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ABSTRACT 

 
This research was focused on routes recorded using global positioning system 
(GPS) and examines methods of recording, storing, processing and visualizing 
those routes on a map. All of the methods discussed in this dissertation have been 
implemented in Mopsi, a location-based service with a collection of over 10,000 
routes (11 million points). 
 
I first discuss the creation of a system capable of working with a large amount of 
data, by applying two point-reduction methods. The two methods are cropping and 
polygonal approximation. These techniques allow users to load and visualize a 
large amount of data that would otherwise typically overload a browser. 
 
Secondly, we used a grid to define four route measures: similarity, inclusion, novel-
ty and noteworthiness. These measures feature in applications that deal with route 
search, ride-sharing and identifying taxi fraud. The similarity measure, C-SIM, al-
lows real-time search on the Mopsi database. Our results showed that it is helpful 
for users who record their sports activities. 
 
Navigation software is essential nowadays when visiting a large city. Our final 
contribution is CellNet, a method that uses the route database to infer the road 
network in an area, which is essential for navigation devices to function correctly. 
Using CellNet, we obtained higher quality results than those obtained by three 
conceptually different popular alternatives. 
 
Universal Decimal Classification: 004.62, 004.93, 625.721, 629.052.9, 912.43 
 
Library of Congress Subject Headings: Location-based services; Mobile geographic infor-
mation systems; Global Positioning System; Orientation; Route choice; Roads; Digital 
maps; Information visualization; Similarity (Geometry) 
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Yleinen suomalainen asiasanasto: paikkatietojärjestelmät; mobiilisovellukset; satel-
liittipaikannus; suunnistautuminen; reitit; tiet; tieverkot; tiekartat; visualisointi 
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1 INTRODUCTION  

In recent years, global positioning system (GPS) technology has become widely 
available. As a result of this increase in availability, there has been a boom in the 
amount of location-based data that are recorded, stored and downloaded on a daily 
basis. Such data include geo-tagged photos, videos, service locations and GPS tra-
jectories. The trajectories are referred to as routes.  
 
Location information often represents a point on the surface of the Earth. It is typi-
cally defined using the world geodetic system (WGS) coordinates: latitude and 
longitude. This information is obtained by GPS sensors available in many mobile 
devices nowadays, such as mobile phones, smart watches and tablets. 
 
Location information can be used in many ways. Some examples include finding 
the location of lost or stolen items such as bicycles, cars and mobile phones. Pets or 
loved ones are also often tracked in case they go missing. Many people who play 
sports feel safer when sharing their location so that others know their whereabouts. 
Geo-tagged photo albums allow the grouping of large picture collections by loca-
tion. 
 
Sequences of GPS locations may be recorded to form routes. Various applications 
store, manipulate and display routes for several purposes – such as sports tracking, 
ski-track maintenance, vehicle tracking, fleet management, road maintenance and 
wildlife  surveillance. Figure 1 shows some examples of these applications. 
 

 

Figure 1. GPS routes displayed by various software. 
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Routes contain a lot of information and handling them is not trivial. In this thesis, I 
present efficient methods for storing, analysing, searching and visualizing routes 
recorded by GPS receivers on common mobile devices such as smartphones, tablets 
and smart watches. The methods have been implemented and tested inside Mopsi, 
a real-world environment. I use the concept of real-time to indicate processes which 
are expected to complete in less than 1 second. 
 
1.1 MOPSI 
 
Mopsi is a social network that helps people to discover who and what is around 
them. Its features include photo sharing, live tracking and chatting with friends. 
Mopsi can be found on the web at http://cs.uef.fi/mopsi and mobile applications 
exist for all major platforms (iOS, Android, Windows Phone, Symbian). They can be 
downloaded from the respective stores or from http://cs.uef.fi/mopsi/mobile.php.  
 
Mopsi was developed by the Machine Learning Group, School of Computing at the 
University of Eastern Finland. It provides location-based services, such as search, 
recommendation, route tracking, geo-tagged photo collection and bus schedules. 
Mopsi has more than – 

- 2,400 registered users 
- 35,000 geo-tagged photos 
- 400 points of interest 
- 10,000 GPS routes.  

 
The main topics of research to date involving Mopsi are as follows: 

- route management and visualization [I] 
- route search [II, III, IV] 
- road network inference [V] 
- transport mode detection [Waga et al. 2012] 
- location-based recommendations [Fränti et al. 2011, Waga et al. 2011, Waga 

et al. 2012] 
- web page summarization [Rezaei et al. 2015, Gali et al. 2015, Gali and Fränti 

2016].  
 
O-Mopsi [Tabarcea et al. 2013] is a mobile orienteering game built using data and 
modules in Mopsi. 
 
1.2 RESEARCH CHALLENGES 

 
Mobile users typically have many routes in their collection. Such route collections 
are difficult to manage. Certain challenges in processing routes are caused by GPS 
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inaccuracies, missing points, different recording intervals and varying movement 
speed. Another challenge is the large size; to store the routes for fast retrieval and to 
display them on a map is difficult without overwhelming the browser. In [I] we 
grappled with all of these challenges and provided methodological solutions.  
 
The most popular route similarity measures are slow (quadratic time complexity) 
and unintuitive for the average user. Current approaches are point-based and bor-
row concepts from text matching, such as edit distance [Chen et al. 2005, Chen and 
Ng 2004], longest common subsequence [Vlachos et al. 2002] or time series analysis 
[Hamilton 1994, Berndt & Clifford 1994] such as dynamic time warping [Zheng and 
Zhou 2011]. Such point-based measures are unintuitive to typical sports tracking 
users, who understand routes as curves or shapes on the map. For example, to the 
user, a perfectly straight route consisting of 10 points is identical to the same route 
with 8 midpoints removed. However, the similarity as scored by the above 
measures is low. 
 
Frechet [Eiter and Mannila 1994] is a similarity measure between two curves. It can 
be described as the minimum length of a leash an owner needs to walk a dog, when 
the owner travels on one curve and the dog on the other. While useful in applica-
tions such as route clustering, this type of measure is not what sports-tracking users 
expect. They are more interested in seeing whether the routes are recorded in the 
same area so they can objectively compare performances. Two routes belonging to 
two different users may be the same except for the start or end parts, which depend 
on the users’ homes. Such two routes will have a low Frechet similarity even 
though they can be compared. 
 
We defined a fast, linear time similarity measure called C-SIM [III], which focuses 
on the spatial aspect of routes. C-SIM is inspired by the Jaccard set similarity coeffi-
cient; it measures the area two routes have in common as a proportion of the total 
space covered by the two routes. C-SIM is fast enough to allow real-time route simi-
larity searches in large databases. To allow for fast computation, we used a grid to 
represent routes as sets of cells. We investigated and discussed methods of defining 
a good measure using the grid [II]. 
 
Another challenge is searching for routes. Traditional solutions present routes as a 
time-ordered list or display the routes one-by-one on the map. Users often forget 
the date when a route was recorded. In this situation, users are forced to search in 
the list, one by one, to find a specific route. Showing the collection on the map suc-
cessfully limits the data in the region a user is interested in; however, routes often 
overlap and become difficult to distinguish. We propose to use route similarity as a 
tool for efficient searching in large collections. As a result, users are able to search 
for routes based on the route shape. This shape input can be a similar route ob-
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tained from the database [III] or a free-form shape [IV] drawn by the user on the 
map. 
 
The final challenge we address is to automatically generate a road network using 
GPS routes. Current methods are based either on satellite (aerial) image analysis 
[Tavakoli and Rosenfeld 1982, Hu et al.  2007, Barsi and Heipke 2003] or on GPS 
route analysis. Many conceptually diverse methods use GPS routes; for example, 
route merging methods [Cao and Krumm 2009], clustering methods [Edelkamp and 
Schrödl  2003] and visual methods [Davies et al 2006]. These methods contain a list 
of parameters that need to be carefully chosen, depending on the properties of the 
route dataset. Optimizing these parameters is time consuming and can make a 
dramatic difference to the quality of the outcome, as demonstrated by Biagioni and 
Eriksson [2012]. Moreover, a road network generated by these methods is unneces-
sarily complex; relatively straight road segments have many points in their defini-
tion. To aid in these aspects, we developed a new two-step method called CellNet 
[V]. The method uses a grid to find road intersections and then connects the inter-
sections to obtain the resulting network. It produces higher accuracy than other 
state-of-the-art methods. The network generated by CellNet is optimized in terms 
of size, requiring 75% less storage space than any other method. 
  
All methods presented in this thesis were implemented and tested within the real 
datasets provided by Mopsi users. Figure 2 summarizes the components and meth-
ods used in this research. 
 

 

Figure 2. Different route operations available in Mopsi. They are grouped depending on 
whether they work with the cell approximation or with the routes themselves. 
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2 ROUTE HANDLING 

Storing, accessing and visualizing large amounts of data on maps is computational-
ly time-consuming. Several systems aim at providing such functionality [Alahakone 
and Ragavan 2009, Almer and Stelzl 2002, Follin et al. 2003, Horozov et al. 2006, 
Lehtimäki et al. 2008, Zheng et al. 2008]. StarTrack, described in Ananthanarayanan 
et al. [2009] and Haridasan et al. [2010], is most similar to the one we developed. 
StarTrack was tested with up to 10,000 routes. However, it does not address the 
problem of displaying the routes in real time; nor does it attempt to detect the 
transportation mode.  
 
One of the most popular route collecting services are sport trackers, such as Sports 
Tracker, Endomondo, Runtastic and Strava. They allow users to record routes and 
evaluate their performance through comparison with past activities, or by compar-
ing the user’s performance to that of other users. In this chapter I describe current 
state-of-the-art methods for route management and compare these methods with 
the way routes are handled in Mopsi (Figure 3). 
 

 

Figure 3. Mopsi user Pasi’s route collection between 2008 and 2014, consisting of 915 routes 
with a total of 1,798,685 points. Pasi travelled a total of 11,775 kilometres, accumulating 500 
hours of data. Map is centred in Joensuu, Finland. 
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2.1 ROUTE RECORDING 
 
A GPS location is defined as a point p = {latitude, longitude, timestamp}, where the 
first two values represent the WGS coordinates on the surface of the planet and the 
last value is the unix timestamp at the moment the location is recorded. A sequence 
of such points forms a route R = {p1, p2 … pn}. The route points are usually present-
ed in the order they were recorded in. This feature facilitates certain operations, 
such as drawing the points on a map.  
  
In Mopsi, points are recorded at a fixed time interval. The interval is usually be-
tween 1 and 4 seconds but can be changed in the application settings. Recorded 
points are buffered in the device’s internal memory and they are periodically up-
loaded to the server database if internet connection is available. Many applications 
(including Sports Tracker and Endomondo) do not allow changing this parameter, 
but their recording interval is usually within the same 1-to-4-second range. 
 
2.2 ROUTE STORING 
 
When new points are uploaded to the server, route objects are created or updated 
as follows. If the uploaded points are recorded within a 3-minute time period and 
within a distance of 1.5 km from the last point of a route, the route is updated with 
the new points; otherwise a new route object is created. Unlike other systems 
(Sports Tracker, Endomondo, Runtastic and Strava), this setup enables users to 
cope with battery limitations or a device or application error (requesting restart) by 
enabling the use of multiple devices to record a single route. Routes can be manual-
ly edited later in Mopsi, but the 3-minute, 1.5 km default segmentation is usually 
enough to cover typical situations. In case of such error, other applications allow 
manual processing – such as merging two routes – on the website. Routes can be 
stored efficiently using the method described by Chen et al. [2012]. 
 
Once uploaded, for every route we computed and stored the following features in a 
MySQL database:  
- start and end point 
- bounding box  
- distance 
- movement type 
- polygonal approx. 
- cell representation 
(Figure 4). 
 
 

Figure 4. Example of route features from a sample route. 
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The MySQL table contains pointers to the files containing the route points. Star-
Track uses XML files to store the route points. We used simple text files in which 
each row contained the latitude, longitude and timestamp. The XML file structure 
is useful to attach notes, photos or other information to a specific route as metadata. 
We stored the points in simple text files because these occupy about a third of the 
space relative to the XML formatting standard (see Figure 5). Additional metadata, 
such as the transportation mode, are stored in the MySQL database. The filtered 
polygonal approximated and segmented variants are also stored as files that 
MySQL points to. 

 

Figure 5. A route consisting of 3 points represented in XML format (left panel) and text format 
(right panel). The XML file contains 335 characters whereas the text file has only 104. 
 
2.3 ROUTE ANALYSING 
 
In Mopsi, any route can be analysed. Segmentation is performed together with au-
tomatic transport mode detection for each segment [Waga et al. 2012]. Each seg-
ment is coloured differently according to the transportation mode. All popular 
sports tracking programs allow to segment using a fixed length or duration. In 
Mopsi, the segments are defined in a way that minimizes the speed variance of each 
segment. Such segments are useful when displaying routes with multiple transpor-
tation modes. Figure 6 shows that the running segment in the middle is perfectly 
isolated and accurate statistics can be viewed for only that section. In Runtastic it is 
only possible to segment the route at fixed length or duration, therefore, the run-
ning portion falls under the fourth and fifth segments making it difficult to inter-
pret. 
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Figure 6. A route that features cycling, orienteering and cycling, shown in Mopsi (left panel) 
and Runtastic (right panel). The orienteering (running) segment is separated from the cycling 
segments in Mopsi. 
 
Other features such as stop detection, roundness computation and showing photos 
taken by users on the route are also available in the analysis screen. Routes are fil-
tered to remove outlier points caused by fluctuations in GPS accuracy. These points 
are computationally simple to identify and remove because they typically deviate 
away from the actual location, causing an impossibly high speed.  
 
Mopsi lacks certain popular features, such as calorie and power output display, 
which other sports tracking software collects through additional pieces of hardware 
connected to the user’s body or bicycle. 
 
2.4 ROUTE VISUALIZING 
 
We accessed routes in Mopsi by selecting a user and a time period (Figure 7). The 
time interval can be chosen to show the most recent day or last week, last month or 
last year’s activity; showing the entire collection or choosing a user-defined time 
interval is also supported. This is efficiently done by querying the timestamp of the 
start point of the routes. This feature is available in all sports tracking software. 
Other programs (Sports Tracker and Runtastic) also allow the user to search or 
group the results based on transportation mode, distance travelled and duration. 
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Figure 7. Mopsi tracking activity of user Radu over a few days. The entire route shapes are 
preserved. Routes are clickable inside the list or on the map. 
 

 

Figure 8. The same route collection as in Figure 7, displayed by two sports tracking pro-
grams; routes are represented by their start points. Sports Tracker colours the points based 
on the transportation mode. Runtastic can display one route at a time when clicking on the 
start point marker. 
 
In Mopsi, the selected route collection is presented in two ways: in a list and on the 
map. The list is ordered with respect to time. Routes recorded on the same day are 
grouped together to enhance usability. On the map, routes are shown as grey lines. 
A route can be selected by clicking it on the map or in the list, and a selected route 
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is highlighted in red. The movement type and distance are shown for each route in 
the list. A summary of the data collection per transportation mode is shown at the 
top of the list.  
 
Visualizing route collections on the map is a difficult task because of the large 
number of points they contain. Therefore, many other applications lack this feature 
and can display only one selected route at a time (Table 1). The map system used is 
typically Google Maps1 or Open Street Map2 (OSM). Runtastic also uses Open Cycle 
Map3 (OCM). Mopsi allows for the display of specially designed orienteering maps 
as well, provided by Kalevan Rasti4, as overlays on top of the Google map. 
 
Table 1. Features of popular sports tracking applications. 

 Mopsi Endomondo Runtastic Sports 
Tracker Strava 

Map type 
Google 
OSM 

Kalevanrasti 
Google 

Google 
OSM 
OCM 

OSM Google 
OSM 

Displays 
collection ✓  ✓ ✓  

Displays 
single route ✓ ✓ ✓ ✓ ✓ 

 
To avoid overwhelming the map, some applications show the starting locations 
only (Figure 8). In contrast, Mopsi can display large route collections by showing 
the full shape of the routes, which enables users to better understand their collec-
tion (Figure 7). In this way, a user can see at a glance that the collection is not lim-
ited to the city centre, as suggested by Sports Tracker and Runtastic; several routes 
actually pass through different towns. When displaying collections, the problem of 
overlapping route segments also becomes apparent. It is common that the starting 
points of routes overlap near the user’s home or workplace. Clustering these start 
points could help to improve the user’s experience [Rezaei and Fränti, 2017]. 
 
Our solution is to limit the route points using two strategies. First, when users 
browse a collection on the map, they need to see the overall shape of the route but 
not every detail. The shape can be well preserved by applying polygonal approxi-
mation [Chen et al. 2012], which reduces the number of points. We used approxi-
mations with varying reduction levels, which are used at different zoom levels of 
the map (Figure 9).  

                                            
1 https://www.google.fi/maps 
2 http://www.openstreetmap.org 
3 https://www.opencyclemap.org  
4 http://wp.kalevanrasti.fi  
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Figure 9. Polygonal approximation at three different levels. The 10-point approximation is 
suitable for the current zoom level. Original route has 110 points. 
 
The second strategy is to crop the collection according to the screen boundary. Only 
points within the current map borders are loaded, together with an immediate 
neighbourhood (50% extension of screen size). This allows panning the map by a 
small amount without the need to reload new data (Figure 10). The cropping pro-
cess is hidden from the user and does not interfere with usability. 
 

 

Figure 10. Cropping of a route collection. Only route segments inside the screen area and 
screen neighbourhood are plotted on the map. 
 
An approach by Morris et al. [2004] aims to minimize the data displayed by com-
bining the route segments that overlap. In Mopsi, we avoid this solution so that 
users are allowed to interact with each individual route by clicking it on the map. 
 
To understand how effective the cropping and reduction process is for limiting the 
amount of data, we first investigated three highly active Mopsi users and their 
route collections. The data are shown in Table 2.  
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Table 2. Tracking statistics for 3 active users in Mopsi, grouped by time period. 
 

User Week Month Year All 

Pasi 

routes 
points 
length (km) 
time (hours)   
size (MB) 

3 
2,030 

33 
3 

221 

17 
43,635 

230 
21 

1,719 

230 
548,379 

8,040 
306 

22 

1,704 
3,648,923 

27,384 
2,030 

145 

Radu 

routes 
points 
length (km) 
time (hours)   
size (MB) 

2 
650 

8 
0.7 
24 

13 
14,376 

140 
15 

566 

82 
100,542 

1,258 
114 
3.8 

1,235 
1,383,318 

23,138 
1,034 

53 

Matti 

routes 
points 
length (km) 
time (hours)   
size (MB) 

9 
2,086 

39 
3 

74 

14 
5,875 

90 
8 

210 

148 
98,237 

1,642 
138 
3.5 

412 
293,207 

4,160 
350 

11 

 
Figure 11 illustrates the process of querying and displaying these collections in full, 
without any reduction. Figure 12 shows the process with polygonal approximation 
and cropping applied. We disregarded the time required to download the points 
from the server, as this duration varies depending on factors such as internet speed 
and bandwidth. For the display, we used the zoom level that allowed all routes to 
be visible on the map.   
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Figure 11. Query and display times for route collections of varying sizes, obtained for users 
Matti, Radu and Pasi. Pasi’s entire collection crashed the browser.  
 
The display time was most affected by reducing the number of points. In fact, the 
browser crashed when trying to display the entire data for user Pasi if no reduction 
was applied. After polygonal approximation, the points were reduced as shown in 
Table 3. We used five different approximations at different map zoom levels. In the 
experiment illustrated in Figure 11, R1 was used because it allowed all routes to be 
seen on the map. At this zoom level only ~1% of the points were required to pre-
serve the route shape, making the download time a fraction of that needed for the 
unreduced data. The query processing time was 6% faster. This is because each 
route is stored in separate files, and forming a collection requires accessing multiple 
files. The process can be slow as it requires relocation of the read–write head of the 
hard-disk. The files are not large, therefore the required time depends mainly on 
the number of routes rather than the number of points. The cropping process is also 
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performed; however, the map shows all routes in this experiment, meaning that 
cropping would not be effective at all.  
 
Table 3. Effectiveness of polygonal approximation. 
 

User R1 R2 R3 R4 R5 

Pasi 0,8% 2% 4% 9% 22% 

Radu 0,9 2% 4% 9% 21% 

Matti 1,5% 3% 5% 15% 50% 

Note: The values are measured as the proportion of points remaining after reducing all routes 
of a user. Values are shown for five different reduction levels (R1 to R5). 
 
Table 3 shows that the efficiency of the reduction was similar for users Pasi and 
Radu. However, for Matti the reduction was less effective, especially at the higher 
zoom levels. Matti uses Android whereas Pasi and Radu use iPhone and Windows 
Phone respectively. Most Android devices do not represent GPS coordinates with 
sufficient accuracy, resulting in a zig-zag effect, as illustrated in Figure 12. The An-
droid route therefore requires more points to be represented accurately.  

 

Figure 12. Two walking routes recorded on different sides of a street. The top route was 
recorded using Windows Phone. The lower route was recorded using an Android device, 
which uses lower precision to represent coordinates. 
 
The cropping step works in linear time with respect to the number of points in a 
collection. Using the polygonal approximation first causes the cropping step to 
process less data (Figure 13). 
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Figure 13. The speed of the cropping process on the original route (solid line) and reduced 
route (dotted line), for each of the three users: Matti (grey), Radu (black) and Pasi (blue). 
 
After selecting the routes, the user can continue to look around by panning and 
zooming the map. Only the cropping and displaying operations are performed at 
this stage. To see how effective the system was in this situation, we performed the 
following experiment. For each of the three users, we loaded the entire route collec-
tion. Then we programmatically panned the map by matching the screen borders to 
the bounding box of every route. We recorded the number of points and the time 
required for the processing and the display. This experiment was designed to stress 
our method, by simulating a user moving the map to see the different regions 
where he or she expected to find routes.  
 
The results are presented in Table 4, which shows that analysing a data collection 
requires to load on average, 1% to 5% of the data. Although Matti’s collection was 
far smaller than Radu’s, a similar amount of data was retrieved (on average). This is 
because Radu was recording routes in different cities, whereas Matti’s data was 
mostly obtained in two cities, Kuopio and Tampere. This discrepancy resulted in 
their data density being roughly the same when zooming at the city level. The 
cropping time complexity was linear with respect to the total number of points. The 
time required by Google Map to display the points appears to be linear with respect 
to the number of points after cropping.  
 
Table 4. Average amount of data and processing times when moving the map. 
 

 Data Processing Time 

User Size (KB) Points Cropping (ms) Display (ms) 

Pasi 1,144 56,827 (2%) 407 210 

Radu 325 15,989 (1%) 241 141 

Matti 300 14,901 (5%) 93 128 
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To give more meaning to the amount of data being transferred, we compared the 
amount of data loaded by Google Maps to show the map tiles. Tiles were portable 
network graphic (PNG) images, typically 256 x 256 pixels, and their size varied 
considerably depending on the amount of information displayed. We recorded the 
size of each tile loaded in the panning experiment described earlier and the average 
was 10.5 KB per tile. A screen of 1920 x 1200 can load 36 tiles, equivalent to about 
378 KB. This value is comparable to the amount of route data loaded when panning 
the map to browse Radu’s and Matti’s collections. To load Pasi’s route data meant 
loading roughly three times the amount of data contained in the map tiles. 
 
 
Using reduction and cropping not only improved the speed but also prevented the 
browser from crashing. For example, loading Pasi’s entire collection without apply-
ing any reduction or cropping caused the browser to crash. Online utilities, such as 
GPSVisualizer5, GmapGIS6 and many sports tracking programs – which also use 
Google Maps (see Table 1) – are incapable of displaying these data, as they lack a 
similar data-reduction strategy. 

                                            
5 http://www.gpsvisualizer.com 
6 http://www.gmapgis.com 
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3 GRID-BASED OPERATIONS 

Using a grid, we defined four route operations that were useful for solving different 
problems. These operations were: 
- Similarity 
- Inclusion 
- Novelty  
- Noteworthiness. 
 
Similarity is probably the most common operation performed on routes. For in-
stance, Ying et al. [2010] demonstrated that meaningful friend recommendations 
can be issued in social networks by analysing users’ similar routes. Another case 
where route similarity is helpful is when giving trip recommendations. In Shang et 
al. [2012] a route is recommended when a set of intended places and textual attrib-
utes that describe the user’s preferences is given as input. The similarity measure 
has also been used successfully to identify ideal places to build new bicycle paths 
[Evans et al. 2013]. Route similarity is used as an inverse distance function for clus-
tering applications [Pelekis et al. 2010, McCullough et al. 2011, Ying et al. 2009] in 
various applications – for instance, to identify traffic congestion. 
 
Finding similar route(s), also known as “k nearest neighbour search” in a database, 
is the most typical use for the similarity operation [Agrawal et al. 1993, Frentzos et 
al. 2007, Ni and Ravishankar 2007, Wang and Liu 2012, Yanagisawa et al. 2003]. In 
Mopsi, this feature enables users to find a similar route recorded in the past in or-
der to compare the routes in terms of speed. The feature also allows comparison 
with the data of other users who have recorded similar routes. 
 
Many measures for computing route similarity exist: 

- longest common subsequence (LCSS) [Vlachos et al. 2002]  
- edit distance on real sequence (EDR) [Chen et al. 2005]  
- dynamic time warping (DTW) [Zheng and Zhou 2011]  
- edit distance with real penalty (ERP) [Chen and Ng 2004] 
- Hausdorff distance [Rockafellar and Wets 2009, Chen et al. 2011] 
- Frechet distance [Eiter and Mannila 1994].  

 
These measures typically require quadratic time to be computed. Some approxi-
mate and more complicated variants exist, such as FastDTW [Salvador and Chan 
2004]. Euclidean distance (L2-norm) [Gradshteyn and Ryzhik 2000] is an example of a 
simple linear time approach to compute route similarity; however, the method 
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works well only if routes are aligned at their start and are of similar length. This 
degree of congruence happens rarely in a real database. 
 
We considered two routes to be similar if they overlapped. The amount of overlap 
measured how similar the routes were. We defined a fast and linear time similarity 
measure (C-SIM), which focuses on the spatial aspect of the routes. C-SIM is in-
spired by the Jaccard set similarity coefficient, and measures the amount two routes 
have in common divided by the total space covered by the two routes. This space is 
measured by counting the number of distinct cells that the routes are passing 
through. The dilated region of each route is also obtained by using a 3 3 structural 
element on the original route cells. This dilated region is necessary to compensate 
for the arbitrary division of the grid, which might separate nearly identical routes 
that happen to be on different sides of a cell border. C-SIM is fast enough to allow 
real-time route similarity searches in large databases. The equation is: 
 

  (1) 

 
where CA and CB are the cell representations of two routes. CAd and CBd are the di-
lated regions of the two routes respectively. 
 
The second operation is Inclusion. It measures how much one route is contained 
inside the other. The equation is: 
 

   (2) 

 
where CA and CB are the cell representations of two routes. CBd is the dilated region 
of the second route.  
 
Unlike similarity, inclusion is not symmetric. The measure is useful for solving 
drive-sharing problems, by identifying users who – 
- can pick up somebody along the user’s route, or 
- can be picked up by somebody else on their route. 
 
In Mopsi, inclusion is used to search for routes that pass through a region manually 
specified by the user on the map [IV]. 
 
Novelty measures the amount of unique parts of a route compared with other routes 
in a database. Novelty can be useful in several applications. For instance, it may be 
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considered an alternative to iBAT [Zhang et al. 2011] with regard to identifying taxi 
fraud, namely when a taxi driver takes a longer route than necessary to arrive at the 
destination. The given route is compared with other past routes that start and end 
at the same locations. If the new route has a high novelty measure, the route is la-
belled as fraudulent. Alternatively taxi driver safety can be addressed as in [Karimi 
and Lockhart 1993]. Another application for novelty is to automatically update GPS 
navigation systems that exist in many cars nowadays. If a recent route shows novel-
ty compared with the existing road network, the roads in the region have changed; 
in such instances, the database updating methods described by Fathi and Krumm 
[2010] and Cao and Krumm [2009] should be applied [V].  
 
Noteworthiness is closely related to novelty. It measures the amount of rarely visited 
parts instead of focusing only on unique parts. This measure is useful in places that 
have a high density of routes that have extremely few novel regions. In Mopsi, nov-
elty and noteworthiness are used to inform users when their route passes through 
places they have never visited before. It is also verified whether other users have 
frequented the area (Figure 14). 

    
Figure 14. A route is 97% novel to the user (left panel). The same route is not novel at all 
with respect to all users (right panel), but 18% of the route is noteworthy. The selected route 
is shown in red and other routes in the collection are grey. 
 
3.1 GRID 

 
Grids have been used to represent geographical data in past studies. In Pang et al. 
[2012] and [Zhang et al. [2011], grids were used to find patterns in taxi data. In Wei 
et al. [2012], popular routes were constructed using the frequency information of 
grid cells. In Zheng et al. [2010] and Bao et al. [2012] the grid was used to infer stay 
areas, which in turn are used to detect points of interest. In Krumm and Horvitz 
[2006] grids were shown to be useful when predicting the destination of moving 
vehicles.  
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The abovementioned examples used grids to perform frequency analysis in sub-
regions of a given area. We extended the use of grids to define a similarity measure 
between routes and to perform similarity-based retrieval in route databases. To 
enable this, we required a grid with equal cell size spanning the entire planet, 
which is not trivial to do [Kennedy and Kopp 2001]. The existing applications create 
grids by segmenting the latitude and longitude values [Bao et al. 2012] for which 
the cells gradually change size when one moves in the north–south direction. An-
other way grids have been defined is by focusing only on a small region, such as a 
city – as in Zhang et al. [2011], Krumm and Horvitz [2006], Pang et al. [2012] and 
Wei et al. [2012] – and dividing that region into equal-sized cells. When computing 
the similarity of routes, the grid needs to be finer than for other applications, which 
typically use cell sizes in the scale of 100 m to 1 km.  

 
Figure 15. MGRS grid zones. Joensuu is in UTM zone 35 and latitude band V. 

 
To generate the grid, we used the military grid reference system (MGRS7), in which 
cells of equal size fill up specially defined zones that cover the entire planet. These 
zones do not usually follow the north-south orientation. This aspect allows the 
zones to wrap around the planet. Then, each zone is divided into cells of the same 
size in square metres.  
 
MGRS is an alpha–numeric two-dimensional coordinate system in which locations 
are identified independent of their elevation. MGRS divides Earth into projection 
zones and computes easting and northing in metres, within a designated zone. The 
Universal Transverse Mercator (UTM) is used to divide the planet into 60 zones, 
each being 6o of longitude wide. For the polar regions (above 84oN and below 80oS), 

                                            
7 http://builds.worldwind.arc.nasa.gov/worldwind-releases/1.4/docs/api/overview-summary.html 
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the Universal Polar Stereographic (UPS) convention is used instead of UTM. For the 
perpendicular segmentation, bands of latitude (8o high) are used. 

 
Figure 16. 100 kilometre squares. Joensuu is in square PK of zone 35V. 

 
The first three characters of the MGRS value for the city of Joensuu, Finland, are 
35V (Figure 15). The next pair of characters identifies a 100 km  100 km square 
within each of the grid zones. Joensuu is located in region 35VPK (Figure 16). The 
remaining part consists of numeric easting and northing values within the 100-km 
square. MGRS allows one of five predefined precision levels when choosing the cell 
length: 1 m, 10 m, 100 m, 1 km or 10 km. However, any specific degree of precision 
can easily be obtained if the desired cell length can be perfectly divided into 100,000 
(metres). Limited by the average GPS error, we chose a 25 m  25 m cell size. As 
shown in Figure 17, we identified the centre of a small park as being 
35VPK16461774.  

 
Figure 17. 25 m x 25 m cells in the Ystävyydenpuisto (Freedom Park) in Joensuu. 

×

×
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3.2 EVALUATION 
 

We evaluated our proposed grid-based similarity measure, C-SIM, to see how it 
compares with other approaches. We used the Mopsi20148 dataset, which is a sub-
set of all routes in the Mopsi database collected between 2008 and 2014. It contains 
6,779 routes recorded by 51 users having 10 or more routes (Table 5). Some users 
have more data than others (Figure 18). 
 
Table 5. Mopsi2014 dataset summary. 

Routes Points Kilometres Hours 

6,779 7,850,387 87,851 4,504 

 
The dataset consists of routes with a wide range of activities, including walking, 
cycling, hiking, jogging, orienteering, skiing, driving, and travelling by bus, train, 
or boat. Even though such ground truth is not available, using the method of Waga 
et al. [2012] we automatically computed the movement types and showed a distri-
bution of these activities by transportation mode (Figure 19). Routes exist on every 
continent except Antarctica allowing a good test for MGRS, which seems to work 
well in all regions where test data is available. Most routes are in Finland, in the city 
of Joensuu, which creates a very dense area suitable for extensive testing of the 
methods.  

 
Figure 18. The distribution of the data per user. The four most active users had recorded 
approximately two thirds of the data. 
 
We computed a 25 m  25 m cell representation for all 6,779 routes using MGRS. 
The cell size was decided based on experimentation and by observing typical GPS 
inaccuracies. The cell database entries included cells obtained from interpolation 
and dilation [II], which are required for the operations. Statistics are shown in Table 

                                            
8 http://cs.uef.fi/mopsi/routes/dataset 

×
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6. Typically, point databases are indexed by using tree structures such as R-tree 
[Guttman 1948] to make range queries possible. As a comparison, if R-tree is ap-
plied, Mopsi2014 would require approximately 1 GB of space. Roughly the same 
space is required by the cell database when indexed using B-tree [Cormen 2009]. In 
[III] we showed that the Hash index [Cormen 2009] can also be used and is about 
50% faster than the B-tree index, with a 40% increase in memory requirements. 

 
Figure 19. The distribution of all walking, running, cycling and car routes in Mopsi2014 da-
taset. The distributions for three sample users are also shown. 
 
Table 6. Space requirements for Mopsi20149 dataset. 

 Entries Index Total 

Point 
Database 

7,850,387 
(329 MB) 

R-tree 
(650 MB) 979 MB 

Cell 
Database 

11,477,506 
(525 MB) 

B-tree 
(429 MB) 954 MB 

Hash 
(788 MB) 1,313 MB 

 
We investigated how various route similarity measures are affected by the follow-
ing transformations: 

- increasing sampling rate (adding points) 
- decreasing sampling rate (removing points) 
- adding noise 
- random shifting of points 
- synchronized shifting of points. 

 

We extended the evaluation performed by Want et al. [2013] by adding C-SIM and 
a few other similarity measures to the comparison. We selected 1,000 random 
routes from Mopsi2014, and analysed the behaviour of the similarity measures 
when the five artificial transformations were applied. We assumed that these trans-
formations might occur naturally in a route database due to the use of different 
devices, varying GPS accuracy and other influences. Therefore, the similarity be-
tween the transformed route and the original was expected to be high (100%); alter-
natively, the distance should be 0 for distance-based measures. The trends for the 
similarity measures are illustrated in Figure 20. 
                                            
9 http://cs.uef.fi/mopsi/routes/dataset 
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Figure 20. Six route similarity measures affected by sampling rate transformations (upper 
panel) and by noise and point shifting (lower panel).  
 
C-SIM performed well when points were added or removed. The measure is not 
affected by increasing the sampling rate, because the cell representation remains 
identical due to the interpolation step. Decreasing the sampling rate had a minor 
effect on similarity, because of the inability of interpolation to correctly predict the 
missing parts of the route. However, the effect was far smaller than that of the other 
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methods. Among the measures, LCSS and EDR were the most sensitive to a de-
creased sampling rate, although an increase in sampling rate had a milder effect. 
The C-SIM, LCSS and EDR measures are not affected by point shifting if the trans-
formation distance is small (L = ε = 25 m, in our experiments). For higher distances, 
C-SIM decreases in proportion to the transformation distance. LCSS and EDR simi-
larities do not decrease proportionally to the distance; ε is a threshold when two 
points are considered identical. The similarity is higher when transformation dis-
tance is small, but will be above ε because points shifted only little more than ε 
metres away are still likely to match with other points in the vicinity. DTW did not 
vary with an increase of the sampling rate but was highly sensitive to a decrease. 
Hausdorff and Frechet were both sensitive to changes in sampling rate.  
 
Table 7. Summary of the effectiveness of the 6 route similarity measures. 

Function 
Sampling rate 

Add 
noise 

Point shifting 

Increase Decrease Random Sync. 

C-SIM Robust Robust Fair Fair Fair 

LCSS Sensitive Fair Sensitive Fair Fair 

EDR            Sensitive Fair Sensitive Fair Fair 

DTW Robust Sensitive Sensitive Sensitive Sensitive 

Hausdorf Sensitive Sensitive Sensitive Sensitive Fair 

Frechet Sensitive Sensitive Sensitive Sensitive Fair 

 
Noise affected LCSS and EDR more than the other measures because it caused a 
change in the length of a transformed trajectory. DTW was sensitive to all transfor-
mations. Frechet and Hausdorff were sensitive to noise and point shifting, but less 
so if the points were shifted in the same direction (synchronized). The similarity 
depends linearly on the transformation distance. The results are summarized in 
Table 7. 
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4 ROUTE SEARCH METHODS 

Routes can be searched for various reasons, such as finding, comparing and review-
ing:  
- find a past route in order to compare any progress 
- compare one’s effort with that of others on a similar track 
- review statistics of a route recorded in the past 
- memorize a specific tour to make revisiting a place easy 
 
In large collections, finding a specific route is difficult. Traditionally, sports tracking 
applications offer a time-ordered listing and/or map plotting of the collection. Re-
cently, thumbnail listing and segment-based searches have also become supported 
by certain applications. We introduced two novel means of searching for routes: 
similarity search [III] and gesture search [II]. These approaches are discussed in 
greater detail here.  
 
4.1 TIME-ORDERED SEARCH 
 
All sports tracking applications offer some kind of time-based ordering of a route 
collection. The options to display the information are a calendar, a list and – more 
recently – a list with route thumbnails (see Figure 21 and Table 8).  
 
The calendar is familiar and intuitive to many users; however, it can show numerous 
empty locations, meaning the user must perform many clicks to access the data. In 
addition, calendars impose a limit on the number of activities per day. The calendar 
is large and wide and it cannot coexist with a map on a typical screen.  
 
The list is more useful because it contains no blanks. In Mopsi, list items are 
grouped by the date. The duration, movement type and distance are shown. Other 
applications often include additional information, such as calorie burning and 
power output. In Mopsi the user lacks access to this information, which typically 
requires separate hardware in addition to the mobile phone.  
 
Both the calendar and list formats have a weakness when searching for routes. They 
do not show the shape of the route although shape is a feature that users easily 
recognize. For this reason, all major applications now show a thumbnail list, which 
provides a greater amount of information but with the drawback that the list be-
comes longer. If the date is unknown, these methods are no longer useful and 
would imply sequential searching through every item in the list.  
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Figure 21. The same route collection visualized in different ways. Strava and Mopsi demon-
strate the thumbnail view (left panel), Runtastic shows the calendar view (top right panel), 
and Endomondo and Mopsi show the list view (lower right panels). 
 
Table 8. Time-based route visualization methods and their availability in sports tracking soft-
ware. 
 

 Mopsi Endomondo Runtastic Sports 
Tracker Strava 

List  ✓ ✓ ✓ ✓  

Calendar  ✓ ✓ ✓ ✓ 

Thumbnails ✓ ✓ ✓ ✓ ✓ 
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4.2 MAP-BASED SEARCH 
 
Some applications show the collection on the map. In this way, routes can be identi-
fied by their location (Figure 22). The Sports Tracker application represents routes 
by their starting points so that the map is not overwhelmed by too many points. 
The route representatives are coloured with respect to their transportation mode. 
The disadvantage of this method is that it hides much of the information. Also, 
typically routes start at the same location – the user’s home – for activities such as 
cycling and running. This commonality makes the three running routes hard to 
distinguish. In Mopsi, the entire route shapes are shown. The amount of data is 
minimized using the reduction. Problems occur if routes overlap so much that they 
become indistinguishable. 
 
The benefit is that routes can be identified quickly, unless there is a massive amount 
of data for the region. In the latter scenario, the data should first be limited based 
on time.  

 

Figure 22. The same route collection displayed on a map by Sports Tracker (left panel) and 
Mopsi (right panel). 
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Strava does not display route collections on a map, but it does display a collection 
of user-defined segments of interest (Figure 23). This application provides an easy 
way for people to compete with others. The segments are manually defined by us-
ers via their start and end points and by the intermediate locations which can be 
selected from the user’s routes. Once a segment is defined, users passing through 
that area will be clocked and ranked in a list, providing another way to search for 
routes. Because segments are manually defined, some regions may lack them and it 
is impossible for users to conduct a search in such areas.  
 

 

Figure 23. Strava segments in Joensuu (left panel) and the first 5 athletes on segment H 
(right panel). 
 
4.3 SIMILARITY SEARCH 
 
Route similarity can be used as a method to search the database (Figure 24). Start-
ing with a reference route, Mopsi allows users to perform route similarity ranking 
(RSR). The application shows a list of routes that are spatially similar to the refer-
ence route, with results ranked in decreasing order of similarity. For each route, the 
ranking shows the user who recorded that route, the transportation mode used, the 
similarity value and the date. Figure 24 shows only the first 26 elements of the rank-
ing whereas the full list contained 1196 routes. 
 
The user can compare the reference route with any similar route in the list. The 
analysis can also be localized to a chosen segment of the reference route. 
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Figure 24. User Radu’s reference route (grey) and a list of highly similar routes from the 
database. The user name, inferred movement type and similarity values are shown for each 
similar route. A route of user Andrei (blue) was 77% similar. A manually selected common 
segment (red) was selected and analysed, and Radu’s segment was shown to be 5 km/h 
faster. The reason for the large speed difference was a strong tailwind from the north. 
  
4.4 GESTURE SEARCH 

 
Gestures have been used as a means to access menu items without the need to trav-
erse large hierarchies [Kristensson and Zhai 2007, Li 2010] by providing users with 
various types of shortcuts. We proposed using gestures to access routes in large 
collections. The gesture represents hand-drawn input in the form of a free shape 
drawn on a map; the shape approximates the locations through which the targeted 
route passes. According to Cirelli and Nakamura [2014] and Karam and Schraefel 
[2015], this gesture is classified as symbolic and triggers a command, namely the 
search for spatially similar routes.  
 
Typically, gesture-based systems require the user to learn a set of symbols [Cirelli 
and Nakamura 2014]. In our study, the user was expected to remember the spatial 
characteristics of the route and to be able to read maps, because roads, buildings 
and terrain elements (such as forests, lakes, and rivers) provide key information 
when giving the input. For example, a user can draw the input by following a river 
front, road, or other landmark visible on the map. Users who have a large route 
collection benefit most from the gesture search. It is therefore fair to assume that 
these users also have the necessary skills to understand maps. 
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Gesture search has two modes: similarity (Figure 25) and inclusion (Figure 26), 
which use the two operations respectively. To enter the gesture input mode, the 
user presses a hotkey (Ctrl for similarity, Shift for inclusion). While the key is 
pressed, the map changes colour to show which mode is active and further acts as a 
canvas on which to draw. The drawing is completed when the hotkey is released 
and search is then initiated with the drawn shape being used as the input. 
 

 

Figure 25. Gesture search using Similarity. Eight routes resembling the drawn shape were 
found and returned to the user. The eight routes overlapped perfectly on the map, except in 
three highlighted regions where the road network allowed variation. 
 
The similarity search retrieves route candidates that are similar to the drawn shape, 
whereas the inclusion search retrieves candidates that contain or include the drawn 
shape. The latter is similar to the segments feature of Strava in the sense that routes 
passing through the drawn segment are retrieved. The benefit is that segments do 
not need to be created and stored in the system. Users can draw any segment at any 
time. The downside is that users do not become aware of places in which other 
people compete, as they do in Strava. 
 

 

Figure 26. Gesture search using Inclusion. Five routes that pass through the drawn region 
are found and presented to the user. 
 
The precision of drawing the gesture should be independent of the zoom level of 
the map. When the zoom level is decreased by one unit the content of the map be-
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comes half of its previous size, and consequently the regions on the map become 
twice as difficult to read. We created 10 grids with different resolutions and stored 
the routes at each of these approximation levels (Table 9). 
 
Table 9. A mapping from zoom level to the grid resolution. The statistics are for Mopsi2014 
Route dataset using each of the grid resolutions. 
 
 
 
 
 
 
 
 
 
 
 

 
The finest grid has a cell size of 25 m × 25 m. Finer grids are not needed because at 
this level, GPS error becomes apparent and the route approximations become unre-
liable. The number of cells needed increases exponentially when finer grids are 
produced. Therefore, we did not compute unnecessary levels for no purpose. The 
sparsest grid had a cell length of 12.5 km. At lower levels ( ≥ 25 km ) the cell size 
becomes so large that even the longest routes are represented by only a few cells.  

 
4.5 EVALUATION 

 
We studied the efficiency of the gesture search from a usability point of view. We 
compared the average time a user spends on searching a randomly chosen route 
using the gesture search versus using the traditional system. Eleven volunteers 
were asked to search randomly selected routes using a tool10 built for this purpose, 
as follows:  

1. A target route was shown on the map but no date, length or duration were 
shown. The user could study and memorize the route for as long as he or 
she wanted to. 

2. When the user pressed the Start button, he or she was (randomly) directed 
either to the traditional system or to the new gesture search. The timer was 
started. 

3. The task was to find the route and input its date and then press the Stop but-
ton. If the date was correct the timer was stopped. If the user considered the 
task too difficult, he or she could press the Give-up button. 

                                            
10 http://cs.uef.fi/mopsi/routes/gestureSearch/qual.php 

 
Zoom  
level 

≤ 6 7 8 9 10 11 12 13 14 ≥15 

Grid  
resolution 0 1 2 3 4 5 6 7 8 9 

Cell  
size (km) 12.8  6.4 3.2  1.6 0.8 0.4 0.2  0.1  50 m 25 m 

Number  
of cells 

7× 
104 

9× 
104 

1×  
105 

2× 
105 

4× 
105 

7× 
105 

1×  
106 

3× 
106 

5× 
106 

1×  
107 

Memory  
(MB) 3.5 4.5 6.5 9.5 16.5 30.6 59.6 118.6 238 486 

B-tree  
Index  
(MB) 

8.5 9.5 13.5 21.5 35.6 66.7 131.8 263.1 526 1.1 GB 
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Each volunteer was asked to repeat the test at least 10 times or for as long as he or 
she found the task enjoyable. 
 
In total, 82 routes were found using the traditional system, and 89 routes using the 
gesture search. Traditional searches were given up on 50% more often than the 
gesture search, with 24 traditional searches being abandoned, compared with only 
16 gesture searches. Gesture search was 41% faster, on average. The individual per-
formance differences are shown in Figure 27. Traditional searches were slower on 
average than gesture searches for all users except one.  

 
Figure 27. Average search times, showing the superiority of the gesture search relative to the 
traditional search. Results are shown for every user who participated in the experiment.  
 
The search time was also affected by factors such as complexity and length of the 
route, and density of the areas the route passes through. We next grouped the re-
sults by these three factors. Complexity was calculated as the number of points 
used by the polygonal approximation [Chen et al. 2012] to represent the route at the 
maximum zoom level at which the route could still be seen in its entirety. Density 
was calculated as the proportion of cells that were frequented by many other 
routes; density values are the converse of the noteworthiness value in [III]. The 
results, shown  in Table 10, indicated that although shorter, less complex routes in 
low-density areas were faster to find, the gesture search outperformed the tradi-
tional approach in all cases.  
 
The volunteers were asked if they liked the gesture search and which method they 
would prefer to use for similar search tasks. Ten volunteers rated the gesture search 
as good and one as excellent. Most (nine volunteers) preferred the gesture search, 
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none preferred the traditional search, and two people said they would not use ei-
ther method. Written comments included “I really liked it” and “It was fun”. 
 
The four volunteers whose data are shown on the left-hand bars in Figure 27 had 
previously been familiar with the traditional search method. Even in that group, the 
gesture search yielded faster results for 75% of cases. This result was above our 
expectations because we assumed that previous experience in using the traditional 
method would bias the results. Less experienced users seem to find the routes faster 
using the gesture search than the traditional search. This result indicates that the 
gesture search is a more intuitive method. 
 
Table 10. Average search times, grouped by various factors. 

 
 
  

 

Length Complexity Density 

Short 
2.7 km 

 

Long 
12.7 km 

 

Low 
31 pts 

 

High 
128 pts 

 

Low 
12 % 

 

High 
75 % 

 
Traditional 90 s 116 s 87 s 120 s 90 s 117 s 
Gesture 64 s   78 s 65 s   77 s 54 s   88 s 
Reduction 30%   33% 25%   36% 30%   24% 
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5 INFERRING ROAD NETWORKS 

In large cities, navigation using traditional means – a paper map – has become al-
most impossible. Road networks are becoming increasingly complex and large 
roads rarely offer the chance to pause and study the situation if one gets lost. As a 
result, navigators such as TomTom11 and Garmin12 are present in most cars nowa-
days and most smartphones have navigation capabilities. Road networks may also 
be used to offer personalized navigation such as safe routing [Krumm and Horvitz 
2017] or accessible routing [Kasemsuppakorn and Karimi 2009]. For such applica-
tions, up-to-date and accurate information is essential. 
 
The current acquisition and updating of road networks is characterized by a large 
amount of manual work, which is costly and slow. There have been two main ways 
of automatizing the process: aerial image processing [Tavakoli and Rosenfeld 1982, 
Hu et al. 2007, Barsi and Heipke 2003] and GPS route processing [Edelkamp and 
Schrödl 2003, Davies et al. 2006, Cao and Krumm 2009].  
 
Using aerial images has limitations because roads have varying features such as 
colour, intensity, shadows and variable widths (Figure 28). Buildings cause further 
difficulties and this issue was addressed by Tavakoli and Rosenfeld [1982]. In that 
study, categorization was performed using edge features to separate roads from 
buildings and other structures. The method described by Hu et al. [2007] for finding 
roads begins with several initial guesses. A road tree is then built for each initial 
guess by tracking along road segments in one or more directions. By merging the 
resulting trees, a road network is created. Obtaining the direction of travel for the 
roads is not possible using image data.  
 

 
Figure 28. Aerial images showing part of a city (left) and a countryside area (right). 
 
                                            
11 https://www.tomtom.com 
12 http://www.garmin.com  
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GPS routes are easier and less costly to collect than aerial images. Route databases 
collected for various purposes, such as the OSM traces13 and Mopsi201414, are al-
ready available and growing (Figure 29). The routes have fewer artefacts than the 
aerial images and the only issue is the error caused by tall buildings and other ob-
structions. Routes have the added benefit of preserving the direction of travel and 
can be used to produce a directed graph. Because of these advantages, inferring a 
road network from GPS routes has become an attractive area of research, and sev-
eral conceptually distinct approaches have emerged. In addition to road networks, 
other types of networks, such as pedestrian networks [Kasemsuppakorn and 
Karimi 2013] which can be inferred from walking routes. 

 
Figure 29. GPS routes recorded in Chicago (left) and Joensuu (right). 
 
Visual methods [Chen and Cheng 2008, Davies et al. 2006] use route data to form 
binary images, which are processed using image-processing techniques such as 
contour finding, morphological operations, skeletonization and density-based 
thresholding.  
 
Route merging methods [Niehoefer et al. 2009, Cao and Krumm 2009] combine 
routes one by one to form a graph. If a route segment is already part of the graph, a 
weight corresponding to that particular segment is increased. Finally, segments 
with too low weights are removed from the network. Merging methods typically 
filter GPS data in order to better handle the noise.  
 
Clustering-based methods also exist to infer road networks [Edelkamp and Schrödl 
2003, Schrödl et al. 2004]. This approach typically begins by considering only the 
points of the GPS routes; connectivity is omitted. Then, equally spaced representa-
tives are placed over the point data. The representatives are optimized using k-
means, and finally the network is formed using the point connections from indi-
vidual routes.  
 
Some studies have focused on the task of locating the road intersections [Barsi and 
Heipke 2003, Fathi and Krumm 2010], and machine learning is used to achieve this 
                                            
13 https://www.openstreetmap.org/traces  
14 http://cs.uef.fi/mopsi/routes/dataset  
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goal. A classifier is trained using positive and negative samples obtained from data 
containing ground truth, typically OSM.  
 
The visual, merging and clustering methods perform poorly in places where GPS 
accuracy is low. In those regions, numerous intersections are incorrectly found and 
many spurious segments disrupt the quality of the network. The filtering process 
employed by the merging methods is insufficient to handle abundant GPS error. 
Visual methods can handle the problem through setting a higher value for the den-
sity threshold parameter. The downside is that regions of the map having a low 
number of routes will also be omitted from the process. The existing clustering 
methods do not attempt to solve GPS errors at all. 
 
We argue that accurately obtaining the location of road intersections is crucial for 
generating high-quality maps. Therefore, in [V] we proposed a new method enti-
tled CellNet, which works in two steps: 

1. finding the road intersections  
2. generating the in-between road segments. 

 
CellNet has two parameters: L and R, which can be interpreted respectively as the 
expected average GPS error in the dataset (L) and the minimum distance between 
two intersections (R). The method does not lead to substantial differences when 
these parameters are altered, and we expected it to work well with our recom-
mended values of 25 and 80. A visual representation of the method output using 
these values is shown in Figure 30. 
 

 
Figure 30. Joensuu road network as inferred by CellNet. 
 
Unlike other intersection finding methods [Barsi and Heipke 2003, Fathi and 
Krumm 2010], CellNet does not require training data. It finds the intersections us-
ing a split descriptor, which checks to see whether at a certain location, routes head 
into more than two general directions. To check this a set of data points is created, 
as described in Figure 31. Then, clustering is performed separately with two and 
three clusters, using the random swap algorithm [Fränti and Kivijärvi 2000]. The 
two clusterings are inspected using the silhouette coefficient [Rousseeuw and 
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Kaufman 1990] to deduce the correct number of clusters. If three clusters provide 
the best solution, a split is concluded. 

 
Figure 31. A, the split descriptor composed of the origin and the extremity. B, a sample route 
traversing through the point of interest; points inside the extremity are chosen. C, the select-
ed points are averaged in each of the two directions to create the representatives. D, repre-
sentatives of all routes passing through the point of interest.  
 
Once the intersections are found, the in-between road segments are selected by 
checking every subsequent pair of intersections that every route passes through. If 
more routes link the same intersections, all segments are kept and are used in the 
following optimization step. We used the method in Hautamäki et al. [2008] to ob-
tain a representative for all segments between every pair of intersections (Figure 
32). We excluded segments that were not 100% spatially similar according to C-SIM 
similarity measure [III]. Unlike Hautamäki et al. [2008], we did not initialize the 
optimization method using the medoid. Instead, we used the shortest segment un-
der the assumption that it has less GPS error, which would make it a good initial 
guess. In addition, we used the FastDTW algorithm [Salvador and Chan 2004]. Our 
results were no worse than those obtained when the medoid was used and the op-
timum DTW was calculated but the speed had improved by 99%. 

 
Figure 32. The minimum length segment (red) was improved by the averaging method using 
other segments that were spatially similar. The dashed-line segment (top) was not spatially 
similar and was therefore excluded from the process. The result was the fine-tuned blue 
segment (bottom). 



59 
 

Once the links were optimized, we noted that some became redundant. This was 
the result of a route missing one or more intersections due to GPS error. We re-
moved these links using the following strategy. For every link segment, we found 
all segments that were contained inside its spatial region and marked them as valid. 
To do this, we used the inclusion measure from [III]. If a valid path existed between 
the two intersections, the direct link was removed because it was probably redun-
dant. This strategy is an improvement over the one presented in Fathi and Krumm 
[2010], which takes into consideration only the physical length of the segments. 
Using only the length implies that the direct segment is removed in both situations 
presented in Figure 33.  
 

 
Figure 33. The specified segment (dashed line) is shown together with the dilated cell repre-
sentation (dark cells). In the example on the right, two other road segments are included in the 
region defined by the dilated cells and are valid. The example on the left has no valid seg-
ments. 
 
A question that has not yet been answered is how to score the quality of a generat-
ed road network. Virtually all studies to date have relied on visual inspection of the 
results, with generated maps being compared with existing maps or satellite image-
ry. We propose two novel ways of comparing a generated map with ground truth 
obtained from OSM. First, we evaluate the intersections using the same technique 
that is used to compute clustering quality in Fränti et al. [2014].  
 
We next propose a way to evaluate the road segments connecting the intersections. 
We use grid cells to measure whether the ground truth segments are properly iden-
tified. The measure is also sensitive to redundant segments (Figure 34). 
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Figure 34. Left panel: ground truth segments (black) and inferred segments (red). Right pan-
el: red cells show over-emphasis proportional to the colour intensity; blue cells show seg-
ments that were not represented at all; black cells mean correct representation. 
 
Table 11 shows summary data on the quality of the road network produced by 
CellNet and a comparison with the three other methods. The visual method yielded 
the highest precision for the Chicago dataset, because the high density of routes in 
that dataset produced good visual features. The recall was low because the portion 
of the dataset that fell below the density threshold was omitted. The clustering and 
merging methods displayed high recall, because – unlike the visual approach – they 
did not drop out part of the dataset according to a threshold. However, the preci-
sion of the clustering and merging methods was low because they detected too 
many intersections in regions with many routes and low GPS accuracy. CellNet 
achieved the most balanced results in terms of precision and recall, and produced 
the best result in terms of the F-score. 
 
Table 11. Comparison of CellNet with other popular road network inference methods.  

Chicago 
 Intersections Links 

Method Precision Recall F-score Precision Recall F-score 
Visual 97% 27% 42% 97% 27% 42% 
Clustering 14% 94% 24% 17% 94% 28% 
Merging 5% 90% 10% 7% 70% 10% 
CellNet 77% 90% 84% 81% 68% 75% 

 
Joensuu 

 Intersections Links 
Method Precision Recall F-score Precision Recall F-score 

Visual 54% 63% 58% 56% 38% 46% 
Clustering 22% 85% 36% 16% 92% 27% 
Merging 22% 52% 31% 13% 28% 18% 
CellNet 71% 68% 69% 68% 49% 58% 

 
A potential challenge is the memory requirements of the generated network. The 
compared methods produce unnecessarily complex segments, which could be sim-
plified by using polygonal approximation [Chen et al. 2009, Chen et al. 2012, Pikaz 
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and Dinstein 1995]. We used the technique in Chen et al. [2012] and obtained net-
works of only 25% of the size of those produced by other methods.  
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6 SUMMARY OF CONTRIBUTIONS 

This chapter summarizes the contributions of our five publications. In publication 
[I] we studied how routes are recorded, stored and visualized. In publications [II] 
and [III] we explained how a grid-based representation is useful when implement-
ing four commonly used functions: similarity, inclusion, novelty and noteworthi-
ness. Publication [IV] presented an application of the fast grid-based similarity 
search, namely gesture search, which allows users to search for routes by drawing a 
free-form shape on the map. Publication [V] presents a novel way of generating a 
road network from a route dataset.  
 
In [I], we proposed a method for recording GPS routes which allows online and 
offline capability and live tracking, and is efficient in terms of internet and battery 
usage. Using the polygonal approximation and cropping strategies allows the 
Mopsi system to query and display routes consisting of over 3.5 million points in 
under 2 seconds. As far as we know, no other online system even exists to achieve 
this and all systems show only the start points or just a single route at a time. 
  
In [II], we presented a new fast and intuitive way of computing route similarity 
using a grid-based approximation of the routes and set-based operations. The 
method is equipped with interpolation and dilation of the grid cells in order to cope 
with missing points and to handle the arbitrary grid division into cells.  
 
In [III] we introduced four grid-based route operations: similarity, inclusion, novel-
ty and noteworthiness. The methods were analysed in terms of their space re-
quirements, computational complexity and indexing strategy. In that work, the 
similarity measure presented in [II] was redefined as “inclusion” and a new, im-
proved similarity measure was introduced. Using the new similarity measure, a 
route similarity search strategy was presented and was shown to work in real time 
on a real-world dataset. We built an interactive tool for comparing and understand-
ing different similarity measures and offered an application programming interface 
(API) for calling our newly presented measure. The API also supports calls to the 
other similarity measures. These are available in the web page15 of [III]. 
 
In [IV] we showed that the similarity search method can be used to search for a 
route if the user remembers the approximate shape but not the time. This feature 
improves the user’s experience when searching routes in large data collections, 
compared with the traditional interface described in [I]. 
 
                                            
15 http://cs.uef.fi/mopsi/routes/grid  



64 
 

In [V] we present a new method for road network extraction, CellNet, which pro-
duces accurate results without the need to optimize parameters. We show that 
CellNet produces higher quality results than three conceptually different state-of-
the-art methods. 
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7 CONCLUSIONS 

We presented efficient ways to record, store and visualize route collections and 
demonstrated their efficiency within the real-world environment of Mopsi. We 
showed that polygonal approximation and cropping are very useful in reducing the 
amount of data, and these techniques also allow the display of large route collec-
tions on the map. In addition, we showed that the system is capable of displaying 
routes consisting of over 3.5 million points in less than 2 seconds.  
 
Many popular route similarity measures exist, inspired by methods based on vari-
ous fields – such as string matching, time-series analysis, curve comparison and set 
matching. Most of these methods are slow and are not intuitive for average users, 
who perceive routes as being shapes on a map. Our proposed similarity measure, 
C-SIM, uses the grid-based representation of routes to output a fast and intuitive 
measure of similarity. It was combined with an indexing strategy, which was 
demonstrated to perform similarity searches in real time on a database containing 
over 5,000 routes.  
  
Searching for routes is not easy in large collections. We proposed gestures to be 
used for this purpose. We built a working system that allows users to draw the 
approximate shape of a route on the map; then, spatially similar routes are re-
trieved. This method is preferred over the traditional approach when the user can-
not remember the date of the searched route. 
 
To date, managing road networks still requires intensive manual editing. Our pro-
posed method, CellNet, provides more accurate results on different datasets com-
pared with other popular approaches, without the need for parameter optimization. 
In addition, the size of the generated network is reduced by using polygonal ap-
proximation to produce maps that require a quarter of the storage space needed by 
other automatically generated maps.  
 
Even though we have given solutions for many different applications, some prob-
lems remain open. Potential future research includes: 
- To use the road network to predict user movements, recommend routes or give 

navigational instructions; 



66 
 

- To further reduce the amount of data when visualizing a route collection by 
keeping a single representative segment where multiple routes overlap. 
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Abstract: Increasing availability of mobile devices with GPS receiver gives users the possibility to record and share a 
variety of location-based data, including GPS tracks. We describe a complete real-time system for 
acquisition, storage, querying, retrieval and visualization of GPS tracks. The main problems faced are how 
to store the data, how to access and how to visualize large amount of data. We propose to reduce the 
quantity of the data to be visualized, without affecting visualization quality. In order to achieve this, our 
system uses a fast polygonal approximation algorithm for different map scales along with a bounding box 
solution. 

1 INTRODUCTION 

Mobile devices with geo-positioning facilitate the 
acquisition of location-based data. This allows 
people to track their outdoor movements while 
performing physical exercises or when traveling. 
Companies can manage their geographical 
information in real-time (Martín et al., 2008) and 
track the movement of their own vehicles in order to 
solve problems such as fleet management (Jakobs et 
al., 2001) or traffic congestion (McCullough et al., 
2011). The collected tracks are usually uploaded to 
an online system in order to be viewed, managed 
and analyzed. However, accessing and visualizing 
large amount of data is time consuming. 

We present MOPSI Routes, a complete system 
for storage, retrieval and visualization of GPS tracks 
that overcomes the most common disadvantages of 
similar systems. For example, existing real-time web 
based systems, such as www.gmapgis.com and 
www.gpsvisualizer.com, do not have the possibility 
to plot large number of points and tracks on the map. 
In such cases, displaying becomes slow and 
visualizing overlapping tracks is difficult. Other 
solutions, such as TopoFusion (Morris et al., 2004), 
propose combining and intersecting GPS tracks in 
order to create trails and minimize the data needed to 
be displayed, although the goal, creating a GPS 
network of trails, is different. Our solution is to 
display all the recorded tracks in real time by 
reducing the number of points that are plotted. This 
is done by fast multi-resolution polygonal 

approximation algorithm described in (Chen et al., 
2012), which achieves better approximation result 
than the existing competitive methods. Furthermore, 
we minimize the time needed for drawing by using a 
bounding box solution for plotting only the points 
that are visible to the user. 

MOPSI Routes is available as a part of MOPSI 
services (cs.uef.fi/mopsi) and addresses the issues of 
storage, querying, retrieval and visualization of GPS 
tracks, first described in (Waga et al., 2012b). Users 
voluntarily upload their GPS tracks using our mobile 
application, which is available for most modern 
mobile operating systems (Android, Windows 
Phone, iOS and Symbian). 

Similar research projects include GeoLife 
(Zheng et al., 2008), the system presented in 
(Alahakone et al., 2009) and StarTrack 
(Ananthanarayanan et al., 2009). 

GeoLife (Zheng et al., 2008) is a project which 
focuses on visualization, organization, fast retrieval 
and understanding of GPS track logs. The main goal 
of the project is understanding people lives based on 
raw GPS data. The main contribution is visualizing 
GPS data over digital maps by indexing the GPS 
trajectories based on uploading behavior of users. 
Similarly to MOPSI Routes, tracks are searched 
using spatial range and time query. 

The tool described in (Alahakone et al., 2009) is 
used for manipulating, integrating and displaying 
geographical referenced information. The main 
purposes for the tool are path planning and 
navigation of mobile objects. The tool can be used in  
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Figure 1: Typical Workflow of MOPSI Routes. 

several applications such as: tracking, fleet 
management, security management and industrial 
robot navigation. Similarly to our system, a spatial 
database is used for storing tracks and points and 
Google Maps API to display the tracks. It presents a 
general approach in handling GPS data and it can be 
used in a variety of applications that use track 
recording, navigation and track planning. It requires 
that the user selects the points and defines the tracks, 
whereas our application automatically detects and 
segments the tracks. 

StarTrack (Ananthanarayanan et al., 2009) and 
its improved version (Haridasan et al., 2010) 
describe tracks of coordinates as high-level 
abstraction for various types of location-based 
applications. The system supports recording, 
comparison, clustering and querying tracks. 
Experimental results show that the system is 
efficient and scalable up to 10.000 tracks. The 
improved version was extended to operate on 
collections of tracks, delay query executions and 
permit caching of query results. Other improvements 
are canonicalization based on road networks, and 
use of track trees for similarity.  

2 SYSTEM DESCRIPTION 

MOPSI Routes can be accessed at 
cs.uef.fi/mopsi/routes. The typical workflow of the 
system is presented in Fig. 1, whereas Fig. 2 shows 
example of tracks collection from one user. 

In the first step, user selects the tracks to be 

displayed by several criteria such as time, location, 
duration and length. Tracks that match the criteria 
are retrieved from database and processed before 
displaying to the user. During the processing phase, 
the points belonging to the retrieved tracks undergo 
approximation process that reduces the number of 
points needed for the specific map scales. Points that 
are outside the visible area of the map are omitted by 
applying a bounding box. In the final step, the 
remaining points are shown on the map and the user 
can browse through them using map view (panning 
and zooming) or using list view to see additional 
information and statistics of each route. 
 

 

Figure 2: Example of user tracks collection. 

2.1 Data Acquisition and Storage 

MOPSI allows collecting tracking data using 
smartphones. The mobile application records the 
user’s location and timestamp at a predefined 
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interval (usually 1-4 seconds). The data is saved to 
database on server immediately if internet 
connection is available, or buffered on the device if 
internet connection is not available or the application 
is in offline mode.  

Tracks are first saved as individual points in the 
database, and track objects are created and updated 
real time when new points are received. Each track 
object contains not only the points but includes 
several basic statistics such as start and end time, 
bounding box and number of points. Segmentation 
and classification statistics are also stored. Analysis 
and classification of GPS tracks is described in 
details in (Waga et al., 2012a). Furthermore, each 
track is stored in its original and in a simplified form 
with reduced number of points. The approximated 
tracks are computed for 5 different zoom levels in 
order to speed up the visualization process. This 
limits the number of points drawn on the map 
without losing significant information about the 
shape of the GPS track. The analyzed and the 
approximated tracks are computed immediately 
when the points are uploaded.  

The tracks are created and updated real time and 
tracking points are handled immediately after they 
have been uploaded. This process requires 
maintaining and updating track statistics and 
information constantly when user is recording a new 
track. To ensure this, there is a process running 
constantly on server that checks periodically (every 
1 minute) if any track needs to be updated. When 
new tracking points are uploaded, they are either 
used for creating a new track object or merged with 
the existing points and inserted into list of the track’s 
points in time order. The existing tracks are updated 
in the case that new tracking points belonging to an 
older track are received with significant delay 
caused, for example, by poor internet connection. 

2.2 Different Map Scales 

The tracks recorded in our system carry far more 
data than needed for visualization. Full data is 
needed for analysis, and therefore, complete GPS 
tracks must be stored. However, in the rendering 
process for a web browser, reduced number of points 
is sufficient to present the shape of track to user. We 
apply here a multi-resolution polygonal 
approximation algorithm described in (Chen et al., 
2012). The algorithm is fast and achieves good 
quality approximation of the tracks. It is applied to 
every track and returns approximation of a track in 5 
different map scales. The algorithm time complexity 
is O(N) (Chen et al., 2012) and the results are stored 

to avoid running algorithm repeatedly when the 
same track is displayed again. 

Figure 3 shows an example of the original and 
approximated tracks. The original track contains 575 
points and it is approximated in different map scales 
with 44, 13, and 6 points respectively. Suitable 
approximation error tolerance is selected for each 
map scale, and the visualization quality is not 
affected by the approximation, but rendering time is 
reduced significantly. 

Figure 3: Visualization of a sample track. 

2.3 Bounding Box 

The purpose of the bounding box is to draw on the 
map only the points that are visible to user, see Fig. 
4. Therefore, we select only points that user will see 
using the current map scale and location (bounding 
box of the map) at the moment of query. In addition, 
we draw also points that are outside the bounding 
box, but within immediate neighborhood (50% 
extension of screen size). In this way, we allow fast 
panning and zooming. 

The bounding box is implemented as a function 
that gets coordinate of north, east, south and west of 
the map visible on the screen. Map scale is also 
passed, so that points from the correct 
approximation can be selected. The function is 
applied to every track and for every point it checks if 
the point lies inside the bounding box. Time 
complexity of the bounding box is linear and it is 
computed entirely on server. 

Original track 
of 575 points 

Visualized for 
map scale 1

Approximate
d by 13 points 

Approximate
d by 6 points 

Visualized for 
map scale 2 

Visualized for 
map scale 3
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Figure 4: How the bounding box works (from top to 
bottom): what user sees on screen, what is drawn on map, 
all tracks selected. 

2.4 Displaying Tracks on Map 

In MOPSI, we use Google Maps to visualize the 
data (see Fig. 5). However, user can select different 
type of maps that are displayed as overlay over 
Google Maps. We support OpenStreetMaps and 
detailed orienteering maps in Joensuu area where 
most MOPSI users come from.  

There are several search options available. The 
main search criterion is time, thus only tracks in the 
selected time period are shown. In addition, other 
criteria can be applied. For example, tracks can be 
filtered by minimum and maximum length and 
duration. Moreover, it is possible to search for tracks 
that start and end around a certain location. 
 

 

Figure 5: Displaying tracks on the map. 

3 RESULTS 

We measure the time spent between sending request 
to the system and presenting the result to the user. 
The time elapsed from user’s query to the time of 
displaying the tracks on the screen using our system 
is compared with the same system that does not have 
reduction. 

 In all measurements, we ignore the time needed 
for data transfer. However, in weak internet access 
this might become bottleneck, and therefore, we 
design the system so that it minimizes data transfer. 
That allows using the system on computers with 
slower internet connection as well as on tablets that 
usually have limited bandwidth.  

Table 1: Collections used for our experiments. 

User Tracks Points 
Length 
(km) 

Duration 
(h) 

Pasi 784 1,216,039 8,535 669 
Karol 650 1,015,939 9,655 442 
Radu 429 613,684 4,604 188 

 

We present measurements for 3 sample users from 
Table 1. The original tracks consist of large number 
of points. In MOPSI, there are users having over one 
million points, which shows the need for reducing 
the number of points being displayed as none of the 
browser could handle such large number of points 
(Chen et al., 2009). In Table 2, we show the number 
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of points from the original tracks within the selected 
time period and the number of points from the 
approximated tracks. The zoom level of the map is 
selected in such manner that all the tracks are visible 
on the map. 
 

Figure 6 presents the time needed to display 
tracks in a selected period for three test users. The 
process is divided into three phases: querying 
database, computing bounding box and drawing in 
browser. Results show that the time needed for 
showing all the tracks of the user with the biggest 
collection is about 2.5 seconds. 

Table 2: Number of points in original (left) and in the 
approximated tracks (right) in the selected time period for 
user Pasi. 

 Original Approximated 
all 1,216,039 9,064 
year 424,709 3,088 
month 46,669 331 
week 11,204 903 
recent 3,328 141 

 

Figure 7 shows average time percentages spent in 
each of the three phases. Querying data takes most 
of the time. Calculating bounding box is a fast 
process that additionally speeds up drawing tracks 
on map, so that it takes only 14% of time. 

 

The approximation algorithm is necessary to 
reduce the number of points displayed. Without it, it 
is not possible to display all tracks because the web 
browser would crash. The number of points 
browsers can handle depends on available resources. 
Displaying thousands of points significantly slows 
down web browsers. Nevertheless, even if browser 
can display all the points in tracks, the time needed 
for the process increases. 

Table 3: Size of files (in bytes) with original and 
approximated tracks for user Karol. 

 Original Approximated 
week 14.000 148 
month 346.000 2280 
year 4.056.000 69.000 
all 11.595.000 129.000 

 

Bigger number of points slows down the bounding 
box algorithm and often leads to memory issues. 
Moreover, approximation algorithm reduces files 
sizes as shown in Table 3 and preserves bandwidth 
used to retrieve data from server. 

 
 

 
 

 

Figure 6: Display times of track collection for users Pasi, 
Karol and Radu. 

 

Figure 7: Average time percentage used for performing 
each operation of the system. 
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Experiments show that applying bounding box 
decreases time needed to draw tracks on map. Fig. 8 
shows a sample case from the experiments. In this 
case the same set of tracks was requested at the same 
zoom level, but the map was focused in two 
different places, Finland and Poland. In Finland the 
collection of tracks is big, whereas in Poland there 
are only several tracks available. Because of 
applying the bounding box solution, not all the 
tracks have to be displayed and the time to show the 
tracks when map shows fewer tracks (Poland area) is 
significantly shorter. Figure 8 also shows how 
reducing number of points affects the display time. 
 

 
 

 

Figure 8: Example of querying the same track collection 
the same zoom level and focused in Finland (large 
collection, top) and Poland (small collection, bottom). 

In comparison with the existing web based systems 
for visualizing GPS tracks, our system can display 
data consisting of significantly more points. For 
example, a track with about 10.000 points is 
displayed by our system in 1 second whereas GPS 
visualizer (www.gpsvisualizer.com) and GMapGis 
(www.gmapgis.com) need approximately 5 seconds. 
Moreover, user interaction is not slowed down in our 
system, when large number of points being is 
displayed. 

4 SUMMARY 

We presented a complete real time system to 

collect and visualize GPS tracks. Our motivation is 
to offer a system that is capable of handling large 
amount of GPS data so that user can access them in 
real time. The results show that our system is 
efficient even with large point collection. The most 
important part is the algorithm reducing the number 
of points to be displayed. Combined with a bounding 
box solution, the requested tracks can be accessed 
within about 2.5 seconds and the collection can be 
panned and zoomed with insignificant delay. The 
developed system can be used as a basis for more 
advanced analysis of GPS tracks, such as similarity 
and movement type detection.  

Although, the system is efficient, there are still 
ways to improve it. For instance, now we reduce the 
number of points of one track only, but not when 
multiple tracks are overlapped. Further improvement 
could be achieved by clustering partial track 
segments. Moreover, the query phase should be 
optimized to minimize time needed to retrieve data. 
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Abstract: We attack the problem of trajectory similarity by approximating the trajectories using a geographical grid
based on the MGRS 2D coordinate system. We propose a spatial similarity measure which is computationally
feasible for big data collections. The proposed measure is based on cell matching with a similarity metric
drawn from Jaccard index. We equip the proposed method with interpolation and dilation to overcome the
problems missing data and different sampling frequencies when comparing two trajectories. The proposed
measure is implemented online in the framework of Mopsia.

acs.uef.fi/mopsi

1 INTRODUCTION

In recent years, GPS technology has been widely
available in consumer devices, especially in smart-
phones1, which count as more than a half on total
mobile phone sales2. Furthermore, most of the users
utilize their phone to find their location, amongst
other services3. The wide availability of GPS-enabled
smartphones that are also connected to the Internet
has made the collection of large amount of location-
based data possible. Such data includes geo-tagged
photos, videos and geographical trajectories. Col-
lecting geographical trajectories has practical appli-
cations in fleet management, sports tracking, rec-
ommending tourist trajectories, improving navigation
and determining mobility patterns.

Having a large-scale collection of GPS trajecto-
ries raises the challenge of how to organize the data,
how to present it in a meaningful way and how to
filter out irrelevant data. Computing trajectory sim-
ilarity is a tool that can be used in addressing those
challenges (Agrawal et al., 1993). A problem in com-
puting similarity of GPS trajectories is that the large
amount of data does not permit processing raw trajec-
tories in real time.

Time series analysis of one-dimensional data

1abiresearch.com/research/product/1005746-mobile-
device-user-interfaces

2gartner.com/newsroom/id/2623415
3pewinternet.org/Reports/2012/Location-based-servi

ces.aspx

across the time has been used for analyzing stock
changes, weather data and biomedical measurements
(Hamilton, 1994; Chan and Fu, 1999; Worsley and
Friston, 1995; Lange and Naumann, 2011). Despite
the significant research output on time series analy-
sis, the concept of computing similarity for traces of
moving objects in the framework of spatio-temporal
databases has been studied much less. Finding k-
nearest trajectories, indexing and clustering of spatio-
temporal data are among the recent directions of re-
search with many applications to make queries in
moving object databases (Frentzos et al., 2007a; Ni
and Ravishankar, 2007; Frentzos et al., 2007b; Güting
et al., 2010; Pelekis et al., 2011). These algorithms
can be applied also for measuring the trajectory simi-
larity (Hu and Steenkiste, 2006).

Using Euclidean distance is not practical for the
case that the length of two trajectories are not equal
(Yanagisawa et al., 2003). Dynamic time warping
handles matching two sequences of different length
but it is very sensitive to noisy data (Berndt and Clif-
ford, 1994). Algorithms like longest common subse-
quence (LCS) (Vlachos et al., 2002b; Vlachos et al.,
2002a) or edit distance on real sequence (EDR) (Chen
et al., 2005) are designed to account for noisy and
missing data but they are not perturbation free. Con-
sidering M trajectories of N points on average, the
computational complexity of these algorithms is at
minimum O(M2 �N2). Hence, these algorithms can-
not provide real-time results when dealing with a
large collection of data.

These algorithms do not utilize time stamps. By
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using the timing information a complete movement
profile can be provided and the similarity of two tra-
jectories can be used in trajectory clustering applica-
tions. The similarity measurement in LCS and EDR
are based on point-to-point distance calculations. In
the event of having two trajectories with different
sampling frequency, LCS and EDR cannot provide
correct similarity measure (Frentzos et al., 2007b).
Although it is always possible to use a trajectory re-
duction or approximation algorithm to represent a tra-
jectory with far less representatives for similarity cal-
culation, the quality of such an approximation algo-
rithm and overhead computational complexity is de-
batable (Ni and Ravishankar, 2007).

In this paper, we propose a fast method of comput-
ing trajectory similarity by approximating the trajec-
tories using a geographical grid based on a 2D coor-
dinate system. This process reduces a trajectory from
points to cells with order of magnitude less details in
representation and subsequently in distance calcula-
tions. We employ an asymmetric similarity metric in-
spired by Jaccard index. Dealing with GPS data col-
lection, it is common to have bunch of data points lost
or compare trajectories traveled by car with walking
speed trajectories. We propose interpolation and di-
lation of trajectories represented as cells to overcome
these difficulties. In the results section we simulate
missing data and trajectory sampling frequency mis-
match with two example trajectories and demonstrate
the efficiency of the proposed approach. Conclusions
are drawn after the discussion of results.

2 MOPSI

Mopsi is a research project location-based service
developed at the University of Eastern Finland by
Speech and Image Processing Group from the School
of Computing. (Fränti et al., 2011) Mopsi offers
multiple applications of location-aware systems, be-
ing a test-bed for various research topics that involve
location-aware data. It contains tools for collecting,
processing and displaying location-based data, such
as photos or trajectories, along with social media in-
tegration. The main topics addressed in Mopsi are
collecting location-based data, mining location data
from web pages, processing, storing and compress-
ing of GPS trajectories, detecting transportation mode
from GPS trajectories, recommending points of in-
terest, using location information in social networks,
detecting users actions by using their location and
building location-based games with the help of user-
generated collections.

Location-based data is very common among web-

Figure 1: Mopsi application on web showing an example of
two trajectories which display a common region.

pages, especially when their content describe com-
mercial services, landmarks or public institutions.
However, the location data is more commonly pre-
sented in a human-readable way and not as geograph-
ical coordinates, which are more accurate and easier
to be automatically identified. We propose a method
to automatically identify location information from
web-pages by detecting postal addresses (Fränti et al.,
2010).

Mopsi provides tools to collect GPS trajectories
and it includes more than 9000 trajectories composed
of over 7 million points by the end of 2013. Mopsi
uses fast retrieval and displaying of the data (Waga
et al., 2013) based on GPS trajectory polygonal ap-
proximation (Chen et al., 2012a). GPS trajectories are
also compressed for optimizing storage space (Chen
et al., 2012b). Transport mode information can be
also retrieved by automatically analyzing GPS trajec-
tories (Waga et al., 2012). The algorithm uses a sec-
ond order Markov model to segment the trajectories
and to detect car, bicycle, running or walking trans-
portation modes.

The relevance of location-based media can be as-
sessed by considering several aspects such as time, lo-
cation, content or social network (Fränti et al., 2011),
which are used to create a context for each user. A
personalized recommender system can recommend
relevant data based on user location and user context
(Waga et al., 2011). Such data can be geotagged pho-
tos, services confirmed by administrators or GPS tra-
jectories. Users can share their location in real-time
by using mobile phone location-aware applications.
This allows for the detection of various location-
based actions such as meetings, visiting or passing-
by points of interest (Mariescu-Istodor, 2013). Mopsi
also includes location-based games, such as O-Mopsi
(Tabarcea et al., 2013), which is an orienteering game
using the data from a user-generated photo collection.

Mopsi provides tools for collecting location-based
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Figure 2: MGRS grid zones (source4).

data with mobile devices. It is available on most
mobile operating systems (Android, iOS, Windows
Phone, Symbian). The server-side processes the data
collected by the user and displays the data collec-
tion. It also provides social features and integration
which social media, with functionalities such as chat-
ting, friends tracking and sharing data to Facebook.
The Mopsi routes module provides tools for trajectory
recording and displaying the large amount of data in
reasonable time. Trajectory similarity is the newest
addition to the Mopsi routes module.

3 TRAJECTORIES

In Mopsi we record a user’s location at a certain time
as a point pk = (xk;yk; tk), where xk is the latitude,
yk is the longitude and tk is the timestamp of point k.
An ordered sequence of these points, defines a spatial
trajectory R = (p1; : : : ;pK). We calculate the similar-
ity between a reference trajectory Ra and all the other
M�1 trajectories in the database, Rm, m = 1; : : : ;M.

The similarity of two trajectories can be calculated
as the Jaccard index:

J(Ra;Rm) =
jRa\Rmj
jRa[Rmj

; (1)

Instead of this symmetric measure we want to find
out if the reference trajectory is completely covered
by another trajectory. Thus, we consider the follow-
ing asymmetric similarity metric:

Sim(Ra;Rm) =
jRa\Rmj
jRaj

; (2)

Sim(Rm;Ra) =
jRa\Rmj
jRmj

: (3)

4earth-info.nga.mil/GandG/coordsys/grids/universal grid syst
em.html

The first one shows what percentage of Ra is shared
with Rm and the second shows what percentage of Rm
is shared by Ra. The way that we perform intersection
operator is described in the following sections after
we quantize the trajectories into cells.

3.1 Cell Approximation

In a preprocessing step, we generate a cell repre-
sentation for a trajectory after it has been recorded.
The Military Grid Reference Systems (MGRS) is an
alpha-numeric system for expressing UTM/UPS co-
ordinates. MGRS is used by NATO to locate points on
earth. A single alpha-numeric value references a po-
sition that is unique for the entire earth (see Figure 2).
MGRS is a projected coordinate system which uses a
2-dimensional Cartesian horizontal position orienta-
tion, so that locations are identified independently of
vertical position. MGRS shares several characteris-
tics with UTM such as the division of earth into pro-
jection zones and using easting and northing in meters
within a designated zone. The main differences are
that a MGRS zone is a 100km square within a UTM
zone, whilst a UTM zone is usually 6 degrees in east-
west and 8 degrees in north-south area and also that
the notation of the areas is different. Based on the
coordinate resolution, MGRS can define a grid with
square cells with the length starting from 100km up
to 10m or even 1m.

We approximate a trajectory R = f(xk;yk)gK
k=1 by

a sparse binary matrix representation C where,

(C)i j =

(
1 0 < xk� iL < L;0 < yk� jL < L
0 Otherwise

; (4)

where L stands for the cell length (25 meters in this
paper) and indexes i and j span over in horizontal and
vertical cells that trajectory R is residing inside. Fig-
ure 3 shows how the reference trajectory is approxi-
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Figure 3: Example of a trajectory of 420 points being rep-
resented by 35 cells using the approximation in Equation 4.
The cell representation is not continuous. The gaps appear
because of the fixed cell size, variations in movement speed
(or different sampling frequencies) and missing GPS loca-
tions. It is likely for such gaps to appear especially when
users are moving by car, train or plane.

mated by cells. Generating the cell representation for
a trajectory of average length of N points is done in
O(N) time.

3.2 Measuring Similarity

The similarity between two trajectories Ra;Rm can
now be calculated as:

Sim(Ra;Rm) =
kCa�Cmk0
kCak0

; (5)

where Ca and Cm are the cell representations of Ra
and Rm, respectively, Ca�Cm is a Hadamard product
of two matrices Ca and Cm defined as (Ca�Cm)i j =

(Ca)i j � (Cm)i j and kCk0 represents the ‘0-quasinorm.
In implementation, Ca and Cm are multiplied element
by element and then we measure the number of non-
zero elements. Figure 4 shows two sample trajectories
being matched.

Assuming we have the cell representation C of a
reference trajectory R we calculate the similarity for
all trajectories in database in two steps. First, we find
all the trajectories which share at least one cell with
the reference trajectory. This has a time complexity of
O(N0 � (q+M0)) where q represents the steps needed
by the database system to perform the search (N0�N
and M0�M). In contrast to the average length N of
a trajectory R, we define N0 = kCk0 as the number
of non-zero elements in cell-approximated version of
R. In a similar way, M0 indicates the number of other
trajectories that share at least one cell with trajectory
R. Secondly, we calculate the trajectory similarity
according to Equation (5) with a time complexity of
O(M0 �N0). The overall complexity of the similarity

Figure 4: Matching two trajectories using the cell repre-
sentation. The green cells denote the reference trajectory
and the gray cells represent the other trajectory. The ’x’
symbol is used to mark the cells shared by two trajectories;
Sim(Ca;Cm) = 40% and Sim(Cm;Ca) = 31%

.

scoring is O(M0 �N0) (assuming q constant by adding
a proper indexing structure in the database).

In Figure 4 the straighforward application of the
similarity scores yield similarity scores of 40% and
31% even though the trajectories seem to have more
than 50% similarity by visual inspection. In the next
subsections we analyze why this happens.

3.3 Interpolation

When the user is traveling fast or when recording fre-
quency is low we notice gaps in the trajectory repre-
sentation by cells. Gaps can also appear due to lack of
GPS signal. Figure 5 shows three examples when dif-
ferent sized gaps appear in the cell representation of a
trajectory. In cell approximation stage in Equation 4,
we process the trajectory data points in the sequence
they are recorded. In this way, the sequence of cells
being detected as “1s” are used to determine if the
next cell is connected to the current cell and find a
potential gap in cell-approximation.

In order to fill the gap, the line equation between
two cells is obtained from the start and end points as

j = f (i) =
j2� j1
i2� i1

(i� i1)+ j1 (6)

where i1 and j1 are the coordinates of one cell and
i2, j2 are the coordinates of the other cell. The line
in Equation 6 is then sampled by the cells that it is
passing through and then set respective cell values as
(Ci j) = 1.

By performing interpolation, the trajectory simi-
larity presented in Figure 4 is now updated as plotted
in Figure 6. The similarity values are still below the
visual expectations. The reason is that two cell repre-
sentations may not overlap even though the trajecto-
ries are close to each other.
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Figure 5: Interpolation between two cells in order to fill a
gap; three example situations are depicted.

Figure 6: The trajectory having gaps is interpolated and the
matching of the two trajectories becomes: Sim(Ca;Cm) =
41% and Sim(Cm;Ca) = 33%.

3.4 Dilation

A frequent situation is that two nearby trajectory seg-
ments are evolving along each other in cell represen-
tation instead of overlapping. An example is provided
in Figure 7 We solve this issue by applying morpho-
logical dilation on the trajectories and taking into ac-
count the neighbouring cells of a trajectory. We define
Cd as a result of binary dilation of sparse binary rep-
resentation C by binary structure S with

Cd = C�S = T (C�S); (7)

where� defines the binary dilation and � indicates the
convolution operator. In the Equation 7, T (�) stands
for binarization transform as

T ((C�S)i j) =

(
0 0� (C�S)i j < 1
1 Otherwise

(8)

Figure 7: We see that two trajectories which are close
enough to be considered similar can be represented by dif-
ferent cells. Only a single cell is shared by the cell repre-
sentation of the two trajectories.

Figure 8: The reference trajectory is dilated and the match-
ing of the two trajectories becomes: Sim(Ca;Cm) = 64%
and Sim(Cm;Ca) = 53%.

Figure 8 shows how a trajectory is dilated with the
following structure

S =

241 1 1
1 1 1
1 1 1

35 : (9)

Then the two trajectories are matched when one of
the trajectories is dilated. The similarity score is now
calculated with Ca and Cd

m as in Equation 5. Typi-
cally the number of cells used in the trajectory repre-
sentations increases by a factor of 3 when dilation is
applied.

4 RESULTS

We implement our method in a real-world application,
as a prototype using the Mopsi project route analy-
sis module 5. We investigate issues that may appear

5cs.uef.fi/mopsi/?tab=routes&userId=13&routeId=137882401
9381&similarity=true
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No post-processing Interpolated Interpolated and Dialated

5x

29% 31% 53%

10x

24% 31% 53%

15x

18% 27% 53%
Figure 9: Simulating different sampling frequencies by subsampling the reference trajectory with a factor of 5x, 10x and 15x.

when collecting GPS trajectories in a practical appli-
cation such as different sample rates, interpolation of
collected points or breaks in the GPS signal caused by
technical or environmental problems.

Firstly, as shown in Figure 9, we investigate how
a different sampling frequency impacts the similarity
score calculation. The reference trajectory is subsam-
pled with factor f by only keeping every f th element
from the original trajectory. We notice that the in-
terpolation step doesn’t increase the similarity scores
significantly. However, when followed by dilation,
the similarity score indicates robustness against vari-
ations in sampling frequency which is a desired prop-
erty for a trajectory matching procedure.

The other common issue while recording a trajec-

tory is loss of location information for a brief period
of time. This can happen, for example, if the user
goes through a building, a tunnel or simply due to de-
vice software error. We simulate this behavior and
see how the similarity scoring is affected in Figure 10.
When removing 90 points we notice that the similar-
ity score has dropped even when using interpolation
and dilation. This happened because we removed a
significant amount of subsequent points (20% of the
trajectory). Interpolation does not have enough infor-
mation to reconstruct the trajectory appropriately and
consequently, loss of many data points in a trajectory
is detrimental for similarity calculations.

The proposed method is implemented in two steps
for real-world application: the preprocessing step,
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No post-processing Interpolated Interpolated and Dialated

(-50)

20% 31% 53%

(-90)

22% 27% 42%
Figure 10: Simulating loss of GPS signal by removing 50 and 90 sequential points from the reference trajectory.

done when a new trajectory is added into the sys-
tem and the similarity score calculation step, per-
formed when searching all the similar trajectories of a
given trajectory. When not using interpolation or di-
lation the time complexity for the preprocessing step
is O(M �N) for M trajectories of average length N
points. The similarity score calculation has a time
complexity of O(M0 �N0). After interpolation is ap-
plied there will be an increase on the N0 and M0 pa-
rameters which increase, however, stay at the same
order of magnitude. N0 increases by the number of
cells added trough interpolation and M0 increases by
the number of trajectories that share at least one cell
with interpolated trajectory. The dilation stage in-
creases the N0 and M0 parameters once more. N0 typ-
ically increases by a factor of 3 and M0 grows by
the number of trajectories that share the cells that
are added to the representation as a result of dila-
tion. The overall complexity for M trajectories in the
database is governed by O(M �N) for cell approxi-
mation and O(a �M �M0 �N0) for similarity score cal-
culation including interpolation and dilation (a � 6,
M0 � M, N0 � N). The similarity cell approxima-
tion complexity of O(M �N) is negligible compared
to O(a �M �M0 �N0) for score calculation. Hence, the
overall computational complexity of the proposed ap-
proach is dominated by O(a �M �M0 �N0) which is

comparably much less than O(M2 �N2) for other sim-
ilarity metrics presented in section 1.

5 CONCLUSIONS

We presented a method for computing similarity be-
tween trajectories in a large data collection. Because
trajectories are likely to have different speed profile
and missing points, interpolation and dilation tech-
niques are employed before the scoring. We have
demonstrated that the method is robust except when
many points are removed and dramatically affect the
structure of a trajectory. In that situation there is sim-
ply not enough information to rebuild the path and
provide correct similarity values. The method was
implemented in Mopsi, where for a given trajectory
we display a list of similar paths in reverse order of
the similarity scores.
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Grid-Based Method for GPS Route Analysis for Retrieval   

RADU MARIESCU-ISTODOR, University of Eastern Finland 

PASI FRÄNTI, University of Eastern Finland 
 

Grids are commonly used as histograms to process spatial data in order to detect frequent patterns, 
predict destinations or to infer popular places. However, they have not been previously used for GPS 
trajectory similarity searches or retrieval in general. Instead, slower and more complicated algorithms 
based on individual point-pair comparison have been used. We demonstrate how a grid representation can 
be used to compute four different route measures: novelty, noteworthiness, similarity and inclusion. The 
measures may be used in several applications such as identifying taxi fraud, automatically updating GPS 
navigation software, optimizing traffic and identifying commuting patterns. We compare our proposed 
route similarity measure, C-SIM, to 8 popular alternatives including Edit Distance on Real sequence 
(EDR) and Frechet distance. The proposed measure is simple to implement and we give a fast, linear time 
algorithm for the task. It works well under noise, changes in sampling rate and point shifting. We 
demonstrate that by using the grid, a route similarity ranking can be computed in real-time on the 
Mopsi20141 route dataset, which consists of over 6,000 routes. This ranking is an extension of the most 
similar route search and contains an ordered list of all similar routes from the database. The real-time 
search is due to indexing the cell database and comes at the cost of spending 80% more memory space for 
the index. The methods are implemented inside the Mopsi2 route module.  

• Information systems➝Information systems applications • Information systems➝Information retrieval. 

1. INTRODUCTION 

In recent years, GPS technology has become widely available in consumer devices. 
Smartphones count as more than half of total mobile phone sales and many users 
utilize their phone location sensing capabilities. The wide availability of GPS-enabled 
smartphones makes it possible to collect large amount of location-based data. Such 
data includes geo-tagged photos, videos and geographical trajectories, which we will 
refer to as routes. 

Mopsi is a location-based social network created by the School of Computing from the 
University of Eastern Finland. Mopsi users can find out who or what is around. They 
can track their movements, share photos and chat with friends. Mopsi includes fast 
retrieval and visualization of routes [Waga et al. 2013] using a real time route 
reduction technique [Chen et al. 2012]. Transport mode information is automatically 
inferred by analyzing speed variance of the route [Waga et al. 2012]. Movement is 
classified as either: walking, running, cycling or car. Stop points are also detected. In 
this paper we define four new route measures: novelty, noteworthiness, similarity and 
inclusion.  
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Fig. 1. Route novelty relative to the user himself (left) and relative to all users (right). The route is highly 
novel to the user, but not for to the rest of the database. Route noteworthiness is useful in the denser area. 
 
Novelty measures the amount of unique parts of a route compared to other routes in 
the database. Novelty can be useful in several applications. In [Zhang et al. 2011], it 
is needed for identifying taxi fraud; when the taxi driver takes a longer route than 
necessary to arrive to the destination. The given route is compared to other past 
routes starting and ending at the same locations. If it has high novelty, the route is 
labeled as fraud. Another application for novelty is to automatically update GPS 
navigation systems existing in many cars nowadays. If a recent route has novelty 
compared to the exiting road network, it indicates that the roads in the region have 
changed and database-updating methods such as [Fathi and Krumm 2010, Cao and 
Krumm 2009] should be executed. In Mopsi, novelty is used to inform users when 
their route passes though places they have never visited before. We also verify if 
other users have frequented the area (see Figure 1). Route noteworthiness is closely 
related to novelty. It measures the amount of rarely visited parts instead of only 
focusing on the parts that are unique. This measure is useful in places with large 
density of routes so that novel regions rarely exist.  

We define that two routes are similar if they overlap. The amount of overlap 
measures how similar the routes are. Many applications for route similarity exist. 
One example is to use route similarity as a component when measuring the 
similarity between users in a social network. In [Ying et al. 2010] it was suggested 
that meaningful friend recommendations could be issued in this way. Another case 
where route similarity is helpful is when giving trip recommendations. In [Shang et 
al. 2012] a route is recommended given a set of intended places and a set of textual 
attributes that describe the user’s preferences. The similarity measure can also be 
used to identify ideal places where to build new bicycle paths. In [Evans et al. 2013] 
this is achieved by computing the similarity between all routes in a database using 
the network Hausdorff distance. Optimizing traffic is another task aided by route 
similarity. In [Ying et al. 2009] the similarity measure serves as a distance function 
for density-based clustering of segments in order to identify the congestion areas.  
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Fig. 2. Many similar routes for Joensuu – Liperi – Joensuu cycling track. We can see that several users 
have tried it with different outcome in terms of the average speed. 
 
There are many methods for computing route similarity. General time series analysis 
methods have been used [Hamilton 1994, Agrawal et al. 1993]. Techniques based on 
longest common subsequence [Vlachos et al. 2002] and edit distance on real sequence 
[Chen et al. 2005] are more recent directions specifically aimed for analyzing routes. 
The advantages and disadvantages for each of these methods have been summarized 
in [Wang et al. 2013] where some methods are shown to be sensitive to noise while 
others to variations in sampling rate, the conclusion being that none of them is 
flawless but all can be useful, depending on the application. However, all these 
measures are implemented by dynamic programming with time complexity of 
O(N1N2), where N1 and N2 are the number of points in the two routes. We will 
present a fast and simple approach by first representing the routes as cells of a 2D 
grid and then applying set operations. The proposed method is upper limited by 
O(K1+K2) where K1 and K2 are the physical lengths of the two routes (in meters). The 
actual cost is smaller, depending on the cell size. 

Many applications need to find for a given route the most similar one from the 
database. A naïve approach computes similarity with every other route. This results 
in O(MN2) complexity, where M is the number of routes in the database and N is the 
average number of points in a route. Many similarity computations can be omitted by 
calculating bounding box of the route. [Wang and Liu 2012] use polygonal 
approximation to first obtain a quick estimate of the similarity and then calculate 
exact measure for the top candidates only. Even then, the time complexity is far from 
real-time in areas with high route density. For this task, we present Route Similarity 
Ranking (RSR) algorithm, which finds all similar routes in the database for a given 
input route. It is implemented in Mopsi where it is used as sport tracker such as 
jogging, cycling or cross-country skiing. The algorithm works real-time on a dataset 
of 6,700 routes. Users can easily compare stats and analyze their progress over time. 
The ranking shows also other users that have completed the same or a similar route 
(see Figure 2). Routes with lower similarity can also provide valuable insights. For 
instance, Figure 3 shows two 70% similar routes being compared in Mopsi and the 
knowledge gained from the comparison. 
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Finally, we define inclusion as the amount of one route contained inside the other. 
Unlike similarity, the inclusion is not symmetric. The measure is useful for solving 
the drive sharing problem by identifying users that: 

A. can pick up somebody on his / her way, 
B. can be picked up by somebody else on their way. 

To speed-up the proposed approach, we consider indexing. R-tree [Guttman 1948] has 
been used to improve efficiency of spatial queries in several route-searching problems 
[Yanagisawa et al. 2003, Frentzos et al. 2007 and Güting et al. 2010]. GPS points are 
recorded with varying accuracy, which depends on several factors such as the device 
quality and the weather. Typically, when comparing GPS points a distance threshold 
must be set so that points closer than the threshold are considered identical. With R-
tree it is possible to use range queries in order to obtain the points closer than the 
specified threshold. However, when using the grid, the cell size acts as a distance 
threshold and points that are mapped to the same cell are considered identical. 
Because of this, range queries are not necessary; we do, however, investigate B-tree 
and Hash [Cormen 2009] indexing methods to facilitate searching the cells.  

The proposed measure uses only the spatial aspect of routes; this means that the 
order of traveling is ignored. For example, two cycling routes in the opposite 
directions would lead to 100% similarity. In applications where the order matters, 
a similar strategy as in [Chen et al. 2011] can be used by clustering the routes using 
the Hausdorff distance (a measure which ignores point order) and then adding the 
direction as a separate feature. 

 
Fig. 3. Two 70% similar routes compared in Mopsi. One route takes a 1 kilometer shorter, off-road path. 
The other route is quicker, despite the extra kilometer. 
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2. USING THE GRID 
Grids have been used for representing geographical data in the past. In [Pang et al. 
2012, Zhang et al. 2011] grids are used to find patterns in taxi data. In [Wei et al. 
2012], popular routes are constructed using the frequency information of grid cells. In 
[Zheng et al. 2010, Bao et al. 2012] the grid is used to infer stay areas, which are 
used to detect points of interest. In [Krumm and Horvitz 2006] grids are shown to be 
useful when attempting to predict the destination of moving vehicles.  

The abovementioned examples use the grids to perform frequency analysis in sub 
regions of a given area. We extend the use of the grid to define a similarity measure 
between routes and to perform similarity-based retrieval in route databases. When 
computing similarity of routes, the grid needs to be finer than in other applications, 
which typically use cell sizes in the scale of 100 m – 1 km.  

Constructing a grid with equal cell size on the planet surface is not trivial. In [Bao et 
al. 2012], the earth surface is partitioned in the scale of 0,001 latitude ×  0,001 
longitude which equals roughly 111 meters, however, the cells become smaller as 
they get further away from the equator. For our purpose we need a grid with equal 
size cells everywhere on planet. Otherwise, comparing two routes will give a different 
result depending on the latitude. Grids with equal cell sizes have been generated in 
[Zhang et al. 2011, Krumm and Horvitz 2006, Pang et al. 2012, Wei et al. 2012] but 
they all use the grid in a small region, typically in a single city. However, in our case 
the routes can be recorded anywhere on the surface of the Earth, land or water; the 
grid must therefore exist everywhere. 

 
Fig. 4. UTM zones and latitude bands. Jonesuu is in MGRS grid zone 35 V. 

 
Military Grid Reference System (MGRS) has the required features: the cell size is 
constant and it is defined over the entire planet. It is a standard used by NATO to 
locate points on the earth. Open-source solutions3 exist for different programming 

                                                
3 http://builds.worldwind.arc.nasa.gov/worldwind-releases/1.4/docs/api/overview-summary.html 
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languages. Time complexity for the conversion from WGS to MGRS and back is 
constant. 

 
Fig. 5. 100 kilometer squares in zone 35 V. Joensuu is in square PK. 
 
MGRS is an alpha-numeric two-dimensional coordinate system in which locations are 
identified independent of vertical position. Similarly to Universal Transverse 
Mercator (UTM), MGRS uses division of earth into projection zones and computes 
easting and northing in meters within a designated zone. UTM divides the planet 
into 60 zones, each being 6o of longitude in width. For the Polar Regions (above 84oN 
and below 80oS) the Universal Polar Stereographic (UPS) convention is used instead 
of UTM. For the perpendicular segmentation, bands of latitude (8o high) are used. 
The first three characters of the MGRS value for the city of Joensuu, Finland are 35V 
(see Figure 4). The next pair of characters identifies a 100 ×  100 kilometers square 
within each of the grid zones. Around the edge of a grid zone these squares are 
truncated in order to fit. This tedious process makes it possible to wrap the grid 
around the planet. Joensuu is located in region 35VPK (see Figure 5). 

 
Fig. 6. 25 ×  25 meter cells in Joensuu. The highlighted cell is in the center of a small park. 
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The remaining part consists of the numeric Easting and Northing values within the 
100-kilometer square. MGRS allows one of 5 predefined precision levels when 
choosing the cell length: 1 m, 10 m, 100 m, 1 km, 10 km. However any precision can 
be easily obtained if the desired cell length perfectly divides 100,000 (meters). Based 
on our experiments and typical GPS device accuracy we chose a cell size of 25 ×  25 
meters. Larger values result in poorer approximation while smaller values are 
vulnerable to GPS error. In Figure 6, we identify a point as 35VPK16461774. 

3. CELL REPRESENTATION 
We define a point on the earth as p=(x,y) where x is the latitude and y is the 
longitude. An ordered sequence of these points defines a route R=(p1,…,pN). The 
route can be approximated by set C, created by mapping each point to the MGRS grid. 
Algorithm Points-to-Cells shows how this representation can be calculated in O(N) 
time. The WGS-to-MGRS conversion works in constant time.  

We use a hashing method to keep track of cells already existing in the representation. 
With our 25 ×  25 meter sized cells, a 100 ×  100 kilometer square results in a grid of 
size 4,000 ×  4,000 cells. A route consists of pairs of Easting and Northing values that 
passes through the cells. The same route may pass through two cells with the same 
(x, y) but in a different square; for example MGRS coordinates 35VPK-1122-1122 and 
35VPL-1122-1122. We store every Square ID in a linked list in the array at the (x, y) 
position. It is very unlikely that different cells of the same route have the same (x, y) 
coordinates. It would require the route to be at least 100 km long and to reach the 
exact same Easting and Northing values in an adjacent MGRS cell. Thus, the linked 
lists usually contain a single element.  

Points-to-Cells: Finding the set of cells that approximate a given route.  
Input:  Route R containing N points, cell size L.  
Output:  Set C.  
C ß empty list 
H ß 4000 x 4000 array of empty lists 

for i ß 1 to N do 
 cell ß WGS-to-MGRS ( R [ i ], L ) 
 if H [ cell à x ] [ cell à y ] ]. contains ( cell à Square ID ) then  
  // nothing to do, cell already exists in C 
 else 
  C . add ( cell ) 
  H [ cell à x ] [ cell à y ] ]. add ( cell à Square ID ) 
 end 
end 
 
Gaps can appear in the cell representation when a mobile user is traveling faster 
than the cell length divided by sampling interval, or when user moves and the device 
fails to update the location or for some other reason (see Figure 7). We generate the 
cells in the order that the route points were recorded; if two consecutively generated 
cells are not adjacent we fill the gap by using linear interpolation with equation:  
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xx
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where (x1,y1) and (x2,y2) are the easting and northing values of the two cells inside a 
100 km square. To fill the gap, the line is sampled along the longer edge of the 
rectangular region whose opposite corners are the two cells (see Figure 8). This 
process requires O(max(|x2-x1|,|y2-y1|)) time.  

   
Fig. 7. A sample route (left) and the cell representation with cell size 25 ×  25 meters (right). 
  
It is possible that two consecutive cells do not lie inside the same 100 km square. 
Only in these rare situations we cannot perform the interpolation in MGRS space 
because the easting and northing values refer to different subspaces. Instead, we 
interpolate using the latitude and longitude values, which we gradually increment 
and compute the MGRS mapping along the way. Equation 3 gives an estimate for the 
number of cells a route contains after interpolation: 

 
L
RlengthLRcellCount )(),( = . (3) 

 

 
Fig. 8. Different examples where a four cell gap is filled through interpolation. 
 
It is theoretically possible to double the amount of cells when moving along the cell 
border and slightly oscillating from one side to another. Fewer cells are possible 
when the route includes loops or overlaps itself. Theoretically, an infinitely long route  
can exist in a single cell just by moving around in circles within the cell. This kind of 
behavior is sometimes noticed when user is standing still but GPS signal fluctuates. 
In Figure 9 we show examples of routes with the same length but different number of 
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cells. In practice, when computing the cell representation for routes in Mopsi2014 
dataset, a route passes through 37 cells per kilometer, on average (see Figure 12). 

 
Fig. 9. Several 100 meter routes requiring between 1 and 8 cells of size 25 ×  25 meters. 
 
Often, points close to each other end up in different cells due to the arbitrary division 
of the grid. This can produce errors when comparing routes. In principle, two people 
walking hand in hand may never share a cell. We fix this problem with morphological 
dilation with square structural element (see Figure 10). The extra cells form a 
separate set Cd, which is treated as a buffer region when comparing two routes. 

 
Fig. 10. Dilating the cell representation of a route with a square structural element.  

 
When dilating a cell, the number of extra cells to be added depends on the direction 
of travel, see Figure 11. Moving diagonally adds 5 new cells while moving 
horizontally or vertically adds only 3. The direction is with respect to the orientation 
of the MGRS 100-kilometer square in the area (see Figure 5), and not to the cardinal 
direction. Mopsi2014 routes require 135 cells per kilometer, on average, when the 
dilated part is included (see Figure 12). 

 
Fig. 11. Number of extra cells added from dilation depends on the direction of travel. 
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We use a square structural element because it guarantees that points with relative 
distance less or equal to L will be considered identical (a different structural element 
such as cross may not guarantee this property). The space required to store the 
complete cell representation, including the cells from interpolation and dilation, is 
proportional to the length of the route K. The time required is O(max(N, K / L)) 
where N is the number of points. 

  
Fig. 12. Relationship between the length of the route and the number of cells when L=25 m.  

4. CELL DATABASE 
We compute the cell representation for the entire route database. In a dynamic 
system, the cell representation generation must be triggered when a new route is 
recorded. We create a cell database, in which we store entries (Routeid, Cellid, 
Dilation); the first field is the route identifier, the second is a unique identifier for the 
cell (the MGRS cell id) and the last field is a Boolean value specifying if the cell was 
obtained from dilation or not. Some example entries are shown below: 

Route   Cell (MGRS)  Dilation 

3812  35VPK16491768 FALSE  
3812  35VPK16481768 FALSE  
3812  35VPK16471768 FALSE 
3812  35VPK16471768 FALSE  
3812  35VPK16461769 FALSE  
3812  35VPK16451771 FALSE  
3812  35VPK16441772 FALSE  
3812  35VPK16441773 TRUE  
3812  35VPK16441771 TRUE 
6115  35VPK44122117 FALSE  
6115  35VPK44122118 TRUE  
6115  35VPK44022118 FALSE  

We implement four elementary database operations, which will be used later to 
design our methods. We can apply B-tree but also hash index because all four 
operations rely only on strict equality checks. The time complexities of these four 
operations are summarized in Table 1. Parameter M is the number of routes in the 
database and Q is the average number of cells in a route; MQ equals to the number of 
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entries in the database. In Mopsi2014, M = 6,779 and Q = 1,693. The search using B-
tree and hash has time complexities of O(log(MQ)) and O(1), respectively. 

The time complexity for the Get-Routes operation depends on the number of routes 
that pass through the given cell. This number equals to the frequency of the given 
cell c in the database. We refer to this number as f(c). In places with a lot of routes, 
this number increases. For example, the frequency in the center of Joensuu is 400 
whereas the average frequency in the entire Mopsi2014 dataset is 2. 

Table I. Elementary database operations and their time complexities 
Operation No index B-tree Hash 
Get-Cells O(MQ) O( log(MQ) +|C|) O(|C|) 

Get-Routes O(MQ) O( log(MQ) + f ( c ) ) O( f ( c ) ) 
Is-Novel O(MQ) O( log(MQ) ) O( 1 ) 

Is-In-Subset O(MQ|S|) O( log(MQ)|S|) O(|S|) 

Get-Cells: Obtain the precomputed cells representing a given route. 
Input: route rid  
Output: sets C and Cd 
C  ß empty set 
Cd  ß empty set  

rows  ß DB : SELECT ( Cellid, Dilation ) WHERE Routeid = rid 

for i ß 1 to size ( rows ) do 
 if rows [ i ] . Dilation = TRUE then 
  Cd . add ( rows [ i ] . Cellid ) 
 else 
  C . add ( rows[i]. Cellid ) 
 end 
end 

Get-Routes: Obtain the routes that pass through a given cell. Rd will contain the routes whose 
dilated region intersects the given cell. 
Input: cell cid 
Output: arrays R and Rd 
R  ß new array 
Rd  ß new array 
rows ß DB : SELECT ( Routeid, Cellid, Dilation ) WHERE Cellid = cid  
for i ß 1 to size ( rows ) do 
 if rows [ i ] . Dilation = TRUE then 
  Rd . add ( rows [ i ] . Routeid ) 
 else 
  R . add ( rows [ i ] . Routeid ) 
 end 
end 
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Is-Novel: Check if a given cell is novel in the database. A cell is novel if a single route passes 
through it. We stop the search immediately if a second route is found. 
Input: cell cid  
Output: Boolean novel 
novel  ß FALSE 
rows  ß DB : SELECT ( Routeid, Cellid) WHERE Cellid = cid LIMIT 2 
if size ( rows ) = 1 then 
 novel ß TRUE 
end 

Is-In-Subset: Check if a given cell is part of any route in a specified subset of the database. 
Input: cell cid and route subset S  
Output: Boolean exists 
exists  ß FALSE 
rows  ß DB : SELECT ( Routeid, Cellid) WHERE Routeid IN S AND Cellid = cid LIMIT 1 
if size ( rows ) = 1 then 
 exists ß TRUE 
end 

 

5. MEASURES 
In this section, we present four route measures: novelty, noteworthiness, similarity 
and inclusion. We give at least one algorithm for computing each measure and the 
time complexity is computed for every one of them. 
 
5.1 Novelty 
We define novelty as the proportion of a given route that does not overlap with any 
other route. Using the cell representation, it is computed by counting the amount of 
novel cells in the route. A cell is novel if it is not part of any other route from the 
database. We calculate the novelty by NOV algorithm, which performs Is-Novel check 
for every cell of the route. The novelty is then defined as the number of novel cells 
relative to the total number of cells. 

  
Fig. 13. The novel and overlapping cells of a route when compared against a route database. The dilated 
region is considered. 
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Figure 13 shows a route with 30% novelty. The Is-Novel function uses the dilated 
representation of the routes in the database; therefore, we do not need to dilate the 
reference route itself.  

 

NOV: Compute the novelty of a route with respect to the entire database. 
Input: route rid  
Output: novelty 
C, Cd ß FindCells ( rid ) 
novelCells ß 0 
for i ß 1 to size ( C ) do 
 if Is-Novel ( C [ i ] ) then 
  novelCells ++ 
 end 
end 
novelty ß novelCells / size( C ) 
 
It may be needed to compute novelty with respect to a given subset S of the route 
database. This subset depends on the application. It can be routes that belong to a 
certain user, routes recorded in a given time period, routes starting and ending in 
specified locations, or routes with a certain movement type. S-NOV and NOV-S are 
two different ways for computing the subset novelty. S-NOV uses the Is-In-Subset 
operation. It is the same as NOV but limits the search to the subset S by using the 
SQL IN clause. The second one, NOV-S, gets all routes from database that pass 
through every cell of the input route by the while loop. Any cell that does not include 
any other routes, is labeled as novel. Other cells we refer as active cells. The number 
of active cells is counted as:  

 ( )∑
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S-NOV: Compute the novelty of a route with respect to a subset of the database. 
Input: route rid and route subset S 
Output: novelty 
C, Cd ß FindCells ( rid )  
novelCells ß size ( C ) 
for i ß 1 to size ( C ) do 
 if Is-In-Subset ( C [ i ], S ) then 
  novelCells -- 
 end 
end 
novelty ß novelCells / size( C ) 
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NOV-S: Alternative way to compute the novelty of a route in a subset. Here S is an array of M 
elements with 1’s indicating which routes are to be considered. 
Input: route rid and route subset S 
Output: novelty 
C, Cd ß Get-Cells ( rid ) 
novelCells ß size ( C ) 
for i ß 1 to size ( C ) do 
 Ri, Rdi ß Get-Routes ( C [ i ] )  
 isNovel ß FALSE 
 while isNovel = FALSE and items exist in Ri and Rdi do 
  r ß next item in Ri or Rdi 
 if S [ r ] = 1 and r ≠ rid then   
   isNovel  ß TRUE  
  end 
 end 
 if isNovel = TRUE then  
  novelCells --  
 end 
end 
novelty ß novelCells / size( C ) 
 

Table 2 contains the time complexities for the three novelty algorithms in case of B-
tree, hash and without indexing. Algorithms S-NOV and NOV-S can both be useful, 
depending on the application. Using one or the other depends on the number of active 
cells in the region and the size of the route subset. S-NOV is more efficient in areas 
with many routes and smaller subsets; NOV-S is recommended otherwise. This is 
examined more in Section 6.3. 

Table II. Time complexity for algorithms that compute novelty 
Method No index B-tree Hash 

NOV O(|C|MQ ) O(log(MQ) |C|) O(|C|) 
S-NOV O(|C||S|MQ ) O(log(MQ) |C||S|) O(|C||S|) 
NOV-S O(|C|MQ ) O(|C|(log(MQ)) + a( C ) ) O(|C|+ a( C ) ) 

 

5.2 Noteworthiness 
Concluding that a cell is not novel because another route passes through it can be a 
too strict criterion. Figure 14 shows the tracking activity in a region. Some cells are 
noteworthy because they are traveled much less frequently than others. We define 
noteworthiness as the proportion of the cells that has little to no activity. We compute 
the noteworthiness using algorithm NTW. It first computes a histogram, which 
counts the frequency for each cell. The histogram is then normalized to the range 
[0, 1]. The cells with activity less or equal to a parameter p are counted as 
noteworthy. The noteworthiness of the route is then calculated as the ratio of 
noteworthy cells to all the cells in a route. The algorithm has the same time 
complexity as NOV-S. A parameter-free alternative can be constructed by calculating 
the average activity of the cells within the route and defining the cells with activity 
bellow this value as noteworthy. 
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NTW: Computing route noteworthiness. 
Input: route rid, threshold p 
Output: noteworthiness 
C, Cd  ß FindCells ( rid ) 
hist  ß new array 

//counting frequencies 
for i ß 1 to size ( C ) do 
 Ri, Rdi ß Get-Routes ( rid, C [ i ] )  
 hist [ i ] ß size ( Ri ) + size ( Rdi ) 
end 
normalize ( hist ) 

// computing novelty 
noteworthyCells ß 0 
for i ß 1 to size ( hist ) do 
 if hist [ i ] ≤ p then 
  noteworthyCells ++ 
 end 
end 
noteworthiness ß size ( noteworthyCells ) / size ( C ) 
 

  
Fig. 14. The tracking activity in a region (left) and computing the noteworthiness of the route with respect 
to the active region (right). Parameter p = 10% is used in this example.  
 
5.3 Similarity 
We define that two routes are similar if they overlap. We use Jaccard index to 
measure the amount of similarity. It is calculated as the size of the intersection 
divided by the size of the union of two sets:  

 
BA

BA
BA CC

CC
CCJ

∪

∩
=),( . (5) 



Grid-Based Methods for GPS Route Analysis and Retrieval                                                                           39:16  
                                                                                                                                         

 
 

ACM Transactions on Spatial Algorithms and Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 

We consider the dilation in order to guarantee that points less than L meters away 
from each other are treated as identical. We do not dilate both routes simultaneously 
because it would double the distance threshold. Instead, we dilate each of the two 
routes separately, compute the two intersections with the original of the other route, 
and unite the results as follows:  
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Because {}=∩ d
AA CC  and {}=∩ d

BB CC  by definition, we union of the three 

sets in the numerator is equivalent to the sum of their individual sizes. The 
denominator can be computed simply by the sum of the elementary set sizes 
subtracted by the size of their intersection. Equation 7 shows an alternative formula 
after these observations. Figure 15 illustrates the necessary components for 
computing the similarity.. 
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Fig. 15. Two routes that are 46% similar. Elementary sets for computing the similarity are depicted. 
 
C-SIM algorithm computes the similarity between two given routes. It first retrieves 
the cell representation and then calculates the similarity measure using the cells. 



Grid-Based Methods for GPS Route Analysis and Retrieval                                                                           39:17  
                                                                                                                                         

 
 

ACM Transactions on Spatial Algorithms and Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 

Intersection algorithm computes the intersection between two sets efficiently in 
linear time using the hashing technique described earlier. The total time complexity 
of C-SIM is O(NA + NB +|CA|+|CB|) where NA and NB are the number of points in 
the two routes. 

C-SIM: Computing similarity between two routes. 
Input: routes RA and RB  
Output: similarity  
CA, CAd  ß Points-to-Cells ( RA ) 
CB, CBd  ß Points-to-Cells ( RB ) 

cab  ß Intersection ( CA, CB )  
cabd ß Intersection ( CA, CBd )  
cbad  ß Intersection ( CB, CAd )  

similarity ß (cab + cabd + cbad) / ( |CA| + |CB| - cab ) 

Intersection: Efficiently computing the intersection between two sets of cells. 
Input: sets CA and CB  
Output: intersection set X  
H  ß 4000 x 4000 array of empty lists 
X  ß new set 

for each a in CA do 
 H [ a à x ] [ a à y ]. add ( a à Square ID ) 
end 

for each b in CB do 
 if H [ b à x ] [ bà y ]. contains ( b à Square ID ] ) then // O( 1 ) time expected 
   X . add ( b ) 
 end 
end 

 
5.4 Inclusion 
The inclusion measures what proportion of a given route is contained in another. 
Using the grid, we compute the inclusion between two routes, CA and CB, as:  
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The inclusion is not symmetric and rarely gives the same result when switching the 
arguments (see Figure 16). We dilate the second route and normalize the result with 
respect to the original route. Algorithm INC has the same time complexity as C-SIM. 
Preliminary version of the inclusion measure has been presented in [Mariescu-
Istodor et al. 2014]. 
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Fig. 16. Two routes A and B so that 61% of route A is included in B and 96% of route B is included in A. 

INC: Computing inclusion of route RA in RB. 
Input: routes RA and RB  
Output: inclusion  
CA, CAd  ß Points-to-Cells ( RA ) 
CB, CBd  ß Points-to-Cells ( RB ) 

cab  ß Intersection ( CA, CB )  
cabd ß Intersection ( CA, CBd )  

inclusion ß cab + cabd / |CA| 
 
5.5 Route Similarity Ranking 
Route Similarity Ranking (RSR) is an algorithm that finds, for a given route, all 
similar routes in a database and ranks them in decreasing order of the similarity. 
RSR begins by computing the cell representation for the given route. It then iterates 
through every cell and finds what other routes are passing through. For each found 
route CB it marks whether the cell belongs to CA∩CB, CA∩CBd or CAd∩CB. These 
numbers are later used for computing the similarity values according to Equation 7.  

The time complexity of the RSR algorithm is O((|C|+|Cd|)(log(MQ))+a(C)+a(Cd)) 
when B-tree index is used. If hash index is used, the time complexity is 
O(|C|+|Cd|+a(C)+a(Cd)). When no indexing is used, the time complexity is 
O((|C|+|Cd|)MQ). It is difficult to predict how long the process will run for a given 
route exactly as it depends on the area where the route is: in a highly traveled area it 
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takes longer than in a less traveled area. A definite upper bound is when the 
database contains only identical routes; in this case the complexities become 
O(MQlog(MQ)) and O(MQ) for B-tree and hash respectively. RSR algorithm can be 
modified to compute the inclusion values for every route in the ranking since the 
necessary components: |CA∩CB| and |CA∩CBd| already exist.  

RSR: Computing the route similarity ranking.  
Input: route rid  
Output: similarityList 
C, Cd  ß Get-Cells ( rid ) 
SC ß initialize SetCounter array; // structure defined below 

// process input route 
for i ß 1 to size ( C ) do 
 Ri, Rdi ß Get-Routes ( C [ i ] )  
 for j ß 1 to size ( Ri ) do 
  SC [ Ri [ j ] ]. A ++;   SC [ Ri [ j ] ]. B ++;   SC [ Ri [ j ] ]. AB ++; 
 end 
 for j ß 1 to size ( Rdi ) do 
  SC [ Rdi [ j ] ]. A ++;   SC [ Rdi [ j ] ]. B ++;   SC [ Rdi [ j ] ]. ABd ++; 
 end 
end 

// process dilated part 
for i ß 1 to size (Cd ) do 
 Ri, Rdi ß Get-Routes ( Cd [ i ] )  
 for j ß 1 to size ( Ri ) do 
  SC [ Ri [ j ] ]. B ++;   SC [ Ri [ j ] ]. AdB ++; 
 end 
 for j ß 1 to size ( Rdi ) do 
  SC [ Rdi [ j ] ]. B ++;   SC [ Rdi [ j ] ]. AdBd ++; 
 end 
end 

similarityList ß new list; 

for each rid in SC do 

 S ß ( SC [ rid ] . AB + SC [ rid ] . AdB + SC [ rid ] . ABd  ) / 

       (SC [ rid ] . A + SC [ rid ] . B - SC [ rid ] . AB) 

 similarityList.append ( rid, S ) 

end 

SetCounter { 
 Aß0;   Bß0;   ABß0;   AdBß0;   ABdß0;   
} 
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6. EXPERIMENTS 

We tested our methods with Mopsi20144 dataset, which is a subset of all routes in 
Mopsi database collected by the end of 2014. It contains 6,779 routes recorded by 51 
users who each have 10 or more routes. Routes consist of wide range of activities 
including walking, cycling, hiking, jogging, orienteering, skiing, driving, traveling by 
bus, train or boat. Routes exist on every continent except Antarctic. This provides a 
good evaluation for MGRS, which works well in all regions where test data was 
available. Most routes are in Joensuu region, Finland, which creates a very dense 
area suitable for stressing the evaluated methods. Table 3 summarizes the 
Mopsi2014 dataset. 

Table III. Mopsi2014 dataset summary 
Routes Points Kilometers Hours 
6,779 7,850,387 87,851 4,504 

 

We first computed the 25 ×  25 meter cell representation for all 6,779 routes. The cell 
database entries include cells obtained from interpolation and dilation. Statistics are 
shown in Table 4. Typically, point databases are indexed with R-tree to make range 
queries possible. If R-tree is applied, Mopsi2014 would require approximately 1 GB of 
space. The cell database has similar space requirements when B-tree index is used 
but Hash index uses 80% more space than B-tree. In total, Mopsi2014 with hash 
index requires 1.3 GB of memory space. 

Table IV. Database requirements 
 Entries Index  Total 

Point  
Database 

7,850,387 
(329 MB) 

R-tree  
(650 MB) 

979 MB 

Cell  
Database 

11,477,506 
(525 MB) 

B-tree 
(429 MB) 

954 MB 

Hash 
(788 MB) 

1313 MB 

 

Next we perform a set of experiments using no index, B-tree and hash respectively. 
All experiments were executed on Dell R920, 4 x E7-4860 (total 48 cores), 1 TB, 4 TB 
SAS HD. We use MySQL to store the data with B-tree and hash. 
 
6.1 Effect of indexing on NOV algorithm 
We evaluate the effect of indexing by computing the novelty of 3000 different routes. 
The novelty of each route is computed against the entire Mopsi2014 dataset. We 
focus only on routes with |C| < 300 cells (~8 km) because the process without 
indexing would be very slow.  

Results are summarized in Figure 17, where a linear dependency on the number of 
cells can be observed. The time complexity for NOV algorithm depends on the 
number of cells and the size of the database. The reason for large variance when no 
indexing applied is that in order to conclude that a cell is novel we may need to 
search the entire database (worst case), or stop at the first other occurrence of the 
given cell and conclude that it is not novel and this first occurrence can appear at any 

                                                
4 http://cs.uef.fi/mopsi/routes/dataset 
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point. The variance increases with respect to the number of cells because the search 
is repeated for every cell. Based on the results, indexing of the database is essential, 
although the speed-up is obtained at the cost of increased space requirements. 

  

Fig. 17. Time required for calculating the novelty of 3000 routes plotted as a function of the 
length of the route (in cells). 

 

6.2 Index type comparison on NOV 
We compare the efficiency of B-tree and hash indexing when computing the novelty 
for all routes in Mopsi2014. We omit 22 routes with the highest number of cells in 
order to obtain statistically significant results. We divide the routes into 11 groups: 
first one has routes with less than 1000 cells, the second 1000-2000 cells, and so on. 
The average processing time and standard deviation for each group are shown in 
Figure 18. We observe that hash index is faster than B-tree. This is as expected from 
the complexity analysis. The average time for B-tree is 67 milliseconds and for hash 
is 43 milliseconds. Both methods are expected to work in real-time even for very large 
routes (300 km). Hash index requires about 50% of the time from that of the B-tree 
but requires about 40% more memory, see Table 4. 

 

Fig. 18. Comparing B-tree and hash index by showing the average time and standard 
deviation for routes of different lengths (in cells).  
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6.3 S-NOV and NOV-S algorithms comparison 
We compare the two algorithms for computing the novelty of a route with respect to a 
given route subset. We randomly select a route subset S of size |S|=15, and compute 
the novelty with respect to every route in Mopsi2014 (see Figure 19). The coefficient 
of determination (R2) indicates that NOV-S is less dependent on the number of cells 
than S-NOV. This is expected because time complexity of NOV-S depends also on the 
amount of active cells involved in the computation. 

We repeated S-NOV and NOV-S algorithms for 50 random route subsets of sizes 10 
and 100. The average processing times are shown in Figure 20. Because S-NOV 
linearly depends on the size of the subset, it does not scale well for large subsets. 
NOV-S does not depend on the subset size. In reality, a small speedup is expected 
when dealing with large subsets because the chance for a cell to be categorized as not 
novel sooner increases with the subset size, however, the speedup is insignificant.  

For small subsets (|S|< 20 routes in case of Mopsi2014) S-NOV is faster than NOV-
S. This is because datasets with routes wide spread out will produce less active cells 
and NOV-S becomes more efficient. In areas with high density of routes S-NOV is 
expected to be useful for larger subsets. 

  

Fig. 19. Comparison of S-NOV and NOV-S running times when novelty is computed for every 
route in Mopsi2014 against a random subset S with |S| = 15 routes. Hash index is used. 
 
Some applications may require many novelty computations with respect to a small 
size of subset. For example, by computing novelty of every route of a user with 
respect to his previous 5-10 routes we can measure how much variation exists in the 
user’s movement. In Mopsi2014, such an application would require roughly half of 
the time with S-NOV than with NOV-S. 
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Fig. 20. Average time for both subset novelty methods when applied on subsets of sizes 10 and 
100. The results are averaged for 50 random route subsets. Hash index is used. 
 
6.4 Route similarity algorithms scalability comparison 
We compare C-SIM algorithm against the following eight route similarity algorithms: 
Longest Common Subsequence (LCSS) [Zheng and Zhou 2011], Edit Distance on 
Real sequence (EDR) [Chen et al. 2005], Dynamic Time Warping (DTW) [Zheng and 
Zhou 2011], FastDTW [Salvador and Chan 2004], Edit distance with Real Penalty 
(ERP) [Chen and Ng 2004], Euclidean (L2-norm) [Gradshteyn and Ryzhik 2000], 
Hausdorff [Rockafellar and Wets 2009] and Frechet [Eiter and Mannila 1994]. 
Definitions for all the measures are given in Table 5. We consider all routes with less 
than 2000 points in Mopsi2014 and divide them into 19 groups. First group of routes 
have 100-200 points, the second group 200-300, and so on. Then we randomly pair 
the routes within each group, and compute the similarity for all the pairs. The 
average times in every group are shown in Figure 21.  

LCSS, EDR, DTW, ERP and Frechet route similarity measures are implemented by 
dynamic programming and they require quadratic time. Hausdorff measure requires 
to check every point pair between the two routes; thus, its time complexity is also 
quadratic. Euclidean measure, C-SIM and FastDTW all work in linear time, and are 
therefore an order of magnitude faster than the others. Euclidean measure is fastest 
because it only computes a number of distance calculations equal to the size of the 
smallest of the two routes. It does not perform any kind of alignment of the two 
routes. FastDTW requires additional work for preparing the multi-resolution 
representation and processing of every resolution. In this experiment we set the 
radius parameter to 1. This achieves the poorest approximation, but provides the 
fastest result. Increasing the radius improves the quality of the solution. If the radius 
is set to be the size of one of the routes, path will be optimum, but computation time 
becomes quadratic again. C-SIM is not monotonously increasing because the time 
complexity is linear with respect to the number of cells of the route, which depends 
on the distance traveled, and less to the number of points. The average number of 
points in a route in Mopsi2014 is 1158 points. For routes of this length, C-SIM takes 
0.5 s, which is about 10 % of the time taken by the slower method; for instance EDR 
takes 5.4 s. 
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Fig. 21. Comparison of the nine route similarity measures in terms of speed. 
 
6.5 Effectiveness of Route Similarity Measures 
We repeat the effectiveness study of [Wang et al. 2013] by the following four 
measures: Frechet, Hausdorff, FastDTW and C-SIM (proposed). We investigate how 
the similarity measure is affected by the following transformations: 

- increasing sampling rate (adding points) 
- decreasing sampling rate (removing points) 
- adding noise 
- random shifting of points 
- synchronized shifting of points. 

All transformations use the rate parameter. The last three transformations use also 
a secondary distance parameter. The authors of [Wang et al. 2013] used 1,000 taxi 
routes from [Zheng et al. 2009]. We mimic their experiment by randomly selecting 
1,000 routes from Mopsi2014, and analyze the behavior of the measures. We assume 
that these transformations may occur naturally in a route database due to the use of 
different devices, varying GPS weather and other influences. Therefore the similarity 
between the transformed route and the original is preferred to remain 100%, 
alternatively, the distance should be 0 for distance-based measures. We subjectively 
classify the measures either as Sensitive, Fair or Robust, depending on their ability 
to cope with these transformations.  

In addition to this effectiveness experiment we created an interactive web 
environment where all nine similarity measures can be compared in terms of speed 
and effectiveness. We also provide an API supporting all nine similarity measures for 
researchers to use with their own data. Links are provided at the following address: 
http://cs.uef.fi/mopsi/routes/grid. 

We first investigate the change in sampling rate (see Figure 22). C-SIM measure is 
affected the least by the two transformations. C-SIM is not affected at all by 
increasing the sampling rate because the cell representation is identical due to the 
interpolation step. Decreasing the sampling rate has minor effect on the similarity 
because of the inability of interpolation to correctly guess the missing parts of the 
route. However, the effect is much smaller than that of the other methods. In specific, 
LCSS and EDR are most sensitive to decreasing of the sampling rate though much 
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less on the increase of sampling rate. To obtain similarity values, we normalize the 
LCSS and EDR distances by dividing to the average length of the two routes. DTW 
and FastDTW are robust to the increase of the sampling rate but highly sensitive to 
the decrease. FastDTW distances are slightly higher than that of DTW because of the 
approximation errors but the difference is small. Euclidean distance is sensitive to 
both sampling rate transformations because the transformed route points become 
misaligned to the original trajectory. ERP is a combination of Lp-norms (such as 
Euclidean distance) and edit distance. ERP behaves similarly to Euclidean distance 
for the increase but is robust for the decreases in sampling frequency. Hausdorff and 
Frechet are both sensitive to changes in sampling rate. 

Fig. 22. Effect of changes in sampling rate on nine trajectory similarity measures. 
 
We next examine how the measures behave when noise points are added, and when 
point locations are shifted (see Figure 23). These transformations depend on a 
distance parameter. C-SIM, LCSS and EDR measures are not affected by point 
shifting if the transformation distance is small (L = ε  = 25 meters in our 
experiments). For higher distances, C-SIM decreases proportionally to the 
transformation distance. LCSS and EDR similarities will not decrease proportionally 
to the distance; ε  is simply a threshold when two points are considered identical. 
The similarity is higher when transformation distance slightly above ε  because 
points shifted little more than ε  meters away are still likely to match with other 
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points in the vicinity. Noise affects LCSS and EDR more than the other measures 
because it causes a change in length of the transformed trajectory. DTW and 
FastDTW are sensitive to all transformations. ERP and Euclidean measures are 
highly sensitive to noise but they are robust for points shift. This is because when 
points are only shifted, the original alignment is not influenced much. Frechet and 
Hausdorff are sensitive to noise and point shifting, but less so if the points are 
shifted in the same direction (synchronized). The similarity depends linearly on the 
transformation distance. The results are summarized in Table 5. 

 

Fig. 23. Effect of nine different similarity measures when adding noise or shifting point 
locations as a function of transformation distance. In this experiment 30% of the points are 
altered. 
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Table V. Summary of the effectiveness of the nine route similarity measures 
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6.6 Effect of indexing on RSR algorithm 
We demonstrate the efficiency of indexing by computing the similarity ranking using 
RSR algorithm for 1500 different routes. We choose routes consisting of < 100 cells 
(including dilations) because the process is very slow when no indexing is applied. In 
Figure 24, we notice a linear dependency on the number of active cells. This 
corresponds to the time complexity analysis.  

  
Fig. 24. Time required for calculating the route similarity ranking for 1500 routes plotted as a 
function of the amount of active cells. 

6.7 Comparison of indexing on RSR 
We compare the efficiency of RSR algorithm by computing the similarity ranking for 
every route in Mopsi2014 when using B-tree and hash indexing methods. Routes 
with large number of active cells were excluded because they were too few to provide 
significant statistics. We divide the routes into 12 groups: first group routes have less 
than 40 thousand active cells, the second group between 40 and 80 thousand active 
cells, and so on. The average processing time and standard deviation for each group 
are shown in Figure 25. The hash index performs better than B-tree as expected from 
the time complexity analysis. Hash index takes less than half the time required by B-
tree. The average time for B-tree is 2.1 seconds and for hash it is 0.9 seconds. With 
hash index, RSR performs in real-time (under one second).  

 
Fig. 25. Comparing B-tree and hash index efficiency for performing the route similarity 
ranking by showing the average time and standard deviation for routes with different amounts 
of active cells. 
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7. CONCLUSIONS 
We showed that representing GPS routes as cells of a 2D grid provides efficient 
computation of different route measures. We presented algorithms for computing 
four distinct route measures using the proposed grid-based approach. Time 
complexity was derived for each algorithm and a wide array of experiments were 
performed on a real route dataset: Mopsi2014. 

We compared the new cell based similarity measure C-SIM to existing measures in 
terms of scalability and effectiveness. In terms of speed it outperforms all compared 
measures with the exception of Euclidean, however, Euclidean measure is only 
suitable when routes have the same length, which is not often the case. From an 
effectiveness point of view, C-SIM is the least affected by changes in sampling rate 
and performs fairly well under noise and point shifting. 

We demonstrated the efficiency of B-tree and hash indexing methods when 
computing route novelty, noteworthiness and the route similarity ranking. All 
algorithms perform real-time with the Mopsi2014 dataset. The hash index takes 
roughly 50% of the time of B-tree but requires 80% more space. We also presented 
two strategies for computing novelty and noteworthiness in respect to a subset of the 
database, and concluded that NOV-S is better of these two in most typical use 
scenarios. 

Future research could be done to improve different aspects of the methods. For 
instance, interpolation may be done by using the underlying road network. 
Navigation may be implemented by using the cells and the past activity information 
from inside each cells. This way, popular routes should become apparent. Finally, 
experimenting with different sizes of cell, and computing cell separate 
representations at different zoom levels might provide faster processing. These are 
left as future studies. 
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Gesture Input for GPS Route Search

Radu Mariescu-Istodor(&) and Pasi Fränti
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Abstract. We present a simple and user-friendly tool for an efficient search
from a spatial database containing GPS tracks. The input is a sketch of a route
drawn by a user on a map by mouse, hand or other means. This type of
interaction is useful when a user does not remember the date and time of a
specific route, but remembers its shape approximately. We evaluate the effi-
ciency of the retrieval when the shape given by the gesture is simple or complex,
and when the area contains either a small or large number of routes. We use the
Mopsi2014 route dataset to demonstrate that the search works in real time.

Keywords: GPS � Route � Gesture � Matching � Touchscreen � Draw

1 Introduction

GPS-enabled smartphones allow users to collect large amounts of location-based data
such as geo-tagged notes, photos, videos and geographical trajectories hereafter
referred to as routes. Mobile users track routes for reasons like: recording travel
experiences, recommending a certain path and keeping track of personal statistics in
sports such as hiking, running, cycling and skiing. A sample route collection is shown
in Fig. 1. From a large collection like this, it is difficult to find a specific route unless
user remembers the date when it was recorded. Otherwise the amount of data is
overwhelming to perform systematic search from among all the records.

Many applications exist that allow users to track their movement; some of these are:
Sports Tracker1, Endomondo2, Strava3 and Mopsi4. Mopsi is a location-based social
network created by the School of Computing at the University of Eastern Finland.
Mopsi users can find out who or what is around. They can track their movements, share
photos and chat with friends. Mopsi includes fast retrieval and visualization of routes
[1] using a real-time route reduction technique [2]. Transport mode information is
automatically inferred by analyzing the speed variance of the route [3]. Movement is
classified as either: walking, running, cycling or car. Route similarity, novelty, inclu-
sion and noteworthiness [4, 5] are computed by using cell representations of the routes
created by a grid which covers the planet. Searching for spatially similar routes is done
efficiently by indexing these cells.

1 http://www.sports-tracker.com.
2 https://www.endomondo.com.
3 https://www.strava.com.
4 http://cs.uef.fi/mopsi.
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We propose a real-time search for routes in the Mopsi collection by using gestures
and pattern matching. The gesture is a hand-drawn input in the form of a free shape
done on a map. The shape approximates the locations where the targeted route passes
through. According to [6], this gesture can be classified as of the symbolic type,
implying that it has no meaning when performed in other contexts (not using a map).
Referring to the taxonomy in [7] the result of the gesture is to trigger a command:
search for route(s) with given spatial characteristics. This search works by computing
the similarity between the input gesture and every route in the database. The most
similar route candidates are provided to the user.

Gestures have been used as a means to access menu items without the need to
traverse large hierarchies. In [8], gestures are continuous pen traces on top of a stylus
keyboard. This soft keyboard can be inconvenience as it wastes screen space unnec-
essarily. In our method, we use the underlying map as a canvas for drawing the
gestures. On desktop computers, the gesture mode is explicitly activated by holding
a hotkey while drawing the gesture by mouse. On touchscreens, we need to distinguish
the gesture from normal map interaction (panning and zooming). In [9], it was dis-
covered that it is possible to distinguish gesture from other touch events such as
scrolling or tapping by buffering the touch events and analyzing the queue to determine
if the sequence is a gesture or not. We use this method to activate the gesture mode, and
neither designated area nor activation button are therefore needed.

Typically, symbolic gesture-based systems require the user to learn a set of symbols
[6]. Our method is simpler as no learning of symbols is required. However, the user is
expected to understand and be able to read maps because the roads, buildings and
terrain elements such as forests, lakes and rivers are the key information used when
giving the input. For example, user may draw the input by following a river front, road,
or other landmarks visible on map. Users who have a large route collection benefit
most from the gesture search. It is therefore fair to assume that these users have also the
necessary skills to understand maps.

Fig. 1. Route collection of user Pasi over the city of Joensuu, Finland is shown on left. The
collection spans from 2008 to 2014. A circle-shaped route that we want to find is emphasized.
Four attempts (all failed) to find this route by clicking the map are shown right.
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2 User Interface

2.1 System Overview

Let us assume that Mopsi user Pasi wants to review the statistics of a specific route
from his collection but he does not recall the date. Pasi knows that the route is in
Joensuu, Finland so he proceeds to move the map to this location. Figure 1 shows that
Pasi has a large route collection in Joensuu. Let us further assume that he wishes to find
the highlighted circular route. Exhaustive search among all the routes would not be
reasonable so best change is to try to distinguish the route on map. In Mopsi, this is
possible by clicking any individual route on the map. However, this is also difficult
because the targeted route overlaps with many others.

Gesture search enables a user to search routes by drawing the sample shape of the
desired route over the map. Figure 2 shows how Pasi’s route is found by drawing a
circular gesture on the map around the center of Joensuu. The search returns four
possible candidates, including the one he was looking for.

2.2 Map Handling

Mopsi uses Google Maps and OpenStreetMap. They both offer several built in functions
for user interaction. A user can pan the map by clicking and dragging it in the desired
direction. Zooming in can be done by double left-click and zooming out is done by
double right-click. Zooming can be also done using the mouse wheel or by the pinch
gesture.

To start the gesture search on a computer, user presses a hotkey (Ctrl). When
pressed, the built-in map handling functions are disabled and the gesture input mode is
enabled. In this mode, a user can draw on the map by clicking, holding and moving the
mouse around while keeping the hotkey pressed. Releasing the hotkey causes two
things to happen simultaneously: the input gesture is sent to the server for processing
the query, and default map behavior is reactivated.

Majority of touchscreens nowadays do not have a keyboard and existing buttons
serve for different purposes such as exiting applications, changing volume levels or
enabling the camera. It is possible to implement a soft button on the screen to toggle the

Fig. 2. A circle-shaped gesture surrounding the center of Joensuu reveals four circular route
candidates. Pasi’s route is number two in the list.
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gesture input mode however this wastes screen space which makes drawing more
difficult, especially on small screens.

Instead, we activate the gesture first by a click (tap) and then, immediately, touch
the screen again to draw the shape. We denote this event as Tap-and-Draw. The Draw
event works similarly as panning the map, however, the preceding Tap event triggers
gesture input mode. When the Draw gesture is complete, the input gesture is sent to the
server and the search is initiated; default map behavior is reactivated.

2.3 Real-Time Route Search

The search returns the route(s) that are most similar to the shape of the gesture input.
For the matching, we use the method in [5]. It computes the spatial similarity between
routes by first representing them as cells in a grid and then using the Jaccard similarity
coefficient:

JðCA;CBÞ ¼ CA \CBj j
CA [CBj j ; ð1Þ

where CA and CB are two sets of cells. However, because of the arbitrary division of
the grid, route points may end up in different cells even though the points are close to
each other. This problem is solved by applying morphological dilation with square
structural element and using the additional cells as a buffer region when computing the
similarity. The similarity is then formulated as:

SðCA;CBÞ ¼
CA \CBj j þ CA \Cd

B

�� ��þ CB \Cd
A

�� ��

CAj j þ CBj j � CA \CBj j ; ð2Þ

where CA
d and CB

d are the dilated regions of routes CA and CB respectively. To make the
search efficient we pre-compute the cell representation and use B-tree index [12] on the
cell database. With this setup the search works real-time.

To perform the search, the input shape is converted into cells. The similarity
between this cell set and all routes is then computed using (2). The result is similarity
ranking which often contains a multitude of results with varying levels of similarity to
the given shape. To the user we present only the most significant candidates.

2.4 Map Projection and the Grid

Most online maps (Google Maps, OpenStreetMap, Yahoo! Maps, Bing Maps) use a
variant of the Mercator projection [10]. In Mopsi, we use Google Maps or Open-
StreetMap as the map interface. Mercator is a cylindrical map projection which pre-
serves the angles, however, the linear scale increases with latitude. The parallels and
meridians are straight and perpendicular to each other. The meridians are equidistant,
but the parallels become sparser as they further themselves from the equator.

Creating a grid by choosing a fixed cell size (in degrees) will cause the cells to
appear vertically stretched when viewed on the Mercator projection. The amount cells
stretch increases the farther away they are from the equator. In Joensuu, Finland the
cells appear twice as tall as they are wide.

442 R. Mariescu-Istodor and P. Fränti



2.5 Multi-resolution Grids

The precision of drawing the gesture should be independent on the zoom level of the
map. When the zoom level is decreased by one unit the content of the map becomes
half of its previous size, and consequently, the regions on the map become twice as
difficult to read. We create 10 grids with different resolutions and store the routes at
each of these approximation levels (see Table 1).

The finest grid has a cell size of 25 × 25 meters. Finer grids are not needed because
at this level, GPS error becomes already apparent and the route approximations become
unreliable. The amount of cells needed increases exponentially when finer grids are
produced. Therefore, we do not compute unnecessary levels in vain. Sparsest grid has
cell length of 12.5 km. At lower levels (≥ 25 km) the cell size becomes so big that even
the longest routes are represented by only a few cells.

3 Route Search

We present next our algorithm for performing the gesture-based route search. The
algorithm (GSearch) first extracts the cells that the input shape passes through using the
Find-Cells function. This function chooses the correct grid resolution based on the
zoom level using the mapping presented in Table 1. Every point is then mapped to the
cell it resides in. At the Equator, one degree is roughly 111 km and the smallest cell
length we support is 25 × 25 meters. We dilate the input route CA with 3 × 3 square
structural element to obtain CA

d .

Table 1. A mapping from zoom-level to the grid resolution. The statistics are for Mopsi2014
Route dataset using each of the grid resolutions.

Zoom level ≤ 6 7 8 9 10 11 12 13 14 ≥15

Grid resolution 0 1 2 3 4 5 6 7 8 9
Cell size (km) 12,8 6,4 3,2 1,6 0,8 0,4 0,2 0,1 50 m 25 m
Amount of cells 7×

104
9×
104

1×
105

2×
105

4×
105

7×
105

1×
106

3×
106

5×
106

1×
107

Memory (MB) 3,5 4,5 6,5 9,5 16,5 30,6 59,6 118,6 238 486
B-tree Index (MB) 8,5 9,5 13,5 21,5 35,6 66,7 131,8 263,1 526 1,1 GB
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Route Similarity Ranking (RSR) algorithm is then applied to find all similar routes in
the database. RSR iterates through every cell in CA and CA

d , and finds what other routes
pass through the same cells. For each found route CB, it checks if the cell belongs to CA

\ CB, CA \ CB
d or CA

d \ CB. The algorithm maintains counters for each type and uses
them for computing the similarity values using (2). Time complexity is O((|C| + |Cd|)
(log(MQ)) + a(C) + a(Cd)) where M is the number of routes in the database, Q is the
average route size in cells and aðCÞ ¼ P

C \Cij j þ C \Cd
i

�� ��� �
; i ¼ 1;M.

The similarity ranking usually results in a large number of routes, of which only
few are relevant to the user. It might be possible to filter out routes below a given
threshold, but then we might get no result in some cases; the other extreme is when
searching for a very common route. Then there can be too many results above the
threshold. Therefore, we limit the number of results using clustering as follows.
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We cluster the threshold values by Random Swap (RS) algorithm [11] with 10,000
iterations with 16 clusters. The algorithm alternates between K-Means and random
relocation of centroids in order to avoid getting stuck in a local optimum. The algo-
rithm converges to the final result in few hundreds of iterations, on average. However,
since Random Swap is fast, we can afford to use 10,000 iterations to increase the
probability of finding optimal partitioning.

From the clustering result, we take the cluster having the routes of highest simi-
larities. The idea is that the clustering will find the size of this set automatically by
fitting the clustering structure to the distribution of the similarities.

4 Experiments

We perform experiments using the Mopsi20145 dataset, which is a subset of all routes
from the Mopsi database collected by the end of 2014. It contains 6,779 routes recorded
by 51 users who have 10 or more routes. Routes consists of a wide range of activities
including walking, cycling, hiking, jogging, orienteering, skiing, driving, traveling by
bus, train or boat. Most routes are in Joensuu region, Finland, which creates a very
dense area suitable for stressing the method. A summary of the dataset is shown in
Table 2. All experiments were performed on Dell R920, 4 x E7-4860 (total 48 cores),
1 TB, 4 TB SAS HD.

Table 2. Statistics of Mopsi2014 route dataset.

Routes Points Kilometers Hours

6,779 7,850,387 87,851 4,504

5 http://cs.uef.fi/mopsi/routes/dataset.
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4.1 Efficiency of the Search

The efficiency of the search is proportional to the size of the database, and to the
resolution of the grid. The grid to be chosen depends on the zoom level required to view
the targeted route on the map: small routes are best viewed using a higher zoom-level.
The grid depends also on the size of the screen. To get a better understanding of this we
computed the zoom-level for the best-view of each route in the Mopsi2014 dataset. We
consider the best-view as the maximum zoom-level that shows the entire route on
screen. The results in Fig. 3 show that lowest zoom levels are rarely used. Routes in
such zoom levels should span across multiple countries or even continents, and thus, are
rare in the dataset. The highest zoom levels (20–21) are also not often used because they
cover only very short routes, usually non-movement records.

When computing the histogram from Fig. 3, we assumed a screen size of
1366 × 768, which, according to the free statistics provided by W3Counter6, was the
most used screen size during March 2016.

We next compute the efficiency of the G-Search algorithm by taking every route in
Mopsi2014 as the target route. The best-viewed zoom level for them is first found.
A perfect gesture is then simulated for the route by selecting the cells it travels through.
Search is then performed using the default screen size of 1366 × 768. The results are
summarized in Fig. 4. As expected, the time required is small (0.2–0.8 s) at small zoom
levels. At the largest zoom levels the time is also small, but this is against expectations.
The reason for the low execution times is the fact that for zoom level 15 and above, the
same grid is used and, as a result, the number of cells required to represent each route is
lower. Only the middle level routes can take slightly more than 1 s.

This experiment shows that, given a random target route, the expected search time
is about 1 s or less, thus, it can be considered real-time. In practice, a smaller zoom
level is used by the user than the best-fitting one is selected. Thus, < 1 s result happens

Fig. 3. Histogram showing what zoom-levels are used more often when viewing routes.

6 https://www.w3counter.com/globalstats.php.
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more often. The reason is that often at zoom levels just below the best-fitting one it is
easier to see the landmarks on the map. Furthermore, it is possible that at the best-fitting
level the gesture implies drawing on the edges of the map, which are more difficult to
target than the central area. Another reason is that the 1366 × 768 screen size is large,
and using a smaller screen implies a finer grid will be used. Processing times with
default screen size of 320 × 658 yields even smaller processing time of about 0.2 s.

The search time also depends on the density of the routes. In low density areas
(< 200 routes), the search time is 0.14 s, on average. In very dense areas (> 1000
routes) the search time is 2.2 s, on average. There is also minor dependency on the size
of the gesture. A gesture passing through 50 cells takes 0.7 s time on average, whereas
as gesture passing through 200 cells takes 0.7 s, on average. The upper limit is the
number of cells that can fit on the screen (3600 with the 1366 × 768 screen size).

4.2 Usability Evaluation

We study next the efficiency of the gesture search from usability point of view. We
compare the average time user spends on searching a randomly chose route using the
gesture search and using the previous (traditional) system. Eleven volunteers were
asked to search randomly selected routes using a tool7 built for this purpose as follows:

A target route was shown on map but no date, length or duration were shown. User
can study and memorize the route as long as wanted.

When user pressed the Start button, user was (randomly) directed either to the
traditional system or to the new Gesture search. Timer was started.

The task was to find the route and input its date and then press Stop button. If the
date was correct the timer was stopped. If the user considered the task too difficult he
was allowed to press Give-up button.

Fig. 4. Times required by G-Search when searching all routes in Mopsi2014 dataset. The results
are grouped by the zoom-level and averaged. The average of all searches is 0.9 s.

7 http://cs.uef.fi/mopsi/routes/gestureSearch/qual.php.
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Each volunteer was asked to repeat the test at least 10 times, or as long as he/she
found it fun to do.

In total, 106 routes were searched using the traditional system, and 98 using the
gesture search. The searched routes were found 77 % of the time using traditional
search compared to 91 % when using gestures. Gesture search was 41 % faster, on
average. The individual performance differences are shown in Fig. 5. Traditional
search is slower on average than gesture search for all except one user.

The search time is affected also by other factors such as complexity and length of
the route, and density of the areas the route passes through. We next group the results
by these three factors. The complexity is calculated as the number of points used by the
polygonal approximation [2] to represent the route at its best-fit zoom level. Density is
calculated as the proportion of cells that are overloaded by other routes; it is the
opposite to the noteworthiness value in [5]. Results in Table 3 show that although
shorter and less complex routes in low density areas are faster to find, the Gesture
search outperforms the traditional approach in all cases.

The volunteers were also asked if they liked the Gesture search and which one they
would prefer for such search task. They all rated Gesture search as good (10) or
excellent (1). Most (9) preferred Gesture search, none (0) preferred the traditional
search, and some (2) would not use either. Written comments included “I really liked
it” and “It was fun”.

Fig. 5. Average search times and the relative difference between traditional and gesture search.

Table 3. Average search times when grouped by different factors.

Length Complexity Density
Short
2.7 km

Long
12.7 km

Low
31 pts

High
128 pts

Low
12 %

High
75 %

Traditional 90 s 116 s 87 s 120 s 90 s 117 s
Gesture 64 s 78 s 65 s 77 s 54 s 88 s
Reduction 30 % 33 % 25 % 36 % 30 % 24 %
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5 Conclusion

We showed that gestures can be successfully used as input for searching routes from
large data collections. We solved all the components of the search including user input,
database optimization, pattern matching, and selecting threshold by clustering to show
only the most significant results. The effectiveness of the method was demonstrated by
run time analysis showing that it works real time, and by usability experiments showing
that it outperforms traditional search.
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CellNet: Inferring road networks from GPS trajectories 

RADU MARIESCU-ISTODOR, University of Eastern Finland 
PASI FRÄNTI, University of Eastern Finland 
 
Road networks are essential nowadays, especially for people travelling to large, unfamiliar cities. Moreover, cities are constantly growing 
and road networks need periodical updates to provide reliable information. We propose an automatic method to generate the road 
network using a GPS trajectory dataset. The method, titled CellNet, works by first detecting the intersections (junctions) using a 
clustering-based technique and then creating the road segments in-between. We compare CellNet against three conceptually different 
state-of-the-art alternatives. The results show that CellNet provides better accuracy and is less sensitive to parameter setup. The 
generated road network occupies only 25% of the memory required for the networks produced by other methods. 

• Information systems➝Information systems applications • Information systems➝Information retrieval. 

1. INTRODUCTION 

In recent years, navigation and location based services have seen a rise in development. For these 
applications to work reliably, up-to-date road networks are essential. Maintaining the road networks requires 
extensive manual editing, which has led researchers to develop road network inference algorithms to 
automate this process. The goal is to create a directed graph that represents the connectivity and geometry 
of the underlying roads in a region. These algorithms can also be applied to update existing road networks 
or to be used in applications that road networks do not cover, such as pedestrian networks [Kasemsuppakorn 
and Karimi 2013]. 
Several different approaches exist for automatically constructing a road network. The earliest methods were 
based on aerial images [Tavakoli and Rosenfeld 1982]. They extract edges and then group them into shapes, 
separating buildings from roads. To find the roads, the method in Hu et al. [2007] makes several initial 
guesses. A road tree is built for each initial guess by tracking along road segments in one or more directions. 
By merging the resulting trees, a road network is created. Barsi and Heipke [2003] focus on the task of finding 
road intersections by analysing the aerial images using a neural network. 
The use of aerial images has limitations because roads possess varying features such as colour, intensity, 
shadows and variable widths (Figure 1). In addition, obtaining the direction of travel for roads is not possible 
using image data. Furthermore, collecting new aerial images after road construction work is costly. For these 
reasons, methods based on trajectories recorded using global positioning systems (GPS) have been developed. 
GPS technology provides a cheap alternative to aerial images owing to its built-in positioning capability, 
which is available in consumer devices such as smart phones, tablets, watches and cameras. This technology 
is utilized in location-based services, navigation, and when tracking user movements. As a consequence, 
many GPS trajectories, referred to here as routes, have become available and can be used to obtain road 
network information (Figure 2). 

 
Figure 1. Aerial images of a city area (left panel) and countryside region (right panel). 
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Figure 2. GPS routes in Chicago, USA (left panel) and Joensuu, Finland (right panel). 
Visual methods (Figure 3) use route data to form binary images, which are processed using image-processing 
techniques. In Chen and Cheng [2008] the routes are first converted to a binary image. Then the image is 
processed by morphological operations and a thinning operation to produce an image skeleton, which 
represents the road network. Davies et al. [2006] also use routes to form a binary image, which is then blurred 
and a density threshold is applied to filter out parts that contain too few routes. The outlines are extracted 
using a contour following algorithm, and the centre-lines of these outlines are computed using the Voronoi 
graph. These centre-lines are used to depict the underlying network.  

 
Figure 3. Three conceptually different road network generation techniques: visual, merging and clustering. 
Route merging methods [Niehoefer et al. 2009, Cao and Krumm 2009] combine routes one-by-one to form a 
graph (Figure 3). If a route segment is already part of the graph, a weight corresponding to that particular 
segment is increased. Finally, segments with too low weights are removed from the network. Cao and Krumm 
[2009] perform a refining step on the routes prior to the merge, to reduce GPS inaccuracies. This step is an 
iterative process that uses an attractive physical force [Khanna 1999] between route points to obtain better 
representatives. A secondary attractive force is used to prevent the route points from moving too far from 
their original locations.  
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Clustering methods have also been used (Figure 3). In Edelkamp and Schrödl [2003], seed points 
(representatives) are first placed at a fixed distance over the routes in the dataset. Then these locations are 
fine-tuned by k-means algorithm. For roads that allow vehicles to move on several lanes, the authors also 
present a lane finding strategy. In Schrödl et al. [2004], the bounding box of each intersection is analysed to 
compute the local turn-lane geometry. 
The merging and clustering methods perform poorly in regions of high GPS error. In such regions, unwanted 
intersections and multiple spurious road segments are created. The visual methods work better in such 
situations if the density threshold is set high enough, but the drawback is that the parts containing few 
routes are omitted from the process and only a partial network is generated. 
We argue that finding the correct intersections (junctions) is the key to generating a high quality road 
network, because this ensures that GPS error affects only the shape of the roads and not the connectivity of 
the graph. Fathi and Krumm [2010] focus on this challenge. They slide a circular shape descriptor over the 
GPS data; the descriptor is trained using positive and negative samples from known locations. After 
intersections have been obtained, road segments are generated using the routes.  
In this paper we present CellNet, a two-step method for inferring road networks (Figure 4). CellNet first 
identifies intersections by clustering the route points around the regions where routes split into several 
directions. Unlike other approaches [Barsi and Heipke 2003, Fathi and Krumm 2010], our method does not 
require the training of a classifier. In the second step, we generate the roads between the detected 
intersections using the route segments in the region. Finally, we optimize the network to avoid redundant 
and overly complex roads. 

 
Figure 4. The steps performed by CellNet to infer a road network. 
Figure 5 shows a graphic explanation of the terminology. The details of how to find the intersections are 
provided in Section 2 of the paper. The steps in creating the roads are explained in Section 3. The proposed 
method is evaluated in Section 4 and is compared with three existing approaches: a visual method [Davies 
et al. 2006], a merging method [Cao and Krumm 2009] and a clustering method [Edelkamp and Schrödl 2003]. 
Biagioni and Eriksson [2012] implemented these three methods and made them publically available. 
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Figure 5. Diagram showing terminology used to discuss GPS routes and road networks. 

2. EXTRACT INTERSECTIONS  

Intersections are places in which more than two roads connect. To detect potential intersections from GPS 
routes, we applied the two processes shown in Figure 6. First we analyses the neighbourhood of each point 
to detect splits. A split is defined as a point at which routes head off in more than two principal directions 
(Figure 7). Multiple splits are often found at the same intersection, especially if the intersection is large. 
From the detected splits, we measured the frequency of routes passing through the area. Splits having a 
higher frequency than their neighbours (local maxima) were selected as intersections.  
 

 
 

Figure 6. Steps performed to detect splits (left panel) and to select local maxima (right panel).  
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Figure 7. Four examples of locations at which routes head off into several principal directions. The directions are highlighted by 
arrows. The first three examples are splits, according to our definition, whereas the last is not. The numbers (upper left corners) 
indicate the quantity of principal directions. 

2.1 Detect Splits 

To detect the splits, we analysed all locations through which the routes passed. To do this efficiently we 
divided the space by a grid with cell length L = 25 m (recommended). For every grid cell, we maintained 
information containing the cell’s location, indexes of all routes passing through it and the total number of 
routes. We accumulated the evidence by processing the routes point-by-point. Gaps can appear in the cell 
representation in places where consecutive route points are further apart than L (Figure 8). Owing to such 
gaps, it is possible that the method might miss some intersections. We therefore used interpolation to handle 
this problem. A more detailed explanation on the use of the grid is given in Mariescu and Fränti [2017].  

  
Figure 8. A sample route (top panel) and the cell representation with cell size 25 m  25 m (lower panel). The gaps are filled using 
linear interpolation. 

After collecting the information, we processed each cell only once. This approach makes the method much 
more scalable as the calculations depend far less on the number of routes than on the size of the area through 
which they pass. In this regard our method resembles the visual-based approaches, but it uses route 
information and is not limited to image-processing methods. 
The process was as follows. We first transferred the location of the cell closer to the stream of routes using 
the mean-shifting algorithm [Cheng 1995], which is basically a mode-seeking algorithm. At each step, it 
defines a fixed-radius neighbourhood and calculates the average location of the route points in this 
neighbourhood. The location is then updated to this average and the process is repeated until the location 

u
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stabilizes. Figure 9 shows two examples of the mean-shift algorithm. Through this process, a location can 
sometimes end up in a different cell from the one where it started. 

 
Figure 9. Two examples of the mean-shift algorithm. The initial location gradually moves towards the centre of the routes. If an 
intersection is nearby, the location is likely to end up at its centre. 

After the location had been tuned, we analysed the neighbourhood to detect the principal directions of 
movements. For this purpose we defined a split descriptor, which consists of two parts: the origin and the 
extremity. The origin is an L-radius circle around the tuned location. The extremity is a circular band of width 
L, situated at R metres from the origin (Figure 10). We recommend using the values L = 25 m and R = 80 m, 
although their exact choice is not critical. 
From every route passing through, we selected the points that were inside the extremity. Among the points 
inside the extremity we selected two representatives for each route by averaging the location of points inside 
the extremities, in each of the two directions (before and after the origin). Exceptions were routes that end 
inside the region, which pass through only once – or not at all if they also start in the same region (routes 
that contain no movement).  

 
Figure 10. A, the split descriptor composed of the origin and the extremity. B, a sample route traversing through the point of interest; 
points inside the extremity are highlighted. C, the points inside the extremity are averaged in each of the two directions to create the 
representatives. D, representatives of all routes passing through the point of interest.  
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Averaging offers several benefits. First, it avoids problems caused by routes that traverse along the extremity, 
which could lead to false detection of a principal direction. Second, averaging reduces the amount of data to 
be processed by approximately 60%, which helps the next step (clustering). Third, we wanted each route to 
have equal impact in the calculations; otherwise, a route waiting at the location for an unusual amount of 
time would have too high an impact on the further analysis. 

 

Figure 11. Six locations investigated for splits. Each dataset is clustered by the random swap algorithm using 2, 3 and 4 clusters 
respectively. The percentages represent the value of the silhouette coefficient. The occurrence of more than 2 clusters indicates a split. 
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The representatives found by the descriptor were then clustered using the random swap algorithm [Fränti 
and Kivijärvi 2000]; however, using repeated k-means might also suffice. To find the correct number of 
clusters, we clustered separately using two, three and four clusters. The number of clusters that best models 
the data defines the number of directions. To detect the number of clusters, we used the maximum silhouette 
coefficient (SC) value according to the method of Rousseeuw and Kaufman [1990], which is the average value 
of all silhouettes belonging to every centroid: 

𝑠𝑥 =
𝑏𝑥 − 𝑎𝑥

max⁡{𝑎𝑥, 𝑏𝑥}
 

𝑆𝐶 =
1
𝑘
∑𝑠𝑖

𝑘

𝑖=1

 

Here ax is the average distance of centroid x to all other points in the same cluster, bx is the minimum distance 
from x to the other clusters and k is the number of clusters. The distance to the cluster is the average distance 
to all points within the cluster. The process is illustrated in Figure 11, which shows the cluster centroids, the 
corresponding partition and the silhouette coefficient. In practice, it is enough to cluster using two and three 
clusters. If there is a crossing, the silhouette coefficient value is higher both for k = 3 and k = 4 than it is for 
k = 2. 

2.2 Select Intersections 

After the splits were detected, we needed to select a subset that captured all the intersections only once. It is 
possible that multiple split locations are found for an intersection, because the split descriptor detects any 
local maxima within the distance R from the intersection (Figure 12). The mean-shift algorithm eliminates 
redundant points in parallel to the route but not along it. To remove the redundant points along the routes, 
we kept only candidates that had more routes passing through them than any neighbouring candidates 
within radius R.  

 
Figure 12. Multiple splits detected near the true intersection.  

The two steps are shown in Figure 13, using the Chicago dataset1 as an example. The split detector correctly 
found the intersections but also found several false positives. The selection step managed to remove most of 
these without losing any real intersection. The remaining false positives appeared mainly in areas that 
displayed high GPS error or insufficient data (Figure 13). Many false positives were detected in areas in 

 
1 http://cs.uef.fi/mopsi/routes/network 
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which only two routes ran adjacent to each other. In such cases, the clustered dataset has only four points: 
two representatives for the two routes. This causes SC = 1 regardless of the point positions, because ax is 
always 0 (one point in each cluster). Because of this deficiency, we recommend that a dataset is checked to 
ensure that more than two routes exist in every region. However, this criterion should be a prerequisite for 
any road network inference method, because single observations can be the result of GPS error. 
In Figure 13, the false positives in the region with too little route data did not affect the structure of the 
resulting network. After the road creation step, they resulted in a single long road.  

 
Figure 13. The intersections found in Chicago dataset. The filled circles represent correct detections (true positives) and empty circles 
represent incorrectly detected intersections (false positives). 

3. CREATING ROADS 

After the intersections had been found, we connected them. We examined each route in the dataset and linked 
any two intersections it passed through in sequential order. To create the roads, we used the route segments. 

3.1 Connect Intersections 

We analysed each route as shown in Figure 14. We first obtained the intersections that the route passed 
through and connected every subsequent pair. For each connection, paths were gradually collected from 
different routes to be used in the segment creation step described in Section 3.2. 
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Figure 14. Left panel: Algorithm for linking the intersections. Right panel: Example of a route passing through several intersections. 
Connections are formed between pairs of intersections in the order that the route passes through. For every connection, all paths are 
stored. 

3.2 Create Segments 

To construct the road segments, we considered all paths between every two intersections. We chose the 
shortest path as an initial choice under the assumption that it has less GPS error. This strategy was proposed 
by Fathi and Krumm [2010] and seems to provide a good initial guess. However, if multiple paths exist it is 
possible to find a better representative. In Figure 15, the grouped paths most likely indicate the correct road 
segment rather than the shortest path (shown in red). To create the segment, we first filtered out paths that 
were not spatially similar to the initial choice; by so doing we avoided paths that might have missed a third 
intersection. According to our experiments, such paths do more harm than good. The similarity function from 
Mariescu and Fränti [2017] was used for this filtering: 

, 

where CA and CB are the cells that two paths A and B pass through, and CAd and CBd are the dilated cells 
obtained using the square structural element. Only paths that are 100% similar to the shortest path are 
accepted. 
We computed the average for the similar paths using the method in Hautamäki et al. [2008], where the 
segment is iteratively improved using a strategy similar to k-means to optimize the dynamic time warping 
(DTW) distance. In Hautamäki et al. [2008], the medoid of the series is chosen as the initial representative. 
We have found that this initialization does not improve the quality of the outcome and therefore we 
recommend keeping the shortest path as the initialization. By not computing the medoid, the method is also 
much faster. We further sped the process up by applying the approximate FastDTW method [Salvador and 
Chan 2004], which works in linear time, rather than the typical DTW which has quadratic time complexity. 
Using these two modifications, the processing time was reduced to about 1% of the original method. 
Alternative methods for averaging the paths, such as that of Schultz and Jain [2017], can also be used. 
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Figure 15. Left panel: Algorithm for creating a segment. Right panel: Example where the initial guess is optimized using the similar 
paths. The dilated cells used by the similarity function are highlighted using darker color.  

Often the generated segments are overly complex. For instance, a straight line might be represented by tens 
of points, whereas only two would suffice. Excessive points can produce an unnecessarily complex network. 
We reduced the number of points in the segments by applying polygonal approximation. We used the 
algorithm in Chen et al. [2012], but simpler variants such as that presented by Pikaz and Dinstein [1995] 
could also be used. We reduced the number of points to 30% without any loss in accuracy. In fact, accuracy 
became slightly better because some noise was filtered out in the approximation. 

3.3 Filter Segments 

A route might miss one or more intersections because of GPS error. In such cases, two intersections will 
become connected incorrectly. To handle this issue, Fathi and Krumm [2010] propose the following strategy: 
remove any road segment with length 𝑙 if there is another path with length less than √2𝑙. The segment is 
removed in this situation because it probably misses one or more intersections owing to GPS error. This 
strategy is effective; however, in certain situations it does not work as intended. Figure 16 shows two 
scenarios in which this strategy rejects the road segment, even though in the example on the left the segment 
should be kept.  

 
Fig. 16. Two examples where a segment is rejected according to the length rule. In the example on the left, the link should be kept 
because it represents a different road. On the right, the link should be removed because it is merely affected by GPS error. 

To handle such problems, we present a filtering strategy based on spatial properties. For each segment, we 
first selected all other segments that were contained in the same region. These segments were used to form 
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a subgraph. If a path existed in this subgraph, the segment was removed (Figure 17). We used the inclusion 
function from Mariescu and Fränti [2017]: 

, 

where A is a given segment and B is the segment to be tested if it is contained in A. The symbols CA and CB 
are cell representations of the two segments, and CBd  is the dilated cells of segment B.  

 
Fig. 17. Algorithm for filtering the segments (left panel). Examples where the segment is accepted (above, right) and rejected (bottom, 
right). The cell representations are shown. In the bottom right example, AB and BC are included in the region of AC and they form 
path A-B-C, which means the direct segment from A to C is redundant and rejected. 

4. EVALUATION 
We evaluated the proposed method using two datasets: Chicago and Joensuu2, shown in Table 1 and Figure 
18. The Chicago dataset is publically available [Biagioni and Eriksson 2012] and contains 889 routes of the 
campus shuttles at the University of Illinois at Chicago. The shuttles pass through main streets of the city. 
There are two areas that contain tall buildings which affect GPS precision. The second dataset contained 
tracks of a single user (Pasi) obtained from the Mopsi collection between 16.11.2014 and 25.4.2015. This 
collection included 102 routes in total, but we extracted only the 45 that are situated in Joensuu by cropping 
the data to a square region covering most of the downtown area. Joensuu contains straight perpendicular 
roads in the centre and more complex curvy roads at the borders; the later are walking and cycling paths. 
The routes in Joensuu are collected while the user is jogging, usually along the sides of the streets. 
 
 

 
2 http://cs.uef.fi/mopsi/routes/network 
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Table. 1. Datasets used in the experiments. 
Features Chicago Joensuu 

Routes 889 108 
Points 118,237 43,632 
Intersections 52 228 
Road segments 76 357 
Points per segment (average) 6.6 4.8 

 

We generated ground truth from OSM by querying all road segments in the respective areas of Joensuu and 
Chicago. We then manually excluded road segments that were not travelled in the data (Figure 18). In this 
way, it is theoretically possible to achieve 100% accuracy by a perfect algorithm. The Joensuu dataset had 
about four times as many intersections, and almost five times as many road segments, as the Chicago dataset. 
The number of points per segment did not differ significantly.  

 
Figure 18. Joensuu and Chicago datasets, and the corresponding ground truth.  

4.1 Processing Time 
To obtain the time complexity of our method, we analysed each step using the variables shown in Table 2. 
The table contains values experimentally observed from both datasets. In the Joensuu dataset, the routes 
covered twice as large an area as Chicago’s when counting the number of cells. The route density in Joensuu 
was lower: the average number of routes per cell was 5 compared with 91 in Chicago. The number of extracted 
segments per road was also lower, with 3 for Joensuu versus 37 for Chicago. 
The time complexity of the split detection step depends on the size of the area covered by the routes, 
specifically the number of non-empty cells. For every cell, mean-shift was performed once and clustering 
three times, using the random swap algorithm with a fixed number of iterations (100) and a varying number 
of clusters (2, 3 and 4). Mean-shift requires m � f steps and clustering 100 � (2+3+4) � f steps. Total time 
complexity was O(Cmf). Overall, this step was one of two bottlenecks for the Chicago data and required 37% 
of the total processing time. 

Joensuu data Ground truth

Chicago data Ground truth
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Table 2. Variables used and values obtained by CellNet for Chicago and Joensuu datasets. 
Symbol Description Chicago Joensuu 
     N  Routes 889 108 
     pr  Points per route   (average) 133 404 
     C  Cells 4,208 8,526 
     f  Routes per cell   (average) 91 5 
     S  Splits 368 2,118 
     X  Intersections 65 213 
     R Road segments                     (before filtering) 322 838 
     G Paths per segment   (average) 37 3 
     ph  Points per path   (average) 20 29 
     m  Mean-shift iterations   (average) 7.4 4.1 
     i Time-series refining iterations  (average) 3.2 2.8 
 Road segments                      (after filtering) 102 349 
 Points per segment 3.4 4 

 
Extracting the intersections depends on the number of splits found (S) in the previous step. Every split was 
compared against all others, leading to O(S2) time complexity. However, even if the number of splits was not 
small (2,118 in Joensuu), it merely needed simple thresholding and could be processed rapidly. Overall, this 
step required just a fraction of the total processing time (0.01% for Chicago and 0.2% for Joensuu). 
Connecting the intersections depends on the number of routes and on the number of points in a route. 
Essentially, every point of every route must be processed. For every point we checked if an intersection was 
close (<L) by analysing the cell it resided in and all its adjacent cells. These took O(Nprf) time in total. This 
step required about 2% of the total processing time. 
Time complexity for the creation of the segments is linearly dependent on the number of splits (S), the number 
of points (ph) and the number of iterations (i) in the path averaging method. The total time complexity is 
O(RGphi). Although none of the values was large, they accumulated, and this step constituted the second 
bottleneck of the algorithm for the Chicago dataset – requiring 50% of the total processing time. The value of 
i remains small because the shortest segment is usually a good initialization; only rarely are substantially 
more iterations needed.  
Filtering the segments requires computing the inclusion value between all segment pairs, which requires 
O(R2ph). This step was the bottleneck for the Joensuu dataset, which had significantly more segments than 
the Chicago dataset. Then, for every segment, we checked if there existed a path linking the extremities in 
the subgraph. The subgraphs were small – fewer than 5 nodes – and any search strategy such as depth first 
search or breadth first search could be effectively applied. We used depth first search. In total, this step 
required 11% of the computation capacity for the Chicago dataset, and 71% for the Joensuu dataset. 
The time complexities and observed processing times are summarized in Table 3. Overall, the algorithm 
required about 1 hour for the Joensuu dataset and 2 hours for Chicago. 
 
Table 3. Time complexity and processing time for each step of the method. 

Step Time complexity Processing time (s) 
Chicago Joensuu 

Detect splits O(Cmf) 2,640 703 
Select intersections O(S2) 0.8 8.3 
Connect intersections 
Create segments 

O(Nprf) 
O(RGphi) 

116 
3,630 

64 
370 

Filter segments O(R2ph) 809 2,738 
Total O(Cmf + S2 + Nprf + RGphi + R2ph) 1.9 hours 1.1 hours 
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4.2 Quality Comparison 
We next compared the CellNet method with three conceptually different state-of-the-art approaches: a visual 
method [Davies et al. 2006], a merging method [Cao and Krumm 2009] and a clustering method [Edelkamp 
and Schrödl 2003]. The compared methods were all implemented by Biagioni and Eriksson [2012]. Visual 
outputs are shown for all these methods and CellNet in Figure 19, and a summary is provided in Table 4. 
The visual method found too few segments from the Chicago dataset; that is, parts having too few data were 
missed. This did not happen to the same degree for the Joensuu data, because the route density there was 
more constant. The segments obtained by the visual method were very complex when looking at the number 
of points.  
The clustering method found too many intersections and spurious road segments, especially in regions with 
high GPS error. The merging method also found too many intersections and segments. In Joensuu, it 
produced a disconnected map because some regions have too little route data. The number of points per 
segment was small for both the clustering and merging methods; however, the complexity of the overall 
network remained high owing to many spurious segments. Among the methods compared, the results from 
CellNet matched the ground truth most closely and the number of points used to represent the segments was 
optimized. In fact, this number was smaller than the ground truth, indicating that the ground truth itself 
(OSM) could be optimized. 
Table 4. The number of intersections and segments obtained by various methods.  

Chicago 
Features Visual Clustering Merging CellNet Ground Truth 
Intersections  16 363 916 65 52 
Segments 24 831 1,859 102 76 
Points per segment (average) 54 2.5 2.5 3.4 6.6 

Joensuu 
Features Visual Clustering Merging CellNet Ground Truth 
Intersections  278 844 558 213 228 
Roads 420 1,551 1,154 349 357 
Points per segment (average) 11.2 3.5 5.3 4 4.8 

 
We next evaluated how well the algorithms performed at finding the intersections. Both the detected and the 
ground truth intersections were geographic locations (latitude, longitude). To compare the correctness of the 
extracted locations, we performed a nearest-neighbour search from each detected intersection to its nearest 
one in the ground truth. Then we counted how many real intersections were not found similarly, as done with 
cluster centroids in Fränti et al. [2014]. The number of these orphan intersections counts as missed (false 
negatives). The process is then repeated in the other direction: from ground truth to detected intersections. 
The unmapped intersections count as false detection (false positives) – that is, a detected segment that does 
not have a match in the ground truth. Using these values, we calculated three measures:  
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡⁡

𝑐𝑜𝑟𝑟𝑒𝑐𝑡⁡ + 𝑓𝑎𝑙𝑠𝑒⁡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑚𝑖𝑠𝑠𝑒𝑑

 
 

𝑓 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Figure 19. Visual output of the four methods for the Chicago and Joensuu datasets. 
 
Although some of the methods do not specifically detect intersections, intersections do exist where two or 
more road segments connect. It is therefore possible to evaluate them. The results are summarized in Table 
5 as F-scores. The visual method displayed the highest precision for the Chicago dataset. This is partly 
because it detects only a few intersections (i.e. the method avoids false detections), and partly because the 
routes have high density in the region, which allows the visual-based method to work more accurately. 
However, the recall of the visual method is low because using a density threshold means that many 
intersections are missed. The clustering and merging methods have high recall, because – unlike the visual 
method – they do not intentionally drop out parts of the dataset. However, the precision is low because they 
detect too many intersections in regions with many routes and low GPS accuracy. Our method was the most 
balanced in terms of precision and recall, and it produced the highest F-scores. 
 

 

 

 

 

 



Grid-Based Methods for GPS Route Analysis and Retrieval                                                                           39:17  
                                                                                                                                         

 
 

ACM Transactions on Spatial Algorithms and Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 

Table. 5. Quality of the intersections generated by the four measures. 
Chicago 

Method Precision Recall F-score 
Visual 97% 27% 42% 
Clustering 14% 94% 24% 
Merging 5% 90% 10% 
CellNet 77% 90% 84% 

Joensuu 
Method Precision Recall F-score 

Visual 54% 63% 58% 
Clustering 42% 76% 54% 
Merging 22% 52% 31% 
CellNet 71% 68% 69% 

 
We next introduce a novel approach to evaluate the correctness of the road segments. First, we obtained all 
the segments from the ground truth and converted them into cells. Then we created a second set from the 
extracted segments. To evaluate the success of a method, we calculated the difference between the two sets. 
If the generated network is flawless, the difference is an empty set (all cells have frequency 0). Otherwise, 
some cells will have a positive frequency (missed segments) and other cells will have a negative frequency 
(false segments). Cells with 0 frequency are the desired result (correct detection), as shown in Figure 20. We 
computed precision, recall and F-score. 

 
Fig. 20. Ground truth segments (black) and extracted segments (red) are shown at the top, and the corresponding cell frequency 
differences are shown at the bottom. Blue cells represent negative frequency (false detections), and red cells positive frequency (missed 
segments). Black cells have 0 frequency. The colour intensity is proportional to the frequency. 
 
Table 6 summarizes the results for the four methods when finding the road segments. Similar observations 
can be made as in the intersection evaluation. The visual method achieved the highest precision but had the 
lowest recall, whereas clustering and merging displayed high recall but low precision. In the noisy regions, 
the clustering and merging methods produced many spurious segments, as shown in Figure 20.  
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Table. 6. Quality of the roads generated by the four measures. 

Chicago 
Method Reference Precision Recall F-score 

Visual Davies et al. 2006 97% 27% 42% 
Clustering Edelkamp and Schrödl 2003 17% 94% 28% 
Merging Cao and Krumm 2009 7% 70% 10% 
CellNet Proposed 92% 83% 87% 

Joensuu 
Method Reference Precision Recall F-score 

Visual Davies et al. 2006 56% 38% 46% 
Clustering Edelkamp and Schrödl 2003 24% 87% 38% 
Merging Cao and Krumm 2009 13% 33% 19% 
CellNet Proposed 68% 49% 58% 

4.3 Discussion of the Parameter Setup 
The three compared methods were implemented by Biagioni and Eriksson [2012], who closely followed the 
descriptions in their respective papers, except for the clustering method [Edelkamp and Schrödl 2003]. 
Biagioni and Eriksson [2012] did not implement the intersection refinement process for the clustering 
method. The visual method [Davies et al. 2006] uses three parameters: cell size, density threshold and kernel 
bandwidth. The clustering method has three parameters: cluster seed interval, intracluster bearing 
difference and intracluster distance. The merging method [Cao and Krumm 2009] has three parameters: edge 
volume, location distance limit and location bearing difference. The merging method uses several other 
parameters in the route clarification step; however, this step is separate from the method itself and is not 
presented here. All methods also have a fourth parameter, namely the number of routes to be used. We 
disregarded this parameter because it is essentially a sub-sampling of the dataset, which can be performed 
as a separate pre-processing step if the dataset is excessively large. 
 
Table 7. Parameters used by the different methods. 

Method Parameter Chicago Joensuu 
Visual 
[Davies et al. 2006] 

cell size 2 2 
density threshold 100 3 
kernel bandwidth 17 15 

Clustering 
[Edelkamp and Schrödl 2003] 

cluster seed interval 50 70 
intracluster bearing difference 45 45 
intracluster distance 20 22 

Merging 
[Cao and Krumm 2009] 

edge volume 3 2 
location distance limit 20 25 
location bearing difference  45 45 

CellNet 
(Proposed) 

origin radius (L) 30 24 
distance to extremity (R) 100 80 

Note: Optimized values are shown for Chicago and Joensuu. 
 
We optimized the parameters of the methods using a trial-and-error approach and the observations of 
Biagioni and Eriksson [2012]. It is possible that better quality can be achieved; however, the optimization 
task is tedious and time consuming. For CellNet, we optimized the two parameters by grid search using the 
Chicago dataset in the scale L in [20, 40] and R in [50, 150]. The results showed only slight variations: the 
lowest F-score achieved in these ranges was only slightly worse than the highest achieved score (highest, 
84%; lowest, 75%). Optimized parameter values for the two datasets are shown in Table 7. 
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To evaluate the importance of optimizing the parameters, we tried to use the values optimized for the Chicago 
dataset on the Joensuu dataset directly (Table 8). The visual method [Davies et al. 2006] crashed because 
the density threshold was too high to produce any contours. The clustering method [Edelkamp and Schrödl 
2003] worked fairly well. The merging method [Cao and Krumm 2009] produced a low F-score. CellNet 
produced the highest F-scores. By optimizing the Joensuu data, the visual method produced the second-best 
result. The clustering method improved the intersection aspect by 17% and the segment aspect by 6%, and 
the merging method improved intersections by 15% and segments by 111%. CellNet did not improve by much, 
at 9% for intersections and 4% for segments; however, this method had already produced good results before 
optimization – even better than other methods after optimization. This finding suggests that parameter 
optimization is not required by CellNet, which is expected to work with the recommended values (L = 25, R 
= 80). 
Table 8. Results when using the parameters from Chicago dataset on the Joensuu dataset. 

Method References Chicago parameters Optimized parameters 
Intersections Segments Intersections Segments 

Visual Davies et al. 2006 - - 58% 46% 
Clustering Edelkamp and Schrödl 2003 46% 35% 54% 38% 
Merging Cao and Krumm 2009 27% 9% 31% 19% 
CellNet Proposed 63% 56% 69% 58% 

 

4.4 Speed and Space requirements 

The visual methods are computationally faster than the other methods because the data usually contain 
many overlapping routes, which are processed jointly. The drawback of visual methods is that the direction 
of travel is lost in the image representation and must be handled separately. Visual methods also perform 
poorly if the density of the routes varies inside the dataset, as demonstrated by Biagioni and Eriksson [2012]. 
The route merging method suffers in the presence of high GPS noise. It is also far slower than the other 
approaches, as shown in Biagioni and Eriksson [2012]. CellNet running time is moderate. The time 
complexity of the method is slow when a dataset has high route density or the number of roads is high. 
Processing times are shown in Table 9; however, they can vary substantially when parameters are changed. 
The times are shown for the optimized values. 
 
Table 9. Running times for the different methods using the two datasets. 

Method Chicago Joensuu 
Visual 15 min 14 min 
Clustering 54 min 15 min 
Merging 2.5 days 3 h 
Proposed 1.9 h 1.1 h 

 
We compared the memory requirements for each of the networks; the results are shown in Table 10. Because 
of the point reduction step, the size of the network produced by CellNet was small at less than 25% of the 
networks produced by any other methods. The visual method uses too many points to describe the roads; this 
artefact is evident in Figure 20. The clustering and merging methods produced many spurious roads.  
Table 10. Size of the networks represented as total number of points of all detected roads. 

Method Chicago Joensuu 
Visual 1,309 4,752 
Clustering 2,119 5,366 
Merging 4,749 6,097 
Proposed    331 1,215 



39:20                                                                                     Radu Mariescu-Istodor and Pasi Fränti 
 

 
ACM Transactions on Spatial Algorithms and Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY 

 

5. CONCLUSIONS 
We present a new road network inference method, called CellNet, consisting of two steps: first, it finds the 
road intersections and then it creates the in-between segments. CellNet works well on different route 
datasets, without the need for time-consuming parameter optimizations. It produced higher accuracy (F-
scores) than three conceptually distinct state-of-the-art methods when tested on two different real route 
datasets. The memory requirements of the resulting networks were considerably smaller – roughly 25% – 
compared with the size of networks generated by other methods we tested. The speed was only mid-range. 
Perhaps a more efficient algorithm could be used to improve the segment optimization step. 
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