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Abstract

Fast algorithm for joint near-optimal approximation of multiple polygonal curves is proposed. It is based on iterative reduced
search dynamic programming introduced earlier for themin-� problemof a single polygonal curve. The proposed algorithm
jointly optimizes the number of line segments allocated to the different individual curves, and the approximation of the curves
by the given number of segments. Trade-off between time and optimality is controlled by the breadth of the search, and by
the numbers of iterations applied.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Approximation ofpolygonal curvesis a classical problem
in image processing, pattern recognition, computer graph-
ics, digital cartography, and vector data processing. Optimal
approximation of a single polygonal curve can be solved by
methods fromgraph theory[1–5], dynamic programming
[6–12], orA∗-search[13,14] in O(N2)–O(N3) time where
N is the number of vertices in the input curve.
Faster but sub-optimal heuristics also exist with time com-

plexities ofO(N)–O(N2) [15,16]. Heuristic approaches for
the approximation problem includeSplit [17–19,26],Merge
[20–26], Split-and-Merge[27,28], dominant points detec-
tion [29–32], sequential tracing[33–35], genetic algorithms
[36–39], tabu search[39,40], ant colony methods[41,42].
The case of closed contours includes also the optimal selec-
tion of the starting point. This can be solved by considering
all input points and choosing the one with minimal error
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[8], by algorithm for all shortest paths in graph[3] or by
heuristic approaches[2,9,43–45].
The polygonal approximation of a single curve can be

extended to the case of multiple curves:

(a) Multiple object min-# problem: Given K polygonal
curvesP1, P2, . . . , PK , approximate it byK polygonal
curvesQ1,Q2, . . . ,QK with the minimum total num-
ber of segmentsM so that the approximation error does
not exceed a given maximum tolerance�.

(b) Multiple object min-� problem: Given K polygonal
curvesP1, P2, . . . , PK , approximate it byK polygonal
curvesQ1,Q2, . . . ,QK with a given total number of
segmentsM so that the total approximation error is min-
imized. Solution for themultiple-object min-# problem
depends on the error measure in use. In the case ofL∞
error measure, the problem reduces to thesingle-object
min-# problem as the optimization can be solved for
every object independently[46]. In the case of addi-
tive error measures (L1, L2, etc.), on the other hand,
the problem is not trivial[46]. Fortunately, in practical
applications we mostly have to deal with error measure
L∞ in the case ofmin-# problem.
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Fig. 1. Example of optimal approximation of multiple object with proportional distribution of the segments number(Mk ≈ NkM/N) (left),
and with optimal distribution of the segments number (right). The number of points in the objects areND = 3× 121 (“Diamond”), and
NL = 82 (“Leaf”). The corresponding number of segments areMD = 3× 9 andML = 6 with proportional distribution of the segments
number, andMD = 3× 4 andML = 21 with the optimal distribution of the segments number.

The case ofmin-� approximation ofmultiple objects(with
any error measure) is more complicated. The optimal ap-
proximation cannot be obtained by solving the approxima-
tion of each individual objects separately because the given
total number of approximation segments should be opti-
mally distributed among all objects. For example, uniform
allocation of the segments can assign too many segments to
the less complicated objects and, respectively, lacking the
segments for more complicated objects. This situation is il-
lustrated inFig. 1.
In literature, relatively little attention has been paid to the

case of multi-objectmin-� approximation even though it is
far from trivial to solve it efficiently. The optimal solution
have been introduced by Schuster and Katsaggelos[46] but
the algorithm has time complexity ofO(N2)–O(N3) de-
pending on the number of segments. This can be suitable
for the encoding of object contours for MPEG-4 standard
[47] but it is too slow in the case of large vector maps.
In this paper, we first generalize the dynamic program-

ming approach of single objectmin-� problemfor the case
of multiple objects. We then introduce a fast iterative re-
duced search algorithm based on the near-optimal approx-
imation algorithm for the case of single object[48]. The
proposed algorithm solves the approximation of the indi-
vidual objects and the allocation of the segments jointly.
Although the optimality of the algorithm cannot be guaran-
teed in general, the experiments indicate that the method is
capable of finding the optimal solution even in the case of
very large data sets. Moreover, the algorithm is significantly
faster than the optimal counterpart; the time complexity is
betweenO(N)–O(N2).
The rest of the paper is organized as follows. In Sec-

tion 2, we recall the full search and the reduced search dy-
namic programming algorithms for the single-object prob-
lem. In Section 3, we generalize the dynamic programming
approach for the case of multiple objects, and then introduce
the iterative reduced search algorithm. Experiments and dis-
cussions are made in Section 4, and conclusions are drawn
in Section 5.

2. Min-� problem for single curve

Let us at first consider the optimal solution of themin-�
problem for single curve by dynamic programming algo-
rithm proposed by Perez and Vidal[8]. We then recall the
iterative reduced search approach introduced earlier in Ref.
[48]. The proposed approach algorithm will then be gener-
alized in the next sections for the approximation of multiple
objects.

2.1. Problem formulation

An openN -vertex polygonal curve Pin two-dimensional
space is represented as the ordered set of verticesP =
{p1, . . . , pN }={(x1, y1), . . . , (xN , yN )}. The single object
min-� problemis stated as follows: approximate the polyg-
onal curveP by another polygonal curveQ with a given
number of linear segmentsM so that total approximation
errorE(P,M) is minimized. The output curveQ consists
of (M + 1) vertices:Q= {q1, . . . , qM+1}, where the set of
verticesqm is a subset ofP . The end points ofQ are the end
points ofP : q1=p1, qM+1=pN . The approximation linear
segment(qm, qm+1) of Q for curve segment{pi, . . . , pj }
of P is defined by the end pointspi andpj : qm = pi and
qm+1 = pj .
The error of approximation of curve segment{pi, . . . , pj }

with the corresponding linear segment(qm, qm+1) is defined
here as the sum of the squared Euclidean distances from each
vertex of {pi, . . . , pj } to the correspondent line segment
(qm, qm+1):

e2(qm, qm+1)=
j−1∑
k=i+1

(yk − aij xk − bij )2/(1+ a2ij ), (1)

where the coefficientsaij andbij are defined from the linear
equationy= aij x+ bij of the linear segment(pi, pj ). The
error e2(qm, qm+1) with measureL2 can be calculated in



A. Kolesnikov, P. Fränti / Pattern Recognition 38 (2005) 381–394 383

Fig. 2. Illustration of the single-goal state space�, and the depen-
dencies of the calculation of the costD for state(n,m) from the
previous states{(j,m− 1)}, wherej = L(m− 1), . . . , n− 1.

O(1) time with five arrays of cumulatives ofx, y, x2, y2, xy
coordinates[8].
The total approximation errorE(P,M) of the input

polygonal curveP by the output polygonal curveQ is
the sum of the approximation errors of the curve seg-
ments{pi, . . . , pj } by the linear segments(qm, qm+1) for
m= 1, . . . ,M:

E(P,M)=
M∑
m=1

e2(qm, qm+1). (2)

To obtain optimal approximation we have to find the set of
vertices{q2, . . . , qM } ofQ that minimizes the cost function
E(P,M) for a givenM:

E(P,M)= min{qm}

M∑
m=1

e2(qm, qm+1). (3)

To solve the optimization task we first recall the dynamic
programming algorithm[8].

2.2. Full search dynamic programming

Let us define two-dimensional discretestate space
� = {(n,m) : n = 1, . . . , N;m = 0, . . . ,M} as shown in
Fig. 2. Every point (n,m) in the space� represents the
sub-problem of the approximation ofn-vertex polygonal
curve (p1, . . . , pn) by m linear segments. The complete
problem is represented by the goal state(N,M).
An approximation polygonal curveQ can be represented

as apath H(m) in the state space� from the start state
�(1,0) to the goal state(N,M). In the state space, we also
define a functionD(n,m) of the state�(n,m) as the cost
function value of the optimal approximation for then-vertex
polygonal curve(p1, . . . , pn) by m linear segments.
The state space� is bounded by leftL(m), right

R(m), bottom B(n) and top T (n) borders in the

following way [48]:

L(m)=
{
m+ 1; m= 0,1, . . . ,M − 1;
N; m=M;

R(m)=
{
1; m= 0;
N −M +m; m= 1,2, . . . ,M.

B(n)=
{0; n= 1;
1; n= 2, . . . , N −M;
n−N +M; n=N −M + 1, . . . , N;

T (n)=
{
n− 1 n= 1, . . . ,M;
M − 1; n=M + 1, . . . , N − 1;
M; n=N.

(4)

The optimization problem can be solved by dynamic pro-
gramming[8] in the bounded space (seeFig. 3) with the
following recurrent equations:

D(n,m)= min
L(m−1)� j<n

{D(j,m− 1)+ e2(pj , pn)},

A(n,m)= arg min
L(m−1)� j<n

{D(j,m− 1)+ e2(pj , pn)}, (5)

wheren=1, . . . , N andm=B(n), . . . , T (n). HereA(n,m)
is theparent statethat provides the minimum value for the
cost functionD(n,m) at the state(n,m). The time complex-
ity of the algorithm isO(MN2), and the space complexity
is O(MN).

2.3. Iterative reduced search algorithm

Based on the dynamic programming we have introduced
an iterative reduced search method[48]. This algorithm was
intended to bridge the gap between slow but optimal, and fast
but non-optimal heuristic algorithms. The algorithm includes
the following three basic steps:
Step1: Find reference solutionwith any fast heuristic

algorithm. The obtained solution defines a reference path
H0(m) in the state space�.
Step2: Construct a single-goal bounding corridor of a

fixed width W in the state space� along the reference
pathH0(m). The leftL(m), right R(m), bottomB(n), and
top T (n) bounds of the corridor (bounded state space) are
defined in respect to the reference solution as follows:

L(m)

=
{
m+ 1; m= 0, . . . , c1,
max{m+ 1, H(m− c1)}; m= c1 + 1, . . . ,M,

R(m)

=
{
min{N,H(m+c2)−1}, m= 0, . . . ,M−c2,
N; m=M−c2+1, . . . ,M,

(6)
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Fig. 3. General scheme of the iterative reduced search DP in the
bounded state space.

B(n)=
{
0; n= 1,
m; n= R(m− 1)+ 1, . . . , R(m);

T (n)

=
{
min{M,m+W−1}; n= L(m), . . . , L(m+1)−1;
M; n=N.

wherec1 = �W/2
, andc2 =W − c1 are the bounds of the
corridor.
Step 3: Apply dynamic programming limited to the

bounding corridor as shown inFig. 3 with the recursive
equations in Eq. (5).
These three steps are then iterated using the output so-

lution H1(m) as a reference solution in the next iteration.
Instead of the time consuming search in the full state space
� the algorithm performs the search iteratively in the most

relevant part of it. Trade-off between quality and time can
be controlled by setting up the corridor width(W) appropri-
ately, and by limiting the number of iterations(ni). In Ref.
[48], the optimal solutions were always found by setting up
W=6, and by iterating the algorithm until it converged. The
pseudo code of the algorithm is given inFig. 3.
The time complexity of the algorithm withni iterations is

O(niW
2N2/M), which varies betweenO(N) andO(N2).

The lower bound appears whenM is large (proportional to
N ) and the upper bound whenM is small (considered as
constant). The speed-up in comparison to the full search
is proportional to(W/M)2. The space complexity of the
algorithm isO(WN).

3. Min-ε problem for multiple objects

We first formulate the multiple-objectsmin-� problem,
and then generalize the full search dynamic programming
from the single object to the case of multiple objects. The
iterative reduced search approach is then described.

3.1. Problem formulation

Consider the problem of joint approximation ofmulti-
plepolygonal curves (objects), where we haveK polygonal
curvesP1, . . . , PK . The total number of vertices isN=�Nk ,
whereNk is the number of vertices in the objectPk . We
have to approximate the set of polygonal curves by another
set of polygonal curvesQ1, . . . ,QK . The total number of
approximation line segments is�Mk , whereMk is the num-
ber of segments allocated to the approximation of a single
polygonal curveQk .
The approximationmin-� problemformultiple objectscan

be formulated as follows: find the optimal approximation of
the curvesP1, . . . , PK by polygonal curvesQ1, . . . ,QK
with minimum errorE under the given constraint on the
total number of segments:�Mk�M.
The approximation errorE = Ek(Pk,Mk) of the input

polygonal curvePk by the output polygonal curveQk is the
sum of the errors of the approximation of curve segments
{pk,i , . . . , pk,j } of Pk by the line segments(qk,m, qk,m+1)

of Qk (see Eq. (2)):

Ek(Pk,Mk)=
Mk∑
m=1

e2(qk,m, qk,m+1). (7)

The total approximation errorE(P1, . . . , PK,M)with mea-
sureL2 is defined here as the sum of approximation errors
for all objectsPk :

E(P1, . . . , PK,M)=
K∑
k=1

Ek(Pk,Mk). (8)



A. Kolesnikov, P. Fränti / Pattern Recognition 38 (2005) 381–394 385

To obtain the optimal approximation ofK objects we have
to solve the following optimization task:

E(P1, . . . , PK,M)

= min{Mk}
min{qm}

K∑
k=1

Mk−1∑
m=1

e2(qk,m, qk,m+1),

subject to
K∑
k=1

Mk�M. (9)

Two approaches have been proposed in Ref.[46] for the
problem. The first approach is based on the Lagrangian mul-
tipliers method, which uses the DP algorithm for the short-
est path in a directed acyclic graph. The second one is based
on a tree-pruning algorithm. The complexity of the first al-
gorithm isO(N2 log N) because it is defined by the com-
plexity of the shortest path algorithm and the number of
bisection iterations. The pruning-based approach is a one
pass variant algorithm with the complexity ofO(N2), but
the efficiency of the pruning scheme cannot be guaranteed
in general.
Algorithms with the complexity of higher thanO(N2)

can be used whenN is relatively small. In the case of vector
maps and digitized drawings, however, we have to process
a large number of curves, and therefore,O(N2) can be too
slow in practice.

3.2. Full search algorithm

Let us consider the cost (rate-distortion) functiongk(Mk),
which represents the approximation error for objectPk as a
function of the number segmentsMk :

gk(Mk)= min{qk,m}

Mk−1∑
m=1

e2(qk,m, qk,m+1)

whereMk = 1, . . . ,min{M,Nk − 1}. (10)

The optimization task for the approximation error can be
rewritten using the cost functionsgk(Mk) as follows:

E(P1, . . . , PK,M)

= min{Mk}

K∑
k=1

gk(Mk)

subject to
K∑
k=1

Mk�M. (11)

The approximation problem formultiple objectsdiffers from
that of thesingle objectproblem in the following: in addition
to the minimization of the individual objects we have to
find the optimal numbers of segmentsMk allocated to the
objects{P1, . . . , PK }.

The joint optimization problem can be solved by three
step dynamic programming approach as follows:
Step1: Solve the optimal approximation of every object

by multiple-goaldynamic programming in order to obtain
the cost functions{gk(Mk)};
Step2: Solve the optimal allocation of the number of

segments among the objects using the cost functions given
by Step 1;
Step3: Re-solve the optimal approximation of every ob-

ject using the number of segments given by Step 2.
In step 1, we solve the optimal approximation of every

objectPk using multiple-goal state space�k as shown in
Fig. 4(left). In other words, we solve rate-distortion function
gk(Mk) as the minimum approximation error of the object
Pk with all possible number of segmentsMk in the range
[1,min{M,Nk − 1}]. The bounds of the state space are
defined as follows:

Lk(m)=
{
m+ 1; m= 0, . . . ,Mk − 1;
Nk; m=Mk;

Rk(m)=
{
1; m= 0;
Nk; m= 1, . . . ,Mk.

Tk(m)=
{
m+ 1; n= 0, . . . ,Mk − 2;
Mk − 1; n=Mk − 1, . . . , Nk − 2;
Mk; n=Nk − 1;

Bk(m)=
{
0; n= 0;
1; n= 1, . . . , Nk − 1.

(12)

In step 2, the optimal allocation of the segmentsM(opt)
k

is
found in order to minimize the total approximation error
E(P1, . . . , PK,M). Let us consider the functionGk(m) as
the minimum approximation error ofk objects with the total
number ofm segments:

Gk(m)= E(P1, . . . , Pk,m). (13)

The problem of the optimal allocation of the constrained
resource{Mk} among theK objects can be solved by dy-
namic programming method with the following recursive
equations[49] for the given functions{gk(Mk)}:
Gk(m)

= min
1�x<Nk

{gk(x)+Gk−1(m− x)},

wherem= 1, . . . ,min


M,

k−1∑
i=1

(Ni − 1)


 . (14)

The functionG1(m) for one object(k = 1) is given as fol-
lows:G1(m)= g1(m), wherem= 1, . . . ,min{M,N1 − 1}.
The error of the optimal approximation ofK objects with
M segments is given asE(P1, . . . , PK,M)=GK(M).
In step 3, we solve the optimal solutionHk(m) for ev-

ery objectPk with the found optimal number of segments

M
(opt)
k

. The optimal solutions are solved by the same DP
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Fig. 4. Illustration of themultiple-goalstate space�k for sample problem ofNk = 34 (left), and themultiple-goalbounding corridor for
sample problem ofNk = 34 andMk = 12 using corridor widthW = 3 (right). The reference pathH(m) is marked with dark gray circles,
and the goal states with gray squares.

algorithm as applied in the first step but now with the fixed

numbers of segmentsM(opt)
k

given by the second step.

The time complexity of the first step isO(N3
k
) for one

object, andO(�N3
k
) for all objects. This sums up toO(N3)

in the worst case. The time complexity of the second step
is O(KM2). The time complexity of the third step is

O(M
(opt)
k

N2
k
) for one object, andO(�M(opt)

k
N2
k
) for all

objects. This sums up toO(MN2) in the worst case. The
time complexity of the whole algorithm is dominated by
the complexity of the first step, and is thereforeO(N3).
The space complexity of the first step is determined by the

memory requirement of the full search DP algorithm for the
approximation of the biggest object: max{Nk ×Nk}, which
is O(N2) in the worst case. The space complexity of the
second step with dynamic programming procedure isO(K×
M). The memory requirement of the third step is defined
by the memory needed for approximating the biggest object

with the found optimal number of segments: max{M(opt)
k

×
Nk}. The total space complexity of the algorithm is therefore
determined by the complexity of the first step, which is
O(N2).

3.3. Iterative reduced search algorithm

The full search DP algorithm introduced in Section 3.2
has the following drawbacks:

• The time complexity of the algorithm isO(N3), which
can be too much for vector data with long curves of
thousands of vertices.

• The memory requirements of the algorithm isO(N2).
This can also be a limiting factor for processing of large
vector maps with long curves.

We next generalize the iterative reduced search to the prob-
lem under consideration. We follow the main idea of the
reduced search by reducing the search space by a given pre-
liminary solution for the approximation, and then perform
the search in the reduced space iteratively. The main differ-
ence to the full search is that a smaller search area is needed,
which makes the algorithm faster. It also eliminates the need
of the third step because of smaller memory requirements.
The algorithm for multiple-objectmin-� problemwith re-

duced search consists of the following steps (Fig. 5):

Step1: Find preliminary approximation of every object for
given initial number of segments;

Step2: Iterate the following:

(a) Applymultiple-goal reduced searchdynamic program-
ming for the previous solution to define the cost func-
tionsgk(Mk);

(b) Solve the optimal allocation of the number of segments
among the objects using the cost functionsgk(Mk).

In step 1, we find a set of reference solutions{Hk(m)} for
every objectPk using some fast sub-optimal algorithm to
distribute segments among the objects and perform polyg-
onal approximation with the found number of segments. In
this work, we use heuristic algorithms based onSplit [17–19]
andMerge [20–26] approaches, and random initialization.
Any other fast heuristic algorithm can be used to obtain an
initial solution.
In step 2a, multiple-goal state space�k is constructed

for each object with the following goal states:Mk ∈
[ak, bk], whereak =max{1,M(0)

k
− c1}, bk =min{M(0)

k
+

c2, M
(0), Nk − 1}, and c1 = �W/2
, c2 = W − c1.

Each state space�k is then processed by the reduced
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Fig. 5. Iterative reduced search algorithm for themultiple object
min-� problem.

search algorithm using revised bounding corridor of width
Wk = bk − ak + 1�W . The result of the search isWk
solutions {Hk(m)} with the corresponding rate-distortion
functiongk(Mk) in the rangeMk ∈ [ak, bk]. If the corridor

width Wk is small (W �32), the found paths{H(1)
k
(m)}

are stored in one-dimensional array of sizeNk in order to
avoid recalculation of the solutions later.
The leftLk(m), rightRk(m), bottomBk(n) and topTk(n)

bounds of the multiple-goal bounding corridor are defined
as follows:

Lk(m)

=
{
m+ 1; m= 0, . . . , c1,
max{m+ 1, Hk(m− c1)}; m= c1 + 1, . . . ,Mk,

Rk(m)

=
{
min{Nk,Hk(m+c2)−1}; m= 0, . . . ,Mk−c2,
Nk; m=Mk−c2 + 1, . . . ,Mk,

(15)

Bk(n)=
{
0; n= 0,
m; n= Rk(m− 1)+ 1, . . . , Rk(m),

Bk(n)=
{
m+Wk−1; n= Lk(m), . . . , Lk(m+1)−1;
Mk +Wk − 1; n=Nk.

In step 2b, we find for every objectPk the optimal num-
ber of segmentsMk in the range[ak, bk]. The optimal al-
location of the constrained resource{Mk} among theK ob-
jects P1, . . . , PK with the given cost functions{gk(Mk)}
can be solved by dynamic programming with the following

recursive expression(k = 1, . . . , K):

Gk(m)= min
ak�x�bk

{gk(x)+Gk−1(m− x)},

wherem=
k−1∑
i=1

ai, . . . ,

k−1∑
i=1

bi . (16)

The required value of the approximation error forK objects
by M linear segments is defined from the cost function
Gk(m) as follows:E(P1, . . . , PK,M) = GK(M). Finally,
for every objectPk we restore the optimal solutionHk(m)

with the found number of segmentsM(1)
k

from the stored
paths{Hk(m)}.
The found numbers of segments{M(1)

k
} are restricted to

the range[ak, bk], and they can provide only local minimum
of the approximation errorE(P1, . . . , PK,M). To find the

global optimal allocation of the resource{M(opt)
k

} for the
whole range of segments number, the iterations are neces-
sary. The output solution of the previous iteration is used
as the reference solution in the next iteration. Steps 2a and
2b are repeated until no changes appear in the approxima-
tion error valuesGK(M). The number of iterations depends
on the bounding corridor width and how close the initial

distribution of segments number{M(0)
k

} is to the optimal

distribution{M(opt)
k

}.
While we iterate the algorithm to find the optimal dis-

tribution of the segments numberMk , we simultaneously
optimize the location of the approximation vertices{qk,m}
for the current number of segmentsMk . Finally, the algo-
rithm converges to approximation solution for all objects
{P1, . . . , PK }.
The time complexity of the algorithm is dominated by the

first step. The processing time is�(W2
k
N2
k
/Mk) in compar-

ison to�(N3
k
) of the full search. This can be roughly esti-

mated asO(W2N2/M), which varies fromO(N) toO(N2)

depending onM. The processing time for the second step is
reduced by a factor ofO(W/M)2 from the full search be-
cause the search range is reduced fromM to W . The time
complexity of the second step isO(KW2) in comparison to
O(KM2) of the full search. At the third step, we restore the
optimal solutions for the found number of segments from
the stored paths. The time complexity of this simple proce-
dure isO(N).
To sum up, the time complexity of the reduced search

algorithm formultiple-object min-� problemis defined by the
first step, and it is betweenO(N) andO(N2). This is better
than theO(N3) of the full search, and theO(N2 log N) of
the method proposed in Ref.[46].
The space complexity of the first step is reduced to

max{W ×Nk} from max{N2
k
} of the full search asW>Nk .

The memory requirement of the second step is also reduced
from K × M to K × W . In the third step, no additional
memory is needed for restoring the optimal paths. The total
space complexity of the proposed algorithm is defined by
the complexity of the first step, which isO(WN).
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3.4. Heuristic algorithms for reference solution

To study sensitivity of the algorithm to the quality of ref-
erence solution we consider three strategies for creating the
initial (reference) solution: (a) theMerge-L2 algorithm, (b)
the Split-basedalgorithm with proportional distribution of
segments, and (c)Randominitialization with random dis-
tribution. These algorithms provide good, satisfactory, and
poor initialization, respectively.
(a)Merge-L2 algorithm: The greedy algorithm in use is

a generalization of Merge approach[20–26] from a single
object to the case of multiple objects. First, all vertices of
the shapes are considered as approximating points. The total
number of approximating vertices is then iteratively reduced
by elimination of the vertexqm with the smallest cost func-
tion valueC(qm). The process is halted when the desired
total number of approximating segmentsM is reached. The
cost functionC(qm) of the vertexqm with the two adja-
cent line segments(qm−1, qm) and (qm, qm+1) is defined
as the change in total approximation error after replacing
these segments with one segment(qm−1, qm+1):

C(qm)= d(qm−1, qm+1)− d(qm−1, qm)− d(qm, qm+1),

where d(qi , qj ) is approximation error for line segment
(qi , qj ). We use integral square error as a cost function. The
complexity of the Merge-based algorithm isO(N log N)
[23,25] if we use heap structure to store the current values
of the cost function of all vertices forK objects, and the
complexity of algorithm for calculation of the cost function
is O(1). TheMerge-L2 algorithm provides good distribu-
tion of segments among the objects.
(b) Split-basedalgorithm: the total number of segments

M is distributed uniformly proportional to the number
of verticesNk in each object to give the initial values

M
(0)
k

of the numbers of segments:M(0)
k

≈ NkM/N .
Then every object is approximated by the algorithm of
Douglas–Peucker–Ramer individually for the calculated

number of segmentsM(0)
k

to obtain reference solution for
the objects. The complexity of the algorithm isO(MkNk)
for anNk-vertex object.
(c)Randomalgorithm: we simply take(M−1) randomly

chosen points for all the curves jointly, and create the initial
approximation from them.

3.5. Approximation of closed contours

In the case of closed contours, we have to optimize the
selection of the starting points as well. It can be done with
the near-optimal algorithm we introduced recently in Ref.
[45]. The proposed algorithm is based on reduced search dy-
namic programming algorithm for open curves[48]. It per-
forms approximation of a cyclically extended input contour
of double-size and then makes analysis of the state space to
select the best starting point.

The processing time is double to that of the approxima-
tion of the corresponding open curve. The efficiency of the
approach depends on the characteristics of the contours to
be approximated, the number of segments, and the initial
location of the starting points. For smooth curves with big
number of approximation segments and a reasonably good
initial selection for the starting points the improvement of
the approximation can be negligible. In the case of contours
with sharp corners and small number of segments, however,
it can be worth to reduce the approximation error at the
cost of double processing time. The selection of the relevant
strategy depends on task in the question, the properties of
the vector data, and the time resources.

4. Results and discussion

In order to evaluate the quality of sub-optimal algorithms,
Rosin[15,16]introduced a measure known asfidelity (F ). It
measures how good a given sub-optimal solution is in respect
to the optimal approximation in terms of the approximation
error:

F = Emin

E
× 100%. (17)

We test the proposed methods using the shapes shown in
Fig. 6. The first and second shapes are didactic examples of
the single and multiple-object cases. The third shape con-
tains elevation lines from a sample map somewhere in Fin-
land [50], and the fourth one is a large-scale vector map of
Europe.

4.1. Iterative reduced search for single object

The iterative reduced search[48] is first illustrated for
the test shape #1 inFig. 7. The preliminary approximation
with M = 100 is made by the Douglas–Peucker algorithm,
which is then improved by iterative reduced search algorithm
with corridor widthW = 10 (seeFig. 7). The fidelity of
the initial solution isF0 = 41.1%(T0 = 0.05 s); fidelity of
the solutions after the 1st and 2nd iterations of the reduced
search areF1=97.9%(T1=0.7 s) andF2=100%(T2=1.4 s),
respectively.
For reference approximation obtained withMerge-L2 al-

gorithm, the fidelity isF0 = 53.5%(T0 = 0.02 s); fidelity
of the solutions after the 1st and 2nd iterations areF1 =
99.8%(T1=0.7 s) andF2=100%(T2=1.4 s), respectively.
With the full search dynamic programming algorithm of

Perez andVidal[8] the optimal result for the same test shape
is achieved inT = 166 s, and with fastA∗-search algorithm
of Salotti [13] the optimal result is achieved inT = 62 s. In
this and the following tests, we use Pentium III, 2.0GHz.
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Fig. 6. Test data from left to right: Shape #1 is a digitized curve from[13]; #2: “diamond and leaf”; #3: elevation vector map; #4:
vector map of Europe. HereN is the total number of points, andK is the number of objects. The images are available on web:
http://cs.joensuu.fi/pages/koles/images/ .

Fig. 7. Result of the approximation of test data #1 withM = 100 segments using Split-based algorithm (left), the iterative reduced search
after the first iteration (middle), and the corresponding state space and the bounding corridor of widthW = 10 (right).

4.2. Full search for multiple objects

The full search dynamic programming algorithm for the
test data #2 is illustrated already inFig. 1, which contain
N = 445 vertices, andM = 33 linear approximation seg-
ments. With optimal allocation of the resources using the
full search algorithm, the number of segments is 12(3× 4)
in “Diamond”, and 21 in ”Leaf”. The total approximation
error isE = 356.
The test data #3 containN =38,924 vertices inK =569

objects, and the approximation data containM=7784 linear
segments (data reduction of 5:1). The processing time for the
first step (calculation of the cost functions) is 69 s, the time
for the resource allocation is 4 s, and the time for restoration
of the optimal solutions is 14 s. In total, the processing time
of the full search algorithm is 86 s.
The test data #4 consist ofK = 365 shapes withN =

169,673 number of points. The data include several long
curves up to 10,000 vertices. The approximation data con-
tainM = 8483 linear segments corresponding to the reduc-
tion ratio ofN :M=20 : 1. Calculation of the result even for
one 10,000-vertex object (finding 10,000 optimal solutions)
with full search algorithm takes hours of computation. The
memory requirements are also very high (about 600 Mbytes
for the single 10,000-vertex curve). With the current hard-
ware, we cannot perform the approximation of this data with
the full search algorithm.

4.3. Iterative reduced search for multiple objects

At first we find approximation for the test data #3 (see
Fig. 8). We consider three strategies for creating the ini-
tial distribution of the segments among the objects: (a)
the Merge-L2 algorithm as described in Section 3.4, (b)
theSplit-basedalgorithm with proportional number of seg-
ments, and (c)Randominitialization.
With theMerge-L2 algorithm, the fidelity of the initial

solution isF0= 71.6% obtained inT0= 0.3 s. As the initial
distribution of the segments is close to optimal, the reduced-
search algorithm reaches very high fidelity ofF1= 99.95%
already after the first iteration inT1=1.3 s. The final results
(F3=100%) was achieved after three iterations inT3=2.8 s
instead of 86 s with the full search algorithm.
In theSplit-basedalgorithm, the fidelity of the initial so-

lution isF0 = 13.9%(T0 = 0.2 s). After one run of the opti-
mization procedure withW = 10 the vector data is approx-
imated with fidelityF1 = 50.3% in T1 = 1.0 s. The fidelity
of F15= 99% is reached after 15 iterations inT15= 12.0 s,
and the optimal result after 20 iterations inT20= 14.6 s.
For obvious reasons, the fidelity ofRandominitial solu-

tion is very small(F0=0.3%). Nevertheless, optimal result
(F21=100%) was reached after 21 iterations inT21=19.7 s.
Next we find approximation of the test data #4 with it-

erative reduced search using corridor widthW = 10 (see
Fig. 9). As the algorithm converged to the same result with

http://cs.joensuu.fi/pages/koles/images/
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Fig. 8. Approximation results (fragment) for test data #3: (a) initial approximation withSplit-basedalgorithm (E = 892,158); (b) initial
approximation withMerge-L2 algorithm (E = 173,362); (c) final result(E = 124,093); (d) fidelity of the approximation as a function of
time. The initial solution is obtained withMerge-L2 (triangles),Split-based(circles), andRandom(squares) algorithm.

Fig. 9. Fragment of test data #4: (a) initial approximation withSplit-basedalgorithm(E= 57.12); (b) initial approximation withMerge-L2
algorithm(E=32.89); (c) the final result(E=19.76); (d) fidelity of the approximation as a function of time. The initial solution is obtained
with Merge-L2 (triangles),Split-based(circles), orRandom(squares) algorithm.
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Table 1
Fidelity and time (seconds) for the 1st iteration and final results for the test data #3 (a) and #4 (b). The initial approximation is obtained
with Merge-L2 approach

1st iteration Final result

Fidelity (%) Time (s) Iterations Fidelity (%) Time (s)

(a) #3
W = 4 98.4 0.6 8 99.7 2.3
W = 6 99.5 0.9 5 100 2.4
W = 8 99.8 1.1 4 100 2.7
W = 10 99.95 1.3 3 100 2.8
W = 12 99.99 1.6 3 100 3.3
W = 14 99.99 1.8 3 100 3.7
W = 16 100 2.1 2 100 3.8
W = 18 100 2.4 2 100 4.3
W = 20 100 2.7 2 100 4.8

(b) #4
W = 4 97.5 5.6 24 99.5 19.9
W = 6 98.9 7.5 10 99.9 26.0
W = 8 99.4 10.0 8 100 29.9
W = 10 99.6 12.8 6 100 36.7
W = 12 99.7 16.2 5 100 43.8
W = 14 99.8 19.6 5 100 49.0
W = 16 99.9 23.3 5 100 57.3
W = 18 99.9 27.7 4 100 62.3
W = 20 99.9 32.1 3 100 72.1

Table 2
The minimum number of iterations and the corresponding run times in which the algorithm reaches certain fidelity level with the test data
#3 (a) and #4 (b). The initial approximation is obtained with theSplit-basedalgorithm

90% fidelity 99% fidelity Final result

Iterations Time (s) Iterations Time (s) Iterations Time (s) Fidelity (%)

(a) #3
W = 4 36 10.3 58 16.0 76 19.5 99.5
W = 6 18 8.0 29 12.2 29 15.0 100
W = 8 12 7.5 19 11.6 26 14.4 100
W = 10 9 7.5 15 12.0 20 14.6 100
W = 12 7 7.2 12 12.1 20 16.5 100
W = 14 6 7.6 10 12.5 16 16.6 100
W = 16 5 7.4 9 13.2 16 18.0 100
W = 20 4 7.7 7 13.7 16 21.0 100

(b) #4
W = 4 4 12 43 61 67 72 99.2
W = 6 2 11 18 49 35 62 99.4
W = 8 2 16 10 54 28 81 100
W = 10 1 11 8 62 22 92 100
W = 12 1 14 7 72 19 104 100
W = 14 1 19 6 99 16 116 100
W = 16 1 22 5 86 14 127 100
W = 20 1 31 4 103 12 156 100
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Table 3
Summary of the fidelity and the processing times (seconds). The initial approximation is obtained withMerge-L2 algorithm; corridor width
W = 10

Set N K M Merge-L2 Reduced search Full search

Fidelity (%) Time (s) Fidelity Time (s) Fidelity (%) Time (s)

#1 5004 1 100 53.5 0.02 100 2.1 100 169.2
#2 445 4 33 82.5 <0.01 100 0.02 100 0.03
#3 38924 569 7784 71.6 0.30 100 2.8 100 86.0
#4 169673 365 8483 59.9 2.30 ≈ 100 36.9 N/A N/A

Table 4
Summary of the fidelity and the processing times (seconds). The initial approximation is obtained withSplit-basedalgorithm; corridor width
W = 10

Set N K M Split-based Reduced search Full search

Fidelity (%) Time (s) Fidelity (%) Time (s) Fidelity Time (s)

#1 5004 1 100 41.1 0.03 100 2.1 100 169.2
#2 445 4 33 5.0 <0.01 100 0.06 100 0.03
#3 38924 569 7784 13.9 0.19 100 15.0 100 86.0
#4 169673 365 8483 34.6 1.50 ≈ 100 92.7 N/A N/A

Table 5
Summary of the fidelity and the processing times (seconds). The initial approximation is obtained withRandomalgorithm; corridor width
W = 10

Set N K M Random Reduced search Full search

Fidelity (%) Time (s) Fidelity (%) Time (s) Fidelity Time (s)

#1 5004 1 100 2.4 <0.01 100 2.1 100 169.2
#2 445 4 33 0.2 <0.01 100 0.02 100 0.03
#3 38924 569 7784 0.3 <0.01 100 19.7 100 86.0
#4 169673 365 8483 0.1 <0.01 ≈ 100 829.0 N/A N/A

all parameter valuesW = 8–32, we expect that it is also the
optimal solution.
With the Merge-L2 approach, the fidelity of the initial

solution isF0 = 59.9%(T0 = 2.3 s). The fidelity after the
1st iteration isF1 = 99.6% in T1 = 12.8 s, and the final
result(F6=100%) was achieved after six iterations inT6=
36.9 s. Since the solution of the full search algorithm is not
available, the fidelity is calculated in these cases relative to
the best solution found.
For theSplit-basedalgorithm, the fidelity of the initial

solution isF0=34.6%(T0=1.5 s). The fidelityF1=89.5%
was reached(T1 = 12 s) after the first iteration, and near-
optimal result with the fidelity ofF8 = 99% was achieved
after 8 iterations(T8=68 s). The final solution was obtained
after 22 iterations(T22= 93 s).
The fidelity ofRandominitial solution isF0 = 0.1%. It

takes 110 iterations andT110 = 829 s to converge to the
same approximation as with theSplit-basedandMerge-L2
methods.

From comparisons of the three different initialization
strategies we can see that the number of iterations and
processing time mostly depends on how close the initial
distribution is to the optimal one. The quality of the ap-
proximation of a single object is not so critical because it
can be greatly improved by 2-4 runs of iterative reduced
search algorithm[48] applied to the objects individually for
the current distribution.
The effect of the corridor widthW is reported in

Tables 1and 2 as the number of iterations (and running
time, respectively) needed to obtain approximation with fi-
delity of 90, 99%, and the final result, respectively. The use
of a wider corridor increases the processing time of a single
iteration but, at the same time, decreases the total number of
iterations needed. The overall results are roughly equal for
most of the parameter values tested in respect to the time-
distortion performance. The exceptions are the smallest pa-
rameter values (W =4–6), which do not always result in the
optimal solution although quite close anyway(F >99%).
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On the basis of the results, we recommend parameter value
W =10 and conclude, that the exact choice of the parameter
is not crucial for the performance of the algorithm.
The main results of the reduced search are summarized in

Tables 3–5, and compared to that of the full search. Vector
data with a moderate number of objects and vertices (Sets
#1, #2 and #3) can also be processed with the full search
but the reduced search is significantly faster. In the case of a
very large data set, however, the memory requirements were
too large and the approximation would have taken hours. In
such case, the reduced search should be used.
From the results we can see that the proposed algorithm

converges forW >8 to the optimal approximation (fidelity
of 100%) no matter which initialization is used. TheMerge-
L2 algorithm, however, provides better initial solution than
the Split-based algorithm with comparable times because
of better segments distribution. The consequence is that a
smaller number of iterations is sufficient to reach the optimal
solution, and thus, shorter overall running time is needed.
We therefore conclude that the use of a better initialization
can provide further speed-up in the case of large data sets.
Nevertheless, any initialization is enough in order to reach
the optimal approximation with the tested data sets.

5. Conclusions

In the paper, themin-� problemof optimal approximation
of multiple-object vector data was considered. The problem
is treated as optimization task with approximation error as
cost function. We introduced two algorithms for solving
the problem based on dynamic programming: full search
and iterative reduced search. The algorithms optimize the
number of segments and the approximation of the individ-
ual objects jointly. Experimental results indicate that the
proposed algorithm reaches the optimal solution in all cases
tested even though the optimality cannot be guaranteed in
general.
The iterative reduced search algorithm has time com-

plexity of O(N)–O(N2) depending on the number of
segments. This is significantly smaller than theO(N3) of
the full search, or theO(N2 log(N)) of Ref. [42]. The
reduced search approach is also applicable for very large
data sets with reasonable memory requirements. The al-
gorithm can also be tuned for obtaining fast sub-optimal
solutions by reducing the number of iterations and corridor
width.
With the tested data sets, the algorithm converged to the

optimal solution with all three tested initializations, includ-
ing random reference solution. The greedy Merge-based al-
gorithm provided best initial solution, which was benefited
as faster convergence than that of the other initializations.
It is expected that any initial solution can be used with
the proposed method, even though a higher quality initial-
ization can save the number of iterations and processing
time.
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