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aDepartment of Computer Science, University of Helsinki, FIN-00014, Helsinki, Finland
bDepartment of Computer Science, University of Joensuu, FIN-80101, Joensuu, Finland

Received 14 December 1998; received in revised form 27 August 1999; accepted 17 September 1999

Abstract

We introduce a new class of dithering methods calledN-candidate methods. The main idea is that the output color is randomly chosen
among several candidate colors so that the estimated color average would be preserved. The dithering process is pixelwise without any
interaction with the neighboring pixels. TheN-candidate methods are thus location invariant, which has two benefits: (1) the algorithm can be
fully parallelized; and (2) the image can be partially processed without effecting the pixels outside the processed part. The proposed approach
allows more efficient dithering than error diffusion but at the cost of a slightly lower image quality.q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The classical problem ofcolor image quantizationaims at
representing atrue color (24 bit) image using a limited
number of colors. Quantization is widely used innon-true
color displaysand incolor printersthat cannot reproduce 16
million different colors.Color palette imagesare also faster
to operate with, and they require less memory. For example,
an image with 256 colors takes 8 bits per pixel, which is
only one third of the memory required by a 24-bit true color
image of the same size and resolution. Color palette images
are also used in computer generated graphics, which require
only a limited number of colors.

Color image quantization consists of two steps:color
palette generationand color mapping. The first step aims
at finding the optimal set of colors for a given input image
(or images). In the second step, the input pixels are mapped
to the palette colors. The two steps are relatively indepen-
dent from each other.

A trivial solution for the color palette generation is to use
a predefined color palette which is generated off-line. The
image quality, however, is compromised too much if the
same palette is applied for all images. It is therefore better
to optimize the palette for each input image separately. The
color palette optimization is related to the problem of

finding codebookfor a vector quantizer, which is well
studied in literature [1]. Therefore, most algorithms
proposed for vector quantization also apply to the color
palette generation.

The second phase, color mapping, can be performed by
mapping each color to its nearest palette color. Unfortu-
nately, pixelwise quantization generates visible errors to
the image in the form of false contours. The smaller the
color palette is the stronger the effect is. Another drawback
is that non-palette colors are poorly represented especially if
the palette is not well optimized for the input image.

A better solution for color mapping is the use of dithering,
in which the image quality is optimized spatially rather than
pixelwise. This is sensible because the human eye does not
pay so much attention to individual pixels but integrates the
colors of several adjacent pixels. Dithering algorithm
reduces the visual errors by re-ordering the colors so that
their visual combination matches the original image more
closely. Dithering has three specific aims:

• to preserve the local color averages;
• to illustrate non-palette colors by the combination of

palette colors;
• to prevent false contours caused by quantization.

Dithering methods can be divided into three classes: (1)
dot-pattern dithering[2,3]; (2) error diffusion[4,5]; and (3)
ordered dithering [6–8]. The methods in the first class
emulate thehalftoning processused in the printing process
by representing an input color by a combination of output
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colors. Error diffusion performs pixelwise quantization by
mapping the input pixel to its nearest palette color and then
compensating the quantization error to the unprocessed
adjacent pixels. Ordered dithering applies pseudo-random
thresholding in the selection of the output color.

We introduce a new class of dithering methods called
N-candidate methods. The dithering is performed by
including noise in the quantization process, or in the output
of the quantization, see Fig. 1. The new class encloses
several existing dithering algorithms [6,9,10]. Ordered dither-
ing [6] is also a special case of theN-candidate methods. See
Fig. 2 for the classification of the dithering methods.

The idea ofN-candidate methods is that several candidate
colors are selected for each input color. The output color is
randomly chosen among the candidates using some
weighting criterion. The process is pixelwise without any
interaction with the neighboring pixels. The method is
location invariant and, unlike error diffusion, fully supports
parallel implementation. Another advantage is that, due to
randomization, the method does not produce any regular
patterns in the output image, which is typical for the ordered
dithering.

The rest of the paper is organized as follows. We start in
Section 2 by defining basic concepts of the problem and by
giving a brief summary of the existing color image
quantization methods. The general framework of the new
N-candidate methods is introduced in Section 3 followed by
a detailed discussion of the various parameters of the
method. We also discuss a new adaptiveN-candidate
algorithm, which optimizes the number of candidates for
each input color separately. In Section 4, we make objective
(numerical) and subjective (visual) comparisons between
the N-candidate methods and the other methods.
Conclusions are then drawn in Section 5.

2. Color image quantization

We consider digitizedRGB imagesconsisting of red (R),
green (G), and blue (B) components. The color components
are typically represented by 8 bits each, giving about 16.6
million different colors. The following symbols will be used
throughout this paper:

xi: pixel of the input image X� { xi ui � 1;2;…;M} ;
cj: color in thecolor palette C� { cj uj � 1; 2;…;K} ;
f: mapping from an input pixelxi to output colorcj : f �x� :
X 7! C:

It is commonly assumed that the pixels are located in the
Euclidean space. The Euclidean distanced between pixels
xk andxl can be calculated as:

d�xk; xl� ����������������������������������������������������������������
�xk�r�2 xl�r��2 1 �xk�g�2 xl�g��2 1 �xk�b�2 xl�b��2

q
;

�1�
where r, g, and b refer to the red, green and blue color
components, respectively.

2.1. Problem setup

Color image quantization can be formally defined as an
optimization problem as follows. Given an input imageX,
and a palette of sizeK, find a color paletteC and a mapping
function f, maximizing the visual quality of the output
image. Unfortunately, there is no exact mathematical
formulation for the ‘visual quality’ in this context. The
three specific aims given in the introduction can be used
as intuitive goals.

Usually the color palette and the mapping function are
optimized separately since they are considered independent
processes. The color palette is generated without any prior
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Fig. 1. Block diagrams of (a) quantization; (b) error diffusion dithering; and (c)N-candidate dithering.

Fig. 2. Classification tree of dithering methods.

Fig. 3. Illustration of the color palette generation. The leftmost picture
represents RG-plotting of the colors of the input image. In the middle the
colors are prequantized to 5 bits per color component. The resulting color
palette is plotted in the rightmost picture. The Voronoi diagram illustrates
the boundaries of the color clusters.



knowledge of the dithering applied. This is illustrated in
Fig. 3. Once the palette is created, the color mapping tries
to optimize the quality of the output image using the given
color palette. However, there are no principle objections to
why the knowledge of the dithering algorithm could not be
taken into account when designing the palette. For one such
attempt, see Ref. [11].

An advantage of separate optimizations is that the color
palette optimization can be mathematically formulated. The
goal is to find a color paletteC which minimizes the pixel-
wise quantization errors. An optimal mapping for a single
pixel can then be defined as:

fopt�xi� � { cj ud�xi ; cj� # d�xi ; ch�} ; ;h� 1;2;…;K: �2�
Furthermore, we assume that the aim is to minimize the
squaredaverage distance between the input colors and
their nearest palette color. An exact formulation of the
color palette optimization can then be defined as the mini-
mization ofmean square error(MSE):

C � f �xi�umin
1
M

X
i

�d�xi ; f �xi��2�
 !( )

: �3�

2.2. Color palette generation

Splitting methods [12–15] begin by initializing the
palette with only one color, which is the centroid (weighted
average) of all input colors. The palette is then iteratively
enlarged by a splitting procedure until it reaches the sizeK.
For example, themedian-cut algorithm[14] splits the color
space into rectangular subregions aiming at cells with an
approximately equal number of pixels. Gervautz and
Purgathofer have proposed a straightforward algorithm
that uses theoctree data structure which is commonly
used in image processing [13]. The algorithm by Wu and
Zhang [15], on the other hand, does not restrict the direction
of the splitting at all, but it performsprincipal component
analysisfor finding the direction of maximal variance.

An opposite, bottom–up approach, starts by initializing a
palette where each input color is represented by its own
color. The palette is then iteratively reduced by merging
two neighboring colors at a time. The process is repeated
until the palette reaches the sizeK. For example,pairwise
nearest neighbor(PNN) [16] uses local optimization and
combines the colors that increase the distortion least. The
method is simple to implement and yields high quality color
palettes, but at the cost of high running time.

Probably the most widely used method is thegeneralized

Lloyd algorithm [17], also referred to as GLA, or LBG
algorithm. It begins with an initial color palette, which is
iteratively improved by following two optimization steps. In
the partition step, the color space regions are updated by
remapping each input color to its nearest palette color. In the
centroid step, the color palette is replaced by the centroids
of the new regions obtained in the partition step. These two
steps are repeated until no further improvement is achieved.

The initial palette for GLA can be generated by any
existing method. A set of randomly chosen input colors is
commonly used.Heckbert’s quantization algorithm[14], on
the other hand, uses the median-cut algorithm for producing
the initial palette, which is then iterated by the GLA. The
use of various splitting techniques has been studied in
Ref. [12].

2.3. Color mapping

Dot-pattern dithering:In dot-pattern dithering the image
is divided into square blocks (e.g. 2× 2) and each block is
processed separately. The average color of the block is
calculated and the pixels are jointly mapped to a combi-
nation of palette colors so that the local color average inside
the block would be preserved [2,3].

Error diffusion: Error diffusion algorithms map each
input pixel to its nearest palette color. The quantization
error is compensated by diffusing its opposite to the
unprocessed adjacent pixels. For instance,Floyd–Steinberg
algorithm [4] processes the image in scan-raster order. The
quantization error is divided into four fractions and their
opposites are added to the neighboring pixels to the current
pixel, see Fig. 4.

The main drawback of error diffusion is that it is not
location invariant and therefore it does not support parallel
processing. The problem can be partially solved by dividing
the image into blocks and processing them separately.
Knuth’sdot diffusion[5] processes the pixels in a predefined
order so that the error is propagated to two pixels far from
the block boundaries.

Ordered dithering: In ordered dithering the image is
divided into squaren × n blocks of fixed size, typically
4 × 4 or 8× 8: The blocks are quantized separately using a
predefinedthreshold matrix. The ordered dither matrix can be
considered as a pseudo-random noise generator. The thresh-
olding is designed for gray-scale images, but the idea can be
generalized to color images as well, as shown by Orchard and
Bouman [6]. The thresholding is performed by finding the
two nearest colors in the color palette, and applying a pseudo-
random thresholding between these two colors.

3. N-Candidate methods

TheN-candidate methods process the image pixelwise in
any order. Each input pixel is quantized separately without
any interaction to the quantization of other pixels. For each
input pixel, several (N) candidate colors are selected from
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Fig. 4. Weighting of the Floyd–Steinberg error diffusion.



the color palette. The output color is chosen among the
candidates by a randomized process that aims at minimizing
the error between the input pixel and theestimated average
of the output color. The quantization error of a single
pixel is not vital as we aim at preserving the local color
averages.

TheN-candidate methods are location invariant since the
quantization of an input pixelxi is independent of the spatial
location of the pixel, and the quantization result of all other
pixels xj. There are two main advantages of the locality.
Firstly, the process can be fully parallelized. Secondly,
one can process an arbitrary part of the image without
effecting the pixels outside the processed part.

The algorithmic structure of theN-candidate methods is
as follows:

alg 1 (N-candidate)
1. for each xi do begin
2.Select N candidate colors Ri � { rk

i u1 # k # N} from C
3.Assign weight wki for each candidate rki so that

P
k wk

i � 1
4. Select random candidate from Ri using the weights wki
5. end

The candidatesrk
i should be chosen so that the input color

xi could be reproduced by a linear combination of the candi-
date colors in a convenient ratio, see Fig. 5. The equality
cannot be guaranteed in general because we use a
randomized process. Instead, we can expect that the esti-
mated color average equals the input color if the candidates
are properly chosen. As a side effect, the process generates
unavoidable random noise, which is inherent in any
dithering process.

The N-candidate methods consist of three subproblems
that must be solved: (1) how many candidate colors are

needed; (2) how are they chosen; and (3) how are they
weighted in the randomizing. These questions will be
considered in the following subsections.

3.1. Selecting the candidate colors

The way the candidates are chosen depends on the chosen
optimization criteria. The following properties should be
considered: (1) local color averages should be preserved;
(2) quantization noise should be minimized; (3) edge
structures should be retained; and (4) false contours should
be prevented. The first property is the main motivation of
most dithering methods. The second criterion, however,
clearly contradicts the main idea of theN-candidate
algorithms. Nevertheless, it should also be kept in mind
when designing the algorithm. The last two properties are
also important, but since the method operates pixelwise,
there is no direct way to model spatial structures of the
image. Instead, these two goals are met indirectly and the
optimization concentrates merely on the first two properties.

A straightforward approach minimizes the distance
between the input pixel and the candidate colors by select-
ing the N closest colors from the color palette [9,18]. We
call this approach theN-closest method. A more sophisti-
cated approach is to select the candidate colors from
different directions around the input color. The aim is to
establish a convex hull from the candidate colors that
surround the input color. In this way, the input color can
be reproduced as a linear combination of the candidates.
Variants of this method are denoted here as theN-convex
methods. The tetrahedron algorithm by Purgathofer and
Gröller [10] is an example of theN-convex methods (see
also Ref. [19]).

We propose next a greedy algorithm for selecting the
candidates for theN-convex methods. The candidates are
chosen one at a time by taking the closest palette color toxi

as the first candidate. The next color is chosen so that the
centroid of the selected candidates is located as close toxi as
possible. The following algorithm describes the search task.
The variablez records the optimal position for the next
candidate to be chosen.

alg 2 (GreedyCandidateSelection(xi))
1. zU xi

2. Ri U B
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Fig. 5. Illustration of 3-candidate dithering. The input pixelx is reproduced
using the colorsc1, c2 andc3.

Fig. 6. Different situations when selecting the candidate colors: (a) The first two candidates are located close to the original color but the third color is also
needed for reproducing the input color; (b) Only one candidate should be chosen since the second candidate is too far from the first color; (c) This example
illustrates how the two candidates should be weighted so that the distance fromx to their centriod would be minimized.



3. for k U 1 to N do begin
4. Find rk

i as the unused palette color closest to z
5. Mark rk

i as used
6. Ri U Ri < rk

i

7. zU z1 �xi 2 rk
i �

8. end
9. return Ri

The greedy algorithm forms a candidate set by a joint
minimization of theN-closest andN-convex criteria. The
average color preservation is the primary goal and it is
achieved if the candidate set forms anN-convex whose
geometric center in the RGB cube matches the input
color. The input color can be reproduced only if it lies inside
the convex hull formed by the candidates. The quantization
noise is minimized as the secondary criterion by always
taking the closest color meeting theN-convex criterion.

3.2. Number of candidates

The question of a proper number of candidate colors has
two aspects. More candidates mean higher quantization
errors but, on the other hand, a very few candidates may
not be sufficient to reproduce the input color. Consider the
2D example in Fig. 6a. The two closest colorsc1 andc2 are
very close to the input colorx but their color average
matches the input color only in the vertical direction. The
third candidatec3 is therefore needed to reproduce the input
color as the linear combination of the candidate colors. In
general,N 1 1 candidates are sufficient to represent any
color in anN-dimensional Euclidean space if the candidates
are properly chosen.

A high number of candidates is theoretically well argued
by theN-convex criterion but it still has some serious draw-
backs in practice. It is sometimes not possible to find three
or more candidates that are close enough to the input color,
see Fig. 6b. If some candidates are chosen far from the input
color, they will rarely be selected in the randomizing. In this
case, the color average matches only in a relatively large
area and smaller parts may be reproduced by a color that has
little to do with the original color. This can also cause severe
quantization noise. The number of colors should therefore
be limited to very few.

Orchard and Bouman have considered ordered dithering
for color images in [6]. If this method is applied to an
arbitrary color palette, it can be seen as a 2-closest method.
Lemström et al. [9] have generalized this to any number of
N by introducing theN-closest method, which they refer to
as theN-best method. Their experiments have shown that
two candidates are usually the best choice for maximizing
the visual quality. The tetrahedron algorithm by Purgathofer
and Gröller [10] generates a 3Ddual Voronoi diagramfor a
given palette. The method connects colors closest to each
other by forming tetrahedrons in the RGB space. The input
colors inside a tetrahedron can be represented by a linear
combination of the vertices of the given tetrahedron. This
method is therefore a 4-convex method. The extreme case

N � 1 should be applied in areas where the color is constant
and well represented by a single palette color.

The above discussion implies that the number of
candidates should be chosen adaptively. Given a maximum
number of candidatesNmax, and an upper limit for the
allowed quantization erroremax, an adaptive variant of the
N-convex method can be constructed as follows. The
distance from the input color to the centroid of the candidate
set is measured and recorded for allN � 1;…;Nmax: The set
minimizing the distance is chosen. In practice, we use the
greedy selection algorithm and select the candidate colors
one at a time. Any candidate whose distance toxi exceeds
emax is discarded, and no more candidates will be
considered. The upper limit is set relative to the quantization
error of the closest color. From experiments we have found
emax� 5 p e1 a good choice.

3.3. Randomizing between the colors

The output color is randomly chosen among the candi-
dates using a weighting function. The weightwi determines
the probability for the candidateri to be chosen as the output
color in the randomizing process. Following from the
N-convex criterion the weights should be assigned so that
the expected color average equals to the input color. If the
input color lies inside the convex hull of the candidate
colors, a unique set of weights can be solved using the
methods of linear algebra. In other cases, the problem is
reduced to finding the nearest point in the border of the
convex hull, which leads to the optimization problem of
finding a set of weightswk

i [ �0;1� so that it would
minimize:

min{d�xi ;
X
�rk

i p wk��u
X
�wk� � 1} : �4�

The result of formula (4) can be rather complex in general.
The exact weighting, however, is not so vital for the visual
quality and therefore we prefer a weighting function that can
be easily computed. We propose the following approximation,
in which the weightwk

i for a candidateck
i is inversely

proportional to its distancedk
i to the input color:

wk � d21
kP�d21

i �
�5�

This proposed weighting function is a feasible solution for
minimizing both theN-convex criterion and the quantization
noise. The further the chosen color is from the input color the
smaller is its weight.

The randomizing itself is both an advantage and dis-
advantage. In comparison to the deterministic processes of
ordered dithering and error diffusion, the randomizing does
not generate any visible block boundaries or undesired
background texture. For smaller palettes, on the other
hand, random appearance may sometimes be visually
disturbing around sharp edges. Randomized dithering can
destroy edge structures that would be easier to recognize if
the dithering resulted in regular background patterns.
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4. Experiments

In the following experiments we use the three test images:
Colored balls, Yacht and Parrots. The first image serves as a
special case with smooth color transitions. The last two
images, on the other hand, are rich in colors; more than
50% of the pixels have a unique color, see Table 1. The
image Yacht contains a large number of small details and
high contrast edges. The image Parrots is smoother but it has
high color saturation. For each image we generate two color
palettes using the standard GLA method [17]. The number
of colors are 16 and 256 (see Fig. 3 for an illustration of a 2D
plotting of the 256 color palette for Parrots).

The following methods are included in the comparisons:

1. 2-closest (2-clo);
2. 2-convex (2-con);
3. N-convex (N-con);
4. Floyd–Steinberg (FLS).

The 2-closestmethod uses two candidates and always
selects the two closest colors. Its alternative is the2-convex
method, which selects the candidates primarily in order to
preserve the local color averages. TheN-convex refers to the
method that selects the number of candidates adaptively
using theN-convex criterion. All methods exclude candi-
dates whose distanceei to the input color exceeds the limit
emax� 5 p e1: FLS refers to the standard Floyd–Steinberg
dithering and it is a natural point of comparison.

Numeric comparison:The behavior of theN-candidate
methods is first studied by comparing how often they select
a different candidate than the closest one. Statistics for the
image Yacht are shown in Table 2. The first candidate is

chosen about 65–75% of the time when using 256 color
palette, and about 82–85% of the time when using 16
color palette. There is not much variation between the
methods. In general, the 2nd color in theN-convex methods
is further than that of the 2-closest method and it is therefore
less frequently chosen because of the weighting scheme. In
theN-convex method, the third candidate is chosen seldom,
and the 4th and 5th very seldom.

Table 2 gives comparative results for the FLS method
also. In principle, the FLS always selects the closest color
but because of the error diffusion, this is not the case in
practice. The FLS chooses the first candidate more often
than theN-candidate methods do. The FLS, however, is
blind to the ordering of the colors and therefore chooses
other candidates also.

A numeric comparison of the distortion caused by the
methods is summarized in Table 3. The quantization error
measures how much noise the dithering adds to the image.
The results show that theN-candidate methods generate
slightly more noise than the FLS on an average. However,
in certain special cases the situation can be the opposite; e.g.
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Table 1
The test images and their statistics

Image Size Pixels Unique colors

Colored balls 568× 564 320352 2028
Yacht 480× 512 245760 150053
Parrots 768× 512 98304 50187

Table 2
The running numbers of the selected candidates for different methods

Yacht, 16 colors Yacht, 256 colors

# 2-clo 2-con N-con FLS # 2-clo 2-con N-con FLS

1 205897 207934 202122 215209 1 177035 185763 161824 201437
83.78% 84.61% 82.24% 87.57% 72.04% 75.59% 65.85% 81.96%

2 39863 37826 35187 26742 2 68725 59997 49350 33084
16.22% 15.39% 14.32% 10.88% 27.96% 24.41% 20.08% 13.46%

3 – – 6058 3452 3 – – 21643 8266
2.47% 1.40% 8.81% 3.36%

4 – – 1844 308 4 – – 9270 2186
0.75% 0.13% 3.77% 0.89%

5 – – 549 46 5 – – 3673 519
0.22% 0.02% 1.49% 0.21%

Table 3
Comparison of pixelwise and blockwise errors of the different methods.
Quantization error refers to the mean square error between the input and
output pixels, whereas the average error corresponds to the mean squared
error between the color averages in every 3× 3 block of the image. The
values are given as PSNR (peak signal-to-noise ratio)

Colored balls Yacht Parrots Colored balls Yacht Parrots

Quantization errors (PSNR),
16 colors

Quantization errors (PSNR),
256 colors

FLS 22.457 21.775 20.949 29.919 30.526 39.655
2-clo 22.820 21.534 20.926 29.554 30.245 39.200
2-con 22.722 21.454 20.855 29.318 30.091 39.011
N-con 22.615 21.126 20.615 28.630 29.531 38.592

Average errors (PSNR),
16 colors

Average errors (PSNR),
256 colors

FLS 28.455 26.312 24.862 47.949 36.604 35.919
2-clo 27.299 25.565 24.044 47.758 35.744 35.181
2-con 27.343 25.789 24.378 47.676 35.188 35.658
N-con 27.402 25.727 24.398 47.441 35.866 35.478



Colored balls with 16 colors, see Fig. 7. The size of the color
palette, on the other hand, has by far much greater impact on
the quality than the choice between the dithering methods.

The preservation of the color averages is probably more
important than the pixelwise differences. The differences
between the FLS and theN-convex method is about
0.8 dB in favor to FLS, see Table 3. The slight advantage
of the FLS method originates from the fact that it compen-
sates the quantization error immediately to the local neigh-
borhood. TheN-candidate methods, on the other hand, are
location invariant and therefore it cannot utilize the actual
quantization result of the previous pixels. The 2-convex
method is slightly better than the 2-closest method but the
difference is rather small. The use of more candidates is not
supported by the experiments as theN-convex method is not
capable of improving over the 2-convex method.

Visual comparison:Overall, the error diffusion and the
N-convex methods are of the same visual quality in the case
of 256 color palette, see Fig. 8. The images can be differ-
entiated by the type of the dithering noise. TheN-convex
methods generate noise with random appearance whereas
the distortion generated by the FLS has more regular
patterns. This becomes more observable when the size of
the color palette is reduced to 16 colors. The images
dithered by the 2-convex and the 2-closest methods (not
shown here) are of the same visual quality and do not differ
from that of theN-convex method.

Although the dithering texture of the FLS method is
disturbing, it is in some case also useful. In the case of 16
colors, the edges in the image can be recognized easier in
the image dithered by the FLS because of the regularity of
the dithering noise. The same edge structures are harder to
detect in the images dithered by theN-candidate methods
because of their randomness, see Fig. 9a and b. This
problem could be solved by using a location dependent
pseudo-random generator as experimented in Fig. 9c and
d. Using this modification, the algorithm would preserve
its parallel nature but it would not be location invariant
anymore. It is noted that the problem of the distorted edge
structures is not visible with 256 colors and the modification
is therefore not necessary in this case.

The upper limit for the quantization error was found to be
important in theN-candidate methods. For some input
pixels there are only one candidate that is close enough. If
the other candidates are not excluded they will occasionally
be selected and cause disturbing artifacts in the image in the
form of isolated and random noise pixels.

5. Conclusions

A new class of dithering methods is introduced. The
methods are denoted asN-candidate methods since they
use several candidate colors for each input pixel. The rando-
mizing ensures that the method does not produce any
regular patterns in the output image. TheN-candidate
methods are location invariant and fully support parallel
implementation. The proposed approach therefore allows
more efficient dithering than error diffusion but at the cost
of a slightly lower image quality. The difference is mostly
unnoticeable in the case of 256 colors but can be disturbing
when the number of available colors is limited. The method
is therefore not recommended for printing purposes.
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Fig. 7. Colored balls. To the left is the result of the error diffusion, and to the
right N-convex algorithm (16 colors).

Fig. 8. At the top from left to right: Parrots 16 colors (a) FLS; (b)N-convex.
Illustration of the error type produce by FLS andN-convex method. The
detailed images, from left right: (a) FLS,K � 256; (b) N-convex;K � 256;
(c) FLS,K � 16; and (d)N-convex,K � 16:

Fig. 9. At the top from left to right: Yachts 16 colors (a) FLS; (b) 2-convex.
In the detailed images the effect of the randomizing versus pseudo-rando-
mizing in the case of 16 colors are illustrated. From left to right: (a) the
FLS; (b) the 2-convex method with randomizing; (c) the 2-convex method
with a 1D pseudo-random generator; (d) the 2-convex method with a 2D
pseudo-random generator.



On the basis of our experiments we conclude that the
choice of the parameters is not crucial for the performance
of the algorithm. There are no noticeable differences in
quality between the images produced by theN-closest and
theN-convex criteria. The number of candidates can also be
limited to two without any side-effects. However, it was
found to be important to set a upper limit for the quantiza-
tion error, and in this way also exclude the second candidate
when its distance is much larger than that of the first candi-
date. Otherwise the dithering would produce disturbing high
frequency noise.
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