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Abstract. We propose to use medoid-shift to reduce the noise in data prior to
clustering. The method processes every point by calculating its k-nearest
neighbors (k-NN), and then replacing the point by the medoid of its neigh-
borhood. The process can be iterated. After the data cleaning process, any
clustering algorithm can be applied that is suitable for the data.
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1 Introduction

Outliers are points that deviate from the typical data. They can be anomalies that
represent significant information that are wanted to be detected such as credit card
frauds [1], and they can affect statistical conclusions based on significance tests [14]. In
clustering, outliers are usually considered harmful as they can affect the clustering
quality. It is therefore desired that the outliers can be detected and removed.

Detection of outliers is typically considered as a separate pre-processing step prior
to clustering. Another approach is to perform the clustering first, and then label those
points as outliers which did not fit into any cluster, see Fig. 1. DBSCAN is an example
of this kind of approach [5]. However, it is a kind of chicken-or-egg problem: removing
outliers first would improve the clustering, but on the other hand, performing clustering
first would make the outlier detection easier.

Outlier removal can also be integrated in the clustering directly by modifying the
cost function [13]. The benefit is that the clustering can provide more information to
make better decision whether a point is an outlier, and yet, better clustering can be
obtained as the outliers can be removed before the final clustering. In [9], outlier
removal was integrated within the k-means algorithms so that the farthest points from
their centroid were removed, and k-means is then repeated for the modified dataset.
This iterative process removes not only outliers but also border points with the hope of
obtaining more stable cluster centroids.

In this paper, we propose a new approach where we do not remove the outliers at
all. Instead, we pre-process the data so that the effect of potential outliers will be
reduced. The key idea is similar to smoothing in image processing, where the pixel
values are altered based on the local window. We do the same in the feature space by
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Fig. 1. Three approaches how to deal with outliers: (1) ignore; (2) remove outliers by
pre-processing; (3) detect outliers from the clustering result.

finding k-nearest neighbors (k-NN) for every pixel, and then processing the pixel value
in this neighborhood. We apply replacing the original value by the medoid value of its
neighbors.

2 Existing Work and Their Limitations

Density-based approaches analyze the neighborhood of the points, and consider low
density points as outliers. For example, a data point is marked as an outlier if there are
at most k points are within a given distance d [11]. Another method calculates the
k-nearest neighbors (k-NN), and use the distance to the K neighbor [15], or the average
distance to all k£ neighbors [10] as the outlier indicator. Points with the largest distance
are considered as outliers. However, these approaches do not take into account that
clusters may have significantly different densities.

Topology of the neighborhood has also been considered. In [3], undirected graph is
constructed from the k-NN pointers. A link between two points is created only if they
are mutual neighbors of each others. Connected components are considered as data
points, and isolated points as outliers. In ODIN [10], the indegree of the nodes in the
k-NN graph is used as the indicator of outliers because isolated points appear less
frequently in the k-neighborhood of others.

However, if the number of outliers is large, traditional outlier removal techniques
might not be efficient. In case when the number of outliers is of the same order of
magnitude than the size of data, or even larger, it becomes significantly more chal-
lenging to differentiate outliers from normal points, see Fig. 2. Removing low density
points might work into certain extent but setting the correct threshold is not trivial,
especially if the data points have varying densities.
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Fig. 2. Example of noisy data and how it affects clustering.

3 Medoid-Shift Noise Removal

In this work, we consider an alternative approach by formulating the outlier detection as
noise removal problem. Instead of trying to detect whether a point is outlier, we process
the data points locally based on the neighborhood. We propose a method called medoid-
shift noise removal. The idea is to find k-nearest neighbors, and then replace the point by
the medoid of its k neighbors. This will effectively remove the effect of isolated points
and reduce the effect of abnormal points in the border areas of the clusters.

The idea is closely related to mean-shift filtering used in image processing [4], and
mean-shift clustering algorithm [19]. The first one takes pixels value and its coordinates
as the feature vector, and transforms each feature towards the mean of its neighbors. It
has been used for detecting fingerprint and contamination defects in multicrystalline
solar wafers [17]. The idea resembles also low-pass and median filtering used for image
denoising.

The difference to mean-shift clustering is that we apply the shift merely for noise
removal, and that we do not iterate the process until convergence. In other words, we
do not force to use mean-shift clustering algorithm but the mean-shift process is merely
a pre-processing stage. The choice of the algorithm is left as a separate question. This is
because the mean-shift process itself can be good for removing noisy point, but its
clustering performance is far from perfect.

3.1 Method Description

The core algorithm applies the following three steps for every point x:

1. Calculate the k-nearest neighbors kNN(x) of the point x.
2. Calculate the mean of the neighbors.
3. Replace point x by the medoid M.
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The algorithm modifies the data so that the effect of the noisy points is minimized.
It is implemented as separate pre-processing step so that it is independent on the
clustering method applied. The process can be iterated several times to have stronger
noise removal effect. The number of iterations is the parameter.

The iterative variant is similar to the CERES algorithm in [9] where most remote
points are iteratively removed in each cluster. The difference is that the outliers are
chosen based on the distance to their cluster centroid in the intermediate clustering
solution. It is therefore possible that points can be falsely removed if the cluster is not
correctly determined. In our method, we remove the points based on their local
neighborhood regardless of the clustering process. Figure 3 demonstrates the process.
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Fig. 3. Example of the iterative processed of CERES [9] and the proposed medoid-shift.

3.2 Mean or Median?

Both mean and median have been used in the mean-shift clustering concept [16, 19].
The benefit of using mean is that it is trivial to calculate for numeric data. Its main
disadvantage is that it can cause blurring effect where very noisy points bias the
calculation of the mean of clean points as well. Median is less sensitive to this because
single noisy point in the neighborhood may not affect the calculation of the median at
all, and it has therefore less effect on the clean points. Median can also reach its root
signal [18] when repeated until converge.



608 P. Frianti and J. Yang

Mean-shift Medoid-shift
O O
o ® O T ORY e
°e® o ~ o ® o —
[ P [ [ JPY L
o © o ©

Fig. 4. Effect of mean (left) and median (right) of two sample points in a noisy neighborhood.

However, with multivariate data it is not obvious how median is defined. We use
the medoid, which is the point in the set that has minimal total distance to all other
points in the set. A disadvantage of medoid is that its calculation can be more
time-consuming. A toy example of using mean and median is shown in Fig. 4.

4 Experiments

We test the proposed method with two clustering algorithms:

e K-means [6]
e Random swap [7].

Both algorithms aim at minimizing sum-of-squared errors. The first one is com-
monly used but does not always find the correct clustering solution even with the clean
data. Random swap, however, finds the correct clustering result with all our datasets
when no noise added. Therefore, after noise added, any errors the clustering algorithm
makes can be addressed to the noise. For the effect of the noise removal, we compare
the following methods:

LOF [2]

ODIN [10]

Mean-shift (proposed)
Medoid-shift (proposed).

Table 1. Datasets used in the experiments. (http://cs.uef.fi/sipu/datasets/)

Dataset Size | Clusters
S1 5000 | 15
S2 5000 | 15
S3 5000 | 15
S4 5000 | 15
Al 3000 | 20
A2 5250135
A3 7500 | 50
Unbalance | 6500 | 8



http://cs.uef.fi/sipu/datasets/

Medoid-Shift for Noise Removal to Improve Clustering 609

Uzgobalance
. »

2000 2000

Fig. 5. Datasets used in the experiments.

We evaluate the clustering quality by the following two measures:
o CI = Centroid index [8]
e NMI = Normalized mutual information [12].

Centroid index is cluster level measure, which counts how many cluster centroids
are wrongly located. Value CI = 0 indicates that all cluster centroids are correct with

data
noise

data
noise

data

Fig. 6. Noisy datasets S1 (left) and S3 (right) with 7% noise level.
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respect to the ground truth. Normalized mutual information is a point-level measure,
which calculates the amount of information the clustering shares with the ground truth.

Value 1 indicates perfect match to that of the ground truth.

4.1 Datasets

We use the eight benchmark datasets summarized in Table 1. The datasets are also

shown in Fig. 5. The S sets have varying level of cluster overlap, A sets have varying
number of clusters, and unbalance set have clusters with different densities.

Table 2. Summary of the point-level clustering results (NMI).

Noise type 1

PZ?S’::"‘ Combination | S1 | S2 | S3 | S4 | A1 | A2 | A3 | Un | Aw.
none RS 0.87 0.82 0.78 0.67 0.84 0.87 0.88 0.61 0.75
KM 0.85 0.82 0.78 0.67 0.83 0.87 0.89 0.90 0.82

noise | LOF+RS 085 | 0.84 | 0.76 | 069 | 0.88 | 0.90 | 091 | 0.70 | 0.81
removal | LOF+KM 090 | 084 | 081 | 067 | 0.89 | 0.90 | 091 | 0.91 | 0.85
ODIN+RS 0.85 0.80 0.76 0.66 0.81 0.85 0.86 0.70 0.78
ODIN+KM 0.85 0.79 0.76 0.62 0.80 0.85 0.86 0.84 0.80

medoid- | medoid+RS | 0.93 | 0.89 | 0.83 | 0.68 | 0.91 | 0.92 | 0.92 | 0.90 | 0.87
shift medoid+KM | 091 | 0.88 | 0.84 | 0.69 | 0.90 | 0.92 | 0.92 | 0.89 | 0.87
mean+RS 0.87 0.83 0.77 0.67 0.87 0.89 0.90 0.76 0.82

mean+KM 0.88 0.83 0.78 0.66 0.87 0.89 0.89 0.90 0.84

Noise type 2

Pzils’sr:"' Combination | S1 | S2 | S3 | S4 | A1 | A2 | A3 | Un | Av.
none | RS 080 | 0.76 | 070 | 0.70 | 0.77 | 0.82 | 0.84 | 0.81 | 0.77
KM 0.80 0.76 0.70 0.66 0.78 0.81 0.83 0.79 0.77

noise LOF+RS 0.79 0.74 0.68 0.68 0.75 0.82 0.83 0.64 0.74
removal | LOF+KM 079 | 0.74 | 067 | 0.65 | 0.77 | 0.82 | 0.83 | 0.82 | 0.76
ODIN+RS 0.78 0.74 0.68 0.67 0.68 0.67 0.63 0.77 0.70
ODIN+KM 0.78 0.71 0.68 0.64 0.75 0.79 0.81 0.75 0.74

medoid- | medoid+RS | 0.86 | 0.84 | 0.77 | 072 | 0.85 | 0.86 | 0.87 | 0.80 | 0.82
shift medoid+KM | 0.86 | 0.84 | 0.77 | 0.73 | 0.85 | 0.86 | 0.87 | 0.80 | 0.82
mean+RS 0.80 0.76 0.68 0.69 0.81 0.83 0.86 0.63 0.76

mean+KM 0.83 0.76 0.68 0.66 0.82 0.85 0.85 0.78 0.78
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4.2 Noise Models
We consider two types of noise:

1. Random noise
2. Data-dependent noise.

In the first case, uniformly distributed random noise is added to the data. Random
values are generated in each dimension between [Xjean — 2-7ange, Xmean + 2-rangel,
where X, 1S the mean of all data points, and range is the maximum distance of any
point from the mean: range = max(|Xmax — Xmeanl> Fmean — Xmin|)- The amount of noise
is 7% of data size. In the second case, 7% of the original points are copied and moved
to random direction. Noisy datasets are shown in Fig. 6.

Table 3. Summary of the cluster-level results (CI).

Noise type 1

PrePro- | Combination | S1 | S2 | S3 | S4 | Al | A2 | A3 | Un | Aw.
none RS 4 4 4 3 6 7 14 4 5.8
KM 4 3 3 3 5 8 13 2 5.1

noise LOF+RS 3 4 3 2 5 5 9 2 4.1
removal | LOF+KM 2 4 3 3 4 6 10 3 4.4
ODIN+RS 4 4 4 3 5 7 14 3 55
ODIN+KM 4 4 4 4 6 8 11 2 3.5

medoid- | medoid+RS 0 0 2 2 0 2 4 2 1.5
shift medoid+KM 1 1 1 1 0 2 3 2 1.4
mean+RS 4 3 6 3 3 7 13 3 5.3

mean+KM 4 4 4 2 4 7 14 2 5.1

Noise type 2

PYCPIO” | Combination | S1 | S2 | S3 | S4 | Al | A2 | A3 | Un | Av
none RS 4 4 4 3 5 7 13 3 5.4
KM 4 4 4 3 4 6 12 3 5.0

noise LOF+RS 4 4 4 3 5 7 13 2 5.3
removal | LOF+KM 4 4 4 3 5 7 11 2 5.0
ODIN+RS 4 4 4 4 5 8 13 3 5.6
ODIN+KM 4 4 4 3 4 7 11 2 4.8

medoid- | medoid+RS 0 0 1 2 [1} 1 5 3 1.5
shift medoid+KM 0 0 1 1 0 1 4 2 1.1
mean+RS 4 4 4 3 4 7 11 3 5.0

mean+KM 2 4 4 3 3 5 12 3 4.5
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Fig. 7. Visualization of the medoid-shift noise removal on the noisy S1 dataset.

4.3 Results

The clustering results are summarized in Tables 2 and 3, both at the point level
(NMI) and at the cluster level (CI). The point level results show that the medoid-shift
improves both k-means and random swap clustering result from about NMI = 0.82 to
0.87. The medoid-shift is significantly better than the mean-shift, which is not really
effective with this amount of noise. Visual examples are shown in Fig. 7.

The cluster-level results reveal that the task is challenging. The medoid-shift finds
the correct clustering (CI = 0) only with the three easier datasets: S1, S2 and Al. The
competitive outlier removal methods fail almost in all cases. The density-based method
(LOF+KM) manages to improve the k-means clustering result in case of A2 and A3
datasets.

The choice of the clustering algorithm also matters but less with the noisy data.
Random swap optimizes the cluster centroids better whereas k-means makes fails to put
centroids in the low density areas. However, since noise has lower density, it mostly
cancels the inferior optimization capability of k-means, and overall, both algorithms
perform equally in practice. To sum up, the noise reduction is more significant than the
optimization capability of the clustering algorithm.
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5 Conclusions

Mean-shift and medoid-shift were proposed as a separate noise removal process before
clustering. The results show that medoid-shift is more effective than mean-shift, and
that they both improves k-means clustering. Best results were achieved using three
iterations of the process. The proposed approach outperforms two existing outlier
removal methods: LOF and ODIN.

All methods have parameters to tune. The parameter k is needed in all methods. In
addition, mean-shift and medoid-shift have the number of iterations (our recommended
value is 3). LOF has the top-N parameter, which we set to 3% of the data size. ODIN
has the threshold parameter, which we set to 1. Our future work includes studying the
effect of parameters, and how their effect could be reduced.
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