

Mopsi Geo-tagged Photo Search

Tania Akter

Master's thesis

School of Computing

Computer Science

December 2020

i

UNIVERSITY OF EASTERN FINLAND, Faculty of Science and Forestry, Joensuu
School of Computing
Computer Science

Opiskelija, Tania Akter: Mopsi Geo-tagged Photo Search
Master's Thesis, 94 p., 1 appendix (7 p.)
Supervisors of the Master's Thesis: Pasi Fränti and Radu Mariescu-Istodor
December 2020

Abstract: Millions of databases generate massive information every year, and it is an
important necessity to search that massive information by sophisticated search tools
named search engines. There are numerous search tools worldwide, but most search
tools cannot extract essential information effectively. Mopsi is one of them that only
work for the inclusion of the keyword within the data description. To assist this
Mopsi web searching system, we have developed a tool that can measure the string's
syntactic similarity using character-level and token-level similarity measures. This
thesis focuses on analyzing Mopsi data and developing a web tool to search the geo-
tagged photo from the Mopsi database by applying the syntactic string similarity
measures. To search the geo-tagged photo, we adopted an experimental case study
and observation method to find the optimal threshold for each string similarity
measures, flexibility and quality of each string similarity measures, and the correla-
tion between physical distance and string similarity measures. The experimental re-
sults revealed that most of the string similarity measures perform better in optimal
threshold 0.7 or above, and the Smith-Waterman-Gotoh is the best similarity measure
based on data characteristics, which also produces better results than inclusion. Our
tool only supports syntactic similarity measures, so there remains a gap between hu-
man intuition of what they expect to see and the results from this tool. In the future,
we have a plan to integrate semantic similarity measures into our tool.

Keywords: Search technique, search tool, inexact search, syntactic similarity, se-
mantic similarity, string similarity, geo-tagged photo, Mopsi database

CR Categories (ACM Computing Classification System, 1998 version): Computer
Uses in Education, Computer and Information Science Education

ii

Acknowledgment

This thesis was done at the School of Computing, University of Eastern Finland, dur-
ing autumn 2020.

I am grateful to the University of Eastern Finland administration and to all the teach-
ers for their support during the journey of my master's degree. I would like to express
my gratitude to my thesis supervisor Professor Pasi Fränti and Dr. Radu Mariescu-
Istodor, for guiding me over the years. I believe my presentation skills and time
management while maintaining a work-life balance improved significantly because
of their constructive feedback, advice, and guidance.

I am also grateful to Dr. Oili Kohonen for her enormous support and suggestions on
every matter. And special thanks to my friend Nancy for always being by my side
whenever I needed her to have a conversation or making any decisions on anything.

Finally, my heartiest gratitude and love goes to my family and friends for their moral
support and encouragement.

iii

List of abbreviations

UEF University of Eastern Finland
CSE Computer Science Engineering
IEEE Institute of Electrical and Electronics Engineers
GIS Geographic Information Systems
LBS Location-based service
GPS Global Positioning System
GLONASS Global Navigation Satellite System
BeiDou Big Dipper
MOPSI Mobiilit Paikkatieto-Sovellukset ja Internet or

Mobile location-based applications and Internet
WWB World Wide Web
JSON JavaScript Object Notation
CSS Cascading Style Sheets
Ajax Asynchronous JavaScript and XML
API Application Programming Interface
PHP Hypertext Preprocessor
HTML Hyper Text Markup Language
URL Uniform Resource Locator
PMI Pointwise mutual information
LSA Latent semantic analysis
SWG Smith-Waterman-Gotoh

iv

Contents

1 Introduction ... 1

1.1 Research background .. 2
1.2 MOPSI .. 4
1.3 Structure of this thesis .. 4

2 Searching techniques .. 6

2.1 Linear or sequential search ... 8
2.2 Binary or interval search ... 9
2.3 Hybrid search .. 11
2.4 Exact search .. 12
2.5 Inexact search ... 14

3 Relevance factor ... 16

3.1 Keyword relevance ... 17
3.2 Location relevance .. 18

4 Semantic similarity ... 20

4.1 Corpus based measures ... 23
4.2 Knowledge-based measures .. 24

5 Syntactic similarity ... 26

5.1 Character-level measures .. 27
5.1.1 Levenshtein distance ... 28
5.1.2 Damerau-Levenshtein distance ... 29
5.1.3 Needleman–Wunsch algorithm ... 29
5.1.4 Smith–Waterman algorithm .. 30
5.1.5 Smith–Waterman–Gotoh algorithm 31
5.1.6 Hamming distance .. 32
5.1.7 Jaro distance .. 32
5.1.8 Jaro–Winkler distance ... 33
5.1.9 Longest common substring ... 33

5.2 Token-level measures ... 37
5.3 Soft measures .. 38

5.3.1 Simpson similarity .. 39
5.3.2 Jaccard similarity .. 40
5.3.3 Soft-Cosine similarity ... 40
5.3.4 Euclidean distance .. 41
5.3.5 Manhattan distance ... 42

6 Implementation ... 45

6.1 Tool description .. 45
6.2 Technology ... 49

7 Experiment .. 52

7.1 Datasets ... 52

v

7.2 Experimental setup ... 53
7.2.1 Optimal threshold for each string similarity measure 61
7.2.2 Quality of the measures .. 67
7.2.3 Correlation to physical distance and similarity measure .. 70

8 Conclusions ... 73

References ... 74

Appendices
Appendix 1: Checklist (7 pages)

1

1 Introduction

In the 21st Century, Location-Based Services (LBS) widely apply in computing sys-

tems and applications. Technological advances like the World Wide Web (WWB),

Global Positioning Systems (GPS), and mobile devices make location-based services

feasible (Brimicombe & Li, 2009). By incorporating satellite navigation data, cellular

networks, and mobile computing, location-based systems provide user's geographical

locations (A. Ahson & Ilyas, 2011). Location-based services, including Nokia Ovi

Service, YellowPages, and Google Maps, are usually based on databases that specifi-

cally georeferenced all records while saving throughout the database (Fränti,

Tabarcea, Kuittinen, & Hautamäki, 2010). Recently the research of location-based

services increasing in both the academic and commercial sectors (Tabarcea, 2015).

The United States defense department designed the Global Positioning System (GPS)

throughout the 1970s, and it had released publicly to users around the globe through-

out the 1980s (Schiller & Voisard, 2004). GPS is a satellite-based navigation and

positioning system mainly used for vehicle navigation, smartphones, and land sur-

veyors. Besides United States-based GPS, Russian GLONASS, European Galileo,

and Chinese BeiDou use to navigating moving objects (Nls, 2020). It provides quick,

accurate, and economical services to determine the position and velocity of any ob-

jects on the earth at any place with the help of signals received from satellites put in

earth-centered orbits (Xie, 2019). Users can conveniently acquire a large number of

trajectory data through moving objects to advance satellite positioning technologies.

By looking at various things, such as the position and navigations of moving objects,

time, places, contents, or social networks, LBS and GPS can determine each user's

context. Similarly, using LBS and GPS characteristics, we have developed a tool to

assist the Mopsi1 web searching tool for searching the user's query. The Mopsi is a

location-based application designed to collect, process, and represent location-based

1 http://cs.uef.fi/mopsi/

2

data as geo-tagged photos and trajectories (Tabarcea, 2015). The geo-tagging applies

to accurate global positioning data to a web page or photograph found online using

certain latitude and longitude information. It is the easiest way to incorporate local-

ized data into a website by inserting image and photo information (Romain, 2019).

1.1 Research background

In data or information retrieval from the web, each user has a different factual aspira-

tion (Khatter & Ahlawat, 2020) while seeking information on web pages. The web

search engine can extract the essential data or information from the web page based

on the search query. Effective syntactic comparable designs, image retrieval, vibrant

preparation, and assessment tools are needed to improve the syntactic search capabil-

ity (Tabarcea, 2015). In the same way, the traditional keyword-based syntactic search

algorithms can understand user's expectations compared to the semantic search algo-

rithm (Kaur, 2015). By taking the above advantage of keyword-based syntactic

search, we have decided to develop a tool that can assist the Mopsi for approximate

searching besides inclusion.

The current Mopsi website provides location-based and navigational services (Xie,

2019). The search system of Mopsi works based on inclusion, which means it will

show results for any search keywords that are exactly included with the Mopsi data

descriptions. The keyword is compared with the description of the Mopsi database's

photo to perform the matching and to produce the output. The maximum number of

results is predefined as 10, and a binary search is performed to find these results. The

ordering of the results has conducted based on the physical distance because the

similarity of searching keywords is the same for all results. We have shown an ex-

ample of the inclusion based Mopsi searching in Figure 1 below. Where the output

results for the keyword "ice swimming" is exactly included in the Mopsi database.

3

Figure 1. Inclusion based keyword searching in Mopsi (http://cs.uef.fi/mopsi/).

If a user typed a misspelled keyword (i.e., "ico swimming") while searching in the

Mopsi, what will happen? Previously we knew that the existing searching in Mopsi

only works for inclusion. The problem with inclusion is that it does not show any

results for misspelled keywords and misspelled data description. An example of a

misspelled scenario has shown in Figure 2 for the Mopsi web searching. Figure 2

shows that the existing Mopsi does not show any output results for inexact or

spelling mistakes. The spelling mistake is directly indicating the approximate or in-

exact searching.

Figure 2. Searching with misspelled keyword in Mopsi (http://cs.uef.fi/mopsi/).

Another scenario might be if the data contains some relevant information other than

syntactically similar keyword, inclusion based searching will fail to consider those

data as relevant. By analyzing the above limitations of existing Mopsi, we have

developed a web searching tool considering syntactic similarity measures to perform

an approximate search. Where, the syntactic similarity is a metric that measures the

4

grammatical structure of words, short text, and sentences (Harispe, Ranwez, Janaqi,

& Montmain, 2015).

Our tool can help users to find a nearby location, distance, and photos from their

smartphones or computers. Users can obtain or view the list of geo-tagged photos

based on their given address or location. This tool can calculate the physical distance

between the user and each data source from the Mopsi database to find the expected

geo-tagged photo or output. It can also calculate the syntactic similarities between

two strings. In custom search options, users can select multiple parameters such as

numbers of results, ordering, strings similarity measurement methods, string similari-

ty threshold, distance radius based on their preference.

1.2 MOPSI

We have done every experiment of our thesis work on the Mopsi website. This web-

site was established by the University of Eastern Finland's computing department's

speech and image processing group. Mopsi can provide location-based services such

as geo-tagged photos, location mining and data processing, filtering and retrieval of

GPS trajectories, user's activity, and moving object exposure from GPS trajectory

(Xie, 2019). It helps users find locations, distances, geo-tagging photos, and trajecto-

ries for walking, running, cycling, and skiing. It also offers for capturing, sorting,

presenting, and combining location-based data. The Mopsi website is convenient for

all operating systems of phone and computer (Tabarcea, 2015).

1.3 Structure of this thesis

This thesis is constructed of eight sections and prepared according to the following:

Section 1 is an introduction, which covers the research background, Mopsi, and

structure of this thesis; Section 2 describes searching technique that presents linear or

sequential search, binary or interval search, hybrid search, exact search, and inexact

search; Section 3 describes relevance factor, which consists of keyword relevance

and location relevance, Section 4 is about semantic similarity that covers corpus-

based measures and knowledge-based measures; Section 5 describes syntactic simi-

larity which covers character-level measures, token-level measures, and soft

5

measures; Section 6 is an implementation which includes tool description and tech-

nology; Section 7 is an experiment which interprets and describes datasets, libraries,

experimental setup, and results; Section 8 is a conclusion, which includes observa-

tions and future tasks.

6

2 Searching techniques

Searching is an important technique for processing large databases. It can use on

internal or external data structures or any list of values with their appropriate index-

ing. It is a process of finding the index of a given element in the array. Searching

considers success if the elements are found and unsuccessful if not found, but the

element is there, or it exists at the wrong index. It is also the algorithmic way of de-

tecting a specific item in a list of components (TutorialRide, 2017). The searching

can be a feature of seeking files, documents, records, data, folders, reports, websites,

weblinks, blog posts, and other information (ComputerHope, 2018). For example, the

University of Eastern Finland's search box is at the top of their page (see Figure 1).

Figure 3. The search box for the University of Eastern Finland webpage (uef.fi).

When users access the internet, they often use a search engine (CodeOrg, 2017). The

first thing to note is that the search engine is not actually traversing the World Wide

Web to run a query in real-time because there are over a billion websites on the in-

ternet, and hundreds more are created every single minute (Sheela & Jayakumar,

7

2019). Therefore, search engines are continuously running a program called spider

that crosses through web pages in advance to record the information and index in-

formation for later search. As an example, the crawler (spider) indexes many pages

that have to do with space travel or the planet Mars and then the search looks through

those indices. When you search about travel to Mars (see Figure 2), the search engine

already has what it needs to give you an answer in real-time.

Figure 4. The search engine came up with the results (CodeOrg, 2017).

When a user accessed a search engine, all relevant page's database lists use an algo-

rithm (Marsden, 2020) to organize the relevant pages hierarchically into a result list.

On the other hand, for a searching query, the search engine applies other essential

data to obtain results, along with the location (as 'pizza shop near me' or 'sunset

time's or 'travel time to Mars.'), language detection (as English, Finnish, French,

etc.), earlier search information (what users have previously looked for?), and ma-

chine (as the machine that the query has created).

The methods of information retrieval from stored datasets or documents are called

search techniques. A large number of data or information may store on the web in a

structured, semi-structured, or non-structured way (Mala & Lobiyal, 2016). So, it is

hard to find exact information from the search engine. To handle databases or the

internet appropriately, you can use multiple techniques for information search or

retrieval. It is also possible to precise search output by applying advanced search

8

options (as boolean logic, phrase search, etc.) (Erasmus, 2020). Linear search and

Binary search are the most popular algorithms for searching for an object in a data-

base (Jacob, Ashodariya, & Dhongade, 2017). The following search techniques are

mostly used for information retrieval: linear or sequential search, binary or interval

search, hybrid search (the combination of different search technique), exact search,

inexact search, semantic search, syntactic search or keywords based search, content-

based search, etc. Figure 3 is an example of an advanced (Boolean) search in IEEE

Xplore:

Figure 5. Advanced (boolean) search in IEEE Xplore (ieeexplore).

2.1 Linear or sequential search

In computing, various search algorithms apply with a dataset, and the linear search

(Jacob, Ashodariya, & Dhongade, 2017) is one of them. A linear search is a tech-

nique of seeking an item within a set of the dataset in computing. Each member of

the dataset sequentially examines before matching is identified or the entire dataset is

checked. But in linear search, every element of the dataset is examined separately

and sequentially, so it takes a huge time for a search. A Linear or sequential search

algorithm has given bellow:

Input: X is a shorted array and Y is a value to find in the array.

Output: True if Y is in X, else false.

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧	𝑙𝑖𝑛𝑒𝑎𝑟_𝑠𝑒𝑎𝑟𝑐ℎ(𝐥𝐢𝐬𝐭, 𝐯𝐚𝐥𝐮𝐞)

9

𝐟𝐨𝐫	𝑒𝑎𝑐ℎ	𝑖𝑡𝑒𝑚	𝐢𝐧	𝑡ℎ𝑒	𝑙𝑖𝑠𝑡

								𝐢𝐟	𝑚𝑎𝑡𝑐ℎ	𝑖𝑡𝑒𝑚 == 𝐯𝐚𝐥𝐮𝐞

													𝐫𝐞𝐭𝐮𝐫𝐧	𝑡ℎ𝑒	𝑖𝑡𝑒𝑚!𝑠	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

								𝐞𝐧𝐝	𝐢𝐟	

𝐞𝐧𝐝	𝐟𝐨𝐫

𝐞𝐧𝐝	𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞

The time complexity of linear search at worst case is 𝑂(𝑛), best-case is 𝑂(1), and

the average case is 𝑂 D"
#
E. On the other hand, the space complexity is 𝑂(𝑛). A linear

search example has shown in Figure 4 below, where an array X[i] =

{10, 54, 31, 75, 82, 60, 20,91, 44} and searched value		Y = 20. Now, we are going to

find value 20 is present in X or not.

Figure 6. Linear or sequential search.

2.2 Binary or interval search

In computing, various search algorithms apply with a dataset, and the binary or inter-

val search (Jacob, Ashodariya, & Dhongade, 2017) one of them [re-write sentence

because of repetition]. Binary search segments the arrays or datasets between seg-

ments and matches each segment's or dataset's central element to the searchable key

element. Binary or interval search algorithms need to store and order the dataset,

which consumes a long time. The time consuming happens once when the data is

inserted or need to update. On the other hand, it is beneficial to find the item

in	𝑂(log	(𝑛)) time instead of	𝑂(𝑛) time. A binary search algorithm has given bel-

low:

Input: X is a shorted array and Y is a value to find in the array.

Output: True if Y is in X, else false.

10

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧	𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑒𝑎𝑟𝑐ℎ(𝐥𝐢𝐬𝐭, 𝐯𝐚𝐥𝐮𝐞)

		𝑚𝑖𝑑 = 𝑋. 𝑠𝑖𝑧𝑒/2

𝐢𝐟	𝑋. 𝑠𝑖𝑧𝑒 == 0 then 𝐫𝐞𝐭𝐮𝐫𝐧	𝑓𝑎𝑙𝑠𝑒

𝐢𝐟	𝑋. 𝑠𝑖𝑧𝑒 == 1 then 𝐫𝐞𝐭𝐮𝐫𝐧		𝑋[0] == 𝑌

𝐢𝐟	𝑋[𝑚𝑖𝑑] == 𝑌 then 𝐫𝐞𝐭𝐮𝐫𝐧	𝑡𝑟𝑢𝑒

𝐢𝐟	𝑋[𝑚𝑖𝑑] < 𝑌 then	𝐫𝐞𝐭𝐮𝐫𝐧	𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑒𝑎𝑟𝑐ℎ(𝑋[𝑚𝑖𝑑 + 1…𝑒𝑛𝑑], 𝑌)

𝐢𝐟	𝑋[𝑚𝑖𝑑] > 𝑌then	𝐫𝐞𝐭𝐮𝐫𝐧	𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑒𝑎𝑟𝑐ℎ(𝑋[0…𝑚𝑖𝑑 − 1], 𝑌)

The time complexity of binary search at worst case is 𝑂(log 𝑛), best-case is 𝑂(1),

and the average case is 𝑂(log 𝑛). On the other hand, space complexity is 𝑂(1). A

binary search example has shown in Figure 5 below, where an array X[i] =

{3, 4, 8, 13, 17, 20, 30, 45, 52,60}, and searched value		Y = 20. Now, we are going to

find value 20 is present in X or not.

Figure 7. Binary or interval search.

11

2.3 Hybrid search

A hybrid search is a combination (Jacob, Ashodariya, & Dhongade, 2017) of the

linear and binary search algorithms, which carried out both algorithm's advantages.

This algorithm takes less time to the unsorted array or dataset compared with the

linear search. A hybrid search algorithm has given bellow:

Input: Array X, lower index low, higher index high, and value to be searched Y.

Output: returns index of the element if the element is present else if the element is

not present then it returns -1.

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧	ℎ𝑦𝑏𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ(𝐗, 𝐥𝐨𝐰, 𝐡𝐢𝐠𝐡, 𝐘)

 𝑚𝑖𝑑 = (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2

𝐢𝐟	𝑋[𝑙𝑜𝑤] = 𝑌	𝑡ℎ𝑒𝑛	𝑟𝑒𝑡𝑢𝑟𝑛	𝑙𝑜𝑤

𝐞𝐥𝐬𝐞	𝐢𝐟	𝑋[ℎ𝑖𝑔ℎ] = 𝑌	𝑡ℎ𝑒𝑛	𝑟𝑒𝑡𝑢𝑛	ℎ𝑖𝑔ℎ	

𝐞𝐥𝐬𝐞	𝐢𝐟	𝑋[𝑚𝑖𝑑] = 𝑌	𝑡ℎ𝑒𝑛	𝑟𝑒𝑡𝑢𝑛	𝑚𝑖𝑑

𝐞𝐥𝐬𝐞	𝐢𝐟	𝑙𝑜𝑤 ≥ ℎ𝑖𝑔ℎ − 2	𝑡ℎ𝑒𝑛	𝑟𝑒𝑡𝑢𝑟𝑛 − 1	

𝐞𝐥𝐬𝐞	𝑝 = ℎ𝑦𝑏𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ(𝑋, 𝑙𝑜𝑤 + 1,𝑚𝑖𝑑 − 1, 𝑌)

𝐢𝐟	𝑝 = −1

					𝑝 = ℎ𝑦𝑏𝑟𝑖𝑑_𝑠𝑒𝑎𝑟𝑐ℎ(𝑚𝑖𝑑 + 1, ℎ𝑖𝑔ℎ − 1, 𝑌)

𝐫𝐞𝐭𝐮𝐫𝐧		𝑝

The time complexity of hybrid search at worst case is 𝑂(𝑛), best-case is 𝑂(1), and

the average case is 𝑂(log# 𝑛). On the other hand, space complexity is constant be-

cause it only requires memory to store an array. A hybrid search example has shown

in Figure 6 below, where an array X[i] = {25, 2, 37, 40, 5, 60, 7, 80} and searched

value	Y = 60. Now, we are going to find value 60 is present in X or not.

12

Figure 8. Hybrid search.

2.4 Exact search

Exact searching or matching is a highly developed search function that can be useful

if you only have to see the database that matches your quest (Kehrer, 2018). An exact

search or match keyword shows the correct keyword exactly represents search terms,

relevant keywords, or web address. You can present your advertisement precisely to

clients who are looking for their exact keywords or similar variants. In exact match-

ing method (Hakak, 2019), the given text T detects from a specific sequence or pat-

tern P. The length of both sequences of T and P must be the same where the text

characters T are compared with the pattern of window characters P. There are two

types of exact matching algorithms: a single pattern-matching algorithm and multiple

patterns matching algorithms. Single pattern matching algorithm allows one se-

quence as input and searches it from the target databases. On the other hand, the mul-

tiple patterns matching algorithms allow one input and search it multiple ways from

target databases. The character-based algorithm is a single pattern-matching algo-

rithm that matches characters to determine string matching problems. There are sev-

eral types of character-based matching algorithms, and the brute force pattern match-

ing algorithm is one of them.

13

The Brute force algorithm is the most straightforward algorithm (Abdeen, 2019) to

apply for pattern searching. For pattern and text, it does not any step for training and

testing. It checks for all the places within 0 and n-m in the text. In this algorithm, the

searching performs by character between the pattern and a text. The time complexity

of this algorithm is	𝑂(𝑛𝑚). If the pattern is P[0. .m − 1] and text is	T[0. . n − 1],

then the brute force pattern matching algorithm (Janani & Vijayarani, 2006) will be:

𝐈𝐧𝐩𝐮𝐭: Strings	T	with	n	character	and	P	with	m	character.
𝐎𝐮𝐭𝐩𝐮𝐭: String	insex	of	the	first	substring	of	T	matching	P,	
																	or	an	indication	that	P	is	not	a	substring	of	T.
𝐟𝐨𝐫	𝑖 ≔ 0	𝑡𝑜	𝑛 − 𝑚	𝑑𝑜	
								{	𝑗 ≔ 0
												𝑤ℎ𝑖𝑙𝑒	(𝑗 < 𝑚	𝑎𝑛𝑑	𝑇[𝑖 + 𝑗] = 𝑃[𝑗])𝑑𝑜	𝑗 ≔ 𝑗 + 1
												𝑖𝑓	𝑗 = 𝑚	𝑡ℎ𝑒𝑛	𝑟𝑒𝑡𝑢𝑟𝑛	𝑖
								}
𝒓𝒆𝒕𝒖𝒓𝒏		"𝑡ℎ𝑒𝑟𝑒	𝑖𝑠	𝑛𝑜	𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔	𝑜𝑓	𝑇	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	𝑃. "

If a logical binary outcome gives an exact match: 1 = exactly the same string, 0 = no

common string. This logical binary outcome is the standard way to analyze strings

while collecting information (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). An

exact searching or matching example has shown in Figure 7 below.

Figure 9. Exact matching (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019).

14

2.5 Inexact search

The measurements or determinations of two entities structural relationships have

some random noise, leading to the study of the approximate or inexact string match-

ing (Shapiro & Haralick, 1981). In computing, the method of identifying a string

that roughly matches a pattern is called inexact or approximate or fuzzy string match-

ing (Navarro, Baeza-Yeats, Sutinen, & Tarhio, 2001). It is the most significant prob-

lem of similarity calculation, data processing, computer vision, image processing,

and many computing branches (Benza-Yeats & Ganzalo, 1998). Close variants in-

clude keyword queries, regardless of spelling or syntax similarities between the ques-

tion and the keyword with the same meaning as the same keywords (Manage-ads,

2020). When anyone looks for your keyword or similar-ups of your keyword, it will

reveal your advertisement. Similar variants can contain (Manage-ads, 2020): incor-

rect spelling of a word, types of those are single or plural, originate from (as roof and

roofing), shortcut keys (as IEEE, UEF, and CSE), a defining style of speech of a lan-

guage, similar meanings of expressions (as ''pizza shops'' and ''shops pizza''), includ-

ing or eliminating words (as in, to, for, but, a, an, the) from function (as ''pizza

shops'' and ''shops of pizza''), antonyms, synonyms, and phrasing.

Usually, the query of inexact string matching is classified into two sub-problems:

looking substring into the main string and looking dictionary string into the pattern

roughly. Two main levels can apply for precise searching for approximate string

matching (Kumar, Bibhu, Islam, & Bhardwaj, 2010) as string similarity measures

and phonetic coding.

String similarity measures: It examines the numerical calculation of the number of

characters matched between two strings or the number of actions required to change

one string to another string. Those examinations are usually associated with edit dis-

tances. Usually, approximate string measures can apply to classify a series by a dic-

tionary concerning a query string. These measures are typically considered suitable

for spelling correction, with around most random mistakes being a single insertion,

deletion, or swap.

15

Phonetic coding: In similarity measures, there is considering each string has a pho-

netic code. If two strings have the same code, then they are considered similar oth-

erwise dissimilar. Phonetic coding is relevant to individual name matching because it

can have a unique writing format and a similar sound.

An example of approximate string searching has bellowed:

Figure 10. Approximate string matching (https://en.wikipedia.org).

16

3 Relevance factor

Today's consumers have strong aspirations, and the query's relevance factor

(Blandineau, 2020) is vital to the customer experience. The importance of the rele-

vance factor of search is the tests of precision of the search query concerning the

search outcome. It is the optimization of the search query that applies to measures

that aim to enhance search outcomes. There are various steps to fine-tune the search

relevance factor to order the search outcome. To fine-tune the search results, search

keywords, user location, distance, textual and spelling correctness, recency of data,

quality of the content, and popularity can be good relevance factors. A combination

of those factors helps users to find the best search results. We have explained some

scenarios below based on keyword, location, distance, syntactic, and semantic simi-

larity to understand the impacts and importance of relevance searching factors.

For example, suppose a user searches for a "car repair shop" from any city center. In

that case, the results will more likely be the nearest car repair shops from the user-

specified location or the user's current location. Suppose the results show some car

repair shops which are 100 kilometers away. In that case, these are not the expected

results in general, especially as the user stands in a city center and there should be

other shops closer than the results. But if the user is in some remote/rural area, and

there are no car repair shops within 100 kilometers radius from the user's location. In

that case, this should be the best result considering the situation. In another case,

some results may include "grocery shop" instead of "car repair shop" because both

have the common word "shop," but these are not expected results. Here, the keyword

is one major factor to determine the results because the user only needs to find the

"car" repair shop, not any "grocery" shops even though it is nearby. Here, both the

semantic and syntactic similarity between the keywords and the results strings would

work for the keyword matching.

If someone searches for "pizza," and there is no pizza place closer to them, the user

can get results for the nearest burger place. In that case, semantic similarity for string

matching would be a better option to solve this issue.

17

From the above examples, we can determine that every navigational search engine

must contain both keyword and location as independent relevance factors to find the

most matching output on searching. In this thesis, we will discuss and define both

relevant factors for analyzing their influences on searching. We have shown some of

the relevant factors in Figure 11.

Figure 11. Relevance factors.

3.1 Keyword relevance

Keywords are search statements that customers require to type on a search engine to

look for a product or service (Kapoor, 2019). To determine the relevance between the

search queries and the output results, keywords are most important (Kent, 2019). It

will not perform at all, except the web page is essential to the search strings. It helps

the web page to rank more relevant content. We have explained some keyword-based

searching scenario below.

The scenario might be, a user enters the keyword as "resturant" instead of "restau-

rant" and found no result because of a typing mistake while entering the keyword.

On the other hand, there might be some data in the database which contains a typo

(misspelled title), so in that case, even if the user put the correct keyword, still some

true positive result might be missing. The syntactic string similarity measurement

can be useful for keyword-based matching or searching to overcome those above

limitations. Now, a syntactic keyword-based searching scenario has shown in Figure

12.a.

18

a

b

Figure 12. Keyword and location based searching (http://cs.uef.fi/mopsi/).

3.2 Location relevance

Location relevance is considered to determine the physical distance between the us-

er's defined location and the location of the targeted place. From the user's current

location to the targeted place can define a distance. A location a location-based

searching scenario has discussed below.

In our developed tool, users can choose the distance radius to filter their results. For

example, the query can be something like, "find swimming within 150 kilometers

from user's current location". Here, "swimming" is the keyword, and "150km" is the

distance radius. If the user does not specify the distance radius, then the results may

contain data from all over the world. There is a default value of distance, or a dis-

tance can be set by default in the main search. We have shown a location-based

searching scenario in Figure 12.b.

We have ranked both factors from the discussion of keyword and location relevance,

which significantly influence the searching process.

1. For keywords-based ranking, the output results will be categorized according

to the search terms or keywords. If two search output have the same keywords

Swimming Search
ming

Location: Simonkatu 7, Helsinki

19

(similarly will be one), then the output results will be categorized according to

the nearest physical distance.

2. For location-based ranking, the output results will be only categorized accord-

ing to the nearest physical distance, not keywords.

Besides keyword and location, we have also analyzed some other factors such as,

recency of data, quality of the content, popularity, and social network. Those factors

are also essential to determine search results. A short description of those relevant

factors has given below.

Recency of data: The recency of data or updated data mainly important for news or

trending topic search. For example, if someone searches for a query as "today's

events near me," the date of the event must be the current date. Another example, if

someone searches for "weather information" or "stock price," which means they want

to know the most updated information on those topics.

Quality of the content: Quality of the content helps users to find the most relevant

searching results based on provided information with data or user's ratings. For ex-

ample, when we search for a place to visit or landmarks, places with high user ratings

or recommendations will be the top results.

Popularity: Popularity or prominence refers to how well known the searching quar-

ries. Some places are more prominent in the offline world, and search results reflect

this in the local ranking. For example, famous museums, landmark hotels, or well-

known store brands can be prominent in local search results.

Social network: Social networks can also influence search results. For example, if a

member from a group of people (as classmates) looking for some popular thing, oth-

er group members can be influenced by that member to looking for the same thing.

Based on the type and structure of the Mopsi database, we can conclude that recency

of data, quality of the content, popularity, social networks are not that essential fac-

tors for Mopsi data searching. For developing our tool, we have given preference to

keyword and location as our relevance factor.

20

4 Semantic similarity

The World Wide Web grows every day, making it hard to obtain the necessary in-

formation. One efficient aspect which can get information from the web is search

engines. The discovery by search engines allows users to discover information on the

web. But, the precise information from this vast volume of data on the web is no

simple job (Hussan, 2020). Search engines are essentially used for the extraction and

collection of a specific type of web content. Users can obtain the required data by

using the search engine based on their application. The data created by the search

engine may be documents, script, message, file, letter, picture, article, audio files,

and video files (Sheela & Jayakumar, 2019). However, all created data types are

stored as a binary digit.

People may look for a title, location, image, name, and other brand recognition in

several web services using keywords that include different orthography, combina-

tions, and various forms comparable, but not the same term as the required individu-

al. Within two titles, it should be possible to decide if the markers reflect the same

individual through an appropriate test of similarities (Gali, Mariescu-Istodor, &

Fränti, 2016). A series of similarities is expected in biotechnology, microbiology,

image analysis, data processing, neural network, machine learning, speech recogni-

tion, image recognition, big data analysis, quantum computing, robotics, virtual reali-

ty, and data extraction. For example, in data extraction, a similarity measure is used

to extract the related data to a user's request (Gali, Mariescu-Istodor, Hostettler, &

Fränti, 2019).

In similarity measure, the title name of information is essential to extract the related

data. A title is a simple summary of a post, item, documents, picture, object, or web-

site characterizing it from other entities (Gali, Mariescu-Istodor, & Fränti, 2016).

There are different numbers of methods that have been developed to extract the simi-

larity between the titles. The major ones are semantic and syntactic similarities. Se-

mantic similarity is a measurement specified over various data sources or concepts

that exclude grammatical similarities through the idea of distinction among objects

(Harispe, Ranwez, Janaqi, & Montmain, 2015). Semantic web technologies can em-

21

phasize through information instead of sentence structure, allowing search engines to

determine the significance of keywords rather than the keyword sentence structure.

Therefore, the data's reliability obtained from a search result will contribute to an

efficient role in traditional search engines (Hussan, 2020).

The Semantic Search Engines are the smart engines that query for keywords accord-

ing to their relevance (Hussan, 2020). The semantic web provides a concise and rele-

vant result because it is capable of meaningful analysis of the query (Sheela &

Jayakumar, 2019). Furthermore, they ensure the findings relevant to the context of

the keywords sought. They use conceptual frameworks to obtain significant findings

and maintain a high level of precision results, and link with associated data (El-

gayar, Mekky, & Atwan, 2015). They also differentiate between trustworthy data

sources rather than the single data source connections are different forms of linked

references (Hussan, 2020). The following requirements should be taken into account

by the semantic search engine: user interface, productivity, efficiency, performance,

quality, reliability, flexibility, time, method classification, usability, and economic

efficiency (El-gayar, Mekky, & Atwan, 2015). Different types of semantic search

engines exist, such as Kosmix, Hakia, Congition, DuckDuckGo, Lexxe, and Swoogle

(Sheela & Jayakumar, 2019). For example, the semantic similarity between two

strings "child" and "kid" will be 100% due to the same meaning. On the other hand,

those stings are syntactically 40% similar due to common characters "i" and "d". Ex-

isting semantic similarity measures can be categorized into two main categories as

text semantic similarity and similarity of words (Mihalcea, Corley, & Strapparava,

2006; Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019).

Text semantic similarity: Estimates of semantic similarities generally identify

(Mihalcea, Corley, & Strapparava, 2006) among words or concepts and far less

among two or more texts. The importance of word-to-word similitudes is apparently

due to information that expresses connections among terms and ideas and the differ-

ent testing grounds that permit their assessment. Furthermore, the theorem of a text-

to-text similarity measure associated with a word-based similitude measure may not

be easy. Subsequently, most studies of text similarities have widely thought imple-

mentations of the general framework. For any two input texts, we want to determine

their semantic level.

22

𝑆𝑖𝑚	(𝑇1, 𝑇1) =
1
2,
∑ (𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑇2) ∗ 𝑖𝑑𝑓(𝑤))!∈{$%}

∑ ∗ 𝑖𝑑𝑓(𝑤)!∈{$%}
+
∑ (𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑇1) ∗ 𝑖𝑑𝑓(𝑤))!∈{$'}

∑ ∗ 𝑖𝑑𝑓(𝑤)!∈{$'}
5

Where T1=Input text 1, T2=Input text 2, Similarity score 0=No semantic similarity

between two text, and similarity score 1=Identical semantic similarity between two

texts.

Similarity of words: It measures similarities or connections or the association of

words. You can see the similarity and distinctions between two words when you

compare them. In various literatures, there is a relatively high number of word-to-

word similarity metrics (Mihalcea, Corley, & Strapparava, 2006). The similarity of a

word can be categorized into two main categories as corpus-based measures and

knowledge-based measures (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019;

Mihalcea, Corley, & Strapparava, 2006).

A semantic similarity measures algorithm has given bellow (Benharzallah, Kazar, &

Caplat, 2011):

𝐑𝐞𝐪𝐮𝐢𝐫𝐞:	𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦	𝑂$	𝑎𝑛𝑑	𝑂#	, 𝑒1 ∈ 𝑂$, 𝑒2 ∈ 𝑂#	

Calculation	SimN	of	e1, e2,

Calculation	SimC	of	e1, e2,	

Calculation	SimV	of	e1, e2,

Calculation	SimR	of	e1, e2,

𝑆𝑖𝑚𝑇𝑒𝑟	(𝑒1, 𝑒2) = 𝛼$ × 𝑆𝑖𝑚𝑁 + 𝛼# × 𝑆𝑖𝑚𝐶

𝑆𝑖𝑚𝑆𝑡𝑟𝑢𝑐	(𝑒1, 𝑒2) ← 𝛽$ × 𝑆𝑖𝑚𝑉 + 𝛽# × 𝑆𝑖𝑚𝑅

𝑆𝑖𝑚(𝑒1, 𝑒2) ← 𝛼 × 𝑆𝑖𝑚𝑇𝑒𝑟 + 𝛽 × 𝑆𝑖𝑚𝑆𝑡𝑟𝑢𝑐

𝐄𝐧𝐝

Where, e1,e2=Two elements, Organizational unit=α ∈ [0,1], β ∈ [0,1], 𝛼$ ∈

[0,1], 𝛽$ ∈ [0,1]𝛼# ∈ [0,1], 	𝛽# ∈ [0,1], SimTer=Terminological similarity, Sim-

Struc=Structural similarity, SimN=Name similarity, SimC=Comments similarity,

SimV=Vicinity similarity (surrounding area), SimR=Roles similarity.

23

4.1 Corpus based measures

Corpus-based string similarity measures the semantic similarity between strings and

leads to determine the level of similarity throughout terms with data from extensive

corpora. We have analyzed (Mihalcea, Corley, & Strapparava, 2006; Gali, Mariescu-

Istodor, Hostettler, & Fränti, 2019) three corpus-based metrics, namely: Latent se-

mantic analysis (LSA) metrics, pairwise mutual information (PMI) metrics, and

Word2Vec metrics.

Latent semantic analysis (LSA) metrics: LSA analysis is artificial intelligence,

data, language, machine learning, and speech recognition processing (Landauer,

Foltz, & Laham, 1998) mathematical or statistical technique for analyzing connec-

tions among various documents and their features through multiple aspects of the

documents and terms. It assumes that close-to-meaning words will appear in related

text parts. It does not allow the use of humanly built dictionaries, information bases,

semantic databases, grammars, syntax compilers, microstructure, etc. A word para-

graph matrix generates wherever each meaning shows how frequently the word in

this subparagraph transpires. The singular value decomposition applies for seeking a

reduced dimension of the matrix (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019).

The similarity of words is determined by taking the cosine angle of two vectors that

match the comparable words (Mihalcea, Corley, & Strapparava, 2006). It also uses

written data as an input, divided into relevant sequences or examples, such as phrases

or sections, and established as a single element sequence (Landauer, Foltz, & Laham,

An introduction to latent semantic analysis, 1998). LSA can be construed in two

ways: one is calculating the contextual use substitution features of terms for broader

documents, and the second one is the development and application of skills.

Pointwise mutual information (PMI) metrics: PMI is a measurement used in theo-

ry and statistics of information (Church & Hanks, 1990). In pointwise mutual infor-

mation, the mutual information consists of the average of each event that occurs.

Pointwise mutual information is obtained by incorporating data by information re-

trieval (PMI-IR) to determine the semantic similarity of words (Mihalcea, Corley, &

Strapparava, 2006). The equation below describes the principle of PMI-IR similarity

measures.

24

𝑃𝑀𝐼 − 𝐼𝑅(𝑤1,𝑤2) = 𝑙𝑜𝑔#
𝑝(𝑤1,𝑤2)

p(𝑤1) ∗ 𝑝(𝑤2)

Where, W1=Input word 1, B=Input word 2, and 𝑝(𝑤&) =
'&()(+()
-./0&1.)

Word2Vec metrics: Word2vec is a mining and natural language analysis method.

This technique requires a neural network and computational framework to recognize

terms from a broad corpus of texts. After training, this model can identify terms that

are synonyms or propose other words for an incomplete expression. Although this

name suggests, word2vec provides each distinguishable word with a specific number

set named a vector. The vectors are designed to signify the degree of semantic simi-

larity within the terms defined by this kind of vectors throughout the basic mathemat-

ical framework (cosine similarity) (Khatter & Ahlawat, 2020). Usually, the training

of the Word2vec model classifies (GoogleCodeArchive, 2016) into a two-way ap-

proach. One of them is hierarchical softmax, which uses a Huffman tree to minimize

the computation to determine the conditional log-likelihood. It is also more effective

for uncommon words. Another negative sampling approach: This approach maxim-

izes the problem by reducing the log-likelihood of sampled negative cases, which is

more effective for frequent word and low dimensional vectors.

4.2 Knowledge-based measures

A variety of measures have been established to determine the similarity between

words, texts, or short sentences, and the knowledge-based measure is one of them. It

measures quantifying the degree to which two words or strings are linked semantical-

ly through handling data obtained from semantic webs (Mihalcea, Corley, &

Strapparava, 2006; Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). We have ana-

lyzed one knowledge-based semantic network, namely: WordNet. The WordNet is a

conventional lexicographic dictionary of semantically connections between words in

advanced computing (Miller, 1995). WordNet relates words in semantic connections,

including synonyms, hyponyms, and meronyms (Miller, 1995; WordNets in the

World, 2010). It is a lexicographic web dataset for data management functions

(Miller, 1995). The synonyms divide into concise explanations and instances of use.

25

Usually, words are organized into sets of synonyms, hyponyms, and meronyms for-

mate, and each represents a lexicographic idea (Miller, 1995). The semantic relations

in WordNet has bellowed.

Table 1. Semantic relations in WordNet.

Semantic relation Examples
Noun Verb Adjective Adverb

Synonymy (similar
meaning)

bed, couch,
berth, the sack,
kip

go to bed, retire,
call it a day,
sleep

Hyponymy (subor-
dinate meaning)

spoon, cutty,
spatula, ladle

spoon

Meronymy (part) face, mouth,
mug, courage,
surface, top

look out on, look
toward, open out
over, overlook

Antonymy (Opposi-
te)

Good, welfare,
benefit, bles-
sing

 Excellent,
strong,
helpful,
Honest

To advan-
tage, well

26

5 Syntactic similarity

The syntactic similarity measures the grammatical structure of words, short text, and

sentences (Harispe, Ranwez, Janaqi, & Montmain, 2015). It defines how similar two

data elements are without considering the type of the language or the meaning of the

content. Measuring syntactic similarity between words, short text in big text data,

statistical analysis, research process, statistical analysis, machine learning, language

processing, and data extraction plays an important role (Kaur, 2015).

Syntactic search engines signify a valuable and essential approach to gather data

from the web. It cannot interpret the user question interpretation, and therefore the

output does not provide a particular structure. There are numerous researches, stud-

ies, and work on the technology of syntactic search engines. The extracted findings

are always dependent on the keyword match concerning the Syntactic web. Several

web page's query results do not even have significance or meaning against the key-

word match (Sheela & Jayakumar, 2019). Besides semantic search engines, syntactic

search engines also should consider the following criteria: user interface, productivi-

ty, efficiency, performance, quality, reliability, flexibility, time, method classifica-

tion, usability, and economic efficiency (El-gayar, Mekky, & Atwan, 2015).

Different types of existing syntactic search engines are Google, Yahoo, and Ask

(Sheela & Jayakumar, 2019). For example, two strings, "Best" and "Rest," are given.

Now, the syntactic similarity between two strings is 75%. Both strings are syntacti-

cally similar because "Best" and "Rest" have three matching characters; "e," "s," and

"t." On the other hand, semantically 0% similar because "Best" and "Rest" has not

the same meaning. There are two main categories of syntactic similarity measures as

character-level measures and token-level measures. Some measurement techniques

combine these two techniques called soft measures (Gali, Mariescu-Istodor,

Hostettler, & Fränti, 2019).

The syntactic similarity measurements are case-sensitive, and all the not relevant

characters are not taken into account. This similarity measurement approach com-

bines the Longest Common Substring (LCS) and 2-grm algorithms.	A syntactic simi-

27

larity measures algorithm has given below (Kaur, 2015; Taib, Abbou, & Alam,

2008).	

𝐈𝐧𝐩𝐮𝐭:	Two	string	A	and	B

𝐎𝐮𝐭𝐩𝐮𝐭:	String	matching	value	between	0	to	1	

Case	is	ignored	

L1 = A	. getAllPairs()																																																								//List	of	substring	L1	

L2 = B	. getAllPairs()																																																								//List	of	substring	L2		

same = L1 ∩ L2																																											//Intersection	of	intended	metric

all = L1 ∪ L2																																													//Disjoint	union	of	intended	metric

X = 2 ∗ same. length/all. length()																																	//2 − gram	algorithm

Y = 2 ∗ LCS(A, B)/(A. length() + B. length())																						//LCS	algorithm

return	Max(X, Y)																										//Return	maximum	string	matching	value

Where, A, B=Two strings, L1, L2=Length of two strings, return 0= In an exact

match, and return 1= Exact match.

5.1 Character-level measures

In character-level measures, the string can define as a series of characters (Gali,

Mariescu-Istodor, Hostettler, & Fränti, 2019) that interprets as a sequence. Measures

of character-level apply whether the strings are words, short texts, phrases, expres-

sions, or short sentences. Character-level measures apply in words, short texts,

phrases, expressions, or short sentences to deal with spelling mistakes, typography

mistakes, and structural variations. There are three different types of character-level

measures, namely: exact match, transformation measures, and longest common sub-

string (LCS) measures.

Exact match: The matching feature is highly optimized and can be beneficial if you

only need to see the databases that match your search (Kehrer, 2018). An exact

matching keyword exhibits the same matching keyword according to search terms

(Manage-ads, 2020). A logical binary outcome gives you an exact match: 1 = exactly

the same string, 0 = no common string. This logical binary outcome is the standard

way to analyze strings while collecting information (Gali, Mariescu-Istodor,

Hostettler, & Fränti, 2019).

28

Transformation measures: It assesses two strings by calculating the number of pro-

cesses required to transform one string to the next (Gali, Mariescu-Istodor,

Hostettler, & Fränti, 2019) and obtain it in numerous ways. The following edit dis-

tance functions apply to edit operations based on a number, type, and cost. These are

Levenshtein distance (Levenshtein, 1966), Damerau-Levenshtein distance (Damerau,

1964), Needleman-Wunsch distance (Needleman & Wunsch, 1970), Smith-

Waterman distance (Smith & Waterman, 1981), Smith Waterman-Gotoh distance

(Gotoh, 1982), Hamming distance (Hamming, 1950), Jaro distance (Jaro, 1989), and

Jaro-Winkler distance (Winkler, 1990).

Longest common substring (LCS) measures: The description of this LCS

(Friedman & Sideli, 1992) measures distance represents the fact that it determines

the longest combination of characters between the two strings by following letter's

order (Navarro G. , 2001). LCS obtains the most lengthened strings, which is a sub-

string of two or more strings. It has been developed for applying to medical record

matching in a hospital environment and text resuming. However, short text compari-

son may apply (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019).

5.1.1 Levenshtein distance

The Levenshtein distance is a metric that determines the difference or similarities of

two strings or sequences (Apostolico & Galill, 1997). A minimum number of opera-

tions (edit distance) are needed to transform one string into another string (Gali,

Mariescu-Istodor, & Fränti, 2016; Navarro G. , 2001). To measure the Levenshtein

distance between string A and B, it applies the insertion, deletion, or substitution of a

single character (Apostolico & Galill, 1997; Malakasiotis & Androutsopoulos, 2007).

The equation below (Levenshtein, 1966) describes the principle of Levenshtein simi-

larity measures.

𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝐴, 𝐵) = 1 −
𝑒𝑑𝑖𝑡(𝐴, 𝐵)

max	(|𝐴|, |𝐵|)

Where, A=Input String 1, B=Input String 2, and edit (A, B)=Operational cost of two

strings. For example, the Levenshtein distance between two strings A = "zokin", and

29

string B = "rocking" is 4. But the following three changes are needed for edit opera-

tion:

1. 𝐳okin → 𝐫okin	(substitution	of	"z"	by	"k")

2. rokin → ro𝐜kin	(Insertion	of	"c")	

3. rockin → rokin𝐠	(Insertion	of	"g"	at	the	end)
	

5.1.2 Damerau-Levenshtein distance

Damerau–Levenshtein is a metric that determines the edit distance of two-character

or sequences (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). It allows the

swapping of two adjacent characters (XY ↔ YX) at a minimum cost. To measure the

Damerau-Levenshtein distance between sequences of characters, it applies the inser-

tion, deletion, or substitution of a single character or transposition of two adjacent

characters. The equation below (Damerau, 1964) describes the principle of Damerau-

Levenshtein similarity measures.

𝐷𝑎𝑚𝑒𝑟𝑎𝑢 − 𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝐴, 𝐵) = 1 −
𝑒𝑑𝑖𝑡(𝐴, 𝐵)

max	(|𝐴|, |𝐵|)

Where A=Input String 1, B=Input String 2, and edit (A, B)=Operational cost of two

strings. For example, the Damerau-Levenshtein distance between two strings, "OP"

and "POC" is 2. But the following three changes are needed for edit operation:

1. 𝐎𝐏 → P𝐎	(Transposition	of	"OP"	to"PO")		

2. PO → PO𝐂	(Insertion	of	"C"	at	the	end)

5.1.3 Needleman–Wunsch algorithm

In 1970, Needleman and Wunsch presented an algorithm to measure the optimum

global protein or nucleotide or biological sequence standardization (Gali, Mariescu-

Istodor, Hostettler, & Fränti, 2019). Needleman-Wunsch applies the cost of the addi-

tion and deletion of two modules and one for replacement. Usually, this type of edit

distance applies to calculate syntactical mistakes (as "pizza" shop and "pizzashop"),

not abbreviated mistakes (as Tangail Cricket Academy and Tangail CA). The equa-

30

tion below (Needleman & Wunsch, 1970) describes the principle of Needleman-

Wunsch similarity measures.

𝑁𝑒𝑒𝑑𝑙𝑒𝑚𝑎𝑛 −𝑊𝑢𝑛𝑠𝑐ℎ	(𝐴, 𝐵) = 1 −
𝑒𝑑𝑖𝑡(𝐴, 𝐵)

2 × max	(|𝐴|, |𝐵|)

Where A=Input String 1, B=Input String 2, and edit (A, B)=Operational cost of two

strings. As an example, globally aligned sequences of two strings, "ATGCT" and

"AGCT," according to Needleman-Wunsch has shown in Figure 12. For this algo-

rithm match=1, mismatch= -1, and gap = -2.

Figure 13. Needleman-Wunsch sequence matching.

5.1.4 Smith–Waterman algorithm

In 1981 Smith-Waterman presented an algorithm to measure the optimum local

alignment of sequences (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). It calcu-

lates a similar position for two sequences rather than the whole sequence. Smith-

Waterman applies the least cost for mismatch at the beginning and middle of the se-

quences. The equation below (Smith & Waterman, 1981) describes the principle of

Smith-Waterman similarity measures.

𝑆𝑚𝑖𝑡ℎ −𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑛	(𝐴, 𝐵) =
𝑒𝑑𝑖𝑡(𝐴, 𝐵)
min(|𝐴|, |𝐵|)

Where, A=Input String 1, B=Input String 2, edit (A, B)=Operational cost of two

strings. As an example, locally aligned sequences of two strings, "ATGCT" and

"AGCT," according to Smith-Waterman has shown in Figure 13. For this algorithm

match=1, mismatch= -1, gap = -2, and negative value= 0.

31

Figure 14. Smith-Waterman sequence matching.

5.1.5 Smith–Waterman–Gotoh algorithm

In 1982, Smith-Waterman-Gotoh proposed an algorithm (Gali, Mariescu-Istodor,

Hostettler, & Fränti, 2019) to improve the optimal local sequence alignment. It per-

mits the affinity of the distance to facilitate local sequence synchronization. It intro-

duced an open gap and expanded gap costs for inclusion. It gives a high score to sub-

stitute identical characters then incompatible characters. The equation below (Gotoh,

1982) describes the principle of Smith-Waterman-Gotoh similarity measures.

𝑆𝑚𝑖𝑡ℎ −𝑊𝑎𝑡𝑒𝑟𝑚𝑎𝑛 − 𝐺𝑜𝑡𝑜ℎ	(𝐴, 𝐵) =
𝑒𝑑𝑖𝑡(𝐴, 𝐵)
min(|𝐴|, |𝐵|)

Where, A=Input String 1, B=Input String 2, edit (A, B) =Operational cost of two

strings. For example, globally aligned biological or DNA sequences of two strings,

"TGTTACGG" and "GGTTGACTA," according to Smith-Waterman-Gotoh has

shown in Figure 14. For this algorithm match=1, mismatch= -1, negative value=0,

gap opening=5, gap extension=1.

Figure 15. Smith-Waterman-Gotoh DNA sequence matching (en.wikipedia.org).

32

5.1.6 Hamming distance

The Hamming distance is a modification of edit distance since substitution is the

most basic editing action, and the cost is one. It deals with strings of the same length

(Boytsov, 2011; Navarro G. , 2001). The equation below (Hamming, 1950) describes

the principle of Hamming distance similarity measures.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	(𝐴, 𝐵) = 1 −
𝑒𝑑𝑖𝑡(𝐴, 𝐵)
max(|𝐴|, |𝐵|)

Where A=Input String 1, B=Input String 2, and edit (A, B)=Operational cost of two

strings. For Example, the Hamming distance between two strings, "topic" and

"tofel," is 3.

5.1.7 Jaro distance

The Jaro distance is a measure of similarity between two strings. It introduced incor-

rect text fields linked to data and determines the amount of transposed and matching

characters (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). The higher the Jaro

distance for two strings is, the more similar the strings are. The score is normalized

such that 0 equates to no similarity and 1 is an exact match.

The equation below (Jaro, 1989) describes the principle of Jaro similarity measures.

𝐽𝑎𝑟𝑜	(𝐴, 𝐵) =
1
3 × Ã

𝑚
|𝐴| +

𝑚
|𝐵| +

𝑚 − 𝑥
𝑚 Å

Where, A=Input string 1, B=Input string 2, m=Number of matching character, and

x=Number of transposed character. For example, the Jaro distance between two

strings, "topic" and "tofel" is 0.6. The calculation is:

𝐽𝑎𝑟𝑜	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑡𝑟1, 𝑆𝑡𝑟2) =
1
3 × Ã

2
|5| +

2
|5| +

2 − 0
2 Å = 0.6

The Input string 1=topic=5 characters, Input string 2=tofel=5 characters, m=Number

of matching character=2, x=Number of transposed character=0.

33

5.1.8 Jaro–Winkler distance

The modification of Jaro distance by Winkler is familiar with the name of Jaro-

Winkler distance (Malakasiotis & Androutsopoulos, 2007). It measures the edit dis-

tance between two strings and gives greater weight to match the prefix (Gali,

Mariescu-Istodor, Hostettler, & Fränti, 2019). The equation below (Winkler, 1990)

describes the principle of Jaro-Winkler similarity measures.

𝐽𝑎𝑟𝑜 −𝑊𝑖𝑛𝑘𝑙𝑒𝑟	(𝐴, 𝐵) = 𝐽(𝐴, 𝐵) + (𝑙 × 𝑝(1 − 𝐽(𝐴, 𝐵))

Where, A=Input string 1, B=Input string 2, l=Length of the common prefix between

string, p= Scaling factor 0.1, J(A,B)=Jaro distance between two strings, and Prefix

weight=(l×p(1-J(A,B)). For example, the Jaro-Winkler distance between two strings,

"topic" and "tofel," is 0.68. The calculation is:

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑡ℎ𝑒		𝐽𝑎𝑟𝑜	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑡𝑟1, 𝑆𝑡𝑟2) =
1
3 × Ã

2
|5| +

2
|5| +

2 − 0
2 Å = 0.6

𝑆𝑜, 𝐽𝑎𝑟𝑜 −𝑊𝑖𝑛𝑘𝑙𝑒𝑟	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	(𝑆𝑡𝑟1, 𝑆𝑡𝑟2) = 0.6 + Ç2 × 0.1(1 − 0.6)È = 0.68

The Input string 1=topic=5 characters, Input string 2=tofel=5 characters, m=Number

of matching character=2, x=Number of transposed character=0, l=Length of the

common prefix between string=2, x=Number of transposed character=0, and

p=Scaling factor 0.1

5.1.9 Longest common substring

The longest common substring (LCS) identifies the largest adjacent series of charac-

ters that is a substring of other strings. It was developed for uses such as patient rec-

ords and text summaries in a medical environment and can also compare short text

(Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). It only recognizes insertions and

deletions by cost 1. Moreover, the LCS distance is symmetrical unpaid characters

(Navarro G. , 2001). The equation below (Friedman & Sideli, 1992) describes the

principle of the Longest common substring.

𝐿𝐶𝑆(𝐴, 𝐵) =
|𝑠𝑢𝑏(𝐴, 𝐵)|
max	(|𝐴|, |𝐵|)

34

Where A=String 1, B=String 2, and sub=Substring. For example, the length of LCS

of two strings, "ABCDGH" and "ACDGHRT," is 4 due to the common substring

"CDGH." The algorithm of LCS has given below:

𝐈𝐧𝐩𝐮𝐭: Two	string	A	and	B, length	n	and	m.

𝐎𝐮𝐭𝐩𝐮𝐭: Length	of	the	LCS	of	A	and	B.

	𝐟𝐨𝐫	𝑖 ← 0	𝐭𝐨	𝑛

								𝐿[𝑖, 0] ← 0

	𝐞𝐧𝐝	𝐟𝐨𝐫

	𝐟𝐨𝐫	𝑖 ← 0	𝐭𝐨	𝑚

								𝐿[0, 𝑗] ← 0

	𝐞𝐧𝐝	𝐟𝐨𝐫

	𝐟𝐨𝐫	𝑖 ← 1	𝐭𝐨	𝑛

								𝐟𝐨𝐫	𝑗 ← 1	𝐭𝐨	𝑚

														𝐢𝐟	𝑎_𝑖 = 𝑏_𝑖		𝐭𝐡𝐞𝐧	𝐿[𝑖, 𝑗] ← 𝐿[𝑖 − 1, 𝑗 − 1] + 1

														𝐞𝐥𝐬𝐞	𝐿[𝑖, 𝑗] ← {𝐿[𝑖, 𝑗 − 1], +𝐿[𝑖 − 1, 𝑗]}

														𝐞𝐧𝐝	𝐢𝐟

								𝐞𝐧𝐝	𝐟𝐨𝐫

	𝐞𝐧𝐝	𝐟𝐨𝐫

	𝐫𝐞𝐭𝐮𝐫𝐧	𝐿[𝑛,𝑚]

We have also performed some case studies to measure the syntactic similarity of

character-level by applying a Java toolkit named "Stringsim". This toolkit can calcu-

late the syntactic similarity of multiple strings using character and token level func-

tions (Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). To execute our case study,

we have selected three pairs of strings from MOPSI databases. Those chosen strings

are String 1a: Koti pizza ravintola, and String 1b: ravintola; String 2a: National park,

and String 2b: National library at night; String 3a: Swimming, and String 3b: Ice

swimming experience. The syntactic similarity measurement values of character-level

have shown in Table 2.

35

Table 2. Syntactic similarity measures of character-level.

Unit similarity

method
Similarity va-

lue-1
Similarity va-

lue-2
Similarity va-

lue-3

String
1a

String
1b

String
2a

String
2b

String
3a

String
3b

 Levenshtein 0.45 0.44 0.30
Damerau-
Levenshtein

0.45 0.44 0.30

Needleman-
Wunsch

0.73 0.52 0.50

Smith-Waterman 1.00 0.69 0.88
Smith-Waterman
Gotoh

1.00 0.72 0.88

Hamming 0.00 0.00 0.00
Jaro 0.00 0.73 0.73
Jaro-Winkler 0.00 0.89 0.73

Case study-1: Similarity value-1 has shown the different similarity value for String

1a: Koti pizza ravintola, and String 1b: ravintola.

• Levenshtein and Damerau-Levenshtein method applies high cost if one string

is tiny from another string. The Java toolkit has given 45% string similarity

results between two strings because the length of string 1a is 2.5 times higher

than string 1b.

• For the Needleman-Wunsch method, the similarity results between two

strings are 73% because the sequence of the string 1b exactly matches the

ending sequence of the string 1a.

• Smith-Waterman and Smith Waterman-Gotoh methods apply the least cost

for mismatch at the beginning and end of the string sequence. For both meth-

ods, the Java toolkit has given 100% similar results between two strings be-

cause the matching happened at the end of both strings.

• The Hamming method only works if both strings have the same length so it

produces 0% similarity results between two strings due to their non-similar

length.

• Jaro and Jaro-Winkler methods apply least cost for string similarity matching

if both strings are identical or no farther than [max(|S1|, |S2|/2]-1. The Java

toolkit has shown 0% similarity results between two strings because both

strings are not identical and no farther than [max(|S1|, |S2|/2]-1.

Sy
nt

ac
tic

sim

ila
ri

ty

C
ha

ra
ct

er
-

le
ve

l

36

Case study-2: Similarity value-2 has shown the different similarity value for String

2a: National park, and String 2b: National library at night.

• Levenshtein and Damerau-Levenshtein both method produces 44% string

similarity results between two strings because the length of string 2a is 2

times higher than string 2b.

• For the Needleman-Wunsch method, it produces 52% similarity results be-

tween two strings because the starting sequence of the string 2a exactly

matches the starting sequence of the string 2b.

• Smith-Waterman and Smith Waterman-Gotoh measures produce 69%, and

72% similarity between two strings because the matching happened at the be-

ginning of both strings.

• The Hamming measure produces 0% similarity between two strings due to

their non-similar length.

• Jaro and Jaro-Winkler measures produce 73% and 89% similarity results be-

tween two strings because both strings are semi- identical.

Case study-3: Similarity value-2 has shown the different similarity value for String

3a: Swimming, and String 3b: Ice swimming experience.

• Levenshtein and Damerau-Levenshtein measures produce 30% string similar-

ity results between two strings because the length of string 3b is 3 times high-

er than string 3a.

• For the Needleman-Wunsch method, the Java toolkit has given 50% similari-

ty results between two strings because the sequence of the string 3a exactly

matches the middle sequence of the string 3b.

• Smith-Waterman and Smith Waterman-Gotoh measures produce 88% similar

results between two strings because the matching happened at the beginning

of string 3a and middle of the string 3b.

• The Hamming method produce 0% similarity between two strings due to their

non-similar length.

• Jaro and Jaro-Winkler measures produce 73% similarity between two strings.

37

5.2 Token-level measures

One of the string segmentation methods is token level measurements (Gali,

Mariescu-Istodor, Hostettler, & Fränti, 2019), and it deals with typographic patterns

contributing to word reordering. It splits a string into tokens with whitespaces and

punctuations, and the strings analyze as a set of tokens rather than only characters;

these measures are known as token level measures. The token level measures apply

to dataset maintenance, and it uses data at the token level to address swap and in-

complete token problems. There are two ways to solve the token ordering (Gali,

Mariescu-Istodor, Hostettler, & Fränti, 2019) problem. These are sorting heuristic

and permuting heuristic.

Sorting heuristic: Each string is tokenized alphabetically arranged, reconnected, and

added edit distance to the modified strings in heuristic sorting (Gali, Mariescu-

Istodor, Hostettler, & Fränti, 2019).

Permuting heuristic: In permuting heuristic, all token transformations drive from

the first string, and a distinction performs between all permuting strings and the sec-

ond string and the largest similarity value select (Gali, Mariescu-Istodor, Hostettler,

& Fränti, 2019).

Suppose two strings A and B can be interpreted as multiple sets of words (Cohen,

Ravikumar, & Fienberg, 2003). Now, we have considered two different token-based

distance metrics. These are Jaccard similarity measures and Token frequency-Inverse

Document Frequency.

Jaccard similarity measures: The Jaccard similarity between the word sets A and B

is simply (Galhardas, 2013; Cohen, Ravikumar, & Fienberg, 2003) define as:

𝑆234356 =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

Where A=String 1, and B=String 2.

38

Token frequency-Inverse Document Frequency (TFIDF) or cosine similarity

measures: The information retrieval group commonly uses (Galhardas, 2013;

Cohen, Ravikumar, & Fienberg, 2003), and it can be defined as:

𝑆7896:	;<	4=09>: =É
𝑣𝐴(𝑗) ∗ 𝑣𝐵(𝑗)
|𝐴| ∗ |𝐵|

|6|

@A$

Where, A=String 1, B=String 2, TFw=Higher weights to token appearing in docu-

ments, IDFw=Lower weights to token appearing in the whole set of docu-

ments=|D|/nw, D= Database that contain the word w, nw=Number of records ,

w=Word, and vStri(w)=String separation into words and assign a weight to each

word w=log(TFw+1)*log(IDFw). For example, the tokenization of the string

"Janny is a student of UEF" will be "Janny, is, a, student, of, and UEF."

5.3 Soft measures

Combine character-level and token level measures are referred to as soft measures.

The theory of a soft measure is to implement a character-level measure to all sets of

tokens between strings and to recognize those tokens that fulfill a certain require-

ment. The soft measure exhibited higher similarity values than anticipated due to its

capability to recognize the similarity between related and identical tokens (Gali,

Mariescu-Istodor, Hostettler, & Fränti, 2019). There are five different types of soft

measures, namely: Simpson similarity (Choi, Cha, & Tappert, 2010), Jaccard similar-

ity (Rezaei & Franti, 2016), Soft-cosine similarity (Cohen, Ravikumar, & Fienberg,

2003), Euclidean distance (Malakasiotis & Androutsopoulos, 2007), and Manhattan

distance (Malakasiotis & Androutsopoulos, 2007).

In soft measures, the binary feature vector presents a significant role in interpreting

the pattern and measuring the similarity and distance of many problems such as clus-

tering, classification, etc. The binary similarity and distance measure apply for data

analysis and analysis of the clustering method. We have shown an operational taxo-

nomic unit of binary measure (Choi, Cha, & Tappert, 2010) bellow:

39

Table 3. Operational Taxonomic Units Expression of Binary Instance 𝒊 and 𝒋 (Choi, Cha, &
Tappert, 2010).

(𝒊𝒙𝒋) 1 (Present) 0 (Absence) Sum
1 (Present) 𝑎 = 𝑖 ∙ 𝑗 = (1,1) 𝑏 = 𝑖 ∙ 𝑗 = (0,1) 𝑎 + 𝑏
0 (Absence) 𝑐 = 𝑖 ∙ 	 𝑗 = (1,0) 𝑑 = 𝑖 ∙ 𝑗 = (0,0) 𝑐 + 𝑑

Sum 𝑎 + 𝑐 𝑏 + 𝑑 𝑛 = 𝑎 + 𝑏 + 𝑐 + 𝑑

Where,

i ,j=Objects in vector form

n=Number of features (attributes)or dimension of the feature vector

a=Number of attributes ((i, j) = (1, 1) =presence)=Positive match

b=Number of attributes ((i, j) = (0, 1) =i absence Mitch match

c=Number of attributes ((i, j) = (1, 0) =j absence Mitch match

d=Number of attributes ((i, j) = (0, 0) =absence) =negative Mitch match

(a+d), (a+b), and (a+c) =Total number of matches between (i, j)

(b+c)=Total number of mismatches between (i, j)

5.3.1 Simpson similarity

Simpson's similarity method is used to measure the similarity of a set of community

samples and to measure if their species distribution is identical or distinct (Choi, Cha,

& Tappert, 2010). The equation below describes the principle of Simpson similarity

measures.

𝑆09BC0=> =
𝑎

min	(𝑎 + 𝑏, 𝑎 + 𝑐)

Where, S=Similarity measures, a=(1,1)= Positive match, b= 0,1)=i absence Mitch

match, c= 1,0)=j absence Mitch match, (a+b),and (a+c)=Total number of matches

between (i,j). For example, the Simpson similarity between two strings "acdfg", and

"bcefg" is 0.6. The operation and calculation of Simpson similarity has hiven below:

Now, the distance matrix will be

 a b c d e f g

String 1 1 0 1 1 0 1 1
String 2 0 1 1 0 1 1 1

 1 0

1 a(1,1)= 3 b(0,1)=2

0 c(1,0)=2 d(0,0)=0

40

𝑆09BC0=>(𝑆𝑡𝑟	1, 𝑆𝑡𝑟	2) =
𝑎

min(𝑎 + 𝑏, 𝑎 + 𝑐) =
3

min(3 + 2, 3 + 2) =
3

min(5, 5)

=
3

(5 + 5 − |5 − 5|)
2

=
3
5 = 0.6

5.3.2 Jaccard similarity

The Jaccard similarity measure applies for the segmentation of indigenous items, and

Forbes suggested a factor for the segmentation of indigenous related items. It can be

explained as the size of the intersection divided by the size of the union of two sets

(Choi, Cha, & Tappert, 2010). The equation below describes the principle of Jaccard

similarity measures.

𝑆2344356 =
𝑎

𝑎 + 𝑏 + 𝑐

Where, S=Similarity measures, a= (1,1)=presence)=Positive match, b=(0,1)=i ab-

sence Mitch match, c=(1,0)=j absence Mitch match, and (a+b+c)=Total number of

matches between (i,j). For example, the Jaccard similarity between two strings "ac-

dfg", and "bcefg" is 0.43. The operation and calculation of Jaccard similarity has

given below:

Now, the distance matrix will be

 a b c d e f g

String 1 1 0 1 1 0 1 1
String 2 0 1 1 0 1 1 1

 1 0

1 a(1,1)= 3 b(0,1)=2

0 c(1,0)=2 d(0,0)=0

𝑆2344356(𝑆𝑡𝑟	1, 𝑆𝑡𝑟	2) =
𝑎

a + b + c =
3

3 + 2 + 2 =
3
7 = 0.43

5.3.3 Soft-Cosine similarity

A soft-cosine or soft-similarity between two vectors takes into account correlations

between characteristics combinations. The soft cosine meets the measurements of

character as well as the token level to align the name. Soft cosine incorporates the

cosine for matching the token with sentences for measuring the character grades

41

(Gali, Mariescu-Istodor, Hostettler, & Fränti, 2019). The equation below (Choi, Cha,

& Tappert, 2010) describes the principle of soft-cosine similarity measures.

𝑆4=09>: =
𝑎

Î(𝑎 + 𝑏)(𝑎 + 𝑐)

Where, S=Similarity measures, a= (1,1)=presence)=Positive match, b=(0,1)=i ab-

sence Mitch match, c=(1,0)=j absence Mitch match, and Î(𝑎 + 𝑏)(𝑎 + 𝑐)
#
 =Square

root multiply between two matches (i, j). For example, the soft-cosine similarity be-

tween two strings "acdfg" and "bcefg" is 0.12. The operation and calculation of soft-

cosine similarity has given below:

Now, the distance matrix will be

 a b c d e f g

String 1 1 0 1 1 0 1 1
String 2 0 1 1 0 1 1 1

 1 0

1 a(1,1)= 3 b(0,1)=2

0 c(1,0)=2 d(0,0)=0

𝑆4=09>:(𝑆𝑡𝑟	1, 𝑆𝑡𝑟	2) =
𝑎

Î(𝑎 + 𝑏)(𝑎 + 𝑐)
=

3

Î(3 + 2)(3 + 2)
=

3
25 = 0.12

5.3.4 Euclidean distance

Euclidean distance is the square root of the sum of the respective elements of two

vectors. The equation above (Choi, Cha, & Tappert, 2010) describes the principle of

Euclidean distance measures.

𝐷:D4E96:3> = √𝑏 + 𝑐

Where, D=Distance measures, b=(0,1)=i absence Mitch match, c=(1,0)=j absence

mitch match, and √𝑏 + 𝑐 =Root summation of two attributes (i,j). Now the Euclidean

distance between two strings "acdfg" and "bcefg" is 2. The operation and calculation

of Euclidean distance have given below:

Now, the distance matrix will be

 a b c d e f g

String 1 1 0 1 1 0 1 1
String 2 0 1 1 0 1 1 1

 1 0

1 a(1,1)= 3 b(0,1)=2

0 c(1,0)=2 d(0,0)=0

42

𝑆:D4E96:3>(𝑆𝑡𝑟	1, 𝑆𝑡𝑟	2) = √𝑏 + 𝑐 = √2 + 2 = 2

5.3.5 Manhattan distance

The Block Distance between two elements is the sum of their respective component's

differences is called manhattan distance (Choi, Cha, & Tappert, 2010; Boytsov,

2011). The equation below describes the principle of manhattan distance measures.

𝐷B3>F3773> = 𝑏 + 𝑐

Where, D=Distance measures, b=(0,1)=i absence Mitch match, c=(1,0)=j absence

mitch match, and (b+c)=Summation of two attributes (i,j). Now the Manhattan dis-

tance between two strings "acdfg" and "bcefg" is 2. The operation and calculation of

Manhattan distance have given below:

Now, the distance matrix will be

 a b c d e f g

String 1 1 0 1 1 0 1 1
String 2 0 1 1 0 1 1 1

 1 0

1 a(1,1)= 3 b(0,1)=2

0 c(1,0)=2 d(0,0)=0

𝑆B3>F3773>(𝑆𝑡𝑟	1, 𝑆𝑡𝑟	2) = 𝑏 + 𝑐 = 2 + 2 = 4

The Block Distance between two elements is the sum of their respective component's

differences is called manhattan distance (Choi, Cha, & Tappert, 2010; Boytsov,

2011). The equation below describes the principle of manhattan distance measures.

𝐷B3>F3773> = 𝑏 + 𝑐

Where, D=Distance measures, b=(0,1)=i absence Mitch match, c=(1,0)=j absence

mitch match, and (b+c)=Summation of two attributes (i,j). Now the Manhattan dis-

tance between two strings "acdfg" and "bcefg" is 2. The operation and calculation of

Manhattan distance have given below:

43

Table 4. Syntactic similarity of soft measures.

Group match-
ing method +
Levenshtein

method

Similarity va-
lue-1

Similarity va-
lue-2

Similarity va-
lue-3

String
1a

String
1b

String
2a

String
2b

String
3a

String
3b

 Simpson 0.67 0.68 0.72
Jaccard 0.50 0.51 0.46
Soft-cosine 0.60 0.57 0.46
Euclidean 0.55 0.29 0.61
Manhattan 0.55 0.00 0.25

Case study-1: The similarity value-1 has shown the different similarity value for

String 1a: Morning exercise, and String 1b: Exercise place.

• Simpson's method applies to calculate the similarity between a pair of com-

munity samples and to measure if their species distribution is identical or dis-

tinct. The Java toolkit has given 67% string similarity results between two

strings because both strings are identical.

• Jaccard similarity measure method applies to measure the similarity and di-

versity of strings. It produces 50% string similarity between two strings be-

cause the second segment of string 1a is similar to the first segment of string

1b.

• Soft-cosine similarity measure applies for calculating the features and charac-

teristics combinations of pair strings. It produces 60% similarity between two

strings because both strings have the same features.

• The Euclidean distance similarity measure applies to measuring the length of

a line segment between strings so it has 55% similarity results between two

strings because the line segment of both strings is 55% similar.

• Manhattan distance similarity is applied to measure the block distance be-

tween two strings and it produces 55% similarity between two strings because

the block distance between two strings is 55%.

Case study-2: The similarity value-2 has shown the different similarity values for

String 2a: Morning walk, and String 2b: Walking street.

• Simpson's method produces 68% string similarity between two strings be-

cause both strings are identical.

So
ft

m

ea
su

re
s

Sy
nt

ac
tic

sim

ila
ri

ty

44

• Jaccard similarity measure has given 51% string similarity between two

strings because the second segment of string 2a is almost similar to the first

segment of string 2b.

• Soft-cosine similarity measure produces 57% similarity between two strings

because both strings have the same features.

• The Euclidean distance similarity measure produces 29% similarity because

the lengths of two string's line segments are less similar.

• Manhattan distance produces 0% similarity between these strings because

there is no block distance between two strings.

Case study-3: The similarity value-3 has shown the different similarity value for

String 3a: Railway station statue, and String 3b: Tram and railway bridge.

• Simpson's method produces 72% string similarity results between two strings

because both strings have identical pairs.

• Jaccard similarity measure has given 46% string similarity between these

strings because the starting segment of string 3a is similar to the second seg-

ment of string 3b.

• Soft-cosine similarity measure produces 46% similarity between these two

strings because both strings have small features matching.

• The Euclidean distance similarity measure produces 61% similarity results as

the two-line segment string's length is two-thirds similar.

• Manhattan distance has 25% similarity between two strings because the block

distance between them is very small.

45

6 Implementation

This section will present the function of inexact matching of the Mopsi web search

tool2. Section 6.1 will explain different parameters of tools for searching geo-tagged

photos, physical distance measurement, and syntactic similarity measurement. Sec-

tion 6.2 will describe the several technologies that we have used for backend and

frontend development.

6.1 Tool description

We have applied multiple parameters to develop the inexact web searching tool to

customize the user search query. We will introduce the following parameters in de-

tail: numbering of results, ordering, strings similarity measurement methods, string

similarity threshold, and distance radius. A user interface of the Mopsi web searching

tool has shown in Figure 16.

2 http://cs.uef.fi/mopsi_dev/tools/inexact_search.php

46

Figure 16. The user interface of the web searching tool.

In this searching tool, the first input textbox is a keyword where users can put their

search string to find their query. Besides the keyword input, there is another input

field named address, where users place their location to get nearby searching out-

come. An example of search string and a location address have shown in Figure 17.

Figure 17. User choosing a keyword and location address.

47

The user can choose the number of search outcomes for geo-tagged photos in the

custom search option, where the number of geo-tagged images can be 20, 30, 50, or

all matching search results. In this way, the user can filter the search results to avail

the searching outcome based on his requirement. Figure 18.a. has shown the options

for selecting the number of searching outcomes for geo-tagged photos.

Figure 18. Advanced search option of the tool.

Ordering means a ranking. Figure 18.b. presents two options to select the search out-

come based on physical distance and string similarity. If users prefer physical dis-

tance, then the Mopsi search tool will show comparative search results according to

the location of all matching Mopsi data. On the other hand, if the users choose string

similarity, it will show a relative search outcome according to string matching with

all Mopsi data.

Users can choose the searching outcome based on different string similarity

measures. They have a few options to select the similarity measurement method.

Figure 18.d. represents a few similarity measures as Levenshtein, Damerau-

Levenshtein, Smith-Waterman, Smith-Waterman Gotoh, Jaro, Jaro Winkler and In-

clusion. We have discussed multiple similarity measurement methods in section 2

and 3 and choose these measures according to their comparative performance with

other methods to develop our tool.

When the users choose the searching outcome based on all Mopsi data's physical

distance, Haversine distance measurement method is used to calculate this physical

48

distance between the user's location and the data from the database to set the search

outcome.

The Haversine method is a distance determination method that determines the least

distance between two positions on a sphere using their latitude and longitude meas-

urements on the surface (Kettle, 2017). It is mainly used in GPS applications devel-

opment and navigation (Prakhar, 2018). The Haversine can express in trigonometric

function as:

𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝜃) = 𝑆𝑖𝑛# Ã
𝜃
2Å

The Haversine function can also be express into latitude and longitude coordinates.

𝑎 = 𝑆𝑖𝑛# Ã𝜑𝐵 −
𝜑𝐴
2 Å + 𝑐𝑜𝑠𝜑𝐴 ∗ 𝑐𝑜𝑠𝜑𝐵 ∗ 𝑆𝑖𝑛

Ãλ𝐵 −
λ𝐴
2 Å

𝑐 = 2 ∗ 𝑎𝑡𝑎𝑛2 D√𝑎, √(1 − 𝑎)E

𝑑 = 𝑅. 𝑐

Where, φ=Latitude, λ=Longitude, R=Earth radius = 6,371km.

The geographic
distance on earth
(photo. iGISMAP)

For string similarity measurement, users can apply threshold values to filter out the

search outcome of the Mopsi tool corresponds with the search keyword. The differ-

ent string similarity threshold values are as follows 0.1, 0.2, 0.3, 0.4,.0.5, 0.6, 0.7,

0.8, and 0.9. For example, if the user sets the threshold value 0.7, it will show a min-

imum of 70% to a maximum of 100% string matching search results compared with

the search keyword.

Users can set the distance radius in kilometers to filter out the Mopsi's search out-

come. Distance radius does the similar operation as string similarity threshold does.

It shows the controlled results within the selected circular area. Figure 18.c has

shown multiple distance radiuses as N/A (Not Applicable), 5km, 10km, and 20km. If

the users set N/A, then it will show the search output at any geographic location on

earth, either the area nearby them or not. On the other hand, if the users set the dis-

49

tance radius as 5km, 10km, and 20km, Mopsi will show search output within the

confined radius.

6.2 Technology

We have used various technologies for developing the Mopsi photo searching tool in

backend and front-end including Google Map API, Autocomplete address API, Geo-

location, Geocoding, Reverse geocoding, Ajax, JSON, PHP, HTML, CSS, and Ja-

vaScript.

The Ajax is Asynchronous JavaScript and XML (Xie, 2019). Ajax is employed with-

in the server in the back-end to build a swift and interactive web page via transmit-

ting data (Morris, 2020; Xie, 2019). When an update is needed for a conventional

web page, then the entire web page is reloaded (Morris, 2020). On the other hand,

you may update a section of the web page asynchronously for Ajax without updating

the whole web page (Xie, 2019). We applied Ajax due to its efficiency, accuracy of

the process, and little data processing time, mainly to integrate our tool to Mopsi

website. An Ajax model of a MOPSI web searching tool has shown in Figure 18.

When the Mopsi web searching tool produces an event, the Ajax engine generates an

HTTP request and sends it to the server-based system. The server-based system pro-

cess the data of HTTP request and return it to the Ajax engine. The Mopsi web

searching tool processes the return data through JavaScript and updates the web page

section. Besides that, the return data also enclose in JavaScript Object Notation

(JSON) format. JSON is a lightweight data storage and transportation format that is

applied while data is needed to transmit to a web page from a server (Shin, 2018). It

is also self-descriptive and easy for people to understand. In the end, we have used

Hypertext Preprocessor (PHP) as a scripting language for the development of the

MOPSI web searching tool that can set into HTML (Prokofyeva & Boltunova, 2017).

50

Figure 19. An Ajax model of a Mopsi web searching tool (Ajax-vergleich-en.svg).

Google Maps is a Google-designed web-mapping tool (Xie, 2019). It delivers com-

prehensive information on geographical areas and locations all over the earth on a

Web-based system. It also provides aerial and satellite images of different places in

addition to standard route maps. In certain areas, it also offers street views with vehi-

cle images (Dodsworth & Nicholson, 2012). It provides a different kind of APIs for

various purposes. Google Map APIs services have used to implant Google Maps into

MOPSI web pages, recover data, adjusting marker, line, and trajectory plotting (Xie,

2019; GoogleMapsPlatform, 2020).

In Google Maps JavaScript API (Application Programming Interface), we have used

an Autocomplete address (GoogleMapsPlatform, 2020) for positioning the database.

It has given the type-ahead-search function to the Google Map for the MOPSI search

field. It also provides the substrings, position titles, directions, location address, and

code facilities to Mopsi. To develop the Mopsi web searching tool, we have tested

geo-location to estimate an object's physical distance and track individuals based on

latitude and longitude coordinates. Where the Geolocation API employs to transfer

data to the server system and return a response from the server system to the client

by sending an HTTP request. We have also used the Geocoding API to transform a

street address into geographic coordinates (such as latitude and longitude) in which

the marker can set on the map. It also turns the geographical coordinates into a read-

able address for humans.

We have used Hypertext Markup Language (HTML) to develop and produce web

content for document design and show in the MOPSI web browser (Ferguson, 2020).

To styling the Mopsi web page, we have employed Cascading Style Sheets (CSS)

51

that guides HTML. Besides HTML and CSS, we have also applied the JavaScript

(JS) language that interacts with the functional work of the Mopsi tool (Kononenko,

2018). Together they build everything that is displayed for Mopsi visually while a

person visits the webpage. A relational image of HTML, CSS, and JS has shown in

Figure 17.

Figure 20. Relational image of HTML, CSS, and JS.

52

7 Experiment

This section will present the analysis and observation of the Mopsi data set and ex-

perimental details. Section 7.1 will explain the Mopsi data collection, data set de-

scriptions, and data analysis procedure. Section 7.2 will explain some case studies,

experiments, and observations briefly.

7.1 Datasets

The Mopsi data set mainly contains two types of data: geotagged photos and trajecto-

ries (Xie, 2019). The geotagged photos carry location information and recorded time;

trajectories have a fixed interval sequence of GPS coordinates. The Mopsi data set

has approximately 65694 geotagged photos and around 2400 users since December

2020. A data set summary has been given in Table 5 (Mariescu-Istodor, 2017).

Table 5. Summary of data set.
Data
set

Size

Type Language Length of string

Token length Character
length

Min Av Max Min Av Ma
x

Mopsi
photos

65694 Photo desc-
ription

English
Finnish

1 3 26 3 17 65

The large number (as 29612) of the Mopsi data does not contain any descriptions (as

title) which are not usable for our experiment. As we are comparing the similarity

between keywords and descriptions so the usable data must contain descriptions.

Moreover, the Mopsi data carries some artificial data for some specific users for their

experimental purposes. To clean the dataset, we have filtered these non-usable and

artificial data from the database after data preprocessing and the size of usable data

reduced to near 35000 photos.

Dataset contains mostly brief English or Finnish descriptions. A label for a time, and

the photos' physical location has given for each Mopsi photo. After taking photos,

the Mopsi users can write a description instantly. Then the Mopsi app provides the

user with pre-written explanations for using. The pre-written explanations are gener-

53

ated from photos around to the user. As a result, photos taken in the same position

seem to have similar descriptions with the same feature they address. In Mopsi data,

typing mistakes in the descriptions are expected. The maximum number of ge-

otagged photos and trajectories are collected from mainly Joensuu, Finland. The

properties of the Mopsi data set have shown in Table 6.

Table 6. Mopsi data properties.
Column Type Description Example

Description varchar Title of the photo Skiing chess
Street_Name varchar Street name of that point Niskakatu
Street_Number Int. Street number of that point 1
Commune varchar Commune of that point Joensuu
Date date Date for the point 2010-10-12
User ID varchar User for that point Radu
Phone varchar Users’ Device Nokia_N95
Latitude Double Latitude value of point 62.92
Longitude Double Longitude value of point 23.18
Timestamp String Timestamp for the point 1559983789b second

7.2 Experimental setup

This section contains different experiments for performing case studies based on our

tool's3 structure. We use the following experimental setup to analyze all the

measure's performance compared to the inclusion of Mopsi concerning the different

parameters such as different threshold values for similarity measures and physical

distance. We aimed to find

1. Optimal threshold for each string similarity measure.

2. Flexibility of string similarity measures under the same similarity threshold.

3. Quality of the string similarity measures.

4. Correlation to physical distance and similarity measure.

3 http://cs.uef.fi/mopsi_dev/tools/inexact_search.php

54

To perform these experiments, we have chosen a few test sets. For each test set, we

have chosen a different keyword from the most popular keywords4 from the Mopsi

dataset. Some parameters are fixed for these experiments. These fixed parameters are

address (user location), the number of results, ordered by (string similarity or physi-

cal distance), physical distance method, and distance radius. These parameters are

mainly used to limit the search results and to customize the ordering based on user

preference. We have set the number of results as "all photos," and the distance radius

is not limited to obtain the maximum possible results for an entry and to make the

observations based on the whole dataset. Table 7 shows an example of an experi-

mental test set structure.

Table 7. Structure of test set -1.

Parameters Value

Keyword Chess

Address (user location) Joensuu, Finland

Number of results All photos

Ordered by String similarity

Physical distance Haversine

Distance radius None

Other test sets only differ the keyword, for example, test-set 2 - "Lenkkireitin

maisemia", test-set 3 - "Lenkkireitti", test-set 4 – "pizza" and so on. All string char-

acters in the keywords and in the descriptions were converted to lowercase as a pre-

processing step in all tests to avoid case sensitivity, which means "skiing" and "SKI-

ING" will produce the same results. We also suppressed the spaces in the beginning

and at the end of the strings if there were any in the pre-processing step for testing.

4 http://cs.uef.fi/mopsi_dev/tools/popularkeywords.php

55

For every test set, we have done some case studies based on some character level,

string similarity measures as Levenshtein, Damerau-Levenshtein, Smith-Waterman,

Smith-Waterman-Gotoh, Jaro, and Jaro-Winkler.

Prior to conducting our experiment, we have selected some known data from Mopsi

to create a subset for a selected test set-1 where the keyword is "chess." We have

chosen this keyword because all of the event dates concerning chess are known, and

we gathered all the entries from those dates and created a new dataset5 of 1050 data.

For visualization, the live data can be found in the dataset6 webpage. The structure of

this dataset is similar to the Mopsi dataset. Additionally, it has a column named "La-

bel," set to as binary type 0 or 1 to represent the label status. Here, the label is 1,

whether the data is true or relevant for the keyword "chess," and 0 if the data is false

or not relevant. Table 8 shows a few examples of defining the label for each data

based on their descriptions.

Table 8. Example of labeling in chess dataset.

Description Status Label
Chess table True 1
Cristina False 0
Swim chess tourney in progress True 1
Night in Iasi False 0

We have collected these dates from various sources. Initially, dates are collected

from the chess event webpage7. Some of the events have been organized before de-

veloping the Mopsi, so the Mopsi dataset does not contain any data from those dates.

After collecting the event dates, we searched into Mopsi using some keywords relat-

ed to chess. As the Mopsi data is mostly in English and Finnish language, we used

the keyword "chess" for the English and "shakki," for the Finnish language. Our

keywords while searching has collected the unique dates from all the retrieved data.

For example, Figure 21 shows some unique dates 2018-04-24 and 2014-03-14 from

5 http://cs.uef.fi/mopsi_dev/chess/
6 http://cs.uef.fi/mopsi_dev/chess/chessdata.php
7 http://cs.uef.fi/chess/

56

the Mopsi dataset, which are not included in the event list and we have added these

dates in our newly created dataset.

Figure 21. Data collection by selecting unique dates.

A full list of these dates is described in Table 9.

Table 9. Unique dates for chess data.
Event Non- event

Name Date User Date

Football Chess Tournament 2019-09-19 Radu 2014-03-14
Football Chess Tournament 2012-06-19 Pasi 2014-10-12
Pulkkashakki 2018-02-13 Pasi 2017-06-28
Skiing Chess 2016-02-21 Pasi 2011-04-09
Skiing Chess Mekrijärvi Championships 2013-03-05 Pasi 2017-07-02
Skiing Chess Mekrijärvi Championships 2012-03-20 Pasi 2014-07-11
Uintishakki-turnaus 2011-04-15 Pasi 2016-08-16
Uintishakki-turnaus 2010-10-29 Pasi 2017-04-22
1st Running Chess Tournament 2003-08-12 Pasi 2017-08-07
Basketball Chess 2020-11-14 Pasi 2017-08-03
Frisbee Chess 2017-11-11 Pasi 2017-08-04
Ice Swimming Chess 2015-11-09 Pasi 2018-04-24
Orienteering Chess 2014-03-13 Pasi 2015-12-10
Beachball Chess Tournament 2013-06-12 Andrei 2009-12-11

After analyzing the data, we have found some data which have different descriptions

than "chess." For example, "Church," "Eteläkatu," "Lunch place" do not have chess

in the description but added in the same date or (event), and we consider these are

not relevant. Figure 22 shows an example of relevant and non-relevant data for chess.

57

Figure 22. Example of relevant and non-relevant data for "Chess."

It also happened because some other users uploaded photos in Mopsi on the same

date, except those involved in any chess events. We have manually annotated these

data and estimated ground truth as 108 for the chess dataset, while the total number

of data is 1050. As the false values are 942, so the proportion of the true and false

values in the chess dataset is not balanced, as we can observe from the number.

We have used another approach to estimate the ground truth is taking the largest true

positive number as the "golden standard." For example, in the test set 3, where the

keyword is "pizza," the largest true positive number is 98 for all possible queries,

which are taken as ground truth for our calculation. Table 10 shows the list of golden

standard values for some selected test sets.

Table 10. Estimated golden standard for each test set.
Test set
number

Keyword Golden
standard

1 Chess 108
2 Lenkkireitin maisemia 391
3 Lenkkireitti 391
4 Pizza 98
5 Lounas 115
6 Marathon 262
7 Swimming 131
8 Beach 297
9 Kuhasalo King 36
10 Kuntorastit 150
11 Hölkkä 130

58

12 Skiing 127
13 Barbeque 19
14 Restaurant 733
15 Kahvila 590
16 Sauna 140
17 Hotelli 359
18 Apteekki 10

Here, our usable data from the Mopsi dataset is around 35000, which we used for

testing, so the ratio of true and false values are not balanced for any of the keywords

as the number of false counts is significantly higher than the true counts.

We calculate true positive and false positive values manually based on human intui-

tion. Here, true positive means the returned result is true or expected, and false-

positive means the returned result is not expected for that specific query. Note that

these true positive and false positive values can be biased for different users because

some results might be expected to one user but unexpected from another user's per-

spective.

For example, Figure 23 and Figure 24 represent a few positive values for the key-

word "chess" using the Smith-Waterman-Gotoh measure where the similarity thresh-

old is set as 0.8. The results in Figure 23 are considered to be true positives because

the content and string such as "Swim chess tourney in progress" and "Football chess

tournament 2012" are relevant for the specific keyword. The results in Figure 24 are

considered to be false positives because none of the content and string such as "Tav-

richesky garden," "Historisches museum," and "Chestnuts" are relevant for the key-

word "chess," but they are positive results because the string in the description of

those results and the keyword has string similarity 0.8 according to chosen measure.

59

Figure 23. Example of "true positive" results for keyword "chess."

Figure 24. Example of "false positive" results for keyword "chess."

For defining the measures, we also need to calculate the number of false-negative

results. Here false-negative represents the missed entries from the ground truth da-

taset. The calculation of true positive, false positive and false-negative for a few test

sets has shown in Table 11. We can observe from Table 11, in the case of Le-

venshtein, Damerau-Levenshtein, Jaro, and Jaro-Winkler, the false positive is near to

zero at a similarity threshold of 0.7 to 1.0, but the false negative is extremely higher.

So, it means these measures produce a smaller number of results, but most of them

are true. Meanwhile, Smith-Waterman-Gotoh produces fewer false-negative results

even in the similarity threshold of 0.8 to 1. The calculation of true positive, false pos-

itive and false negative values for the rest of the test-sets has given in Appendix 1.

60

Table 11. True positive, false positive and false negative for a few test sets

For testing, we have calculated precision, recall and F-score for each domain as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ………………………… .1

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 …………………………… .2

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 ……………………… . . ………… .3

In the statistical analysis, the F-score or F-measure is a measure of a test's quality. F-

score is calculated from the precision and recall of the test, where the precision is the

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

1 1 1 85 1 1 0 0 0 0 0 107 107 23 107 107
0.9 1 1 85 1 2 0 0 1 0 1 107 107 23 107 106
0.8 1 1 85 5 10 0 0 20 1 22 107 107 23 103 98
0.7 1 1 85 19 12 0 0 60 180 1253 107 107 23 89 96
0.6 1 1 85 40 12 14 0 592 2285 2916 107 107 23 68 96
0.5 3 3 86 70 22 38 44 1734 9388 8096 105 105 22 38 86
1 280 280 293 290 290 0 0 16 0 0 111 111 98 101 101

0.9 290 290 293 292 292 0 0 26 0 83 101 101 98 99 99

0.8 290 290 293 292 293 0 0 112 88 138 101 101 98 99 98

0.7 295 295 293 293 293 5 5 145 180 1302 96 96 98 98 98
0.6 296 295 293 293 293 28 29 272 1936 8497 95 96 98 98 98
0.5 366 366 293 293 293 104 109 688 14743 19090 25 25 98 98 98
1 65 65 73 65 65 0 0 0 0 0 326 326 318 326 326

0.9 65 66 73 66 360 0 0 0 0 0 326 325 318 325 31
0.8 66 66 369 362 366 0 0 7 0 98 325 325 22 29 25
0.7 66 69 369 367 367 2 0 14 123 598 325 322 22 24 24
0.6 67 70 369 369 367 32 30 100 1516 3535 324 321 22 22 24
0.5 363 363 369 369 367 89 92 455 12163 15249 28 28 22 22 24
1 3 3 59 3 3 0 0 0 0 0 95 95 39 95 95

0.9 3 3 59 3 9 0 0 35 0 1 95 95 39 95 89
0.8 3 3 98 13 36 1 1 38 1 31 95 95 0 85 62
0.7 3 3 98 40 39 1 1 39 49 158 95 95 0 58 59
0.6 3 3 98 55 39 27 28 53 584 978 95 95 0 43 59
0.5 11 11 98 66 40 36 42 128 5662 4591 87 87 0 32 58
1 4 4 99 4 4 0 0 0 0 0 111 111 16 111 111

0.9 4 4 99 4 5 0 0 0 0 0 111 111 16 111 110
0.8 4 4 102 7 34 0 0 4 5 20 111 111 13 108 81
0.7 4 4 102 45 42 0 0 4 316 557 111 111 13 70 73
0.6 4 4 102 67 54 3 4 103 2357 2630 111 111 13 48 61
0.5 14 14 115 110 72 164 168 1081 11641 11069 101 101 0 5 43

K
ey

w
or

ds

T
hr

es
ho

ld

Total true positive result Total false positive result Total false negative result
Ch

es
s (

te
st

 se
t-

1)
Le

nk
ki

re
iti

n
m

ai
se

m
ia

 (t
es

t s
et

-2
)

Le
nk

ki
re

itt
i (

te
st

se

t-
3)

Pi
zz

a
(t

es
t s

et
-4

)
Lo

un
as

 (t
es

t s
et

-5
)

61

number of correctly identified positive results divided by the number of all positive

results, including those not identified correctly, and the recall is the number of cor-

rectly identified positive results divided by the number of all samples that should

have been identified as positive. Higher precision means that an algorithm returns

more relevant results than irrelevant ones, and high recall means that an algorithm

returns most of the relevant results (whether or not irrelevant ones are also returned).

The highest possible value of an F-score is 1, indicating perfect precision and recall,

and the lowest possible value is 0 if either the precision or the recall is zero.

7.2.1 Optimal threshold for each string similarity measure

We first examined which string similarity threshold is optimal for which similarity

measure based on precision, recall, and F-score. Table 12 shows F-score values for

different similarity measures and for Inclusion in the case of the test set 1 (Chess),

and Table 13 for test set 2 (Lenkkireitin maisemia). Due to a large number of tested

measures, we only plot selected measures in Table 12, 13. The rest of the measures,

including individual precision, recall, and F-score for each test-set, have been added

in Appendix 1.

Table 12. F-score (%) for different measures for "Chess"
Threshold Le-

venshtein
Damerau-
Le-
venshtein

Smith Wa-
terman-
Gotoh

Jaro Jaro-
Winkler

Inclu-
sion

1.0 1.8 1.8 88.1 1.8 1.8

88.1
0.9 1.8 1.8 87.6 1.8 3.6
0.8 1.8 1.8 79.8 8.8 14.3
0.7 1.8 1.8 67.2 12.4 1.7
0.6 1.6 1.8 21.7 3.3 0.8
0.5 4.0 3.9 8.9 1.5 0.5

Table 13. F-score (%) for different measures for "Lenkkireitin maisemia"

Threshold Le-
venshtein

Damerau-
Le-
venshtein

Smith Wa-
terman-
Gotoh

Jaro Jaro-
Winkler

Inclu-
sion

1.0 83.5 83.5 85.7 85.2 85.2

85.7
0.9 85.2 85.2 82.5 85.5 76.2
0.8 85.2 85.2 73.6 75.7 71.3
0.7 85.4 85.4 70.7 67.8 29.5
0.6 82.8 82.5 61.3 22.4 6.4
0.5 85.0 84.5 42.7 3.8 3.0

62

Figure 25 shows a graph of the true and false-positive results in case of different

string similarity thresholds for the Levenshtein method for the keyword "Chess." We

get the maximum number of true positive results for the similarity threshold 0.5 for

"Chess," which is still poor results as we only get maximum 3 true positives where

the golden standard is set to 108 (table 10), and for 0.7, we get only 1 with no false

positive. So, the precision would be the highest for the similarity threshold greater

than 0.7.

Figure 25. Different string similarity threshold for Levenshtein method for "chess."

We know from section 4 that Levenshtein and Damerau-Levenshtein method applies

high cost only if one string is very smaller than another string. For example, in Fig-

ure 26, the data contains descriptions such as "check," "class," "mess," "cross,"

which are completely irrelevant for "chess," but the string similarity is 0.6 as they

have at least 3 same characters at the same index within the total number of charac-

ters 5 within both of the keyword and descriptions which is greater than the similari-

ty threshold.

63

Figure 26. False positive results for Levenshtein for "Chess" at threshold 0.6.

At the same time, some data in the dataset contains descriptions such as "Skiing

chess competition," "Simultaneous chess in progress," which are relevant, but the

string similarity is approximately 0.2, which is lower than the threshold as the dis-

similar number of characters is much higher than the keyword.

On the other hand, from Table 13, we observe, Levenshtein produces good results for

the keyword "Lenkkireitin maisemia" at the similarity threshold at 0.6 or more. The

length of the description in the dataset is the same as a keyword for a large number of

relevant data. For example, we observed that in the Mopsi dataset, there are 293 pho-

tos with the exact description as "Lenkkireitin maisemia". Suppose we test with the

keyword "Lenkkireitti." In that case, Levenshtein will produce comparatively poor

results for the similarity threshold at 0.6 or more because the similarity between

"Lenkkireitti" and "Lenkkireitin maisemia" is 0.52 (see Figure 27), which is lower

than the threshold. Still, the number of total relevant data is the same for these two

keywords. So, it is false negative for threshold points greater than or equal to 0.6. If

we set the threshold at 0.5, then the results would be better in this case. According to

the Levenshtein measure, Figure 27 represents an example of a false positive and

false negative for "Lenkkireitti" at threshold 0.6. Damerau-Levenshtein measure also

produces a similar kind of results as the Levenshtein measure.

64

Figure 27. False positive and negative results of Levenshtein measure for "Lenkkireitti" at

threshold 0.6.

Another character level measure Smith-Waterman-Gotoh (SWG), which applies the

least cost for mismatch at the beginning and end of the string sequence. From Table

12 and 13, we observe it produces a higher F-score at the similarity threshold greater

than 0.7. Still, it produces some false-positive results. For example, in Figure 28,

"Lochness Scottish pub" is a false positive result for "chess" at 0.9 which has 90% of

similarity in characters though it is not relevant. Also, "Beaches on both banks" has

80% of similarity which is false positive at threshold 0.8.

Figure 28. Example of false positive of SWG at threshold 0.8.

65

We know that Jaro and Jaro-Winkler methods apply the least string similarity match-

ing cost if both strings are identical. For example, in Figure 29, "Chess in the park"

and "chess" has a similarity score of 0.79, which would be a false negative in the

case of similarity threshold 0.8. Still, at the same time, "Chinese snake" or "cheers!"

with "chess" also has the same similarity as 0.79, which is false-positive in the case

of similarity threshold 0.7.

Figure 29. Example of Jaro at threshold 0.7 for "chess."

The average F-score of different similarity measures at different threshold is visual-

ized in a chart diagram in Figure 30. It indicates the optimal threshold point for all

string similarity measures based on the F-score value. It also indicates that Smith-

Waterman-Gotoh produces a higher F-score for any similarity threshold point.

66

Figure 30. Average F-score for different similarity measures.

The results are summarized as averages of precision, recall, and F-score measures for

all domains in Table 14. As can be observed, the F-score for Levenshtein and

Damerau-Levenshtein is less than 30% on average. For the Smith-Waterman-Gotoh

measure, the precision decreases at a lower threshold, producing less of the false pos-

itives at a threshold equal to or greater than 0.8. Jaro measure also produces poor

results on average, and the maximum average F-score value for all test sets is found

at the similarity threshold of 0.8. Jaro-Winkler also produces similar results as Jaro

for most of the cases, and on average, it scores a maximum F-score at the similarity

threshold of 0.8. At threshold 0.7 for chess Jaro- Winkler produces 1265 results in

which only 12 are true positive (Appendix 1).

67

Table 14. Average precision, recall, and F-score (%) for different Measures.

Based on the above discussion, we observe, on average, the optimal threshold value

for both Levenshtein and Damerau-Levenshtein is 0.5, where F-score is 33%, Smith-

Waterman-Gotoh at 0.8 with 77%, Jaro at 0.7 with 38%, and Jaro-Winkler at 0.8

with 47% F-score. In general, the optimal threshold is greater than 0.7 for most cas-

es. The average F-score for Inclusion is 76%, which is near to the Smith-Waterman-

Gotoh measure.

7.2.2 Quality of the measures

We tested each string similarity measure's flexibility under the same similarity

threshold belonging to the same set. Figure 31 shows a few example data chosen

randomly from the Mopsi database to observe how each method measures the same

data under the same domain (same test set). As the average character length in Mopsi

data is 17 to a maximum of 65 characters, we have chosen these data containing

mostly 20 to 25 characters. Each data contains images, descriptions, addresses, and

keywords, which we use to analyze the result. We tested each extracted keyword

from those data in our tool and observed if these data are returned as the results or

not for a fixed similarity threshold. We chose this similarity threshold as 0.8 because,

from our last experiment, we observe that most of the similarity measures produce

better results when the similarity threshold is set greater than 0.7. We represent the

observations in Table 15, where "+" represents positive results and "-" represents

negative results. We can see Levenshtein and Damerau-Levenshtein produce nega-

tive results, whereas Smith-Waterman-Gotoh (SWG) produces positive results for all

data. If we would choose some data containing the exact same description as the

R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

1.0 10 100 18 10 100 18 63 99 74 10 100 18 10 100 18
0.9 10 100 18 10 100 18 63 97 74 10 100 19 25 94 36
0.8 10 98 18 10 98 18 72 89 77 28 78 38 40 61 47
0.7 11 94 19 11 89 19 78 76 75 45 38 37 42 16 21
0.6 16 61 23 16 64 22 80 51 56 56 7 12 46 3 6
0.5 31 47 33 32 43 33 85 20 30 69 1 3 54 1 2

Jaro Jaro-Winkler Inclusion

65 100 76

T
hr

es
ho

ld Levenshtein
Damerau-

Levenshtein

Smith
Waterman-

Gotoh

68

keyword, then all measures would produce a positive result. In data F (Figure 31),

the description of the photo is "SDU Student Restaruant" which is misspelled, so the

keyword "restaurant" is not exact in this case, but the similarity is greater than 0.8 for

Smith-Waterman, Smith-Waterman-Gotoh, Jaro, and Jaro-Winkler.

Figure 31. Random test data from Mopsi Database with keyword.

Table 15. Flexibility of string similarity measures at same similarity threshold (0.8).

Test Data Inclusion
Levenshtein

Damerau-
Levenshtein SWG Jaro

Jaro-
Winkler

A. Luonas + - - + - +

B. Kuhasalo King + - - + + +

C. kuntorastit + - - + - -

D. hölkkä + - - + + -

E. Ilomantsi + - - + + +

F. restaurant _ - - + - -

The quality of the measures can be determined by its ability to find matching entries

from the dataset as the dataset contains descriptions that are not symmetrical by their

length or number of total characters and number of tokens, so the same measure

would produce different quality results for different keywords. In an ideal case, each

69

measure would produce similar results for any keyword. Table 16 represents which

similarity measure produces what maximum scores for a specific keyword regardless

their similarity threshold. For example, as for Levenshtein, which has F-score 4.1%

maximum for the keyword "chess," but it scores 86.1% maximum for the keyword

"Lenkkireitti." We can observe the same behavior for the Damerau-Levenshtein, Ja-

ro, Jaro-Winkler measure. Smith-Waterman-Gotoh gives more consistent measures

for most of the keywords. It also produces comparatively the most F-score values for

most of the chosen keywords.

Table 16. Maximum F-score in % (threshold) of any measure for different keywords.

Keyword Le-
venshtein

Damerau-
Levenshtein SWG Jaro Jaro-

Winkler Inclusion

Chess 4.1 3.9 88.1 12.4 14.3 88.1
Lenkkireitin
maisemia 85.4 85.4 85.7 85.5 85.2

85.7

Lenkkireitti 86.1 85.8 96.2 96.1 95.9 66.7
Pizza 15.2 14.6 83.8 42.8 43.6 75.2
Lounas 9.9 9.4 92.5 18.9 40.2 92.5
Marathon 25.8 25.4 76.4 19.1 17.8 76.4

Swimming 27.6 27.8 72.8 28.1 36.3 70.9
Beach 49.8 50.4 99.8 61.5 63.8 99.8
Kuhasalo
King 72.1 68.8

75.9
70.2 69.1

75.9

Kuntorastit 50.2 61.4 92.4 74.2 74.9 89.3
Hölkkä 17.7 8.8 72.2 26 0.3 61.0
Skiing 17.5 17.1 74.9 23.7 41.1 74.9

Barbeque 34 32 82.4 50 50 84.8

Restaurant 37.6 37.2 77.1 35 28.1 78.4

Kahvila 7 7.2 55.8 24.7 24.5 44.9
Sauna 31.2 32.3 95.9 41.8 49.4 95.9

Hotelli 18.3 18.3 93.8 45.5 59.2 29.5
Apteekki 33.3 33.3 94.7 33.3 46.2 88.9

Compared to the Inclusion match Smith-Waterman-Gotoh produces greater F-score

value for "Lenkkireitti," "Pizza," "Swimming," "Kuntorastit," "Hölkkä," "Kahvila,"

"Hotelli," "Apteekki" at string similarity threshold 0.8 whereas both measures pro-

duce same F-score value for other keywords except "Barbeque," and "Restaurant."

70

7.2.3 Correlation to physical distance and similarity measure

When we search for something, we first check whether the data's content is relevant

to the search query. For example, when someone searches for "grocery store," the

search engine shifts through all the possible matches in the database and lists them in

the index. And to order these results, we consider the physical distance along with

the content relevance. Now we observe if our tool can find the most relevant results

based on the user's query and return those data on the top of the results or not. Order-

ing is important as if people search for something, and they tend to look at the first

few results, not the entire list of results. For example, if a search query produces 500

results, and 200 is true positive among them, it will be expected that those true posi-

tive results would be at the top of the entire list. Otherwise, if users see top results are

mostly unexpected, they may not continue looking at the data until the end of the list.

For this experiment, we consider users limit the search result, i.e., 20 photos, so our

tool should return the top 20 relevant photos based on the user's specification. There

might be a few different scenarios and such as users want to see the results within a

given distance. For example, we have selected a search query as keyword "restau-

rant," the maximum number of results is 20, the string similarity measure is Smith-

Waterman Gotoh, similarity threshold is 0.8, ordered by string similarity, distance

radius is 10km, and address is Niskakatu, Joensuu, Finland. For this query, we get a

maximum of 20 results, and all of them will be within a 10km radius from a specified

location, and they will be ordered by string similarity. Some of the results may have

the same string similarity, and in that case, this tool will perform multi-sort, so the

results with the same string similarity will be sorted by physical distance. Figure 32

shows that all the top results have string similarity 1 for the abovementioned query,

and they are internally sorted by physical distance, i.e., 0.26km, 0.27km, and 0.28km

at index 1, 2, 3, respectively. And if we change the address to Helsinki, Finland, then

it will return only those results which are located within a 10km radius from Helsin-

ki.

71

Figure 32. Ordered by string similarity for keyword "restaurant" from Niskakatu.

Another condition might be whether the user wants to see the nearby top results even

if the content does not have an exact match with the keyword. To satisfy this, we

have selected the ordering as the physical distance for the abovementioned query,

and it returns 20 results, of which 17 are true-positive, and 3 results are false posi-

tive. For example, the photo in Figure 33 contains "Restrant" which is misspelled, so

the string similarity is 0.88, and still, it is at index 1 as it has the lowest distance

(0.24km) than others and "ranta" at index 16. As our tool only works for syntactic

similarity, it does not consider the meaning of the content, and it satisfies the condi-

tion given in the query, as mentioned earlier.

72

Figure 33. Ordered by physical distance for keyword "restaurant" from Niskakatu.

At the end of our experiments and case studies, we have some observations based on

our pre-determined objectives. Those observations are as follows.

• The proportion of the true and false data in the Mopsi Dataset is not balanced

for any keyword.

• Smith-Waterman-Gotoh has performed better than other similarity measures

at the similarity threshold values from 0.8 to 1.0.

• Some titles of the Mopsi datasets have spelling mistakes, but our tool can still

retrieve those data due to approximate searching.

• When the similarity threshold value is set from 0.1 to 0.5, most of the similar-

ity measures produce more irrelevant results than relevant.

73

8 Conclusions

We have developed a photo searching tool for the Mopsi database based on approxi-

mate searching where people can search for the nearby photo according to their cur-

rent location. As can be observed from our experimentation, based on the types and

characteristics of data in the Mopsi database, our tool gives the best quality results

for string similarity measures as Smith-Waterman-Gotoh compared to other similari-

ty measures, and it produces an average F-score 77% for the selected test-sets. It also

produces better results compared to Inclusion matching in most of the cases.

Our tool only supports syntactic similarity measures, so there remains a gap between

human intuition of what they expect to see and the results from this tool. This work

can be extended further to integrate semantic similarity measures to support this is-

sue. Another limitation is that our tool does not support the multi-language selection

so when user search for something, they may like to see also those results which are

relevant but in a different language, i.e., "jogging" and "hölkkä" are relevant in

meaning, but one is in English, and another one is in the Finnish language.

74

References

A. Ahson, S., & Ilyas, M. (2011). Location-based services handbook: Applications,

technologies, and security. CRC Press.

Abdeen, R. A. (2019). An algorithm for string searching. International Journal of

Computer Applications, 17-22.

Apostolico, A., & Galill, Z. (1997). Pattern matching algorithms. New York: Oxford

University Press.

Benharzallah, S., Kazar, O., & Caplat, G. (2011). Intelligent query processing for

semantic mediation. Egyptian Informatics Journal, 151-162.

Benza-Yeats, R., & Ganzalo, N. (1998). Fast approximate string matching in a

dictionary. University of Chili, 1-8.

Bislimovska, B., Bozzon, A., Brambilla, M., & Fraternali, P. (2012). Search upon

UML repositories with text-matching techniques. IEEE, 9-12.

Blandineau, M. (2020). What is search relevance? Retrieved from Algolia:

https://blog.algolia.com/what-is-search-relevance/

Boytsov, L. (2011). Indexing methods for approximate dictionary

searching:Comparative analysis. ACM, 1-91.

Brimicombe, A., & Li, C. (2009). Location-based services and geo-information

engineering. Wiley-Blackwell.

Choi, S.-S., Cha, S.-H., & Tappert, C. C. (2010). A survey of binary similarity and

distance measures. Systemics, Cybernetics and Informatics, 43-48.

Church, K. W., & Hanks, P. (1990). Word association norms, mutual information,

and lexicography. Comput. Linguist., 22-29.

CodeOrg. (2017). The internet: How search works. Retrieved from CODE:

https://www.code.org/

75

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (2003). A comparison of string

distance metrics for name matching tasks. American association for artificial

intelligence, 1-6.

ComputerHope. (2018). Search. Retrieved from Computer Hope:

https://www.computerhope.com/jargon/s/search.htm

Damerau, F. J. (1964). A technique for computer detection and correction of spelling

errors. Communications of the ACM, 171-176.

Dodsworth, E., & Nicholson, A. (2012). Academic uses of Google Earth and Google

Maps in a library setting. ResearchGate, 102-117.

El-gayar, M., Mekky, N., & Atwan, A. (2015). Efficient Proposed framework for

semantic search engine using eew semantic ranking algorithm. International

Journal of Advanced Computer Science and Applications, 1-9.

Erasmus. (2020). Search methods & techniques: search techniques. Retrieved from

Erasmus University Library:

https://libguides.eur.nl/informationskillssearchmethods

Ferguson, N. (2020). The difference between frontend and backend web

development. Retrieved from CareerFoundry:

https://careerfoundry.com/en/blog/web-development/whats-the-difference-

between-frontend-and-backend/

Fränti, P., Tabarcea, A., Kuittinen, J., & Hautamäki, V. (2010). Location-based

search engine for multimedia phones. Proceedings of the 2010 IEEE

International Conference on Multimedia and Expo, (pp. 558-563). Singapore.

Friedman, C., & Sideli, R. (1992). Tolerating spelling errors during patient

validation. Elsevier, 486-509.

Galhardas, H. (2013). Data cleaning and transformation- record linkage.

https://www.slideshare.net/amooool2000/token-17595472.

76

Gali, N., Mariescu-Istodor, R., & Fränti, P. (2016). Similarity measures for title

matching. International Conference on Pattern Recognition (pp. 1549-1554).

Cancún, México: IEEE.

Gali, N., Mariescu-Istodor, R., Hostettler, D., & Fränti, P. (2019). Framework for

syntactic string similarity measures. ScienceDirect, 169-185.

GoogleBusinessHelp. (2020). Improve your local ranking on Google. Retrieved from

Google my business help :

https://support.google.com/business/answer/7091?hl=en#:~:text=How%20Go

ogle%20determines%20local%20ranking,best%20match%20for%20your%20

search.

GoogleCodeArchive. (2016). Long-term storage for google code project hosting.

Retrieved from code.google.com:

https://code.google.com/archive/p/word2vec/

GoogleMapsPlatform. (2020). Google maps platform documentation. Retrieved from

Google Maps Platform : https://developers.google.com/maps/

Gotoh, O. (1982). An improved algorithm for matching biological sequences.

Journal of Molecular Biology, 705-708.

Guemmat, E. K., & Ouahabi, S. (2019). Towards a new educational search engine

based on hybrid searching and indexing techniques. IEEE, 1-5.

Hakak, S. (2019). Exact string matching algorithms: survey, issues, and future

research. IEEE access , 1-25.

Hamming, R. W. (1950). Error detecting and error correcting codes. Bell Labs

Technical Journal, 147-160.

Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J. (2015). Semantic similarity from

natural language and ontology analysis. Synthesis lectures on human

language technologies. , 1-254.

77

Hussan, B. K. (2020). Comparative study of semantic and keyword based search

engines. Advances in Science, Technology and Engineering Systems, 106-

111.

Jacob, A. E., Ashodariya, N., & Dhongade, A. (2017). Hybrid search algorithm-

combined linear and binary search algorithm. IEEE, 1543-1547.

Janani, R., & Vijayarani, S. (2006). An efficient text pattern matching algorithm for

retrieving information from desktop. Indian Journal of Science and

Technology, 1-11.

Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching

the 1985 Census of tampa, Florida. Journal of the American Statistical

Association , 414-420.

Kapoor, N. (2019). Step by step guide to keyword research. Retrieved from

Relevance : https://www.relevance.com/step-by-step-guide-to-keyword-

research/

Kaur, A. (2015). A novel approach for syntactic similarity. INTERNATIONAL

JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 216-219.

Kehrer, R. (2018). Exact searching. Retrieved from FamilySearch:

https://www.familysearch.org/en/

Kent, A. (2019). How search engines use keywords. Retrieved from WordTracker:

https://www.wordtracker.com/academy/keyword-research/guides/how-

search-engines-use-keywords

Kettle, S. (2017). Distance on a sphere: The haversine formula. Retrieved from Esri

Community: https://community.esri.com/t5/coordinate-reference-

systems/distance-on-a-sphere-the-haversine-formula/ba-

p/902128#:~:text=For%20example%2C%20haversine(%CE%B8),longitude

%20of%20the%20two%20points.

78

Khatter, H., & Ahlawat, A. K. (2020). An intelligent personalized web blog

searching technique using fuzzybased feedback recurrent neural network.

Springer-Verlag GmbH Germany, 9321-9333.

Khor, T. P. (2014). Keyword relevance in search engine optimization. Open

University Malaysia, 1-96.

Kononenko, K. (2018). Visual explanations of HTML, CSS and JavaScript concepts.

Retrieved from CodeAnalogies:

https://blog.codeanalogies.com/2018/05/09/the-relationship-between-html-

css-and-javascript-explained/

Kumar, N., Bibhu, V., Islam, M., & Bhardwaj, S. (2010). Approximate string

matching algorithm . International Journal on Computer Science and

Engineering , 641-644.

Landauer, T. K., & Dumais, S. T. (1997). A solution to plato's problem: The latent

semantic analysis theory of acquisition, induction, and representation of

knowledge. American Psychological Association, Inc., 211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent

semantic analysis. 259-284.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions,

and reversals. Soviet Physics Doklady, 707-710.

Mala, V., & Lobiyal, D. (2016). Semantic and keyword based web techniques in

information retrieval. IEEE, 23-26.

Malakasiotis, P., & Androutsopoulos, I. (2007). Learning textual entailment using

SVMs and string similarity measures. Proceedings of the Workshop on

Textual Entailment and Paraphrasing, 42-47.

Manage-ads. (2020). About exact match. Retrieved from Google Ads Help:

https://support.google.com/google-

ads/answer/2497825?hl=en#:~:text=With%20exact%20match%2C%20you%

20can,the%20query%20and%20the%20keyword.

79

Mariescu-Istodor, R. (2017). Efficient management and search of GPS routes.

University of Eastern Finland, 1-163.

Marsden, S. (2020). How do eearch engines work? Retrieved from DeepCrawl:

https://www.deepcrawl.com/knowledge/technical-seo-library/how-do-search-

engines-work/

Mihalcea, R., Corley, C., & Strapparava, C. (2006). Corpus-based and knowledge-

based measures of text semantic similarity. American Association for

Artificial Intelligence, 1-6.

Miller, G. A. (1995). WordNet: A lexical database for english. ACM, 39-41.

Morris, S. (2020). Ajax—What it is, How it works, and What it used for? Retrieved

from skillcrus: https://skillcrush.com/blog/what-is-ajax/

Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing

Surveys, 1-82.

Navarro, G., Baeza-Yeats, R., Sutinen, Y., & Tarhio, J. (2001). Indexing methods for

approximate string matching. IEEE, 1-8.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal of

Molecular Biology, 443-453.

Nls. (2020). Satellite positioning. Helsinki: National Land Survey of Finland .

Prakhar. (2018). Haversine formula to find distance between two points on a sphere.

Retrieved from geeksforgeeks: https://www.geeksforgeeks.org/haversine-

formula-to-find-distance-between-two-points-on-a-

sphere/#:~:text=The%20Haversine%20formula%20calculates%20the,importa

nt%20for%20use%20in%20navigation.

Prokofyeva, N., & Boltunova, V. (2017). Analysis and practical application of PHP

frameworks in development of web information systems. ResearchGate, 51-

56.

80

Rezaei, M., & Franti, P. (2016). Set matching measures for external cluster validity.

IEEE, 2173 - 2186.

Romain, S. (2019). Geotagging and SEO: How your location matters. Retrieved

from Romain Berg: https://www.romainberg.com/geotagging-and-seo-how-

your-location-

matters/#:~:text=Geotagging%20is%20the%20process%20of,information%2

0to%20photos%20and%20images.

Schiller, J., & Voisard, A. (2004). Location-based services. ELSEVIER, 1-255.

Shapiro, L. G., & Haralick, R. M. (1981). Structural sescriptions and inexact

matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,

504-516.

Sheela, A. S., & Jayakumar, D. (2019). Comparative study of syntactic search engine

and semantic search engine: A survey. IEEE Xplore, 1-4.

Shin, S. (2018). Introduction to JSON (JavaScript Object Notation). Java Technology

Architect.

Smith, T., & Waterman, M. (1981). Identification of common molecular

subsequences. Journal of Molecular Biology, 195-197.

Tabarcea, A. C. (2015). Location-based Web search and mobile applications.

University of Eastern Finland.

Taib, F., Abbou, F. M., & Alam, M. J. (2008). A matching approach for object

oriented formal specifications. JOURNAL OF OBJECT TECHNOLOGY,

141-153.

Turney, P. D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL.

M-50 Montreal Road, Ottawa, Ontario, Canada: Institute for Information

Technology, National Research Council of Canada.

TutorialRide. (2017). Searching in data structure. Retrieved from TutorialRide.com:

https://www.tutorialride.com/data-structures/searching-in-data-

81

structure.htm#:~:text=Searching%20is%20the%20process%20of,or%20on%

20external%20data%20structure

Watters, C., & Amoudi, G. (2018). GeoSearcher: Location-based ranking of search.

Journal of the American Society for Information Science and Technology,

140-151.

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the

fellegi-sunter model of record linkage. In Proceedings of the section on

survey research methods, 354-359.

WordNets in the World. (2010). Global WordNet association. Retrieved from

http://globalwordnet.org/resources/wordnets-in-the-world/

Xie, M. (2019). Trajectories medoid and clustering. University of Eastern Finland ,

1-56.

Appendix 1: Important data

Table 1a. Calculation of true positive, false positive and false negative values for different test
set.

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

1 1 1 85 1 1 0 0 0 0 0 107 107 23 107 107
0.9 1 1 85 1 2 0 0 1 0 1 107 107 23 107 106
0.8 1 1 85 5 10 0 0 20 1 22 107 107 23 103 98
0.7 1 1 85 19 12 0 0 60 180 1253 107 107 23 89 96
0.6 1 1 85 40 12 14 0 592 2285 2916 107 107 23 68 96
0.5 3 3 86 70 22 38 44 1734 9388 8096 105 105 22 38 86
1 280 280 293 290 290 0 0 16 0 0 111 111 98 101 101
0.9 290 290 293 292 292 0 0 26 0 83 101 101 98 99 99
0.8 290 290 293 292 293 0 0 112 88 138 101 101 98 99 98
0.7 295 295 293 293 293 5 5 145 180 1302 96 96 98 98 98
0.6 296 295 293 293 293 28 29 272 1936 8497 95 96 98 98 98
0.5 366 366 293 293 293 104 109 688 14743 19090 25 25 98 98 98
1 65 65 73 65 65 0 0 0 0 0 326 326 318 326 326
0.9 65 66 73 66 360 0 0 0 0 0 326 325 318 325 31
0.8 66 66 369 362 366 0 0 7 0 98 325 325 22 29 25
0.7 66 69 369 367 367 2 0 14 123 598 325 322 22 24 24
0.6 67 70 369 369 367 32 30 100 1516 3535 324 321 22 22 24
0.5 363 363 369 369 367 89 92 455 12163 15249 28 28 22 22 24
1 3 3 59 3 3 0 0 0 0 0 95 95 39 95 95
0.9 3 3 59 3 9 0 0 35 0 1 95 95 39 95 89
0.8 3 3 98 13 36 1 1 38 1 31 95 95 0 85 62
0.7 3 3 98 40 39 1 1 39 49 158 95 95 0 58 59
0.6 3 3 98 55 39 27 28 53 584 978 95 95 0 43 59
0.5 11 11 98 66 40 36 42 128 5662 4591 87 87 0 32 58
1 4 4 99 4 4 0 0 0 0 0 111 111 16 111 111
0.9 4 4 99 4 5 0 0 0 0 0 111 111 16 111 110
0.8 4 4 102 7 34 0 0 4 5 20 111 111 13 108 81
0.7 4 4 102 45 42 0 0 4 316 557 111 111 13 70 73
0.6 4 4 102 67 54 3 4 103 2357 2630 111 111 13 48 61
0.5 14 14 115 110 72 164 168 1081 11641 11069 101 101 0 5 43
1 0 0 162 0 0 0 0 0 0 0 262 262 100 262 262
0.9 0 0 162 0 22 0 0 0 0 0 262 262 100 262 240
0.8 0 0 162 25 31 0 0 98 5 55 262 262 100 237 231
0.7 0 0 162 48 31 0 0 112 192 506 262 262 100 214 231
0.6 13 14 162 88 34 2 2 170 1956 3036 249 248 100 174 228
0.5 47 47 162 98 64 56 61 822 12462 13136 215 215 100 164 198
1 1 1 75 1 1 0 0 0 0 0 130 130 56 130 130
0.9 1 1 75 2 16 0 0 0 0 0 130 130 56 129 115
0.8 1 1 75 18 29 0 0 1 2 0 130 130 56 113 102
0.7 2 2 77 37 60 0 0 8 95 142 129 129 54 94 71
0.6 20 20 80 56 66 3 4 17 888 1280 111 111 51 75 65
0.5 35 36 131 91 79 88 92 181 6361 7777 96 95 0 40 52

M
ar

at
ho

n

(te

st
 s

et
-6

)
Sw

im
m

in
g

(te
st

 s
et

-
7)

K
ey

w
or

ds

T
hr

es
ho

ld

Total true positive result Total false positive result Total false negative result

C
he

ss
 (t

es
t s

et
-1

)
Le

nk
ki

re
iti

n
m

ai
se

m
ia

 (t
es

t s
et

-
Le

nk
ki

re
itt

i (
te

st
 s

et
-

3)
Pi

zz
a

(te
st

 s
et

-4
)

Lo
un

as
 (t

es
t s

et
-5

)

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

1 80 80 296 84 80 0 0 0 0 0 217 217 1 213 217
0.9 80 80 296 84 99 0 0 0 0 0 217 217 1 213 198
0.8 84 84 297 107 147 6 6 16 7 17 213 213 0 190 150
0.7 84 84 297 154 147 6 6 32 50 112 213 213 0 143 150
0.6 84 84 297 167 149 11 12 186 753 743 213 213 0 130 148
0.5 104 107 297 180 166 17 21 625 6428 4372 193 190 0 117 131
1 0 0 22 0 0 0 0 0 0 0 36 36 14 36 36
0.9 0 0 22 0 19 0 0 0 0 0 36 36 14 36 17
0.8 0 0 22 20 27 0 0 0 1 20 36 36 14 16 9
0.7 0 0 22 28 27 0 0 111 53 824 36 36 14 8 9
0.6 15 15 35 31 31 0 0 162 2295 5936 21 21 1 5 5
0.5 22 22 35 31 31 3 6 379 14523 19143 14 14 1 5 5
1 17 17 121 17 17 0 0 1 0 0 133 133 29 133 133
0.9 17 17 127 17 50 0 0 1 0 2 133 133 23 133 100
0.8 17 17 134 92 112 0 0 6 6 37 133 133 16 58 38
0.7 22 24 135 120 118 2 0 19 104 800 128 126 15 30 32
0.6 33 36 137 130 123 3 5 129 2105 5065 117 114 13 20 27
0.5 57 78 148 144 135 20 26 1274 14315 17402 93 72 2 6 15
1 0 0 57 0 0 0 0 0 0 0 130 130 73 130 130
0.9 0 0 57 0 0 0 0 0 0 0 130 130 73 130 130
0.8 0 0 82 0 0 0 0 15 9 1 130 130 48 130 130
0.7 0 0 82 26 0 0 10 27 44 49 130 130 48 104 130
0.6 0 3 82 43 0 11 26 31 344 437 130 127 48 87 130
0.5 16 16 84 75 7 35 216 239 2663 4095 114 114 46 55 123
1 1 1 76 1 1 0 0 0 0 0 126 126 51 126 126
0.9 1 1 76 1 17 0 0 0 0 0 126 126 51 126 110
0.8 1 1 76 18 38 0 0 0 7 20 126 126 51 109 89
0.7 1 1 76 50 38 1 1 3 259 380 126 126 51 77 89
0.6 1 1 76 65 40 13 17 62 1774 2384 126 126 51 62 87
0.5 22 22 78 66 47 103 109 3072 9612 9743 105 105 49 61 80
1 1 1 14 1 1 0 0 1 0 0 18 18 5 18 18
0.9 1 1 14 1 7 0 0 1 0 2 18 18 5 18 12
0.8 1 1 14 7 9 0 0 2 2 17 18 18 5 12 10
0.7 1 1 16 14 10 0 0 4 24 172 18 18 3 5 9
0.6 2 2 16 16 12 1 2 43 892 1526 17 17 3 3 7
0.5 8 8 18 16 12 20 23 251 7543 8478 11 11 1 3 7
1 13 13 474 15 13 0 0 0 0 0 760 760 299 758 760
0.9 22 22 477 22 105 0 0 0 0 0 751 751 296 751 668
0.8 23 23 496 129 135 0 0 17 1 54 750 750 277 644 638
0.7 25 25 499 196 151 0 0 869 150 649 748 748 274 577 622
0.6 55 56 502 300 210 2 2 954 2996 5929 718 717 271 473 563
0.5 189 189 506 512 460 42 54 1498 16283 17722 584 584 267 261 313

H
öl

kk
ä

(te
st

 s
et

-1
1)

Sk
iin

g
(te

st
 s

et
-1

2)
B

ar
be

qu
e

(te
st

 s
et

-
13

)
R

es
ta

ur
an

t (
te

st
 s

et
-

14
)

B
ea

ch
 (t

es
t s

et
-8

)
K

uh
as

al
o

K
in

g
(te

st

se
t-9

)
K

un
to

ra
st

it

(te

st
 s

et
-1

0)
K

ey
w

or
ds

T
hr

es
ho

ld

Total true positive result Total false positive result Total false negative result

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n

Sm
ith

 W
at

er
m

an
-

G
ot

oh

Ja
ro

Ja
ro

-W
in

kl
er

1 4 4 171 4 4 0 0 0 0 0 586 586 419 586 586
0.9 4 4 175 4 14 0 0 0 0 0 586 586 415 586 576
0.8 4 4 183 31 84 0 0 0 0 25 586 586 407 559 506
0.7 4 4 229 99 88 0 0 2 113 387 586 586 361 491 502
0.6 5 6 229 145 111 2 3 29 1663 2679 585 584 361 445 479
0.5 22 23 235 276 233 18 24 505 10707 10794 568 567 355 314 357
1 23 23 129 23 23 0 0 0 0 0 117 117 11 117 117

0.9 23 23 129 23 37 0 0 0 0 0 117 117 11 117 103
0.8 23 23 133 42 61 0 0 44 19 46 117 117 7 98 79
0.7 23 23 134 65 64 0 0 76 534 656 117 117 6 75 76
0.6 29 29 136 80 70 38 39 537 3936 3198 111 111 4 60 70
0.5 42 45 136 115 92 87 94 2419 14978 11721 98 95 4 25 48
1 1 1 66 1 1 0 0 1 0 0 358 358 293 358 358

0.9 1 1 67 7 15 0 0 3 0 0 358 358 292 352 344
0.8 1 1 70 32 159 0 0 11 3 19 358 358 289 327 200
0.7 7 7 349 136 162 0 0 36 103 483 352 352 10 223 197
0.6 9 9 350 184 164 1 2 82 1605 3127 350 350 9 175 195
0.5 38 39 354 234 190 19 29 1261 10563 10922 321 320 5 125 169
1 2 2 8 2 2 0 0 0 0 0 8 8 2 8 8

0.9 2 2 8 2 3 0 0 0 0 0 8 8 2 8 7
0.8 2 2 8 3 4 0 0 0 7 4 8 8 2 7 6
0.7 2 2 9 3 4 0 0 0 99 239 8 8 1 7 6
0.6 3 3 9 4 4 7 8 63 1542 3492 7 7 1 6 6
0.5 3 3 10 4 4 32 54 1067 11494 13269 7 7 0 6 6

Sa
un

a
(te

st
 s

et
-1

6)
H

ot
el

li
 (t

es
t s

et
-1

7)
A

pt
ee

kk
i (

te
st

 s
et

-
18

)
K

ah
vi

la

(te

st
 s

et
-1

5)
K

ey
w

or
ds

T
hr

es
ho

ld

Total true positive result Total false positive result Total false negative result

Table 2a. Calculation of recall, precision, and F-score for different test sets.

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

1 1% 1% 79% 1% 1% 100% 100% 100% 100% 100% 2% 2% 88% 2% 2%
0.9 1% 1% 79% 1% 2% 100% 100% 99% 100% 67% 2% 2% 88% 2% 4%
0.8 1% 1% 79% 5% 9% 100% 100% 81% 83% 31% 2% 2% 80% 9% 14%
0.7 1% 1% 79% 18% 11% 100% 100% 59% 10% 1% 2% 2% 67% 12% 2%
0.6 1% 1% 79% 37% 11% 7% 100% 13% 2% 0% 2% 2% 22% 3% 1%
0.5 3% 3% 80% 65% 20% 7% 6% 5% 1% 0% 4% 4% 9% 1% 1%
1 72% 72% 75% 74% 74% 100% 100% 95% 100% 100% 83% 83% 84% 85% 85%
0.9 74% 74% 75% 75% 75% 100% 100% 92% 100% 78% 85% 85% 83% 86% 76%
0.8 74% 74% 75% 75% 75% 100% 100% 72% 77% 68% 85% 85% 74% 76% 71%
0.7 75% 75% 75% 75% 75% 98% 98% 67% 62% 18% 85% 85% 71% 68% 30%
0.6 76% 75% 75% 75% 75% 91% 91% 52% 13% 3% 83% 83% 61% 22% 6%
0.5 94% 94% 75% 75% 75% 78% 77% 30% 2% 2% 85% 85% 43% 4% 3%
1 17% 17% 19% 17% 17% 100% 100% 100% 100% 100% 29% 29% 31% 29% 29%
0.9 17% 17% 19% 17% 92% 100% 100% 100% 100% 100% 29% 29% 31% 29% 96%
0.8 17% 17% 94% 93% 94% 100% 100% 98% 100% 79% 29% 29% 96% 96% 86%
0.7 17% 18% 94% 94% 94% 97% 100% 96% 75% 38% 29% 30% 95% 83% 54%
0.6 17% 18% 94% 94% 94% 68% 70% 79% 20% 9% 27% 29% 86% 32% 17%
0.5 93% 93% 94% 94% 94% 80% 80% 45% 3% 2% 86% 86% 61% 6% 5%
1 3% 3% 60% 3% 3% 100% 100% 100% 100% 100% 6% 6% 75% 6% 6%
0.9 3% 3% 60% 3% 9% 100% 100% 63% 100% 90% 6% 6% 61% 6% 17%
0.8 3% 3% 100% 13% 37% 75% 75% 72% 93% 54% 6% 6% 84% 23% 44%
0.7 3% 3% 100% 41% 40% 75% 75% 72% 45% 20% 6% 6% 83% 43% 26%
0.6 3% 3% 100% 56% 40% 10% 10% 65% 9% 4% 5% 5% 79% 15% 7%
0.5 11% 11% 100% 67% 41% 23% 21% 43% 1% 1% 15% 15% 60% 2% 2%
1 3% 3% 86% 3% 3% 100% 100% 100% 100% 100% 7% 7% 93% 7% 7%
0.9 3% 3% 86% 3% 4% 100% 100% 100% 100% 100% 7% 7% 93% 7% 8%
0.8 3% 3% 89% 6% 30% 100% 100% 96% 58% 63% 7% 7% 92% 11% 40%
0.7 3% 3% 89% 39% 37% 100% 100% 96% 12% 7% 7% 7% 92% 19% 12%
0.6 3% 3% 89% 58% 47% 57% 50% 50% 3% 2% 7% 7% 64% 5% 4%
0.5 12% 12% 100% 96% 63% 8% 8% 10% 1% 1% 10% 9% 18% 2% 1%
1 0% 0% 62% 0% 0% nul l nul l 100% nul l nul l nul l nul l 76% nul l nul l

0.9 0% 0% 62% 0% 8% nul l nul l 100% nul l 100% nul l nul l 76% nul l 15%
0.8 0% 0% 62% 10% 12% nul l nul l 62% 83% 36% nul l nul l 62% 17% 18%
0.7 0% 0% 62% 18% 12% nul l nul l 59% 20% 6% nul l nul l 60% 19% 8%
0.6 5% 5% 62% 34% 13% 87% 88% 49% 4% 1% 9% 10% 55% 8% 2%
0.5 18% 18% 62% 37% 24% 46% 44% 16% 1% 0% 26% 25% 26% 2% 1%
1 1% 1% 57% 1% 1% 100% 100% 100% 100% 100% 2% 2% 73% 2% 2%
0.9 1% 1% 57% 2% 12% 100% 100% 100% 100% 100% 2% 2% 73% 3% 22%
0.8 1% 1% 57% 14% 22% 100% 100% 99% 90% 100% 2% 2% 72% 24% 36%
0.7 2% 2% 59% 28% 46% 100% 100% 91% 28% 30% 3% 3% 71% 28% 36%
0.6 15% 15% 61% 43% 50% 87% 83% 82% 6% 5% 26% 26% 70% 10% 9%
0.5 27% 27% 100% 69% 60% 28% 28% 42% 1% 1% 28% 28% 59% 3% 2%

M
ar

at
ho

n

(te

st
 s

et
-6

)
K
ey
w
or
ds

T
hr
es
ho
ld

Recall Precision F-score
C

he
ss

 (t
es

t s
et

-1
)

Le
nk

ki
re

iti
n

m
ai

se
m

ia
 (t

es
t s

et
-

Le
nk

ki
re

itt
i (

te
st

 s
et

-
3)

Pi
zz

a
(te

st
 s

et
-4

)
Lo

un
as

 (t
es

t s
et

-5
)

Sw
im

m
in

g
(te

st
 s

et
-

7)

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

1 27% 27% 100% 28% 27% 100% 100% 100% 100% 100% 42% 42% 100% 44% 42%
0.9 27% 27% 100% 28% 33% 100% 100% 100% 100% 100% 42% 42% 100% 44% 50%
0.8 28% 28% 100% 36% 49% 93% 93% 95% 94% 90% 43% 43% 97% 52% 64%
0.7 28% 28% 100% 52% 49% 93% 93% 90% 75% 57% 43% 43% 95% 61% 53%
0.6 28% 28% 100% 56% 50% 88% 88% 61% 18% 17% 43% 43% 76% 27% 25%
0.5 35% 36% 100% 61% 56% 86% 84% 32% 3% 4% 50% 50% 49% 5% 7%
1 0% 0% 61% 0% 0% nul l nul l 100% nul l nul l nul l nul l 76% nul l nul l

0.9 0% 0% 61% 0% 53% nul l nul l 100% nul l 100% nul l nul l 76% nul l 69%
0.8 0% 0% 61% 56% 75% nul l nul l 100% 95% 57% nul l nul l 76% 70% 65%
0.7 0% 0% 61% 78% 75% nul l nul l 17% 35% 3% nul l nul l 26% 48% 6%
0.6 42% 42% 97% 86% 86% 100% 100% 18% 1% 1% 59% 59% 30% 3% 1%
0.5 61% 61% 97% 86% 86% 88% 79% 8% 0% 0% 72% 69% 16% 0% 0%
1 11% 11% 81% 11% 11% 100% 100% 99% 100% 100% 20% 20% 89% 20% 20%
0.9 11% 11% 85% 11% 33% 100% 100% 99% 100% 96% 20% 20% 91% 20% 50%
0.8 11% 11% 89% 61% 75% 100% 100% 96% 94% 75% 20% 20% 92% 74% 75%
0.7 15% 16% 90% 80% 79% 92% 100% 88% 54% 13% 25% 28% 89% 64% 22%
0.6 22% 24% 91% 87% 82% 92% 88% 52% 6% 2% 35% 38% 66% 11% 5%
0.5 38% 52% 99% 96% 90% 74% 75% 10% 1% 1% 50% 61% 19% 2% 2%
1 0% 0% 44% 0% 0% nul l nul l 100% nul l nul l nul l nul l 61% nul l nul l

0.9 0% 0% 44% 0% 0% nul l nul l 100% nul l nul l nul l nul l 61% nul l nul l

0.8 0% 0% 63% 0% 0% nul l nul l 85% 0% 0% nul l nul l 72% nul l nul l

0.7 0% 0% 63% 20% 0% nul l 0% 75% 37% 0% nul l nul l 69% 26% nul l

0.6 0% 2% 63% 33% 0% 0% 10% 73% 11% 0% nul l 4% 67% 17% nul l

0.5 12% 12% 65% 58% 5% 31% 7% 26% 3% 0% 18% 9% 37% 5% 0%
1 1% 1% 60% 1% 1% 100% 100% 100% 100% 100% 2% 2% 75% 2% 2%
0.9 1% 1% 60% 1% 13% 100% 100% 100% 100% 100% 2% 2% 75% 2% 24%
0.8 1% 1% 60% 14% 30% 100% 100% 100% 72% 66% 2% 2% 75% 24% 41%
0.7 1% 1% 60% 39% 30% 50% 50% 96% 16% 9% 2% 2% 74% 23% 14%
0.6 1% 1% 60% 51% 31% 7% 6% 55% 4% 2% 1% 1% 57% 7% 3%
0.5 17% 17% 61% 52% 37% 18% 17% 2% 1% 0% 17% 17% 5% 1% 1%
1 5% 5% 74% 5% 5% 100% 100% 93% 100% 100% 10% 10% 82% 10% 10%
0.9 5% 5% 74% 5% 37% 100% 100% 93% 100% 78% 10% 10% 82% 10% 50%
0.8 5% 5% 74% 37% 47% 100% 100% 88% 78% 35% 10% 10% 80% 50% 40%
0.7 5% 5% 84% 74% 53% 100% 100% 80% 37% 5% 10% 10% 82% 49% 10%
0.6 11% 11% 84% 84% 63% 67% 50% 27% 2% 1% 18% 17% 41% 3% 2%
0.5 42% 42% 95% 84% 63% 29% 26% 7% 0% 0% 34% 32% 13% 0% 0%
1 2% 2% 61% 2% 2% 100% 100% 100% 100% 100% 3% 3% 76% 4% 3%
0.9 3% 3% 62% 3% 14% 100% 100% 100% 100% 100% 6% 6% 76% 6% 24%
0.8 3% 3% 64% 17% 17% 100% 100% 97% 99% 71% 6% 6% 77% 29% 28%
0.7 3% 3% 65% 25% 20% 100% 100% 36% 57% 19% 6% 6% 47% 35% 19%
0.6 7% 7% 65% 39% 27% 96% 97% 34% 9% 3% 13% 13% 45% 15% 6%
0.5 24% 24% 65% 66% 60% 82% 78% 25% 3% 3% 38% 37% 36% 6% 5%R

es
ta

ur
an

t (
te

st
 s

et
-

14
)

H
öl

kk
ä

(te
st

 s
et

-1
1)

Sk
iin

g
(te

st
 s

et
-1

2)
B

ar
be

qu
e

(te
st

 s
et

-
13

)
K

uh
as

al
o

K
in

g
(te

st

se
t-9

)
K

un
to

ra
st

it

(te

st
 s

et
-1

0)
K
ey
w
or
ds

T
hr
es
ho
ld

Recall Precision F-score

B
ea

ch
 (t

es
t s

et
-8

)

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

Le
ve

ns
ht

ei
n

D
am

er
au

-
Le

ve
ns

ht
ei

n
Sm

ith
 W

at
er

m
an

-
G

ot
oh

Ja
ro

Ja
ro

-W
in

kl
er

1 1% 1% 29% 1% 1% 100% 100% 100% 100% 100% 1% 1% 45% 1% 1%
0.9 1% 1% 30% 1% 2% 100% 100% 100% 100% 100% 1% 1% 46% 1% 5%
0.8 1% 1% 31% 5% 14% 100% 100% 100% 100% 77% 1% 1% 47% 10% 24%
0.7 1% 1% 39% 17% 15% 100% 100% 99% 47% 19% 1% 1% 56% 25% 17%
0.6 1% 1% 39% 25% 19% 71% 67% 89% 8% 4% 2% 2% 54% 12% 7%
0.5 4% 4% 40% 47% 39% 55% 49% 32% 3% 2% 7% 7% 35% 5% 4%
1 16% 16% 92% 16% 16% 100% 100% 100% 100% 100% 28% 28% 96% 28% 28%
0.9 16% 16% 92% 16% 26% 100% 100% 100% 100% 100% 28% 28% 96% 28% 42%
0.8 16% 16% 95% 30% 44% 100% 100% 75% 69% 57% 28% 28% 84% 42% 49%
0.7 16% 16% 96% 46% 46% 100% 100% 64% 11% 9% 28% 28% 77% 18% 15%
0.6 21% 21% 97% 57% 50% 43% 43% 20% 2% 2% 28% 28% 33% 4% 4%
0.5 30% 32% 97% 82% 66% 33% 32% 5% 1% 1% 31% 32% 10% 2% 2%
1 0% 0% 18% 0% 0% 100% 100% 99% 100% 100% 1% 1% 31% 1% 1%
0.9 0% 0% 19% 2% 4% 100% 100% 96% 100% 100% 1% 1% 31% 4% 8%
0.8 0% 0% 19% 9% 44% 100% 100% 86% 91% 89% 1% 1% 32% 16% 59%
0.7 2% 2% 97% 38% 45% 100% 100% 91% 57% 25% 4% 4% 94% 45% 32%
0.6 3% 3% 97% 51% 46% 90% 82% 81% 10% 5% 5% 5% 88% 17% 9%
0.5 11% 11% 99% 65% 53% 67% 57% 22% 2% 2% 18% 18% 36% 4% 3%
1 20% 20% 80% 20% 20% 100% 100% 100% 100% 100% 33% 33% 89% 33% 33%
0.9 20% 20% 80% 20% 30% 100% 100% 100% 100% 100% 33% 33% 89% 33% 46%
0.8 20% 20% 80% 30% 40% 100% 100% 100% 30% 50% 33% 33% 89% 30% 44%
0.7 20% 20% 90% 30% 40% 100% 100% 100% 3% 2% 33% 33% 95% 5% 3%
0.6 30% 30% 90% 40% 40% 30% 27% 13% 0% 0% 30% 29% 22% 1% 0%
0.5 30% 30% 100% 40% 40% 9% 5% 1% 0% 0% 13% 9% 2% 0% 0%

Sa
un

a
(te

st
 s

et
-1

6)
H

ot
el

li
 (t

es
t s

et
-1

7)
A

pt
ee

kk
i (

te
st

 s
et

-
18

)
K
ey
w
or
ds

T
hr
es
ho
ld

Recall Precision F-score
K

ah
vi

la

(te

st
 s

et
-1

5)

Table 3a. Inclusion searching for all keywords.

M
et

ho
d

Keyword
Golden

standard
True

positive
False

positive

False
negativ

e R
ec

al
l

Pr
ec

is
io

n

F-
sc

or
e

Chess 108 85 0 23 78.7% 100.0% 88.1%
Lenkkireitin
maisemia

391 293 0 98 74.9% 100.0% 85.7%

Lenkkireitti 391 73 0 73 50.0% 100.0% 66.7%
Pizza 98 59 0 39 60.2% 100.0% 75.2%

Lounas 115 99 0 16 86.1% 100.0% 92.5%
Marathon 262 162 0 100 61.8% 100.0% 76.4%
Swimming 131 72 0 59 55.0% 100.0% 70.9%

Beach 297 296 0 1 99.7% 100.0% 99.8%
Kuhasalo

King
36 22 0 14 61.1% 100.0% 75.9%

Kuntorastit 150 121 0 29 80.7% 100.0% 89.3%
Hölkkä 130 57 0 73 43.8% 100.0% 61.0%
Skiing 127 76 0 51 59.8% 100.0% 74.9%

Barbeque 19 14 0 5 73.7% 100.0% 84.8%
Restaurant 733 473 0 260 64.5% 100.0% 78.4%

Kahvila 590 171 0 419 29.0% 100.0% 44.9%
Sauna 140 129 0 11 92.1% 100.0% 95.9%
Hotelli 359 62 0 297 17.3% 100.0% 29.5%

Apteekki 10 8 0 2 80.0% 100.0% 88.9%

In
cl

us
io

n

