin kolmea variaatiota vertaillaan
keskenään, ja niiden suorituskykyä verrataan random swap -algoritmiin. Johtopäätöksenä
on, että k-means-algoritmia voidaan parantaa jakamalla klustereita iteratiivisesti käyttäen
heuristista menetelmää.
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Acronyms

k-NN k-nearest neighbours

BF Brute force

CB code-vector-based

CI Centroid index

DBA Davies-Bouldin index

GLA generalized Lloyd algorithm

MSE Mean Squared Error

PB partitioning-based

PCA principal-component analysis

SSE Sum of Squared Errors
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1. Introduction

Clustering is an unsupervised machine learning form where the goal is to discover the
natural groups in data (Theodoridis, 2008). In clustering a set of objects are classified in
groups where more or less similar objects are in the same group and each group contains
at least one data object. The formed groups reveal the differences and similarities
between the objects and can be used to make conclusions about the data.

The concept of clustering has been referred to with different names in different contexts.
Theodoridis (2008) states that in pattern recognition it is often referred to as learning
without a teacher and unsupervised learning, while in graph theory it is referred to as
partition. On the other hand, in biology and ecology it is often referred to as numerical
taxonomy and in social sciences as topology. Despite the different names, clustering
can be used for many purposes, pretty much regardless of the field of science.

Theodoridis (2008) presents the actual clustering problem with a taxonomy example
from biology. Consider the following animals:

Mammals sheep, cat, dog

Birds seagull, sparrow

Reptiles lizard, viper

Fish blue shark, red mullet, gold fish

Amphibians frog

When clustering the animals in the list above, the actual clustering result depends on the
criterion of a cluster. Figure 1.1 is an example by Theodoridis (2008) and it demonstrates
the significant differences in clustering results when the clustering criterion changes.
Even though the frog belongs to the class of amphibians in biological taxonomy, the
cluster where the frog belongs to varies depending on the context since the clustering
criterion is different.
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How the animals bear their progeny

blue
shark,

cat, dog,
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red mullet,
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The existence of lungs and how the animals
bear their progeny

sparrow,
lizard, frog,

seagull,
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sheep,
dog, cat

blue shark

gold fish,
red mullet

Figure 1.1: Resulting clusters based on different clustering criterion (Theodoridis,
2008)

As seen in the example in Figure 1.1, there is no exact definition of clustering. The exact
definition of clustering depends on the definition of a single cluster (Theodoridis, 2008).
However, a universally accepted definition for a cluster does not exist and most of the
proposed definitions have been based on loosely defined terms, or they have oriented on
specific kinds of clusters (Theodoridis, 2008).

There are two fundamental ways to approach the clustering problem: the agglomerative
(top-down) approach defines clustering as separating more homogeneous groups from
heterogeneous population and the divisive (bottom-up) approach defines clustering as
finding groups in data by some natural criterion of similarity (Estivill-Castro, 2002).

Besides answering the question of where the clusters are located in the data, the number
of clusters has to be determined as well. According to Kärkkäinen and Fränti (2002a),
if the number of clusters is known, the clustering is called static. In static clustering,
determining the number of clusters is not a part of the clustering algorithm and the
clustering algorithm only solves the locations of clusters. In contrast, if the number
of clusters is not known, the clustering is called dynamic and solving the number of
clusters is part of the algorithm.

Fahad et al. (2014) proposed a classification framework from the standpoint of the
algorithm designer. The framework shown in Figure 1.2 is a tool for understanding the
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Figure 1.2: Clustering taxonomy proposed by Fahad et al. (2014)

big picture of clustering by broadly classifying the taxonomy of clustering algorithms
into groups. The framework does not separate the algorithms solving the dynamic or
static clustering problem.

The framework proposed by Fahad et al. (2014) is only indicative and the best ideas
can be combined from different categories when designing new algorithms. The use of
well-researched algorithms, whose strengths and weaknesses are known in advance, as
soil for the design of new algorithms emerges when analyzing the new algorithms. In
this thesis a new k-means based divisive clustering algorithm is designed and analyzed.

First, this thesis delves into the function of the k-means algorithm and its weaknesses
in Chapter 2. By deconstructing the algorithm, its operating conditions can be better
understood. The gained knowledge can then be used when designing a new algorithm.
After introducing the k-means algorithm, divisive clustering is discussed in Chapter
3. Two different divisive algorithms are introduced which are bisecting k-means and
iterative splitting algorithm.

Chapter 4 contains the core section of the thesis. First, the building blocks of the split
k-means algorithm are introduced. Once the theory of the algorithm has been discussed,
three variations of the split k-means algorithm are introduced. Finally, in Chapter 5 the
practical experiments and their results are presented and analyzed.

While split k-means is a new algorithm, it is highly influenced by the iterative splitting
algorithm. The main idea in implementing a new algorithm is to explore the idea of
splitting clusters in simpler way. Iterative splitting algorithm is fast and provides good
clustering results, but it may be difficult to implement. Split k-means aims to be an
alternative for it, that is easier to implement.
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2. k-means

The k-means problem can be described as follows: given a finite set 𝑆 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}
of points and an integer 𝑘 ≥ 1, find k centres so that it minimizes the sum of the squared
euclidean distances between every point in the set S and their corresponding nearest
centre point (Mahajan et al., 2012). It has been shown by Drineas et al. (2004), Dasgupta
(2008) and Aloise et al. (2009) that the k-means problem remains NP-hard even if the
value of k is fixed to two.

k-means can be used to refer to both the problem and an algorithm solving it. Although
literature often refers to this problem as k-means, the term will henceforth be used in this
thesis to refer to the naive k-means algorithm originally proposed by Stuart P. Lloyd and
later published by MacQueen (1967). Lloyd’s paper on the original version of k-means
was published later in 1982 (Lloyd, 1982).

The naive k-means algorithm works as follows. First k points are selected as the initial
cluster centres. The selection can be done in multiple ways which are presented later in
this thesis. A common way, which was proposed by MacQueen (1967) as well, is to
select them randomly.

After selecting the initial centroid points, the solution is then enhanced by two subsequent
steps: assignment step and update step, which together form one iteration of k-means
(Fränti & Sieranoja, 2019). In assignment step every data point is assigned to the nearest
centroid point by calculating the euclidean distance to every centroid and by choosing
the closest one. The mathematical notation for the assignment step is presented by
Malinen and Fränti (2014) as follows:

𝑃
(𝑡)
𝑗

= {𝑋𝑖 : | |𝑋𝑖 − 𝐶 (𝑡)𝑗 | | ≤ | |𝑋𝑖 − 𝐶
(𝑡)
𝑗∗ | | ∀ 𝑗

∗ = 1, . . . , 𝑘}

Since a single centroid is the mean of every data point belonging to the cluster the
centroid represents, it has to be recalculated if the partition is modified. The recalculation
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Iteration 1 Iteration 4

Iteration 6 Iteration 9

Figure 2.1: k-means iterations move the centroids until their locations are stabilized.

is done in update step. Malinen and Fränti (2014) present the mathematical notation as
follows:

𝐶
(𝑡+1)
𝑗

=
1
|𝑃(𝑡)

𝑗
|

∑︂
𝑋𝑖∈𝑃 (𝑡 )𝑗

𝑋𝑖

The algorithm continues iterating until the centroids are stabilized. The stabilization
means that the centroids are in the same locations after the iteration as they were before
it. The k-means clustering process is presented in Figure 2.1 in where the centroids are
moved until stable positions are found after ninth iteration.
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A fixed number of iterations can also be used and it is common to define a maximum
iteration count in publicly distributed k-means implementations such as the k-means
algorithm in the scikit-learn package (Pedregosa et al., 2011).

Figure 2.2 represents the k-means algorithm. First it preforms the assignment step by
finding the nearest centroid for every data point. The UpdateCentroids function used in
the assignment step is presented in Figure 2.3. The assignment step produces a partition
data structure (𝑃) where the index of the data point contains the index of the centroid to
which it is assigned. For example, if the data point in index 10 (𝑋10) has the centroid in
index 2 (𝐶2) as the closest centroid, then it is assigned to it by placing the value of 2 in
partition data structure index 10 (𝑃10 = 2).

After assigning the data points into clusters, the centroid locations are updated with the
UpdateCentroids function that is presented in Figure 2.4.

KMeans(𝑋,𝐶, 𝑃)
repeat

𝐶previous ← 𝐶

for 𝑖 ← 1; 𝑁 do
𝑃𝑖 ← FindNearestCentroid(𝑋𝑖, 𝐶)

end for
𝐶 = UpdateCentroids(𝑋,𝐶, 𝑃)

until 𝐶 = 𝐶previous
return 𝐶, 𝑃

end

Figure 2.2: The standard k-means algorithm

FindNearestCentroid(𝑥, 𝐶)
𝑑min ←∞
for 𝑖 ← 1;𝐾 do

𝑑 ← CalculateEuclideanDistance(𝑥, 𝐶𝑖)
if 𝑑 < 𝑑min then

𝑑min ← 𝑑

𝑖min ← 𝑖

end if
end for
return 𝑖min

end

Figure 2.3: Algorithm for finding the nearest centroid

6



UpdateCentroids(𝑋,𝐶, 𝑃)
sums← [01, . . . , 0𝐾]
counts← [01, . . . , 0𝐾]
for 𝑖 ← 1; 𝑁 do

sums𝑃𝑖 ← sums𝑃𝑖 + 𝑋𝑖
counts𝑃𝑖 ← counts𝑃𝑖 + 1

end for
for 𝑘 ← 1;𝐾 do

𝐶𝑘 ← sums𝑘
counts𝑘

end for
return 𝐶

end

Figure 2.4: Algorithm for updating the centroids of the clusters

2.1 Initialization methods

The k-means algorithm needs an initial solution. The initial solution is a set of centroids
that the algorithm starts to move into better locations with the assign and update steps.
By moving the centroids, k-means tries to minimize the result of the objective function
that is usually Sum of Squared Errors (SSE). Since k-means is a greedy algorithm, it
tends to find the local optimum solution instead of the global one. This has been noted
to be the main limitation of k-means by Fränti and Sieranoja (2019).

The initialization of centroids is important when seeking the global minimum solution.
Depending on the dataset, it might be even impossible for k-means to find the global
minimum if the centroids happen to be in unfavourable locations. The initial solution
may be random, based on some heuristic method or the initialization can be done by
some other clustering algorithm as well.

Random centroids

InitializeRandomCentroids(𝑋, 𝐾)
𝐶 ← [01, . . . , 0𝐾]
for 𝑖 ← 1;𝐾 do

𝐶𝑖 ← PickRandom(𝑋)
end for
return C

end

Figure 2.5: Algorithm for initializing k centroids randomly
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Random Maxmin

Figure 2.6: Random and Maxmin initialization methods. Random initialization is a
fast way to initialize the centroids, but the resulting clusters may be located in a narrow
area which in turn results to locally optimal clustering. Maxmin is good at avoiding this
scenario when all centroids are located narrowly since it spreads the centroids widely.

The most popular method of selecting the initial centroids is selecting k number of
randomly picked data points as the initial centroids (Fränti & Sieranoja, 2019). This
ensures that every cluster has at least one data point in it. The selection can be done,
for example, by just selecting k first data points in the dataset. That would guarantee
that the selection is always the same. However, if the data is not in random order the
centroids will be just next to each other which is often unfavourable because it tends to
result in locally optimal solution. An algorithm for picking data points randomly as the
initial solution is presented in Figure 2.5.

Another way to perform the random centroids’ selection is to shuffle the data by swapping
every point for a randomly chosen data point and choosing the first k points after that
(Fränti & Sieranoja, 2019). This takes 𝑂 (𝑛) time and guarantees that the points are
independent of the order of data.

Both of these methods guarantee that one data point cannot be chosen multiple times
as an initial centroid. Also, since randomness is a required feature for some k-means
variants, such as repeated k-means, shuffling the data points before selection provides a
good way to generate different initial solutions for the algorithm (Fränti & Sieranoja,
2019).
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Random partitions

Selecting random centroids is not the only way to perform a random selection. In
random partition selection, every data point is assigned into a random partition and
after this assignment phase the centroids are calculated as the means of these partitions
(Fränti & Sieranoja, 2019). The centroids of these partitions are typically in the centre
of the data since they are just average points of randomly distributed data points.

This method provides a more deterministic approach selecting the initial centroids than
the random centroids method. However, this method suffers from the same weakness as
the k-means algorithm itself. If there is low or no overlap in the data, the algorithm does
not perform well and is not able to find the global minimum (Fränti & Sieranoja, 2019).

Furthest point heuristic

The furthest point heuristic selects the first centroid arbitrarily and continues to select
the next centroids one by one. Every new selected centroid is the furthest point from its
nearest centroid (Fränti & Sieranoja, 2019). The algorithm for calculating the furthest
point heuristic is presented in Figure 2.7. Since this method is also known as the maxmin
method and more often referred with that name in the source literature, it is called as
the maxmin method in this thesis as well.

Basically, the algorithm in Figure 2.7 calculates the distances between every data point
and every selected centroid so far. All data points are assigned to their closest centroid
and the next centroid that is chosen is the data point with the longest distance to its closest
centroid. Selecting new centroids is continued until k centroids are found. Examples of
the resulting initializations of random centroids and the maxmin method can be seen in
Figure 2.6.

Sorting heuristics

The selection can be done by first sorting all data points according to some criterion and
then selecting points by some heuristics (Fränti & Sieranoja, 2019). Possible sorting
criteria may be at least distance to the centre point, density, centrality and attribute with
the greatest variance.
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Maxmin(𝑋, 𝐾)
𝐶 ← [01, . . . , 0𝐾]
𝐶1 ← PickRandom(𝑋)
for 𝑘 ← 2;𝐾 do

furthestPoint← null
maximumDistance← 0
for 𝑖 ← 1; 𝑋 do

closestCentroid← null
minimumDistance←∞
for 𝑗 ← 1;𝐶 do

distance← CalculateEuclideanDistance(𝑋𝑖, 𝐶 𝑗 )
if distance < minimumDistance then

closestCentroid← 𝑋𝑖
minimumDistance← distance

end if
end for
if minimumDistance > maximumDistance then

furthestPoint← 𝑋𝑖
maximumDistance← minimumDistance

end if
end for
𝐶𝑘 ← furthestPoint

end for
return C

end

Figure 2.7: Maxmin algorithm for choosing K initial centroids

After sorting, the selection can be done at least by selecting the first k points, selecting
the k first points while avoiding points within a distance of 𝜖 to the chosen centroids or
by selecting every (𝑁/𝑘)th point.

No single superior method rise above others in the literature when comparing the sorting
heuristic methods. According to Fränti and Sieranoja (2019), the sorting heuristic would
be effective if the clusters were distinctly separated and had varying criterion values.
This happens with some datasets but more often the resulting centroids tend to be just
random data points in the dataset.

Projection-based heuristics

Several projection-based heuristics can be found in the literature. In projection-based
heuristics, the projection is done by some method and after that the data points are
partitioned into clusters of equal size, each containing k data points (Fränti & Sieranoja,
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2019). The projection can be done with several methods, but a common way, that is
used in several algorithms, is calculating the data’s principal axis. The projection based
on the principal axis maximizes the variance (Fränti & Sieranoja, 2019).

Another method for calculating the axis is choosing two random data points as the
reference points of the projection line. This provides randomness for the algorithm but
does not necessarily lead to a good result without repeating the initialization several
times (Fränti & Sieranoja, 2019).

A more deterministic alternative to two random points is to select only one reference
point randomly and selecting the furthest point of it as the second reference point of the
axis. This method still includes randomness since the first point is chosen randomly.
However, the results may be better and require fewer repeats of the algorithm.

Density-based heuristics

Calculating the density is not a trivial task. Fränti and Sieranoja (2019) mention three
different ways to initialize centroids by using the density and the first one is by using
buckets. When using buckets, the dataset is divided with a grid to buckets and the
frequencies of the resulting buckets are calculated. The number of buckets varies, but
the value of 10 × 𝑘 is often used. The bucket technique is not trivial to apply to high
dimensional datasets while it works for low-dimensional data.

Another two methods mentioned by Fränti and Sieranoja (2019) process every data
point separately and calculate the densities for each of them. 𝜖−radius method uses 𝜖 as
the distance threshold and counts the number of data points inside the resulting area.
The second method uses the k-nearest neighbours (k-NN) method for finding the nearest
neighbours and then calculate the average distance to them.

The last two ways to initialize the centroids are computationally heavy since the
neighbourhood has to be calculated for every single data point. A straightforward
implementation leads to𝑂 (𝑛2) time complexity, but the time complexity can be reduced
to 𝑂 (𝑛1.5) if the calculations are done only for a reduced

√
𝑛 sized subset of the data

(Fränti & Sieranoja, 2019).
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2.2 Objective function

While k-means is a clustering algorithm that tries to minimize the objective function,
the objective function can be seen as a clustering method. According to Fränti and
Sieranoja (2019) the selection of the objective function is even more significant than the
selection of the actual clustering algorithm since in real life applications, the clustering
results primarily depend on the clustering method and secondarily on the clustering
algorithm.

The Sum of Squared Errors (SSE) is a common objective function found in the
literature. As an error, the euclidean distance is calculated between every point and their
corresponding nearest centroid point. The euclidean distance and the sum of squared
error can be defined as follows.

𝑑 (𝑥, 𝑐) =
√︁
(𝑥1 − 𝑐1)2 + (𝑥2 − 𝑐2)2 + . . . + (𝑥𝑛 − 𝑐𝑛)2

𝑥 represents a data point in the dataset, 𝑐 represents a centroid and 𝑝 represents the
partition set.

SSE =

𝑁∑︂
𝑖=1

𝑑 (𝑥𝑖, 𝑐𝑝𝑖 )2

With SSE value, the Mean Squared Error (MSE) can be calculated with the following
formula where 𝑁 is the length of the dataset and 𝑑 is the number of dimensions in the
dataset. The algorithm for calculating MSE is presented in Figure 2.8.

MSE =
SSE
𝑁 · 𝑑

CalculateMSE(𝑋,𝐶, 𝑃)
sum← 0
for 𝑖 ← 1; 𝑁 do

sum← sum + distance(𝑋𝑖, 𝐶𝑃𝑖 )2
end for
return sum

𝑁 ·𝑑
end

Figure 2.8: Algorithm for calculating the MSE value of a clustering result
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2.3 Comparing results with the centroid index

In order to compare clustering results with each other and with the ground truth as well,
a comparison algorithm is needed. The objective function itself is not able to compare
the structure of the clustering and the raw value of most external indexes and neither
SSE nor MSE tells how significant the result is (Fränti & Sieranoja, 2019). Centroid
index (CI) is a measurement method proposed by Fränti et al. (2014) for calculating the
cluster level similarity between two clustering results.

First, the centroid index creates a map of the nearest neighbours for two sets of cluster
prototypes and then counts the prototypes that did not have any neighbours. The pseudo
code of the method can be seen in Figures 2.9 and 2.10 and the mathematical notation
of the method is presented by Fränti et al. (2014) as follows:

𝐶 = 𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝐾1

𝐶′ = 𝑐′1, 𝑐
′
2, 𝑐
′
3, . . . , 𝑐

′
𝐾2

𝑞𝑖 ← arg min
1≤ 𝑗≤𝐾2

| |𝑐𝑖 − 𝑐′𝑗 | |2 ∀ 𝑖 ∈ [1, 𝐾1]

The prototypes that did not have any neighbors are called orphans.

orphan(𝑐′𝑗 ) =
⎧⎪⎪⎨⎪⎪⎩

1 𝑞𝑖 ≠ 𝑗∀𝑖

0 otherwise

𝐶𝐼1(𝐶,𝐶′) =
𝐾2∑︂
𝑗=1

orphan(𝑐′𝑗 )

The mapping is not symmetric (𝐶 → 𝐶′ ≠ 𝐶′→ 𝐶). It means that the result may differ
when calculating the orphans in another way. According to Fränti et al. (2014) the
symmetrical version maps the sets in both ways (𝐶1 → 𝐶2 and 𝐶2 → 𝐶1) and chooses
the maximum of those results.

𝐶𝐼2(𝐶,𝐶′) = max[𝐶𝐼1(𝐶,𝐶′), 𝐶𝐼1(𝐶′, 𝐶)]

The result is an integer that clearly tells how many centroids are located differently
in the two results that were mapped against each other. A common way to measure
clustering structure quality is to map the resulting centroids of a clustering algorithm
to the ground truth centroids, but it can also be used to compare the results of two
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clustering algorithms. It can be useful for example in situations when there is no ground
truth available at all for the target dataset. An example of interpreting the result of the
Centroid Index method is presented in Figure 2.11.

CalculateOrphans(𝐶1, 𝐶2)
𝑀 ← [01, . . . , 0𝐾]
for 𝑖 ← 1;𝐶1 do

𝑐 ← null
𝑐dist ←∞
for 𝑗 ← 1;𝐶2 do

𝑑 ← EuclideanDistance(𝐶1𝑖 , 𝐶2 𝑗
)

if 𝑑 < 𝑐dist then
𝑐 ← 𝑗

𝑐dist ← 𝑑

end if
end for
𝑀𝑐 ← 𝑀𝑐 + 1

end for
𝑥 ← 0
for 𝑖 ← 1;𝑀 do

if 𝑀𝑖 = 0 then
𝑥 ← 𝑥 + 1

end if
end for
return 𝑥

end

Figure 2.9: The orphan prototypes are found by calculating the closest prototype from
the second set, keeping a record of the number of neighbors and finally counting the
ones that have no neighbors.

2.4 Random swap

Random swap is a clustering algorithm proposed by Fränti and Kivĳärvi (2000). It is
an iterative algorithm that aims to find the global minimum by randomly switching the
locations of centroids. Random swap is presented here since it is used later in Chapter 5
as a benchmark algorithm.

The pseudo code of the random swap algorithm is presented in Figure 2.12. In every
iteration of the random swap algorithm one trial swap is made. Trial swap means that
one centroid is removed and one new random data point is selected as a new centroid.
After the swap phase, a local repartition is optionally run. The local repartition is done
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CentroidIndex(𝐶1, 𝐶2)
𝑎 ← CalculateOrphans(𝐶1, 𝐶2)
𝑏 ← CalculateOrphans(𝐶2, 𝐶1)
return max(𝑎, 𝑏)

end

Figure 2.10: The centroid index calculation is symmetric when the mapping is done in
both ways

Figure 2.11: Fränti (2018) illustrated the CI algorithm result interpretation with the
S2 dataset. The smaller black dots (pigeons) represent the clustering algorithm result
prototypes and the large circles (pigeon holes) represent the ground truth prototypes. In
CI = 0 result there would be only one pigeon in every pigeon hole. However, in this
case the CI value equals 4 and according to that there are four orphan prototypes. Those
are represented in this picture as empty pigeon holes.

in order to speed up the algorithm and it is not necessary especially if the k-means
algorithm is run multiple times (Fränti, 2018).

After the local repartitioning, an ordinary k-means is run. Most commonly two iterations
of k-means are used and after that the objective function f evaluates the solution. If the
trial swap provides a better solution that manages to decrease the value of the objective
function, then the centroids and partition are replaced with the new ones.

The swaps can be categorized in three categories demonstrated in Figure 2.13: trial,
accepted and successful (Fränti, 2018). Every iteration performs one trial swap, but
only the ones that improve the objective function are accepted. However, an accepted
swap does not improve the structure of the clustering. A successful swap improves
the overall structure of the clustering reducing the CI value. It means that the swap
managed to pick up a centroid from a congested area and drop it into a sparse area.

15



RandomSwap(X)
𝐶 ← Select random representatives(𝑋)
𝑃← Optimal partition(𝑋,𝐶)
for 𝑇 times do

𝐶new, 𝑗 ← Random swap(𝑋,𝐶)
𝑃new ← Local repartition(𝑋,𝐶new, 𝑃, 𝑗)
𝐶new, 𝑃new ← KMeans(𝑋,𝐶new, 𝑃new)
if 𝑓 (𝐶new, 𝑃new) < 𝑓 (𝐶, 𝑃) then

𝐶, 𝑃← 𝐶new, 𝑃new
end if

end for
return 𝐶, 𝑃

end

Figure 2.12: Random swap iterates 𝑇 number of times performing a single trial swap
in each iteration. In the pseudo code 𝑓 represents the objective function that evaluates
the clustering result (Fränti, 2018).

The recommended number of trial swaps is 5 000 which is commonly used as the
default iteration value in public random swap implementations. Also, 𝑇 = 𝑁 , where 𝑇
is the number of iterations and 𝑁 is the number of data points in the dataset, can be
used as a general rule (Fränti, 2018). However, since the number of iterations can be
easily changed, random swap is an excellent algorithm when a high clustering quality is
desired. In these cases, the algorithm can be continuously iterated for a fixed number of
time (Fränti, 2018).

2.5 How many clusters?

k-means solves the static clustering problem. It means that it needs the number of
clusters pre-determined. The number of clusters can be manually determined or an
algorithm can be used to estimate it. In the literature, various approaches are discussed
for solving the number of clusters.

Brute force

According to Kärkkäinen and Fränti (2002a) the simplest way to find out the number
of clusters is to brute force it. Brute force (BF) algorithm in this context means that a
selected static clustering algorithm is applied to the target data with different values of
M in a decided range [𝑀𝑚𝑖𝑛, 𝑀max] and the results of each clustering are evaluated with
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Figure 2.13: The random swap algorithm swaps centroids by taking a random centroid
and placing it in a randomly chosen location (left). An accepted swap is a swap that
decreases the total SSE (middle). In addition to decreasing the total SSE, a successful
swap decreases the CI as well (right). The swaps are illustrated by Fränti (2018) with
the S2 dataset.

an evaluation function 𝑓 . With the correct evaluation function and clustering algorithm,
the correct number of clusters can be determined using the brute force technique even
though the process will be slow.

Since MSE does not take the number of clusters into account, it cannot be used as
the evaluation function. Kärkkäinen and Fränti (2002b) considered two different
measurement methods as the evaluation functions: Davies-Bouldin index (DBA) and
variance ratio F-test.

Stepwise clustering algorithm

Another algorithm for finding the number of clusters is the stepwise clustering algorithm
proposed by Kärkkäinen and Fränti (2002b). It is similar to the brute force algorithm,
but it is designed to be faster. The basic idea is that since the centroids should be in
almost the same places when the number of centroids decreases by one, there is no need
to start clustering completely from scratch. The centroids from the previous iteration
can be kept when a random centroid is removed. The algorithm has two variants, Step+

and Step-, the first of which increases the number of centroids by one on each iteration
and the latter decreases them by one. The logic by which a centroid is removed or
which a point is chosen as a new centroid is derived from the random swap algorithm.
The centroids are chosen randomly. Pseudocode of the Step- algorithm is presented in
Figure 2.14.
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Step-(𝑋, 𝑀min, 𝑀max)
𝐶, 𝑃← InitializeRandomSolution(𝑋, 𝑀max)
𝐶best, 𝑃best ← RandomSwap(𝑋,𝐶, 𝑃, 𝑀max)
for 𝑚 ← 𝑀max − 1;𝑀min do

𝐶 ← RemoveRandomCentroid(𝐶)
𝐶, 𝑃← RandomSwap(𝑋,𝐶, 𝑃, 𝑚)
if 𝑓 (𝑋,𝐶, 𝑃) < 𝑓 (𝑋,𝐶best, 𝑃best) then

𝐶best, 𝑃best ← 𝐶, 𝑃

end if
end for
return 𝐶best, 𝑃best

end

Figure 2.14: Stepwise clustering algorithm’s Step- variant decreases the number of
centroids by one on each iteration (Kärkkäinen & Fränti, 2002b).
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3. Divisive clustering

Hierarchical clustering algorithms construct a tree-like hierarchy of the clusters. They
can start with 𝑛 data points that belong to a single cluster or start from the opposite
direction where there are 𝑛 clusters containing only a single data point. Agglomerative
methods start with 𝑛 clusters and merge them together creating new ones. Divisive
methods, discussed in this chapter, start with only a single cluster and start by dividing
it and the resulting clusters into new clusters (Kaufman, 1990).

Divisive, also known as split based, algorithms have been proposed in literature before.
One of them is an iterative splitting algorithm proposed by Fränti et al. (1997) and
the second one is the bisecting k-means presented by Steinbach et al. (2000). These
two algorithms are presented in this thesis since they have influenced the split k-means
algorithm the most.

3.1 Iterative splitting algorithm

The iterative splitting algorithm shown in Figure 3.1 starts with a single cluster and
continues to split until the desired number of clusters have been found, just like other
hierarchical divisive clustering algorithms. The algorithm can be implemented in such a
way that it splits only one cluster in each round or in such a way that it splits all clusters
in each round. The variant that splits all clusters performs a binary split for the clusters
(Fränti et al., 1997).

Choosing to split only one cluster at a time results in 𝑀 steps in total when running the
algorithm. When all clusters are split on each iteration, log𝑀 steps are executed. In
this case, the cluster selection step in Figure 3.1 is naturally skipped since all clusters
are selected.
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Iterative splitting algorithm
𝑚 ← 1
Calculate the training set centroid
repeat

Select cluster(s) to be split
Split the cluster(s)
𝑚 ← 𝑚 + 1
Refine the partitions and code vectors

until 𝑚 = 𝑀

return 𝑀 code vectors
end

Figure 3.1: Iterative splitting algorithm (Fränti et al., 1997)

Fränti et al. (1997) propose four different variants of the algorithm which perform the
partition refining phase differently. Some variants use the generalized Lloyd algorithm
(GLA) when tuning the intermediate or final solutions while others do not use it.

Split Iterative splitting algorithm

S+GLA Iterative splitting as an initial codebook to GLA

SGLA Iterative splitting using GLA at partition refining phase

SLR Iterative splitting using local repartitioning at partition refining phase

Choosing the cluster to split

Considering the variant that splits only one cluster at a time, an important design choice
is to select the cluster to be split. Fränti et al. (1997) propose four methods for the
selection: the highest variance, the skewest cluster, the widest cluster and the local
optimization strategy.

The highest variance method chooses the cluster with the highest individual variance.
The method does not result in an optimal solution even though it would be a natural
choice when minimizing the total squared error (Fränti et al., 1997). The method is not
able to detect the multimodality of the cluster nor is it able to choose the cluster that
yields the greatest improvement in the total distortion.

The method of choosing the widest cluster is to calculate the maximal distance between
two furthest data points in a cluster and compare these results when choosing the cluster.
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This method is not capable of detecting the multimodality of the cluster or the greatest
improvement after the split (Fränti et al., 1997).

Besides, calculating the widest cluster is a heavy operation since it has an 𝑂 (𝑛2𝐾) time
complexity when calculating it with the algorithm presented in Figure 3.2. This becomes
a bottleneck especially with large clusters. A more convenient way to approximate the
cluster width is to calculate the furthest data point from the centroid, then calculate the
furthest data point from that point and use that distance as the width of the cluster. The
algorithm for approximating the cluster width is presented in Figure 3.3. It takes only
𝑂 (𝑛𝐾) time to approximate the width of the cluster, and the algorithm gives a good
enough result to compare the clusters with each other.

NaiveClusterWidth(Cluster)
MaxWidth← 0
for 𝑖 ← 1; 𝑁 do

for 𝑗 ← 𝑖; 𝑁 do
𝑤← CalculateEuclideanDistance(Cluster𝑖,Cluster 𝑗 )
if 𝑤 > MaxWidth then

MaxWidth← 𝑤

end if
end for

end for
return MaxWidth

end

Figure 3.2: A naive algorithm for calculating the width of a cluster. The cluster
represents all data points in the target cluster.

The skewest cluster can be selected as well. Measuring the multimodality is difficult,
but the skewness of the cluster can be calculated by calculating the third moment. Fränti
et al. (1997) approximate the skewness with the following formula. A high value of 𝑤
indicates a skew distribution of vectors inside the cluster.

𝑤 =

|︁|︁|︁|︁|︁∑︂
𝑖

|︁|︁𝑥𝑖 − 𝑥|︁|︁(𝑥𝑖 − 𝑥)|︁|︁|︁|︁|︁
The fourth method is to select the cluster which decreases the distortion the most. This
is called local optimization strategy. After every iteration, the value is known for all
clusters except two new clusters from previous split. The number of splits is therefore
doubled when comparing to the previously discussed methods.
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ApproximateClusterWidth(Cluster, Centroid)
MaxDistance← 0
for 𝑖 ← 1; 𝑁 do

𝑑 ← CalculateEuclideanDistance(Cluster𝑖,Centroid)
if 𝑑 > MaxDistance then

MaxDistance← 𝑑

FirstPoint← Cluster𝑖
end if

end for
MaxDistance← 0
for 𝑖 ← 1; 𝑁 do

𝑑 ← CalculateEuclideanDistance(Cluster𝑖, FirstPoint)
if 𝑑 > MaxDistance then

MaxDistance← 𝑑

end if
end for
return MaxDistance

end

Figure 3.3: An algorithm for approximating the width of a cluster. Cluster represents
all data points in the target cluster and Centroid represents the centroid of the target
cluster.

Splitting methods

Fränti et al. (1997) categorize the splitting methods in two categories: code-vector-
based (CB) and partitioning-based (PB). Code-vector-based variants choose two new
data points in a cluster by some heuristic approach. Those vectors become the new
centroids and the old one is removed. Partitioning-based methods are based on the
principal-component analysis (PCA).

A method proposed by Linde et al. (1980) is to choose the new vectors by calculating
𝐶 − 𝜖 and 𝐶 + 𝜖 and using those as the new centroids. 𝜖 represents a fixed perturbation
vector. Fränti et al. (1997) fixed the perturbation vector to the standard deviation (𝜖 = 𝜎).
However, if the direction of the perturbation vector is not considered, it does not have
much use. A better approach is just to choose two random vectors as the new centroids
(Fränti et al., 1997).

The third heuristic method proposed by Fränti et al. (1997) is called the two-furthest-
strategy method and it is a modification of the widest cluster calculation. It works by
calculating the furthest vector 𝐶1 of the centroid 𝐶 and finally calculating the furthest
vector 𝐶2 of the vector 𝐶1. The method works in 𝑂 (𝑛𝐾) time.
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The second category, partitioning-based methods, is not based on heuristics, but instead
on the principal-component analysis. The rough algorithm for splitting using the PCA
is described in Figure 3.4.

Calculate the principal axis using the power method
Select the dividing point 𝑃 on the principal axis
Partition the training vectors with a hyperplane
Calculate two new code vectors as the centroids of the two subclusters

Figure 3.4: A rough principal-component based split algorithm proposed by Fränti
et al. (1997)

Refinement of partitions

Fränti et al. (1997) state that a natural choice to refine the partitions and code vectors is
to apply a couple GLA iterations to the intermediate solutions. However, since applying
a full global GLA iteration is expensive, a new method is proposed. The method is
called local repartitioning and it works by comparing each data point with their currently
closest centroid and the two new centroids that were produced by the last split.

The local repartitioning algorithm is presented in a simplified way in Figure 3.5.
Since the data points of the split cluster no longer have the original centroid left,
the comparisons are performed only between the new centroids (𝐶new1 and 𝐶new2).
Respectively for vectors outside of the split cluster, the comparisons are performed
between their originally closest centroid (𝐶𝑖) and the new centroids.

LocalRepartition(𝑋,𝐶, 𝑃, 𝐶new1 , 𝐶new2)
for 𝑖 ← 1; 𝑁 do

𝐶old ← 𝐶𝑃𝑖
𝑃𝑖 ← SelectNearestCentroid(𝑋𝑖, 𝐶old, 𝐶new1 , 𝐶new2)

end for
return 𝑃

end

Figure 3.5: Local repartitioning algorithm described by Fränti et al. (1997)

3.2 Bisecting k-means

In addition to the iterative splitting algorithm, another algorithm that uses splitting to
form hierarchical clustering is bisecting k-means. The algorithm is presented in the
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literature in various ways. However, a common variation of the algorithm is shown in
Figure 3.6. Similarly to the iterative splitting algorithm, an important design choice
when using bisecting k-means is to choose which cluster to split.

Bisecting k-means(𝑋, 𝐾)
repeat

Select a cluster 𝑐 to split
repeat

Use k-means to split 𝑐 to 𝑐1 and 𝑐2
Calculate inter-cluster dissimilarity for 𝑐1 and 𝑐2

until Fixed number of iterations
Select the split that produces the highest overall similarity

until K clusters are formed
return 𝑃,𝐶

end

Figure 3.6: Bisecting k-means algorithm proposed by Steinbach et al. (2000)

Steinbach et al. (2000) state that various methods exist for selecting the cluster to split.
The method can be, for example, choosing the biggest cluster, choosing the one that has
the least overall similarity to others or to use some kind of criterion. A criterion can be,
for example, based on both size and similarity. Steinbach et al. (2000) decided to split
the largest cluster after experimenting with the methods and finding that the differences
were small.

Steinbach et al. (2000) believe that bisecting k-means outperforms the naive k-means
because it produces clusters that are relatively uniform-sized. Naive k-means tends to
produce different-sized clusters. In their experiments, where they clustered documents,
they could measure the cluster qualities. Smaller clusters tended to have better quality
than bigger ones. However, small high-quality clusters did not contribute much to the
overall quality. Bigger clusters had lower quality and often made negative contribution
to the overall quality.

In this thesis, bisecting k-means implementations always choose the cluster with the
greatest SSE value. This approach has also been used by Chen et al. (2021). In addition,
the division that is selected is the one that yields the smallest overall SSE.
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4. Split k-means

Split k-means
Initialize cluster
repeat

Select cluster
Split cluster
Run k-means

until found clusters = K
Fine tune the result by k-means

end

Figure 4.1: Pseudo code of the split k-means algorithm

The previous chapters discussed clustering in general, k-means and divisive clustering
algorithms and their details. In this chapter, split k-means is introduced and its details
are discussed. First, the building blocks of the algorithm are discussed and after that,
the selected variations of it are discussed.

Split k-means is an iterative clustering algorithm that solves the initial centroid positions
in addition to optimizing them. It starts by putting all data points into a single cluster and
splits it. It continues splitting the resulting clusters until k clusters are found. However,
the value of k remains to be predefined.

Similarly to the iterative splitting algorithm that was introduced in Section 3.1, the split
k-means depends on important design choices such as determining which cluster to
split next and how to perform the split. Split k-means has taken considerable influence
from the iterative splitting algorithm, but its biggest difference is that it uses either
intra-cluster k-means or global k-means for splitting the clusters. In addition, split
k-means always fine-tunes the final result, while in the iterative splitting algorithm this
phase remains to be optional.

In this thesis three variants of the algorithm are presented. The rough high-level pseudo
code of the algorithm can be seen in Figure 4.1. The algorithm contains three major
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moving parts: choosing the cluster to split, choosing how to split it and finally how to
use k-means. The static parts are initialization and finalization since every variant starts
with a single randomly chosen centroid and every variant uses k-means for fine-tuning
the result. Since choosing which cluster to split next often includes splitting as well,
splitting is addressed in this thesis first.

4.1 How to split?

Splitting a cluster means taking one cluster and producing several new clusters from it
by introducing new centroids. The split can be done in multiple ways, but in this thesis
the split always produces two new individual clusters that both contain at least one data
point. Since the basic idea of split k-means is to be a simple algorithm, the k-means
algorithm is always used when splitting a cluster, in one way or another.

Local split

The local split is done by choosing a target cluster, removing the existing centroid of
that cluster and by choosing two random points in the target cluster as the new centroids.
After initializing the new centroids, the intra-cluster k-means algorithm is run. This
means that k-means is run within the target cluster itself and data points outside of that
cluster are not affected. The local split process is illustrated in Figure 4.2. In the first
picture the original target cluster is shown. In the second picture, the original centroid
is removed and two randomly selected data points are selected as the new centroids. In
the third picture the data points have been repartitioned and lastly, in the fourth picture
the intra-cluster k-means has moved the centroids to their stable locations.

Intra-cluster k-means in split k-means algorithm is not limited by iterations in local split
since in general k-means can perform the clustering of two clusters fast enough to not
substantially affect the performance of the algorithm.

Global split

In the same way as local split, global split removes the centroid from the target cluster
and chooses two random data points as the new centroids. However, after choosing the
centroids, it runs k-means globally. As seen in Figure 4.3, this affects other clusters
besides the target cluster. In the first picture, the target cluster has been chosen and in
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Before split Centroid added

Split cluster Recalculate centroids

Figure 4.2: Local split process removes the original centroid, chooses two new data
points as the new centroids and performs intra-cluster k-means for the the original
cluster.

the second picture the original centroid is removed and two new randomly selected data
points are selected as the new centroids. In this case, luck did not favour the algorithm
since both of the new centroids are located within the area of the left density peak. The
third picture shows that the other centroid has begun its journey towards the right-hand
density peak. At the same time, the neighbour clusters’ shapes have changed. It can be
seen in the last picture that only two global iterations of k-means were sufficient to move
the new centroids to correct locations. Also, the neighbour clusters and the clusters
outside of the picture are fine-tuned.

Since the k-means is run globally, it performs slower than the intra-cluster k-means,
especially with large datasets and with the large values of k. For this reason, an iteration
limit of two global k-means iterations is applied to the global split. The limit number is
derived from the random swap algorithm discussed in Section 2.4.
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Target cluster is chosen Two new random centroids are selected

First global k-means iteration Second global k-means iteration

Figure 4.3: Global split process affects all clusters, not only the target cluster. Each
global k-means iteration also fine-tunes the boundaries of the other clusters as well.

4.2 Which cluster to split next?

After the split k-means has initialized the first cluster, it splits it. Since there is only one
cluster to choose from, the choice is obvious. After the first split there are two clusters
to choose from and a decision has to be made by some criterion. There are multiple
possible criteria and perhaps the most obvious would be to choose a random cluster.

As seen in Figure 4.4, the random split does not usually yield a good clustering structure.
Just like plain k-means, it can find a locally optimal solution but struggles in finding
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Figure 4.4: Local split applied to randomly selected clusters in S1. When the centroids
are located in wrong areas, even the fine-tuning after the split process cannot fix the
clustering. The final result is a local minimum instead of the global one.

Local split applied to cluster with the highest MSE value

The result after the incorrect split

Figure 4.5: Choosing the cluster with the highest MSE does not result in good clustering
when using local split. Fine tuning with k-means is not able to move the redundant
centroid from the right side to the left side.

the global optimum. Choosing the cluster randomly does not let the algorithm benefit
from the information it could already calculate from the clusters, such as the SSE and
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1st split 2nd split

3rd split 4th split

5th split 6th split

7th split The state after fine-tuning

Figure 4.6: Unbalance dataset can be correctly clustered by splitting the cluster with
the highest SSE.

MSE. Naturally a better way to choose the cluster to split next is to try to collect some
information from the clusters and use it when determining the next cluster to split.

A better way to choose the cluster is to choose the one with the greatest MSE value. This
method works better than the random method, but what if the cluster with the greatest
MSE value is just a larger one with greater variance and some other cluster with smaller
MSE actually contains several clusters with smaller variances? An example of this is
demonstrated with the Unbalance dataset in Figure 4.5.
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Since the MSE values between clusters are not comparable, they cannot be used. As
seen in Figure 4.5, the algorithm chooses the wrong cluster to be split and the end result
is wrong. For this reason only SSE can be used when comparing the clusters with each
other. The clustering process when locally splitting the cluster with the greatest SSE
value is presented in Figure 4.6.

Tentative choice

Tentative Choice(𝑋,𝐶, 𝑃, cache)
for all clusters do

if cluster ∈ cache then
SSEdiff ← cachecluster

else
Calculate SSEbefore
Split cluster
Calculate SSEafter
SSEdiff ← SSEbefore − SSEafter
cachecluster ← SSEdiff

end if
if SSEdiff > SSEmaxdiff then

Target cluster← cluster
end if

end for
Remove cachecluster
return Target cluster, cache

end

Figure 4.7: Pseudo code of the tentative cluster choice. The cache data structure is
simply a lookup table and it can be implemented with an array for example.

The cluster with the greatest value of SSE may not be multimodal and therefore splitting
it might result in an error. The idea of tentative choice is to perform trial splits, measure
their quality and naturally to select the best split. In the tentative choice, every single
cluster will be split by choosing two random points in a cluster and by running the
intra-cluster k-means algorithm for that particular cluster. This is called a local split
which was presented in Section 4.1. The key concept is to calculate the SSE value of the
whole clustering result before the tentative split and compare the SSE value after each
tentative split with the value before the split. The cluster that is selected is chosen by
the split that produces the greatest difference between the SSE values before and after
the split. The pseudo code of the algorithm is presented in Figure 4.7 and the method is
illustrated in Figure 4.8.
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Before tentative split Tentatively split every cluster

After tentative split

Figure 4.8: Tentative choice process when 𝑘4 → 5. In here every tentative split is
performed. The SSE values are calculated before every tentative split and after every
tentative split. The SSE differences are stored and finally the tentative split with the
greatest SSE difference is chosen. After the tentative iteration the intra-cluster split is
performed again for the chosen cluster as seen in the last picture. The SSE differences
of other splits cached for future use.

Split k-means works by iteratively splitting a new cluster in every iteration. Naive
tentative splitting ends up processing the same splits over and over again for the same
clusters that have been tentatively split in past iterations. Since local split does not affect
other clusters, the solution to this performance issue is to keep a record of the SSE
difference values of every cluster and to calculate the values only for the new clusters
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in every iteration. All splits can be done for the same data structure without a need to
start over. In this way in the tentative choice process, the cache data structure can be
checked if it contains the SSE difference for a specific cluster already and use that value
if it does. The pseudo code seen in Figure 4.7 takes advantage of this method.

Another possibility to tentatively split the cluster is to run k-means globally for the
whole dataset after choosing the points within the target cluster. This method is called a
global split. Global split is laborious in comparison with the local split and it affects
other clusters as well. Since the global split affects other clusters, every split has to be
done individually and started from the same state. On top of that, the algorithm cannot
keep a record of SSE difference values since the clusters are not necessary the same on
each iteration.

Running k-means globally for each cluster split is a heavy process in itself, but copying
data structures over and over again and the lack of ability to use a cache for clusters’
SSE differences makes it unpractical and too tedious to run for large datasets. For this
reason, this method was rejected when designing the algorithm. Only local split is done
when tentatively splitting clusters.

4.3 Fine-tuning the result

State after k - 1 splits State after fine-tuning

Figure 4.9: After the tentative split k-means algorithm has performed 𝑘 − 1 splits, the
centroids are approximately in correct positions. However, the result on the left is still
not optimal and it has to be fine-tuned with the k-means algorithm. In the picture on the
right, the boundaries of the partitions are fine-tuned.
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After the split k-means algorithm has reached the desired 𝑘 number of clusters, it
fine-tunes the clustering result with the k-means algorithm. Literature shows that
k-means is an effective algorithm for fine-tuning and it is used similarly for example in
the random swap algorithm (Fränti & Kivĳärvi, 2000). An example of using k-means
when fine-tuning the final result of the algorithm can be seen in Figure 4.9.

Fine-tuning can be done for the intermediate results as well. A couple of global k-means
iterations can be used but if the tentative choice is used when choosing the clusters,
moving centroids invalidates the SSE difference cache.

A local repartition can be used to fine-tune the intermediate results. Local repartition
does not affect all clusters, it only affects the target clusters and their neighbour clusters.
When using it, fine-tuning can be performed without completely invalidating the SSE
cache. The local repartition process can be seen in Figure 4.13.

4.4 Split k-means variants

After recognizing the moving parts of the algorithm and comparing their strengths and
weaknesses, three main variants were chosen for final implementation: full force split,
tentative split and hybrid split. The variants have the same main structure presented in
Figure 4.1, but they differ in how the next cluster is chosen and how it is split. Also, the
intermediate results are treated differently. A brief comparison of the design choices is
presented in Table 4.1.

Table 4.1: Summary of the design choices of the split k-means variants and bisecting
k-means.

Design bisecting tentative hybrid full force
parameter k-means split split split
Which cluster to highest tentative tentative highest
split next? SSE choice choice SSE
How to split? local split local split local split global split
Intermediate fine-tuning no no local repartition no
Result fine-tuning no k-means k-means k-means

Tentative split

The tentative split variant uses a tentative choice in cluster selection. It tentatively splits
every cluster and chooses the one that decreases SSE the most. The selected cluster is
split by local split and the intermediate results are not processed at all. After k clusters
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Tentative Split k-means
Initialize cluster
repeat

Tentatively select cluster that decreases SSE the most
Locally split the cluster

until found clusters = K
Fine tune the result by k-means

end

Figure 4.10: Pseudo code of the tentative split k-means algorithm

are found, the result is fine-tuned with k-means. The high-level pseudocode of the
tentative split variant is presented in Figure 4.10.

However, the pseudo code does not tell the implementation details of the algorithm.
Since the local split used by the variant affects only the target cluster, the SSE differences
of the previous iteration can be used in the next iteration. The tentative process can
be accelerated by saving the SSE differences in a cache data structure. On the next
iteration, the tentative splitting process does not have to split every cluster, but only the
new clusters. The entry of the selected cluster can be invalidated from the cache when it
is split. This way the tentative splits have to be performed only on the new clusters from
the previous iteration and the rest of the SSE differences can be found in the cache.

Similarly to the iterative splitting algorithm by Fränti et al. (1997), the time complexity
of the tentative split variant’s splitting phase depends on the sizes of the clusters. If it
can be assumed that the division will proceed evenly, then the time complexity is as
follows:

𝑛 + 𝑛
2
+ 𝑛

3
+ . . . + 𝑛

𝑘
+ . . . + 1 =

𝑛∑︂
𝑛=1

𝑛

𝑖
= 𝑂 (𝑛 log 𝑛)

Full force split

Tentatively choosing the next cluster to split can be used with global split as well.
However, since global split affects other clusters in addition to the target cluster, the
acceleration method described in the previous section cannot be used with it. Likewise,
tentatively choosing the target cluster by using local split could be used as well, but
globally splitting the target cluster would again invalidate the cache used in the tentative
split variant.
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Full Force Split k-means
Initialize cluster
repeat

Choose the cluster with the greatest SSE
Globally split the cluster

until found clusters = K
Fine tune the result by k-means

end

Figure 4.11: Pseudo code of the full force split k-means algorithm

Using the tentative approach with any kind of global repartitioning or moving the
centroids requires copying data structures between every split in order to restore the
previous state. This introduces a substantial amount of unnecessary work.

Since the tentative split done with the global k-means is too heavy to process whether
the tentative splitting is done locally or globally, the design choice was to choose the
target cluster non-tentatively. The algorithm simply chooses the cluster that has the
greatest SSE value.

The actual split is done globally by removing a centroid from the target cluster, choosing
two new data points in that cluster randomly and finally running two global k-means
iterations. The pseudo code of the algorithm is presented in Figure 4.11.

The time complexity of the full force variant depends on the number of the global
k-means iterations (𝑔):

𝑘𝑔𝑛𝑘 = 𝑂 (𝑔𝑛𝑘2)

Hybrid split

When comparing the early stage results of tentatively splitting clusters by using the local
split and global split, an idea of a hybrid version came out. Can the worst excesses of
local split be filtered out with a couple global k-means iterations for intermediate results
with the algorithm still performing better than tentatively splitting with the global split?

The main idea of hybrid split is to combine the best features from the tentative split
and full force split variants. The initial idea was to modify the tentative split variant
to include a global fine-tuning of intermediate results between every split. A good
clustering result was achieved with a couple of global k-means iterations. However,
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Hybrid Split k-means
Initialize cluster
repeat

Tentatively select cluster that decreases SSE the most
Locally split cluster
Fine tune the intermediate result by local repartition

until found clusters = K
Fine tune the result by k-means

end

Figure 4.12: Pseudo code of the hybrid split k-means algorithm

since the tentative variant keeps the SSE differences of previously tried splits in the
cache, and the global k-means moved every single centroid in many cases, this way
completely invalidated the cached SSE values.

The next design idea was to find a way to perform repartition only for the neighbour
clusters of the target cluster that was split. The final design solution was to perform a
local repartition only and the idea for that came from Fränti and Kivĳärvi (2000).

The local repartition algorithm is presented in Figure 3.5 and the process is demonstrated
in Figure 4.13. The local repartition method is the same as in the random swap algorithm
for speeding up the process and in the iterative splitting algorithm. When used with
the split k-means algorithm, it does not affect other than the surrounding clusters of the
split cluster. Most of the cached SSE results are still valid on the next iteration and only
the newly created clusters and their neighbour clusters have to be tentatively split on the
next iteration.

The pseudo code of the hybrid split algorithm is presented in Figure 4.12. The
implementation of local repartition is followed by an invalidation of neighbour cluster
entries in the cache used by the tentative cluster selection.

Local repartition increases the time complexity of the algorithm. According to Fränti
et al. (1997) the local repartitioning has a time complexity of 𝑂 (𝑁𝑀𝐾), where 𝑀 is
the number of iterations.
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Before split After split

After local repartition

Figure 4.13: Hybrid split k-means performs local repartition for intermediate results.
First it splits the target cluster and after the split the clusters are repartitioned against
their original centroid and the new centroids. Affected clusters are highlighted in gray.
In the last picture some data points have moved from surrounding clusters to the new
clusters. These individual data points are highlighted with blue.
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5. Experiments

The purpose of experiments was to find out if split k-means provides better clustering
quality and speed than naive k-means, bisecting k-means or random swap. Also, the
three variants of split k-means were compared with each other and with the iterative
splitting algorithm. When comparing the results of split k-means with the results of
the iterative splitting algorithm, the idea was to see if split k-means can achieve similar
or better results than the iterative splitting algorithm that uses PCA for splitting the
clusters.

5.1 Implementations

The split k-means algorithms were originally implemented in Python 3. Since the
performance of Python quickly became a bottleneck when processing large amounts of
data, the algorithm was rewritten by using NumPy Python library. NumPy is an open
source package that provides pre-compiled functions for mathematical operations and
data structures for replacing, for example, the ordinary Python lists (Marowka, 2018).
However, in addition to the implementation that uses NumPy, another implementation
was written that uses the scikit-learn (Pedregosa et al., 2011) k-means implementation.
In the scikit-learn implementation of the algorithms, all calls to both global and intra-
cluster k-means were replaced with scikit-learn package’s implementation of the k-means
algorithm. All experiments were run on a single core.

The experiments contain other algorithms as well. The random swap and the iterative
splitting algorithm implementations are written in C. They can be found publicly on
https://cs.uef.fi/ml/software/ in the CBModules package. However, when comparing the
results of the NumPy version of the split k-means with random swap, the random swap
implementation was implemented with NumPy as well. Similarly, when comparing the
results of the scikit-learn version of the split k-means with random swap, the random
swap implementation was implemented with scikit-learn.
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The naive k-means and bisecting k-means implementations are written either with
Numpy or provided by the scikit-learn package (Pedregosa et al., 2011).

Table 5.1: Run times (ms) of the random swap implementations. All implementations
reach CI = 0 clustering quality on all datasets and all implementations were run with the
recommended 5 000 iterations.

Dataset Random swap Random swap Random swap
CBModules NumPy scikit-learn

S1 2986 9467 9429
S2 3612 9355 9479
S3 4154 9329 9487
S4 4583 9303 9454
A1 1768 7238 7324
A2 3318 12935 12921
A3 4991 19432 19356
Unb 9821 9787 9909
Dim32 1700 6198 6217
Birch1 159842 378966 395324
Birch2 55071 397190 394083
Average 22895 79018 80271

5.2 Data

The data used in experiments consists of several datasets in the clustering basic
benchmark dataset (Fränti & Sieranoja, 2018). All used datasets can be seen in Figure
5.1.

Each S set contain 15 Gaussian clusters and their overlap varies between S1 and S4
from 9% to 44%. In S1, the clusters are clearly separated and in S4 they overlap heavily,
while still being clearly visible.

The overlap is estimated by calculating the distance of a point to its closest centroid (𝑑1)
and to the closest point in another cluster (𝑑2). If the distance to the closest point in
another cluster is smaller than the distance to the closest centroid (𝑑2 < 𝑑1), then the
point is considered as overlapped (Fränti & Sieranoja, 2018).

overlapped(𝑑1, 𝑑2) =
⎧⎪⎪⎨⎪⎪⎩

1, 𝑑1 > 𝑑2

0, otherwise
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S1 S2 S3 S4

A1 A2 A3 Birch1

Unbalance Dim32

Birch2

Figure 5.1: Clustering basic benchmark datasets used in the experiments (Fränti &
Sieranoja, 2018). Since Dim32 dataset contains 32 dimensions, only the first two
dimensions are plotted.

Fränti and Sieranoja (2018) define the overall overlap as the overlapped points in relation
to the total number of data points:

overlap =
1
𝑁

∑︂
overlapped(𝑑1, 𝑑2)

A sets consist of spherical clusters, which are subsets (𝐴1 ⊂ 𝐴2 ⊂ 𝐴3) of each other.
A1 dataset contains 20 clusters, A2 contains 35 clusters and A3 contains 50 clusters.
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Unbalance is a dataset of eight clusters that are grouped into two well-separated groups.
The left-hand group consists of three dense clusters and the right-hand group consists of
five sparse clusters.

Birch datasets are larger ones. Birch1 consists of clusters that form a 10 × 10 grid.
Birch2 dataset contains clusters whose ground truth centroids form a sine curve (Fränti
& Sieranoja, 2018). Both Birch datasets contain 100 clusters.

5.3 Evaluation

When comparing the clustering results, internal and external measurements were
used. Internal measurements depend only on the data points themselves. Respectively,
external measures use the ground truth as well. The time spent on clustering is shown in
milliseconds and it is measured from the start of running the algorithm to the completion
of the final result.

Internal measures

The internal measures for clustering quality are SSE and MSE. Both methods were
introduced in Section 2.2. Since the objective function of k-means and split k-means as
well is SSE, the most natural way to compare them is to compare the SSE values. MSE
is the normalized version of the SSE value and it is included in results as well.

Because the datasets are not normalized in any way before clustering, the SSE and MSE
values vary greatly between them. The datasets are used in the experiments as they
are and the resulting MSE and SSE values are scaled in the results according to the
following coefficients.

S1, S2, S3, S4, Birch1 MSE = MSE × 10−8, SSE = SSE × 10−12

A1, A2, A3, Unbalance, Birch2 MSE = MSE × 10−6, SSE = SSE × 10−10

Dim32 MSE = MSE, SSE = SSE × 10−4
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External measures

An external method for measuring the clustering structure is CI which was introduced
in Section 2.3. Since the ground truth for all datasets was available, CI values were
calculated for all results. When evaluating the CI, a value of 0 means a correct clustering
structure and a value of 1 means that one centroid is incorrectly located. Respectively,
higher values mean that more centroids are incorrectly located.

In the results, CI values are averaged over the test runs. The CI values are the primary
way to see the quality of the clustering structure. However, in order for them to be
comparable between different datasets, a relative CI is calculated as well. A relative CI
(rel-CI) is calculated with the formula rel-CI = CI / k.

When the CI is known, a success rate can be calculated as well. The success rate tells
how often the algorithm successfully achieves a CI = 0 value. For example, if the
algorithm is run 1 000 times of which 980 times it manages to reach the CI value of
0, then the success rate is 98%. While success rate measures the performance of the
algorithm, it does not tell anything about the quality of clustering when it does not reach
the perfect structure. An algorithm might be good even if it does not manage to reach
the correct clustering often since perfect clustering results may not be necessary in all
situations.

5.4 Results

All implementations of the three variants of the split k-means, two implementations of
naive k-means and bisecting k-means, three implementations of random swap and three
different variants of the iterative splitting algorithm were run 100 times over the S1,
S2, S3, S4, A1, A2, A3, Unbalance, Dim32, Birch1 and Birch2 datasets. The results
contain comparison between three split k-means variations in Tables 5.2, 5.3, 5.4, 5.5,
5.6 and 5.7, and time and quality comparisons between k-means, bisecting k-means,
split k-means and random swap in Tables 5.10. 5.11, 5.12 and 5.13. Also, Tables 5.8 and
5.9 contain the results of the SPLIT, SLR and SGLA variants of the iterative splitting
algorithm for reference.
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Table 5.2: Summary of the tentative split (NumPy) implementation results averaged
over 100 runs

Dataset Success MSE SSE Time (ms) CI rel-CI
S1 97% 9.06 9.06 112 0.03 0.2%
S2 100% 13.28 13.28 136 0.00 0.0%
S3 75% 17.39 17.39 213 0.25 1.7%
S4 100% 15.71 15.71 206 0.00 0.0%
A1 29% 2.26 1.35 127 0.71 3.6%
A2 83% 1.97 2.07 283 0.17 0.5%
A3 80% 1.96 2.94 466 0.20 0.4%
Unb 100% 16.50 21.45 73 0.00 0.0%
Dim32 99% 8.16 26.72 35 0.01 0.1%
Birch1 14% 4.77 95.44 27254 1.12 1.1%
Birch2 100% 2.28 45.67 7654 0.00 0.0%

Table 5.3: Summary of the tentative split (scikit-learn) implementation results averaged
over 100 runs

Dataset Success MSE SSE Time (ms) CI rel-CI
S1 98% 9.01 9.01 54 0.02 0.1%
S2 100% 13.28 13.28 56 0.00 0.0%
S3 80% 17.28 17.28 60 0.20 1.3%
S4 78% 15.96 15.96 60 0.22 1.5%
A1 45% 2.21 1.32 63 0.55 2.8%
A2 86% 1.96 2.06 126 0.14 0.4%
A3 71% 1.98 2.97 197 0.36 0.7%
Unb 100% 16.50 21.45 31 0.00 0.0%
Dim32 100% 7.10 23.25 43 0.00 0.0%
Birch1 8% 4.82 96.33 2561 1.47 1.5%
Birch2 95% 2.29 45.88 1875 0.05 0.1%

Table 5.4: Summary of the hybrid split (NumPy) implementation results averaged over
100 runs

Dataset Success MSE SSE Time (ms) CI rel-CI
S1 100% 8.92 8.92 228 0.00 0.0%
S2 100% 13.28 13.28 297 0.00 0.0%
S3 100% 16.89 16.89 331 0.00 0.0%
S4 100% 15.71 15.71 374 0.00 0.0%
A1 100% 2.02 1.21 222 0.00 0.0%
A2 100% 1.93 2.03 553 0.00 0.0%
A3 99% 1.93 2.90 1027 0.01 < 0.1%
Unb 100% 16.50 21.45 89 0.00 0.0%
Dim32 100% 7.10 23.25 50 0.00 0.0%
Birch1 99% 4.64 92.80 44161 0.01 < 0.1
Birch2 100% 2.28 45.67 15538 0.00 0.0%
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Table 5.5: Summary of the hybrid split (scikit-learn) implementation results averaged
over 100 runs

Dataset Success MSE SSE Time (ms) CI rel-CI
S1 100% 8.92 8.92 115 0.00 0.0%
S2 100% 13.28 13.28 128 0.00 0.0%
S3 100% 16.89 16.89 130 0.00 0.0%
S4 100% 15.71 15.71 138 0.00 0.0%
A1 99% 2.03 1.22 128 0.01 < 0.1%
A2 100% 1.93 2.03 312 0.00 0.0%
A3 97% 1.93 2.90 569 0.03 < 0.1%
Unb 100% 16.50 21.45 46 0.00 0.0%
Dim32 99% 8.16 26.72 58 0.01 < 0.1%
Birch1 99% 4.64 92.80 10742 0.01 < 0.1%
Birch2 100% 2.28 45.67 7107 0.00 0.0%

Table 5.6: Summary of the full force split (NumPy) implementation results averaged
over 100 runs

Dataset Success MSE SSE Time (ms) CI rel-CI
S1 90% 9.35 9.35 67 0.10 0.6%
S2 84% 13.76 13.76 83 0.16 1.1%
S3 84% 17.20 17.20 93 0.16 1.1%
S4 67% 16.02 16.02 128 0.33 2.2%
A1 80% 2.10 1.26 73 0.20 1.0%
A2 86% 1.96 2.06 319 0.15 0.4%
A3 79% 1.96 2.94 815 0.21 0.4%
Unb 96% 17.25 22.42 26 0.04 0.5%
Dim32 38% 121.00 396.47 37 1.05 6.6%
Birch1 77% 4.67 93.42 40383 0.27 0.3%
Birch2 100% 2.28 45.67 37201 0.00 0.0%

Table 5.7: Summary of the full force split (scikit-learn) implementation results averaged
over 100 runs

Dataset Success MSE SSE Time (ms) CI rel-CI
S1 93% 9.23 9.23 30 0.07 0.5%
S2 93% 13.48 13.48 27 0.07 0.5%
S3 95% 16.99 16.99 29 0.05 0.3%
S4 76% 15.96 15.96 29 0.24 1.6%
A1 97% 2.03 1.22 28 0.03 0.2%
A2 91% 1.95 2.05 77 0.09 0.3%
A3 90% 1.94 2.91 180 0.10 0.2%
Unb 94% 1.76 22.85 16 0.06 0.8%
Dim32 28% 130.21 426.66 20 1.15 7.2%
Birch1 90% 4.65 93.04 4926 0.11 0.1%
Birch2 97% 2.29 45.79 4807 0.03 < 0.1%
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Split k-means variants

In general, the hybrid version seemed to be the most successful when comparing the
clustering quality. This can be seen by examining the CI and SSE values.

The hybrid algorithm managed to correctly cluster all datasets most of the time.
However, the tentative split’s scikit-learn implementation performed worse with the
more overlapped S3 and S4 sets. S datasets contain Gaussian clusters and the overlap
varies between them. S1 is the least overlapped dataset and S4 is the most overlapped
one. Similarly, the full force variant struggled with the S4 dataset as seen in Tables 5.6
and 5.7.

Unlike the k-means algorithm, when looking at the Tables 5.6 and 5.7, full force split
k-means seems to perform worse the more the dataset is overlapped. In Table 5.2 can
be seen that the trend is the same even though the scikit-learn implementation of the
tentative split k-means manages to correctly split S4 more times than S3. The result
may be explained with the divisive nature of the split k-means algorithm. With clearly
separated clusters, it manages to place the centroids more often in separate clusters
while naive k-means struggles to move centroids to the correct place when the clusters
have no overlap.

Since A sets are subsets of each other and contain no other variation except the size of
the dataset, the quality results between the different variations of split k-means should
have no other clear differences except the clustering time. This holds true for hybrid split
and full force split variants, but the tentative split variant has a serious performance issue
with the A1 dataset of which it manages to cluster correctly only 29% of the time when
using the NumPy implementation and 45% when using the scikit-learn implementation.

This particular issue is demonstrated in Figure 5.2. Since the tentative split variant does
not perform any fine-tuning of intermediate results, choosing the split that yields the
greatest SSE difference is not always the best choice. With A1 dataset, the upper left
density peak is often improperly clustered which is seen in the results in Table 5.2.

A closer look into the issue in Figure 5.3 shows that one cluster is often split right in the
middle. After the fourth local split, a cluster with two clear density peaks has appeared.
According to the end result, this cluster decreases the overall SSE more than the correct
split.

According to Fränti and Sieranoja (2018), one weakness of k-means is demonstrated
by the Unbalance dataset. When initializing the initial centroids for the naive k-means
algorithm, if no centroids are chosen in the area of small clusters, k-means fails to move
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Before split After split

Candidate split 1 Candidate split 2

Candidate split 3 Candidate split 4

Figure 5.2: Tentative split variant splits the wrong cluster in A1 dataset. In this case
choosing the split with the greatest SSE difference does not yield the best outcome when
measuring the quality of the clustering structure.
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Global state after 3 splits Global state after fine-tuning

Local state before split 1st local split 2nd local split

3rd local split 4th local split 5th local split

Figure 5.3: A closer look to the A1 dataset shows the weakness that affects the tentative
split variant. If a cluster is split in the middle, then both sides might get their own
centroid. Since tentative split does not perform any fine-tuning for intermediate results,
the error persists until the end.

the centroids into this area and the final result will be incorrect. According to the results
in Tables 5.2 and 5.4, tentative or hybrid variations succeed in splitting the clusters
correctly every time. Even the full force variation that does not perform any tentative
splits succeeds in this task in over 94% of the cases as seen in Tables 5.6 and 5.7.

The only dataset that had over two dimensions was Dim32 with 32 dimensions. The
clusters in Dim32 are well separated as in the A sets as well. While the global splitting
seems to have trouble finding the correct clustering, the tentative approach seems to
work very well for high dimensional data. However, the CI value of the full force variant
was only 1 on average as seen on Table 5.6 and 5.7.

Birch1 is the most difficult dataset for the tentative split variant since the algorithm man-
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ages to cluster it correctly only 14% of the time when using the NumPy implementation
and only 8% when using the scikit-learn implementation. The averaged CI values are
1.12 and 1.47. Based on the empirical examination, it usually varies between 1 and 2
between individual executions. A typical clustering result can be seen in Figure 5.4.

Similarly to the results by Fränti et al. (1997) with the iterative splitting algorithm, the
results of the split k-means follow the same trend. The nearest corresponding algorithms
for split k-means variants are S+GLA, SLR+GLA and SGLA. S+GLA is similar to the
tentative split variant since it does not perform any refinement for intermediate results.
The variant that performs it is SLR+GLA. It performs the same local repartition as
hybrid split. The heavyweight equivalent to full force split is SGLA that performs GLA
iterations for intermediate results. When looking at the averages of execution times in
Table 5.12, it can be seen that full force split takes the most time. Tentative split is the
fastest and hybrid split is the second fastest.

However, the quality of clustering does not follow the same order of the results by Fränti
et al. (1997). The hybrid split variant is capable of the best quality on all meters when
looking at Tables 5.4, 5.5, 5.10 and 5.11.

Algorithm benchmark

Table 5.8: Iterative splitting algorithm CI values averaged over 100 runs

Dataset SPLIT SLR SGLA
S1 0.00 0.00 0.00
S2 0.00 0.00 0.00
S3 1.00 0.00 0.00
S4 1.00 0.00 0.00
A1 1.00 0.00 0.00
A2 0.00 0.00 0.00
A3 1.00 0.00 0.00
Unb 0.00 0.00 0.00
Dim32 0.00 0.00 0.00
Birch1 63.00 0.00 0.00
Birch2 49.00 0.00 0.00
Average 10.55 0.00 0.00

In general, every split k-means variant can cluster all datasets in better than CI = 1
quality. The only exceptions for this are Dim32 dataset with full force split and Birch1
dataset with tentative split. When comparing tentative split with bisecting k-means,
the trends of their performance are very similar. The biggest challenges occur with the
same datasets and similarly both of the algorithms seem to work well with the same
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Table 5.9: Iterative splitting algorithm run times (ms) averaged over 100 runs

Dataset SPLIT SLR SGLA
S1 50 60 69
S2 50 55 68
S3 44 55 69
S4 53 59 67
A1 51 55 58
A2 53 64 86
A3 49 76 146
Unb 48 54 64
Dim32 42 58 71
Birch1 247 846 6451
Birch2 228 522 4768
Average 83.18 173.09 1083.36

Table 5.10: CI-values averaged over 100 runs (NumPy)

Dataset k-means bisecting tentative hybrid full force random swap
k-means split split split (NumPy)

S1 1.87 0.00 0.03 0.00 0.10 0.00
S2 1.44 0.00 0.00 0.00 0.16 0.00
S3 1.19 1.00 0.25 0.00 0.16 0.00
S4 0.87 0.00 0.00 0.00 0.33 0.00
A1 2.34 0.14 0.71 0.00 0.20 0.00
A2 4.58 0.00 0.17 0.00 0.15 0.00
A3 6.58 0.03 0.20 0.01 0.21 0.00
Unb 3.87 0.00 0.00 0.00 0.04 0.00
Dim32 3.50 0.00 0.01 0.00 1.05 0.00
Birch1 6.64 4.66 1.12 0.01 0.27 0.00
Birch2 16.90 0.00 0.00 0.00 0.00 0.00
Average 4.53 0.53 0.23 0.00 0.24 0.00

datasets. The biggest challenge for both algorithms is the Birch1 dataset whereby the CI
value increases over 1.12 with tentative split and over 4.6 with bisecting k-means.

As seen in Table 5.10, random swap successfully manages to cluster every dataset every
time. The cost of the good quality is the run time of the algorithm. Compared with the
hybrid split k-means, the run time of random swap is usually 5-20 times longer. With
only one exception with A3 dataset, hybrid split manages to keep the CI value under
0.01.

Figure 5.4 presents the typical clustering results of the algorithms. The issue with
k-means is that it finds the local optimum but it will not be able to move the centroids
to correct locations if there are stable centroids in between. Bisecting k-means does
not perform any fine-tuning for the bisected clusters and for that reason the clusters
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Table 5.11: CI-values averaged over 100 runs (scikit-learn)

Dataset k-means bisecting tentative hybrid full force random swap
k-means split split split (scikit-learn)

S1 1.94 0.02 0.02 0.00 0.07 0.00
S2 1.46 0.00 0.00 0.00 0.07 0.00
S3 1.31 1.00 0.20 0.00 0.05 0.00
S4 0.93 0.00 0.22 0.00 0.24 0.00
A1 2.58 0.50 0.55 0.01 0.03 0.00
A2 4.71 0.06 0.14 0.00 0.09 0.00
A3 6.52 0.11 0.36 0.03 0.10 0.00
Unb 3.87 0.00 0.00 0.0 0.06 0.00
Dim32 3.28 0.00 0.00 0.01 1.15 0.00
Birch1 7.36 7.54 1.47 0.01 0.11 0.00
Birch2 17.62 0.01 0.05 0.00 0.03 0.00
Average 4.69 0.84 0.27 0.01 0.18 0.00

Table 5.12: Run times (ms) averaged over 100 runs (NumPy)

Dataset k-means bisecting tentative hybrid full force random swap
k-means split split split (NumPy)

S1 72 123 112 228 67 9467
S2 84 169 136 297 83 9355
S3 98 189 213 331 93 9329
S4 157 207 206 374 128 9303
A1 66 132 127 222 73 7238
A2 202 275 283 553 319 12935
A3 400 451 466 1027 815 19432
Unb 64 52 73 89 26 9787
Dim32 9 39 35 50 37 6198
Birch1 41824 15637 27254 44161 40383 378966
Birch2 16394 7267 7654 15538 37201 404124
Average 5397 2231 3324 5715 7202 79649

look angular. Random swap, hybrid split and full force split have found the correct
clustering, but tentative split has two centroids in incorrect locations.

The performance profiles of three split k-means variants are shown in Figures 5.5 and
5.6. In general, full force split seems to be the fastest variant when the value of k is
low. When the value increases, the full force variant gets significantly slower. For large
datasets, tentative split is the fastest variant. Naturally, hybrid split is always slower than
tentative split since it is basically the same algorithm with only local repartition added
for intermediate results.
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Table 5.13: Run times (ms) averaged over 100 runs (scikit-learn)

Dataset k-means bisecting tentative hybrid full force random swap
k-means split split split (scikit-learn)

S1 4 8 54 115 30 9429
S2 4 9 56 128 27 9479
S3 5 11 60 130 29 9487
S4 7 12 60 138 29 9454
A1 4 10 63 128 28 7324
A2 9 18 126 312 77 12921
A3 16 26 197 569 180 19356
Unb 2 5 31 46 16 9909
Dim32 1 6 42 58 20 6217
Birch1 881 237 2561 10742 4926 395324
Birch2 235 144 1875 7107 4807 393228
Average 106 44 466 1770 924 80193

k-means Bisecting k-means Random swap

Tentative split k-means Hybrid split k-means Full force split k-means

Figure 5.4: Birch1 dataset clustered with different algorithms. Bisecting k-means does
not perform any fine-tuning. With proper fine-tuning the CI value would likely be lower
than 8.
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Figure 5.5: The full force split implementation is the fastest one when the value of k is
lower. It gets slower when k increases. The S datasets all have 15 clusters, while Birch
datasets have 100 clusters.
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Figure 5.6: The same phenomenon, as in the case of S and Birch datasets, can be seen
with A datasets as well. While the value of k increases, full force split gets slower.
Naturally hybrid split is always slower than the tentative split due to the fine-tuning of
intermediate results.
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6. Conclusions

In this thesis a new clustering algorithm and three variations of it were introduced. The
theory of clustering, clustering algorithms, divisive clustering, k-means and k-means
based algorithms were discussed, and they were used when designing the new algorithm.

A new split k-means algorithm was introduced and the details and design ideas were
discussed. Since the algorithm had many moving parts, there was no single clear
design to choose when designing the final algorithm. For this reason, the algorithm was
implemented in three variations: tentative split, hybrid split and full force split. The
basic idea was to solve the initial centroid position generation along with the clustering
itself and for this reason the splitting was done until k clusters were found.

In addition, the idea was to develop the iterative splitting algorithm forward and explore
the idea of not using PCA for splitting. Instead of PCA a simpler way to split a cluster
was to just choose two random data points in it as the new centroids and split the cluster
by running either intra-cluster k-means or global k-means.

The initial design idea was to tentatively split every cluster with k-means and always
choose the split that produces the greatest decrease in the SSE value. The tentative
split variation was based on this approach and it used intra-cluster k-means for splitting.
Similarly, the second idea was to try global k-means for tentative splitting and build
another algorithm variant using that. However, using k-means globally for splitting
turned to be a computationally heavy task since it could not re-use old tentative split
results. Also, a global repartition is generally heavier than an intra-cluster repartition.
For this reason the full force split variant did not perform the tentative part. Instead, it
split clusters globally and chose the cluster with the greatest SSE value.

The best ideas of both of these variations were combined in the hybrid split variation. It
was designed to tentatively split clusters but to also fine-tune the intermediate results
between split iterations. The original idea of running a couple of global k-means
iterations for the intermediate results was abandoned since the global k-means tended to
move all centroids instead of only the relevant ones. Moving non-relevant centroids

55



caused the algorithm to perform poorly since the split results from the previous iterations
could not be re-used. This showed that it is better to implement a local repartition
strategy where only the split cluster and its neighbour clusters were repartitioned.

The variations were implemented in Python 3 and they were compared against k-means,
bisecting k-means and random swap clustering algorithms. All algorithms were run over
11 different datasets in the basic clustering benchmark and the results were analysed.
The results showed that divisive clustering based on k-means can be used to achieve
better clustering results than with the naive k-means algorithm or divisive bisecting
k-means algorithm. The results also showed that it is difficult to outperform random
swap clustering quality, but a good clustering result can be obtained in less time.

Future development ideas for split k-means could include implementing it in a more
efficient programming language such as C or Fortran and parallelize it with modern
technologies such as OpenMP or Open MPI. Also, the naive k-means could be replaced
with fast k-means in order to speed up the algorithm. Research ideas for the future
include choosing the cluster based on some other information than the differences
between SSE values. Furthermore, better initial centroid positions for the random swap
algorithm could perhaps be generated with the tentative split algorithm.
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