
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/316723527

Evolution Prediction and Process Support of OSS Studies: A Systematic

Mapping

Article · May 2017

DOI: 10.1007/s13369-017-2556-5

CITATIONS

0
READS

30

2 authors:

Some of the authors of this publication are also working on these related projects:

Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region View project

Open Source Software View project

Ghulam Rasool

COMSATS University Islamabad

32 PUBLICATIONS 166 CITATIONS

SEE PROFILE

Nancy Fazal

University of Eastern Finland

1 PUBLICATION 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ghulam Rasool on 04 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/316723527_Evolution_Prediction_and_Process_Support_of_OSS_Studies_A_Systematic_Mapping?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/316723527_Evolution_Prediction_and_Process_Support_of_OSS_Studies_A_Systematic_Mapping?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Considering-the-effect-of-biomass-energy-consumption-on-economic-growth-Fresh-evidence-from-BRICS-region?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Open-Source-Software-6?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ghulam_Rasool5?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ghulam_Rasool5?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/COMSATS_University_Islamabad?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ghulam_Rasool5?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nancy_Fazal2?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nancy_Fazal2?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Joensuu?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nancy_Fazal2?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ghulam_Rasool5?enrichId=rgreq-6f2b6107e1f73797e60abd95749ca901-XXX&enrichSource=Y292ZXJQYWdlOzMxNjcyMzUyNztBUzo2MzM2NTMzMDY2MDE0NzNAMTUyODA4NjEyOTI1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Arab J Sci Eng (2017) 42:3465–3502
DOI 10.1007/s13369-017-2556-5

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Evolution Prediction and Process Support of OSS Studies:
A Systematic Mapping

Ghulam Rasool1 · Nancy Fazal1

Received: 3 November 2016 / Accepted: 11 April 2017 / Published online: 4 May 2017
© King Fahd University of Petroleum & Minerals 2017

Abstract Open source software (OSS) evolution is an
important research domain, and it is continuously getting
more and more attention of researchers. A large number
of studies are published on different aspects of OSS evo-
lution. Different metrics, models, processes and tools are
presented for predicting the evolution of OSS studies. These
studies foster researchers for contemporary and comprehen-
sive review of literature on OSS evolution prediction. We
present a systematic mapping that covers two contexts of
OSS evolution studies conducted so far, i.e., OSS evolution
prediction and OSS evolution process support. We selected
98 primary studies from a large dataset that includes 56 con-
ference, 35 journal and 7 workshop papers. The major focus
of this systematic mapping is to study and analyze metrics,
models, methods and tools used for OSS evolution prediction
and evolution process support.We identified 20 different cat-
egories of metrics used by OSS evolution studies and results
show that SLOC metric is largely used. We found 13 differ-
ent models applied to different areas of evolution prediction
and auto-regressive integrated moving average models are
largely used by researchers. Furthermore, we report 13 dif-
ferent approaches/methods/tools in existing literature for the
evolution process support that address different aspects of
evolution.

Keywords OSS · Open source · FLOSS · Systematic
mapping · Evolution prediction · OSS evolution

B Ghulam Rasool
grasool@ciitlahore.edu.pk

1 Department of Computer Science, COMSATS Institute of
Information Technology, Lahore, Pakistan

1 Introduction

“Software Evolution” is the phenomena of software change
over years and releases, since inception (concept formation)
to the decommissioning of a software system [1]. Software
continues to evolve after shipment of its first version, and
it continuously evolves because requirements emerge when
it is used and errors are fixed. Therefore, a key issue that
organizations face relates to managing and implementing
changes to their software systems as they have huge invest-
ments on their key assets. According to Ratzinger et al.
[43], improving software maintenance and development is
time consuming and costly task, with direct financial impact.
Large andwell-knowncompanies such asMicrosoft and IBM
reported multi-billion dollar expenses on the development of
software applications in every single year. Many estimates
show that the software evolution and its maintenance cost is
at least 50–90% or even more than that of overall cost of a
software system [24,25]. In order to reduce cost, managers
and developers should take into consideration the driving
factors of software evolution. Active steps should be taken to
make transformations easy and ensuring that software sys-
tems do not crumble for successful evolution [3].

Lehman and his colleagues presented well-known stud-
ies on software evolution 35 years ago in the mid-1970s.
These studies have resulted in eight laws of software evo-
lution. These laws were the result of empirical studies of
wide-scale software systems evolution [6]. Laws of soft-
ware evolution were actually developed in the perspective
of closed source software systems, e.g., software applica-
tions that were running on IBM’sOS/360.1 Large andmature
open source projects came later. With the evolution of open

1 http://wiki.cs.pdx.edu/cs562-winter2013/schedule/CS562_Shaun_
Brandt_slides.pdf.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-017-2556-5&domain=pdf
http://wiki.cs.pdx.edu/cs562-winter2013/schedule/CS562_Shaun_Brandt_slides.pdf
http://wiki.cs.pdx.edu/cs562-winter2013/schedule/CS562_Shaun_Brandt_slides.pdf

3466 Arab J Sci Eng (2017) 42:3465–3502

source systems, researchers got access to an extensive num-
ber of continually evolving software applications for research
and it led to a way of new concerns in empirical studies of
software system evolution [1]. Many commercial products
are developed using open source software components, and
the trend of adopting open source components is escalating.
According to a survey report, Apache is used by more than
58% web servers [26]. Linux is the best example of open
source software that shattered monopoly of Microsoft. Nine
out of 10 super computers of world run Linux.2 The promi-
nent companies such as Google and large public bodies, like
the French Ministry of Finance, base their information tech-
nology infrastructures on FOSS components [65]. It is also
reported through the empirical data of 1000 US-fortunate
companies that adaption of OSS components by large US
companies is significant and it is continuously increasing
[2]. This has lead to a renewed interest in the empirical study
of software evolution [1].

To espouse an OSS component effectively, organizations
need knowledge of the project development, composition
and possible risks associated with its use, due to its uncon-
ventional and complex development process and evolution
history. This, in turn, calls for building reliable prediction
models and methods supporting error prediction, measur-
ing maintenance effort, predicting refactoring, size, quality
attributes, change propagation and cost of OSS projects [47].
These prediction methods and models help software project
managers to direct their resources into the areas with the
highest impact on the bottom line, supporting rational and
timely resource allocation to the evolution process. It also
enables adequate process control in maintenance activities
which guarantee that software does not decay and ensures
successful evolution. Evolution process support is also highly
desirable because managing the software evolution for large
open source software applications is a major challenge.
Explicit project planning, lack of documentation, distributed
development teams, frequent turnover of volunteers make
open source software applications hard to maintain [61].
A large number of prediction models, methods, tools and
metrics are presented by researchers in last two decades for
evolution prediction and evolution process support of OSS
studies that demand systematic mapping to categorize and
summarize different aspects of OSS studies.

Open Source Software (OSS) evolution is a significant
research domain, and it is continuously gaining momentum
over years among research community [5,6]. The ability to
evolve software rapidly and reliably is a major challenge for
software engineering and software process managers also
need to be able to understand the driving factors of evolu-

2 https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-
95c3-46df-8a26b7efd8ee4b57/entry/attractions_and_challenges_of_
open_source15?lang=en.

tion. There have been a large number of studies published
on OSS evolution because with the emergence of the OSS
paradigm, researchers are providedwith thewealth of data for
open source software evolution analysis. These efforts have
resulted in an ample set of research results for which there
is a need for up-to-date comprehensive overviews and litera-
ture surveys that summarize and structure the existing body
of knowledge. To the best of our knowledge, there exist four
SLRs (Systematic Literature Reviews) [5,6,20,21] address-
ing OSS evolution studies in different contexts. These SLRs
are very specific and focus on limited aspects of open source
evolution studies.

The systematic mapping study presented in this paper is
different from previous SLRs based on scope, research ques-
tions, timeframe and comprehensiveness. The scope of our
study is generic as compared with previous SLRs that cover
very specific topics on OSS evolution studies. For example,
SLRs [5,20] are from same group of authors and focus of
authors is to identify and structure research on open source
software evolution. The authors analyzed different metrics,
methods and datasets used for the evolution of open source
projects. SLR [6] is a conference paper with 41 primary stud-
ies. The authors classify research on open source projects
into four categories: software trends and patterns, evolution
process support, evolvability characteristics, and examining
OSS at software architecture level. They list different met-
rics used for the evolution of OSS studies but they do not
discuss relationship between thesemetrics and evolution fea-
tures of OSS studies. The scope of SLR [21] is limited to
fault prediction studies with specific focus on metrics, meth-
ods and datasets. The authors conclude that method level
metrics and machine learning algorithms are largely used by
the researchers for fault prediction of open source projects.
Our systematic mapping study is generic in scope and cover
evolution prediction and evolution process support for open
source projects. Secondly, we focus on two generic research
questions regarding OSS evolution, i.e., OSS evolution pre-
diction and OSS evolution process support. The evolution
process support is not discussed by previous SLRs. The com-
parison of research questions of our systematicmappingwith
research questions of the state-of-the-art SLRs is presented in
Sect. 2. Thirdly, the timeframe for our systematic mapping
is most contemporary which include studies from 2000 to
2015. Fourthly, all previous SLRs summarize/discuss met-
rics used for evolution prediction but they did not discuss
relationship between these metrics and evolutionary features
of OSS projects. Finally, we applied automated search and
snowballing technique to avoid chances of missing relevant
studies. SLRs [6,20,21] applied only automated search using
different keywords to select primary studies. The authors
in [6] also applied automated search method, and then they
manually verified the studies selected during the automated
search.

123

https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-95c3-46df-8a26b7efd8ee4b57/entry/attractions_and_challenges_of_open_source15?lang=en
https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-95c3-46df-8a26b7efd8ee4b57/entry/attractions_and_challenges_of_open_source15?lang=en
https://www.ibm.com/developerworks/community/blogs/6e6f6d1b-95c3-46df-8a26b7efd8ee4b57/entry/attractions_and_challenges_of_open_source15?lang=en

Arab J Sci Eng (2017) 42:3465–3502 3467

The paper is organized as: Related work is discussed in
Sect. 2. The methodology adopted for systematic mapping is
presented in Sect. 3. Results derived from study are presented
and discussed in Sect. 4. Validity threats are discussed in
Sect. 5. Section 6 concludes the whole study and suggests
future outline.

2 Related Work

Initially, the study of software evolution was pioneered by
Lehman and Belady on the releases of IBM OS/360 (oper-
ating system) [9]. It opened the way for many other works
[10,32], where Lehman’s laws of software evolution were
devised extended, and modified. A comprehensive system-
atic review is presented on evolutions of Lehman’s laws of
software evolution [22]. There are controversial studies pre-
sented on Leman’s laws of software evolution by different
researchers in last 15 years. The major focus of authors in
this review is to highlight how and when the laws and field
of software evolution is evolved. Moreover, the authors also
discuss the validity of laws of software evolution and how
they are perceived by the research community. For the region
of OSS systems, numerous works explicitly deal with the
theme of software evolution. Godfrey and Tu [32] analyzed
the most well-known Linux operating system kernel. They
measured its size in LOC (lines of code) since its release 1.0
and found that growth pattern follows super-linear rate. These
results contradict the theory of software evolution, [23]which
implies that system growth decline can be best modeled by
using a linear or an inverse square rate. On the other side,
Paulson et al. [34] make use of a linear approximation, and
results find no difference in the growth pattern of OSS and
proprietary software packages. They further analyzed three
well-known OSS (Linux, Apache and GCC) and three pro-
prietary systems. Robles et al. [13] reproduced the findings
of Godfrey and Tu [32] using new datasets but they found
similar results.

The first large study on OSS evolution presented by
Capiluppi et al. [14] involved 406 projects. The authors
implied more focus on 12 alive projects out of the set of 406
projects. They observed that 97% of projects do not change
size or have been changed for less than 1% over 6 months.
They also realized that number of modules grows, but stable
value is found for evolving size in large and medium size of
projects.

Robles-Martinez et al. [15] studied and analyzed the evo-
lution of MONO (an open source implementation of .Net
framework). They applied a methodology to their work on
the basis of the utilization of datasets freely available in the
form of the Concurrent Versions System (CVS) [16], source
code control system, commits, authorship and size inLines of
Code (LOC). The findings of the authors suggest relatively

different growth rate for studied modules, but generaliza-
tion of their results for other models requires investigation.
Nakakoji et al. [33] studied the OSS projects evolution and
took an open view in further inspecting the evolution of
related communities. By performing experiments on four
case studies, they associated system evolution to the commu-
nity evolution on the hierarchical basis of different versions
of the system.They categorize the projects into three different
types. The author in [7] presented a tremendous discussion
on OSS evolution, with an evaluation of closed and open
source project studies. On the basis of his analysis, he fur-
ther identifies that the laws of software evolution not hold
for super-linear growth in the software size. Further, he also
emphasizes the significance of the accessibility of data on
OSS projects that provide great aid for conducting further
studies on software engineering and software evolution. An
empirical study on the evolution of seven well-known OSS
projects was performed by Guowu Xie et al. [3]. They inves-
tigate Lehman’s evolution laws and OSS evolution facets
beyond the framework of Lehman’s law. Further, Young Lee
et al. [18] also reported an empirical investigation of the evo-
lution of JFreeChart, an OSS system. They concluded that
the evolution of JFreeChart shows consistency with 1st, 2nd
and 6th laws of software evolution proposed by Lehman.
Another finding [13] also analyzed a number of OSS projects
including Linux Kernel. Results showed that the exceptional
occurrence of super-linearity, a linear growth pattern, is being
followed in many systems. The results obtained were found
different from the ones that exist in traditional studies of
software evolution. Smith et al. [28] presented a study based
on data from 25 open source projects, and they concluded
that there is a relationship between size and complexity for
long-time sustainability of open source software projects.
Skoulis et al. [29] presented a study on database evolution
of open source software and compared their findings with
Lehman’s Law of software evolution. The authors conclude
that open source databases evolve over time with long period
of calmness interrupted by different types of maintenance
and a lack of complexity increase. Cosentino et al. [4] pre-
sented a study to highlight status of research on GitHub. The
authors selected 93 papers and came up with a number of
findings but the study is limited with only GitHub.

Summarizing the ample of research results, a systematic
review [6] on OSS evolution studies analyzed 41 papers
published till 2009 and classified the reviewed studies into
four categories, i.e., OSS evolution trends and patterns, OSS
evolution process support, evolvability characteristics and
examining OSS evolution at software architecture level. The
authors focused on the metrics that are used for OSS evo-
lution measurement and analysis. Regarding the category of
software trends and patterns, most papers focus on using dif-
ferent metrics to analyze OSS evolution over time. A few
papers looked into the economic perspective. Regarding the

123

3468 Arab J Sci Eng (2017) 42:3465–3502

category of evolution process support, different aspects that
appear to have an impact on the OSS evolution process are
covered. With the category of evolvability characteristics,
determinism, understandability, modularity and complexity
are addressed in the included studies. The authors found
that minimum attention is paid to architecture evolution of
software systems. Furthermore, the findings of another sys-
tematic review published in 2013[5] aimed at identification
and structuring of research on the evolution of OSS projects.
A set of 101 articles (21 journal and 80 conference arti-
cles) were selected for this review that address the facets,
dimensions, research approaches, datasets and tools for met-
ric data collection of OSS projects. Besides that, authors also
addressed the portfolio of OSS projects analyzed for evo-
lution studies, concerns about OSS evolution study trends,
contributions made to analyze the evolution of software, evo-
lution of organization or community, interdependency in the
evolution of the software and organization and validation of
research approaches and results of the articles.

To the best of our knowledge, there has not been any study
conducted toward OSS evolutionary aspects identified in [6]
except evolution prediction. The authors in [20] present a
systematic literature review on open source prediction meth-
ods by focusing on both code and community dimension. The
SLR focuses on four key research questions: focus of studies,
datasets used for evolution prediction, methods used for pre-
diction and metrics used for evolution prediction. According
to [20], evolution prediction has been identified as the most
focused research area. Finally, a systematic review on soft-
ware fault prediction studies based on 74 primary studies
is presented by authors in [21]. The focus of SLR was to
evaluate method level metrics used for fault prediction. The
authors concluded that method level metrics and machine
learning algorithms are widely used by researchers for fault
prediction. They also found that most papers on software
fault prediction are published in journal of Transactions on
software engineering, software quality journal, journal of
systems and software and empirical software engineering
journal. The summarized information about four discussed
SLRs and comparison with our systematic mapping study is
presented in Table 1.

3 Mapping Methodology

A systematic mapping is a method of identifying, categoriz-
ing and summarizing all available research results relevant to
a particular research area [8,19,27]. Summarizing the state
of the art, identifying the research gaps and providing an
overviewon a certain area is very helpful for existing and new
researchers (e.g., MPhil and PhD students). Systematic map-
ping studies focus on generic and coarser grained overview
of published results as compared to SLRs that focus on spe-

cific research questions and detailed analysis of results. A
comparison between systemic maps and systemic reviews is
presented by Petersen et al. [8]. The recent guidelines for
systematic maps are also presented by Petersen et al. [27].

Figure 1 depicts the mapping process followed by us, and
it is based on the guidelines developed by [8,17,27,30]. We
start by developing the study protocol, which once accepted
is followed by identifying research questions, search strategy,
selection of relevant studies. The selected studies are used to
extract, synthesize, map and report results.

3.1 Study Protocol

OSS evolution is an imperative research realm, and it is con-
tinuously getting more and more attention of researchers. A
large number of published studies on OSS evolution resulted
in an ample set of research results for which there is a need
to summarize and structure the existing body of knowledge.

3.2 Research Questions

It is essential to formulate research questions for the system-
atic mapping study. Table 2 presents the research questions,
description of research questions and motivation.

3.3 Search Strategy

The main reason for developing a search strategy is to go
through a systematic process of finding studies which are
related to research questions in the selected searched venues.
Moreover, identifying primary studies should be unbiased
[34]. We applied automated and manual search strategy to
ensure that no studies related to our research questions are
missed. The following steps are performed in search strategy:

1. Select search string
2. Select search venues
3. Define criteria to include or exclude a study
4. Define quality assessment criteria
5. Data extraction

3.4 Search String

Keywords are identified and noted based on some trial
searches. The main reason for doing this trial search is due to
the large number of keywords and terminologies used in soft-
ware engineering and OSS research. We identified keywords
that are relevant to the current research when formulating the
search string. We also analyzed keywords used by previous
SLRs for the selection of keywords. The time span of our
research is 2000–2015. The search terms used for construct-
ing search strings are: “open source software” OR “open

123

Arab J Sci Eng (2017) 42:3465–3502 3469

Table 1 Comparative overview of features of existing SLRs

References Time- span Primary studies NCPS Research questions Focus

[6] NM till 2009 41 26 NM The aim of SLR is to provide
overview of studies on open
source software evolution
with respect to growth,
complexity and modularity
metrics

[5] Jan 2000–Jan 2013 101 25 Q1: Which facets of OSS projects
were explored and what
statistical distribution the articles
have in those facets?

The focus of SLR is to identify
and structure research on
evolution of OSS projects

Q2: What are the dimensions of
OSS projects explored under
each study facet?

Q3: What are the research
approaches followed in the
studies?

Q4: What are the datasets or data
sources of OSS projects mostly
exploited in evolution studies?

Q5: What metric suits are
evaluated and what tools are used
for metric data collection?

Q6: What is the portfolio of
projects analyzed for evolution
studies and what are their
domains?

Q7: Does the concern on “OSS
evolution study” follow an
increasing trend?

Q8: What contributions are made
in literature to analyze the
evolution of software?

Q9: What contributions are made
in literature to analyze the
evolution of organization or
community?

Q10: What contributions are made
in literature to analyze the
interdependency?

Q11: How are the research
approaches and results of the
articles typically validated?

[20] 1980–Jun 2011 36 12 Q1: What are the main
focuses/purpose of the study?

The focus of SLR is to analyze
datasets, methods and metrics
used for open source software
evolution

Q2: What are the datasets of the
OSS projects exploited in
prediction?

Q3:Which kind of methods are
used in predicting OSS projects?

Q4:Which kind of metrics are used
in predicting OSS projects?

123

3470 Arab J Sci Eng (2017) 42:3465–3502

Table 1 continued

References Time- span Primary studies NCPS Research questions Focus

[21] 1990–2007 74 4 Q1: Which journal is the dominant
software fault prediction journal?

The focus of SLR was to
classify studies with respect
to metrics, methods, and
datasets that have been used
in fault prediction papers

Q2: What kind of datasets are the
most used for fault prediction?

Q3: What kind of datasets are the
most used for fault prediction
after year 2005?

Q4: What kind of methods are the
most used for fault prediction?

Q5: What kind of methods are the
most used for fault prediction
after year 2005?

Q6: What kind of metrics are the
most used for fault prediction?

Q7: What kind of metrics are the
most used for fault prediction
after year 2005?

Q8: What is the percentage of
publications published after year
2000?

Our Mapping Study 2000–2015 98 – Q1: How has OSS evolution
Prediction been addressed in the
existing literature and applied in
practice?

The focus of study is to map
state-of-the-art research on
OSS studies to metrics,
methods, models, tools and
processes used for evolution
prediction and evolution
process support of OSS
studies

Q2: What is the state of the art in
OSS evolution research to
support OSS evolution process
support?

NM not mentioned, NCPS number of primary studies common with our Study

Study
Protocol

Research
Questions

Search Strategy(Search
String, Search venues)

Selection of Relevant
Studies(Inclusion/Exclusion

, Quality Assessment)

Data Extraction,
Synthesis and Map

Identification of
Need

Scope of
Systematic Map

Identification
of all Papers

Primary Studies Report Results

Fig. 1 Mapping process

source” OR “Libre software” OR “OSS” OR “F/OSS” OR
“FLOSS” AND “Evolution” AND “Prediction”.

3.5 Searched Venues

The below-mentioned digital libraries are selected as search
venues:

1. IEEE Xplore
2. ACM
3. Science Direct
4. Springer Link

5. ISI Web of Science
6. International Conference onOpen Source Systems (2010

–2015)
7. Wiley Online Library (Journal of Software : Evolution

and Process 2000–2015)

Three largest and most commonly used databases in the soft-
ware engineering field are IEEE, ACM Digital Library and
ISI Web of Knowledge. After referencing existing SLRs, we
extended the search venues with Springer Link and Science
Direct in order to get more reliable studies. Unlike exist-
ing SLRs, we have also included International Conference

123

Arab J Sci Eng (2017) 42:3465–3502 3471

Table 2 Research questions

Research questions Description and motivation

RQ1: How has OSS evolution
Prediction been addressed in
the existing literature and
applied in practice?

The OSS history data over time
can be utilized to predict its
evolution [6]. It is useful for
organizations and software
project managers interested
for planning, effort
estimation, predicting quality
and stability, supporting
rational and timely resource
allocation to the evolution
prediction metrics, models
and tools

RQ2: What is the state of the
art in OSS evolution research
to support OSS evolution
process support?

Free and Open Source Software
(FOSS) systems are facing the
issues of community-centric
management such as it is not
only driven by differences of
current capability and
environment demands but it
also depends on security
issues and frequent releases
of components. Evolution
management of these systems
is crucial for the
organizations. OSS
community has proposed
number of tools and methods
to support the up gradation of
these systems for which there
is a need to summarize the
existing research results and
identify future directions

on Open Source Systems (ICOSS) and “Journal of Soft-
ware: Evolution and Process” as they are explicitly dedicated
toward Evolution studies. Since research results are indexed
and cited in these databases, we opted to search in these
databases by using a well-formulated search string.

Conducting the mapping study involves searching the
identified digital libraries and databases using the search
string. We used a reference management tool known as
“Zotero” in which papers were automatically downloaded
from databases into the Zotero3 library. This step was
automatic for each of the databases except “International
Conference on Open Source Systems” (ICOSS) for which
papers were manually downloaded and imported into the
Zotero library. It resulted in a total of 1559 papers. After
removingduplicates, 1124paperswere left.We reviewed title
and abstract of each paper and applied inclusion/exclusion
criteria. This step reduced the number of papers to 241 from
which further 161 papers were discarded after full text scan.
We searched out 86 papers after this step. We also applied
snowballing method on the selected primary studies and

3 https://www.zotero.org.

Table 3 Initial hits

Searched venues Matches found

IEEE Xplore 313 + 18 = 331

ACM 49 + 6 = 55

Springer link 57

Science direct 82

ISI Web of science 725

ICOSS 108

Journal of Software: Evolution and Process 162

IEEE Transactions on Software Engineering 30

Others 9

Total: 1559

found 12 more relevant papers. In total, 98 papers includ-
ing 35 journal, 56 conference and 7 workshop papers were
selected for data extraction. The reported primary studies are
shown in Appendix A. Table 3 depicts the initial matches
found from the searched venues. Figure 2 explains selection
of primary studies and stages involved in retrieving the stud-
ies.

3.6 Inclusion/Exclusion and Scope Determination

The inclusion and exclusion criteria are used to identify the
studies that are relevant to the research questions. In this
study, we included the studies published between 2000 and
2015. The following are the criteria for including a study.

The following criteria is used to select a paper:

1. Articles published between 2000 and 2015.
2. Is the article written in English?
3. Is the article available in full text?
4. Is the article peer reviewed?
5. The article presents/discusses/analyses metrics, models,

process and tools used for evolution prediction of OSS
studies (RQ1).

6. The article discusses OSS evolution process support
(RQ2).

Articles in the controversial corners of Journals, Edito-
rials, Workshops, Book chapters, Summaries of tutorials,
Panels and Poster Sessions are excluded. We also excluded
articles that are published as short papers on tools used for
the evolution of open source projects.

The study selection criteria for reviewing primary studies
are based on the selection criteria. The inclusion /exclusion
criteria are used to select the articles that are more related to
this study. This criterion was defined in order to get unique
articles that are related to the study. After reading the title
and abstract, primary studies are selected. When the deci-

123

https://www.zotero.org

3472 Arab J Sci Eng (2017) 42:3465–3502

86 Papers

IEEE, ACM, Science Direct,
Springer Link, ISI Web of

Knowledge, ICOSS, Journal
of Software: Evolution and

Process

Imported Reference to Zotero
Library 1559

1124 Papers

241Papers

Discarded Duplicates
435

Discarded based on title
and Abstract 883

12 papers selected by
Snowball Technique

98 Papers selected for review

Discarded based on Full
Text 155

Fig. 2 Selection of primary studies

sion cannot be made after reading the title and abstract,
the introduction and conclusion are further reviewed for the
inclusion/exclusion purpose.

3.7 Study Quality Assessment

In addition to general inclusion/exclusion criteria, it is gener-
ally considered important to assess the “quality” of primary
studies. It is a means of investigating whether quality dif-
ferences provide an explanation for differences in the study
results [11]. We used the method of checklist for assessing
the quality of primary studies. The questions for checklist
are formulated based on our twomain research questions and
data extracted through data extraction sheet given in Table 4.
However, questions of checklist are developed ad hoc by the
authors of this paper and their validation may be criticized.
The checklist questions are given blow:

1. Q1:Does the article specifically considerOSSEvolution?
2. Q2: Does the article consider Evolution Prediction?
3. Q3:Does the article consider Evolution Process Support?

Table 4 Attributes for data
extraction sheet

Attribute Sub attribute Brief description

General Article type, Source, Year of Pub. Conference, Journal, Book

Article Name, Keywords, Author Digital Library, Journal,
Conferences

Focus of the study Software Evolution OSS evolution prediction, OSS
evolution process support

OSS projects studied OSS projects List of OSS projects studied

Domains Application domain of OSS
projects

Methodology Methods Concrete methods applied

Models Type of metrics used

Tools used Existing tools, algorithms used
for study

Tools implemented Tools implemented for the
study

Data sources Source code CVS/SVN, Code base

Contributions Bug tracking systems, Change
log

Communication Chat history, mailing list
archive,

External sources Ohloh, Sourceforge, github

Evolutionary parameters studied size, defects, refactoring etc.

Metrics studied Types of metrics SLOC, Class metrics, Graphic
metrics

Results Measures of evolution Qualitative, Quantitative

Prediction classification

Summary Other findings

Constraints/Limitations

Validation Process Validation process for study

123

Arab J Sci Eng (2017) 42:3465–3502 3473

4. Q4: Are the research aims clearly specified?
5. Q5: Are the findings of study credible?

We define the scale of Yes, No and Partial to answer above
checklist questions.We assign a score of “1”, “0” and “0.5” to
each question. “0.5” scale is assigned to a particular question
based on our judgment after full text scan of an article. The
minimum score for selection of a primary study is 3 and
above.

3.8 Data Extraction and Synthesis

The data extraction step consists of examining closely the
contributions and extracting all the relevant data required to
answer the research questions. A preliminary data extraction
sheet in Excel is used for this purpose. Prior to the start of the
data extraction process, we performed a pilot data extraction
on a set of randomly selected 10 papers to identify and char-
acterize the set of attributes. Second, this list of attributes was
refined further into a number of specific sub-attributes to get
a precise description of each of the general attributes and fine
tune the findings on the research questions to increase their
reusability. For example, sub-attributes “methods”, “models”
and “tools” are intuitively generalized to methodology.

The results obtained from the primary studies and extra-
cted data are inserted into the data extraction sheet. This data
extraction sheet explains how the data are extracted from
the primary studies and give us a clear description and rela-
tion of the data to the research questions. The final attribute
framework for data extraction sheet is shown in Table 4. The
extracted data are analyzed for consistency. Data attributes
are mapped with the research questions and quality assess-
ment checklist.

4 Results and Discussion

We present and discuss results extracted from selected pri-
mary studies in this section.

4.1 Overview of Studies

The overview of primary studies based on different aspects
related to OSS evolution prediction and process support
obtained from the data extraction sheet is presented in this
subsection.

4.1.1 Publication Venues

We map selected primary studies with publication venues
as shown in Table 5. It is clear from results that maximum
studies on open source software evolution are published in
the journal of Transactions in Software Engineering, Journal

of Software Evolution and Process and International Confer-
ence on Software Maintenance.

4.1.2 Trend of Publication Year

The trend of publication year for primary studies reported in
this study is presented in Table 6. We can see that maximum
studies on evolution prediction are published in years 2007,
2014 and2015. It also reflects that trendof researchers onpre-
dicting different aspects of open source projects is escalating
in coming years. Similarly, maximum studies on evolution
process support are published in the year 2009.

4.1.3 Mapping of Keywords

Mapping of keywords with primary studies is common
feature for systematicmapping studies. Keywords give infor-
mation about relevancy of a research paper with the main
topic covered. We mapped major keywords used by different
authors of primary studies in Table 7. These keywords may
be used by researchers to define search strings that are used
to search articles related with the main topic. Keywords may
also be used to identify subtopics of open source evolution
studies. We can see from Table 7 that keywords ”software
evolution”, “open source” and “defect prediction” are used
bymaximum primary studies.Wewant to clarify that authors
of some papers do not list keywords, and we used keywords
from titles of such papers.

4.1.4 Trend of Authors

Ranking of researchers is also common practice while per-
forming systematic mapping studies. Table 8 shows the
authors with more than two publications from our selected
primary studies. The common publications from same group
of authors are counted separately in Table 8.

4.1.5 Evolution Prediction Aspects

We present mapping of primary studies with our research
questions as shown in Table 9. We found that 80 papers from
primary studies focus on evolution prediction and 18 papers
focus on evolution process support.

4.1.6 Experimental Case Studies

We analyzed open source projects that are selected by
researchers as case studies for evolution prediction and evo-
lution process support. Out of 98 primary studies, Linux,
Apache, Mozilla and Eclipse open source projects are com-
monly selected by 15, 15, 13 and 8 studies as shown in
Table 10. The major motivation for the selection of open
source case studies is their free availability and continuous

123

3474 Arab J Sci Eng (2017) 42:3465–3502

Table 5 Mapping of publication venues

Journal/Conference Papers Journal/Conference Papers

Journal (TSE) [34,84,86–94,103] Conference (ASE) [70]

Journal (Soft Evo Pro) [39,41,54,67–69,122–124] Conference (MSCR) [71]

Conference (ICSM) [32,35,42,61–63,108,115,116] Conference (MSR) [73,120,121,126]

Conference (ICSE) [40,60,76,82,83] Conference (SEAA) [74]

Conference (CSMR) [36,38,49,59,109,112] Conference (WCE) [75]

Conference (SEN) [37,114] Conference (PMSE) [77]

Journal (IEE Software) [105,106] Journal (JIPS) [78]

Conference (ESME) [43,72,113] Conference (WASET) [79]

Journal (JSS) [44,99] Conference (MSR) [80]

Journal (IST) [45,65] Conference (SSM) [81]

Workshop (IWMSR) [48,53] Conference (ESEM) [85]

Workshop (IWPSE) [33,107,110,129] Conference (OOPL) [95]

Conference (Testing) [46] Workshop (FSE) [96]

Journal (Software Quality) [47] Journal (IJOSSP) [97]

Conference (ICSTE) [50] Journal (ESE) [98]

Conference (WCRE) [51] Conference (IWPSE) [100]

Conference (ICPC) [52] Conference (EIS) [101]

Conference (OSS) [55] Conference (EAIT) [102]

Conference (ICSEA) [56] Journal (ToSEM) [104]

Conference (CSSP) [57] Conference (ICSM) [108]

Journal (TMIS) [58] Conference (WCSMR) [109]

Journal (SCP) [64] Conference (ISSDM) [111]

Conference (ICACT) [66] Journal (IJHIT) [118]

Conference (ICEMIS) [119] Conference (ISSRE) [127]

Conference (ICACCI) [128] – –

evolution. It reflects thatmost authors performedexperiments
on different open source projects and comparison of results
of different studies become arduous. There is a need of com-
mon corpus regarding evolution prediction of open source
projects that can be used by the researchers for comparing
results.

4.1.7 Aspects Explored

Interests of researchers toward predicting and supporting
evolution process of OSS projects are shown in Tables 11
and 12. Research interest toward predicting OSS projects
has dominantly focused defect prediction. Change propaga-
tion, ,maintenance effort and SOC (self-organized criticality)
have got slightly better attention. The rest of the aspects are
addressed considerably very low. In the context of OSS evo-
lution process support, researchers paid major attention to
evolution models and exogenous factors contributing to sup-
port evolution process. Maintenance support is the second
largest aspect, and fault detection and change propagation
are the third largest explored aspects.

4.1.8 Distribution of Datasets

Overview of the datasets used for evolution prediction and
evolution process support is shown in Table 13. OSS devel-
opment produces repositories consisting of source code, bug
reports, mailing lists, change logs, forums, wikis, etc. Due
to such wide variety of data sources, we classify them into
different categories, such as mailing lists, SVN/CVS, bug
tracking system, change log and external sources. Accord-
ing to our analysis, the highest utilized data sources are
source code version control systems (38%) and Bug track-
ing systems (29%) with the maximum exploration count.
These sources are mainly used for fault or defect prediction.
But the two sources, communication channels and knowl-
edge sources (e.g., mail, chat, wikis), are yet to get attention
confirming the fact that OSS community dynamics was not
explored in prediction studies. SVN/CVS is again highly uti-
lized data source in evolution process support studies, but the
ratio of studies not specifically mentioning any data source
is very high in this context.

123

Arab J Sci Eng (2017) 42:3465–3502 3475

Ta
bl
e
6

T
re
nd

of
pu

bl
ic
at
io
n
ye
ar

fo
r
pr
im

ar
y
st
ud

ie
s

Y
ea
r/
A
sp
ec
t

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

To
ta
l

E
vo
lu
tio

n
pr
ed
ic
tio

n
1

1
3

3
4

6
7

8
6

5
3

4
5

5
8

11
80

E
vo
lu
tio

n
pr
oc
es
s
su
pp
or
t

0
0

1
0

0
1

2
1

1
5

0
3

1
2

1
0

18

Table 7 Mapping of keywords with primary studies

Keywords # of papers References

Software evolution 42 [32,33,35–38,40–43,45,51,
60–67,96,98,99,101–
103,107–122,127]

Open
source/FOSS/Floss

41 [32,33,36,37,41,47,55,59,
64–66,74,77,81,82,85,
94,96,97,99–102,104–
107,109–116,118–121,
124,125,129]

Defect/fault
prediction

27 [40,41,46,48,49,51,57,69–
78,81,82,85–88,90,91,
124,126]

Empirical study 16 [36,39,40,42,45,46,54,68,
70,75,77,78,80,89,92,
101,128]

Software metrics 7 [44,56,74,77,85,97,118,
127]

Software
maintenance

5 [39,41,44,68,84]

Software quality 7 [40,73–
75,80,118,119,128]

Object-oriented
metrics

4 [54,75,79,84]

Bayesian net-
works/classifiers

3 [58,90,93]

Genetic algorithm 2 [58,79]

Change propagation 2 [52,62]

Machine learning 2 [78,88]

Liberal 2 [35,37]

Software reuse 2 [68,84]

Table 8 Top authors of papers from primary studies

Author # of papers References

Capiluppi 8 [59,96,99,108–110,112,115]

Robles 7 [35,37,38,96–98,117,121]

Herraiz 5 [35,37,38,96,97,121]

Gonzalez-
Barahona

5 [35,37,38,98,117,121]

Di Ruscio,
Pelliccione

3 [60,64,65]

Bernstein 3 [48,49,100]

Malhotra 2 [75,78,128]

Ratzinger 2 [43,51]

Gall 2 [49,51]

Olague 2 [54,84]

Beecher 2 [59,99]

Song 2 [88,91]

Poshyvanyk 2 [63,86]

Pinzger 2 [48,51]

Alenezi 2 [118,119]

123

3476 Arab J Sci Eng (2017) 42:3465–3502

Table 9 Mapping of Primary Studies with Evolution Aspects

Evolution aspect Papers

Evolution prediction [32–55,57,58,70–94,101–104,106–129]

Evolution process support [56,59–69,95–97,99,100,105]

Table 10 Commonly used case studies

Case study/project Papers

Linux [32–34,39,49,59,86,94,98,99,
106,107,113,117,124]

Apache [34,47,56,66,74,75,78,81,83,100,
104,119–121,127]

Mozilla [32,46,48,49,55,56,80,86,94,97,
104,110,116]

Eclipse [36,40,44,49,66,77,85,102]

Postgre sql [33,35,42,80,102]

GNOME [37,47,66,97,100]

GCC [11,34,42,62,107]

FreeBSD [35,42,53,62]

NASA dataset [82,88,89,91]

AgroUML [43,51,85,129]

Table 11 Aspects explored for OSS evolution prediction

Aspect No. of studies

Defect prediction 40

Size 11

Change propagation 11

Maintenance effort 6

Development effort prediction 2

SOC 23

Refactoring 3

Contribution 1

Evolution

Clone evolution 1

Stability prediction 2

4.1.9 Distribution of Methods

Figure 3 depicts that around 62% of the articles used
statistical methods such as regression, time series analy-
sis, correlation analysis, Pearson coefficient, Spearman’s
rank correlation, principal component analysis and Bayesian
belief network. Statistical analysis methods are found to be
more reliable for predicting different aspects for OSS stud-
ies as compared with other methods. The second large set of
methods employed falls into the category of machine learn-
ing algorithms. Other methods such asmathematical models,
probability methods, Chaos theory and SRGM’s (Software
Reliability Growth Models) have very low exploration.

Table 12 Aspects explored for OSS evolution process support

Aspect % of studies

Evolution models 22.2

Exogenous factors 16.6

Maintenance support 11.1

Defect prediction 11.1

Change propagation 11.1

Configuration management 5.5

Feature location 5.5

Growth, complexity and control 5.5

Possible evolutionary paths 5.5

Expert developer recommendation 5.5

Table 13 Datasets for evolution prediction and evolution process sup-
port

Aspect Data sources % of studies

Evolution prediction SVN/CVS 38

BTS 29

Mailing list 5

Change log 7

External source 27

Evolution process support SVN/CVS 32

BTS 9

Not mentioned 45

External source 14

Sta�s�cal
Methods

62%
Mathema�cal

Model
7%

Probability
Method

4%

Chaos Theory
3%

Machine Learning
Algorithms

21%

Others
3%

Fig. 3 Methods for evolution prediction

4.1.10 Distribution of Metrics

The distribution of metrics used in research for predicting
evolution in OSS projects is shown in Table 14. It can be
seen that SLOC got the highest priority, i.e., 26% among
all the metric suites studied. The second largest number of
metrics used is class level metrics, i.e., 9% . There also exist
studies that do not specifically mention metric suites studied.

123

Arab J Sci Eng (2017) 42:3465–3502 3477

Table 14 Metrics for evolution prediction

Metrics % of studies Metrics % of studies

SLOC 26 Modification 2

Class level 9 Evolution 5

Complexity level 5 Value series 1

Graph level 1 Bug fix 1

File level 3 Repository 1

Project level 2 Age of a project 1

SNA 4 No of clones 1

Dependency 1 Structural 2

Historic 3 Network 3

People 3 Not Mentioned 22

Architecture 2 Bug report 2

Table 15 OSS projects domains

OSS projects domains % of studies

Application software 20

Operating systems 11.4

Database 6.6

Frameworks 11.4

IDE 4.9

Open office 4.9

Web applications 4.9

Programming 4.9

Libraries 4.9

Desktop environment 3.3

Others 27.5

4.1.11 OSS Projects Domain studied

Table 15 presents the domains of studied OSS projects in
our selected primary studies. The largest domains of OSS
projects explored for evolution prediction are application
software and operating systems, i.e., 18.0 and 11.4%, respec-
tively. There exist projects of other domains, and we place
them in the category of “Others”.

4.1.12 Validation Process

Figure 4 presents the validation process adopted by differ-
ent studies for evolution prediction and its process support.
Results show that articles not addressing validation process
are considerably higher in both contexts, i.e., evolution pre-
diction and evolution process support. The internal validation
got a slightly better attention of researchers as compared to
the external and construct validation.

4.1.13 Context of the Fault Prediction Models

Studying context of the fault prediction studies help us to
understand the generalization and applicability of models.
For that purpose, we extracted the data against the origin of
systems and the programming languages for which models
have been developed and tested. It is visible from statistics
presented in Table 16 that a large portion of data being used
in fault prediction studies comes from OSS. Similarly, we
can see in Table 17 that Java language dominates in the
studies. C/C++ has got almost equal ratio. Other languages
include PHP, Ruby, Perl, Python and assembly languages.
The information about types of projects and programming
languages for selected primary studies is given in Tables 16
and 17.

4.2 Metrics for Evolution

We discuss and analyze metrics studied, the context in which
they are studied and their subsequent results in this subsection
for OSS evolution prediction and process support. Following
metrics are used:

4.2.1 SLOC (Source Lines of Code) Metrics

Herraiz et al. [35] used the SLOC metric to compute the
size of FreeBSD, NetBSD and PostgreSQL. They collected
time series data for the size of each case study (these series
were predicted based on past values). The degree of internal
autocorrelation (internal autocorrelation means that a value
in the future depends on some values in the past). Therefore,
a model based on past values can be obtained to forecast
the future. Herraiz et al. [35] in another study used SLOC
(excluding blank and comment line) metric to compute the

Fig. 4 Validation process for
evolution prediction and
evolution process support

123

3478 Arab J Sci Eng (2017) 42:3465–3502

Table 16 Types of datasets

Datasets used Number of papers % of studies

OSS 55 56

NASA 5 5

Industrial 6 7

Closed source 4 4

Not clear 16 16

Table 17 Types of programming languages

Languages used Number of papers % of studies

C / C++ 23 23

JAVA 40 40

Others 9 9

Not given 25 25

size of 3821 projects to evaluate the concept of SOC (self-
organized criticality) in dynamics of software evolution. Yu
et al. [39] used SLOC for calculating the size of 121 subver-
sions of Linux in the form of the following measures such
as: E-Line (summation of KLOC added, deleted, and mod-
ified), T-Line (Total size of the system measured in KLOC)
and K-Line (Kernel size of the system measured in KLOC).
Ratzinger et al. [43] used linesAdded, linesModified, or lines-
Deleted relative to the total LOC (lines of code) of a file as
features of evolution data while predicting future refactor-
ing. Additionally, they regard large changes as double of the
LOC of the average change size and small changes as half
of the average LOC of a specific file. Gonzalez-Barahona
et al. [98] used SLOC to analyze the evolution of different
releases of Debian over a period of nine years (1998-2007).
The authors realized that stable releases of Debian increase
double in size approximately after every 2 years. Knab et
al. [48] applied source code metrics to compute the size of
seven releases of Mozilla, with the purpose of predicting
defect density. The selected metrics are: linesOfCode (Lines
of code), nrVars (Number of variables), nrFuncs (Num-
ber of functions), incomingCallRels (Number of incoming
calls), outgoingCallRels (Number of outgoing calls), incom-
ingVarAccessRels (Number of incoming variable accesses)
and outgoingVarAccessRels (Number of outgoing variable
accesses). It is observed that line of code metric is not the
only indicator to detect problematic files. Hence, LOC met-
ric has little predictive power with regard to defect density.
Finally, SLOCmetric is used for detection of faults and other
evolution aspects fromOSSandother types of software appli-
cations by a number of researchers [32,34,73,79,80,83,85,
88,90,92,94,101,110,111,113,117,118].

4.2.2 Dependency Metrics

Mirarab et al. [52] proposed a novel technique for predict-
ing change propagation using Bayesian belief networks as
a probabilistic tool to make such predictions. The tech-
nique relies on dependency metrics using static analysis and
change history extracted from Version Control Repository.
The authors extract the information about the dependencies
between the software elements using “Dependency Finder”
(an open source java program) from all the significant revi-
sions of Azureus2, an open source Java system. The results
reflect that developers can predict change propagation at
early and later stages of development and maintenance.

4.2.3 People Level Metrics

Ratzinger et al. [43] constructed authorCount metric as a
feature for evolution data while predicting refactoring for
software systems. They assume that the number of authors
of files influence theway software is developed. Herraiz et al.
[37] used number of people who have sent at least one mes-
sage for a given month, number of people who have reported
at least one bug for a given month, number of people who
have committed at least one change to the versioning system
for a given month while predicting the evolution of contri-
butions.

4.2.4 File Level Metrics

Tomeasure howoften afilewas involved during development
with the introduction of other new files, Ratzinger et al. [43]
used coChangeNew metric and coChangedFiles metric to
measure the files changed together. Ekanayake et al. [49]
used file levelmetricswhile investigating the reasonswhy the
prediction quality is so fluctuating due to the altering nature
of the bug (or defect) fixing process by adopting the notion
of a concept drift. The study computed features on file level
such as revision (Number of revisions), activityRate (Number
of revisions per month), grownPerMonth (Project grown per
month), totalLineOperations (Total number of line added and
deleted), etc. Further, [42] used logical and structural changes
at source file level while presenting empirical evidence for
the existence of fractal structures in software evolution.

4.2.5 Bug Fix Metrics

Ratzinger et al. [43] used bug fixmetrics such as bugfixCount
(is computed by enumerating all changes to source code) as
well as bugfixLinesAdded, bugfixLinesModified and bug-
fixLinesDeleted in relation to the base measures such as the
number of lines of code added, modified, and deleted from
a file. These metrics are used as features of evolution data

123

Arab J Sci Eng (2017) 42:3465–3502 3479

of software systems while constructing prediction model for
refactoring using data mining algorithm.

4.2.6 Bug Report Metrics

Knab et al. [48] applied bug report metrics to compute the
size of seven releases ofMozilla, with the purpose of predict-
ing defect density. The selected metric is nrPRs (Number of
problem reports). Similar to modification metrics, bug report
metrics also provide better accuracy for predicting defect
densities. Herraiz et al. [37] used bug reports for mainte-
nance purpose as they are good indicator of the fixes and
found strong correlations between the number of messages,
the number of bugs and the number of commits and that the
activity of reporting bugs ormaking a commit generatesmore
activity in the mailing lists.

4.2.7 Modification Metrics

Knab et al. [48] selected modification metrics to compute the
size of seven releases ofMozilla, with the purpose of predict-
ing defect density. The selected metrics are nrMRs (Number
of modification reports) and sharedMRs (Number of shared
modification reports). The sharedmodification reportsmetric
(sharedMRs) represents the number of times a file has been
checked into the CVS repository together with other files.
It was observed that modification metrics provides satisfac-
tory accuracy for predicting defect densities. Ratzinger et
al. [43] used addingChanges, modifyingChanges, and delet-
ingChanges per author and per file for providing input to the
defect prediction of files. They also used changeCountmetric
in relation to the number of changes during the entire history
of each file.

4.2.8 Repository Metrics

Herraiz et al. [37] presented an approach that describe the
evolutionof the size and cost associatedwith the development
using versioning system, mailing lists and bug tracking sys-
tem of a large libre software(GNOME). The cost associated
with the development predict applied number of commits to
the versioning system (CVS) for each month during the life-
time of the project for source code production as they are a
good indicator of coding activity. Results reflect that relation-
ship between activity and participation are a good indicator
for evolution prediction.

4.2.9 Age of Project Metrics

Herraiz et al. [38] used the age of project metric as “SF.net
age” and “CVS age” parameters, they indicate the age of
project in months. “SF.net age” is the number of months
that the project has been stored in SF.net. “CVS age” is the

difference in months between the dates of the last and first
commit in the CVS while exploring the contradiction that
evolution of libre software projects is governed by sort of
determinism.

4.2.10 Graph Metrics

Bhattacharya et al. [40] used graph metrics to construct pre-
dictors for bug severity, high-maintenance software parts, and
failure-prone releases. Three graph metrics are as follows:

1. NodeRank: A graph metric akin to PageRank can predict
bug severity; it assigns a numerical weight to each node
in a graph, tomeasure the relative importance of that node
in the software.

2. Modularity Ratio Metric: Standard software engineering
practice suggests that software design that exhibits high
cohesion and low coupling actually provides number of
benefits. These benefits not only lead to easy software
understanding but they also support testing and evolu-
tion. Therefore, it defines modularity ratio of A module
as ratio among values of cohesion and coupling: Mod-
ularity Ratio(A) = Cohesion(A) / Coupling(A), where
Cohesion(A) refers to the number of variable references
in module A; similarly, Coupling(A) is the total num-
ber of inter-module calls in module A. It is used to for
forecasting modules that will sustain high maintenance
effort.

3. Edit distance: Over time, while investigating how does
program structure changes, Bhattacharya et al. [40] intro-
duced a metric for capturing the number of changes
made between vertices and edges among two graphs,
i.e., between consecutive releases. It is used to predict
failure-prone.

4.2.11 Class Level Metrics

Shatnawi et al. [44] applied class level metrics that can pre-
dict class error-proneness and the prediction can be used
to accurately group error-prone classes subsequently while
examining the three releases of Eclipse project. The authors
applied the UBR (univariate binary regression) analysis to
investigate whether the eleven metrics (CBO, CTA, CTM,
RFC, WMC, DIT, NOC, NOAM, NOOM, NOA, and NOO)
are significant predictors of class error-proneness. A metric
was significantly associated with class error-proneness if its
P value was less than 0.05. Results showed that:

Significant predictors—CBO (Coupling between
objects), RFC, CTA (Coupling through data abstrac-
tion), CTM (Coupling through message passing), WMC
(weighted methods complexity)

123

3480 Arab J Sci Eng (2017) 42:3465–3502

Good predictors—NOOM (Number of overridden meth-
ods), NOAM (Number of added methods), NOA (Num-
ber of attributes), NOO (Number of operations)
Bad predictors—DIT (Depth of inheritance hierarchy),
NOC (Number of child classes)
Itwas concluded that as class error probability got smaller
and smaller in the post-release evolution of the system,
it became more and more difficult to predict where the
errors were likely to occur by using the metrics.

Puri et al. [79] used the Chidamber & Kemerer metrics
suite while predicting the faulty modules in jEdit. Malhotra
et al. [75] focused on detecting relation between object-
oriented metrics and fault-prone classes by using Chidamber
and Kemerer java metrics (ckjm). English et al. [77] used
Chidamber and Kemerer metric suite for identifying error-
prone classes in open source software systems.Malhotra et al.
[78,128] used Object Oriented metrics for predicting error-
prone classes and change prediction in different open source
projects. Yuming et al. [89] used Chidamber and Kemerer
metric suite for predicting fault-proneness ofNASAdatasets.
Tibor et al. [94] also used Chidamber and Kemerer metrics
to show how fault-proneness of the source can be carried out.
Results have shown LCOM as good metric, DIT as untrust-
worthy and NOC for not to be used at all for prediction
of fault-proneness. Olague et al. [84] studied three object-
oriented software metric suites, i.e., Chidamber and Kemerer
(CK) metrics, Abreu’s Metrics (MOOD), and Bansiya and
Davis’ Quality Metrics (QMOOD) for predicting OO fault-
prone classes. The detail information about Chidamber and
Kemerer (CK) metrics suite is presented by Chidamber et al.
[31].

4.2.12 Evolution Metrics

Jacek et al. [51] applied data mining techniques for value
series based on the evolution attributes for measuring defect
density and defect prediction. Daily data points of these evo-
lution attributes were captured over a period of 2 months to
predict the defects in the subsequent 2 months for a project.
The results show that by utilizing series of these attributes
accurate prediction models can be built with high correla-
tion coefficients (between 0.716 and 0.946). The evolution
attributes used were measured at file level. These evolution
attributes/metrics were: Lines Added, Lines Deleted, Number
of Changes, Number of Authors, Author Switches, Com-
mit Messages, With no Message, Number Bugfixes, Bugfix
Lines Added, Bugfix Lines Deleted, Couplings, CoChanged
Files, CoChanged New Files, Transaction Lines Added,
Transaction Lines Deleted, Transaction Bugfix Lines Added,
Transaction Bugfix Lines Deleted. The approach is evaluated
on two open source and one commercial project. The authors
concluded that the number of authors and number of commit

messages to versioning system are excellent predictors for
defect density as compared with other metrics. Saini et al.
[102] applied fuzzy logic-based technique to predict number
of commits of open source software projects based on the
past history. The authors validated their approach on three
open source projects and concluded that their approach out-
performs as compared with ARIMA models. Santiago et al.
[121] presented empirical study to determine evolution of
Apache using the ratio of total messages to the mailing lists
to total number of commits metrics. They name this metric as
intensive metric as it is independent of the size of project and
its activity. Charrada et al. [122] presented a recent approach
to identify the impact of source code changes on the require-
ments. The authors evaluated their approach on three case
studies. They identify source code changes and then deter-
mine their impact on the requirements using commit metric.
Threm et al. [127] applied software normalized compression
distance metric to measure the difference between evolving
versions ofApache. The authors conclude that program level,
architecture level and information levelmetrics are important
to measure evolutionary stability of software artifacts.

4.2.13 Historical Metrics

Illes-Seifert et al. [45] explored the relationship between sev-
eral historical characteristics of a file and defect count as
knowledge about particular characteristics of software that
are indicators of defects. Defect count is a very valuable met-
ric for testers as it helps them to focus the testing effort and
to allocate their limited resources appropriately. Nine open
source Java projects across different versions were analyzed
for this purpose. The selected historical metrics character-
istics are as: “Defect history” of a file concerns previously
found defects, “Release history” of a file concerns the time
between two releases at which a HT (“History touch” is one
of the commit actions where changes made by developers are
submitted) occurs. “Change history” of a file comprises the
number, size and author(s) of the HTs performed to that file.
“File age” according to the age files is classified as follows:

Newborn: A file is newborn at its birthday.
Young: All files that are not older than the half of a sys-
tems’ age and that are not classified as Newborn.
Old: All files that are older than or equal to the half of a
systems’ age.

Results showed that file age is a good indicator of its defect
count.However, there is no other indicator that persists across
all projects in an equal manner.

Mirarab et al. [52] proposed a novel technique for predict-
ing Change Propagation using Bayesian belief networks as
a probabilistic tool to make such predictions. The technique
relies on dependencymetrics and change history information

123

Arab J Sci Eng (2017) 42:3465–3502 3481

extracted from Version Control Repository. To make history
information useful for change propagation prediction, it is
extracted in the form of “co-changes”. The situation where
system elements change concurrently refers as co-change,
whereas the concept of co-change and change propagation
differs from one another. It can be very helpful for predicting
propagation because elements that change simultaneously in
the past, gives us assurance of their future change together
and will be more probable of transmitting among elements.

Askari et al. [53] used change history data while devel-
oping three probabilistic models to predict which files will
have changes or bugs. The authors use historical records from
source control repositories of large software systems. These
events are file changes to fix bugs, or to add new features or
change existing features. These events are extracted from the
history of the software.

4.2.14 Project Metrics

Ekanayake et al. [49] used project level metrics while inves-
tigating the reasons of fluctuating prediction quality because
of the changing nature of the bug fix method using the idea
of “concept drift”. With the intention of uncovering features
that may be used for predicting type of period when a soft-
ware project acts as pointer respected to the use of defect
predicting models. As a result, regression model was made
for predicting the AUC of bug prediction model. AUC (area
under curve) is a facet of prediction model at project level;
therefore, at project level these features are used for learn-
ing the prediction model. Some of the project level metrics
used are: Number of revisions as revision, Project grown per
month as grownPerMonth, Total number of line added and
deleted as totalLineOperations, Total number of bugs fixed in
every type as bugFixes, etc. The concept of project and prod-
uctsmetrics is also applied for defect prediction byWahyudin
et al. [74].

4.2.15 Number of Clones in Each Version

Shawky et al. [50] presented an approach formodeling clones
evolution in open source software projects. The authors adapt
chaos theory for predicting clones in new versions of a soft-
ware system. For this purpose, they use the number of clones
in each version and analyze them as a time series data. For
clones identification, they use CloneDR tool, which is a tool
that detects and aids the removal of duplicate code.

4.2.16 Value Series Metrics

Jacek et al. [51] construct final value series at file level
containing relative measures ordered by time from the abso-
lute values of evolution attributes while generating models
for measuring defect densities and defect prediction. The

relative measures used to create value series per file for
each day are: LinesAdd, LinesDel, ChangeCount, Authors,
AuthorSwitches, CommitMessages,WithNoMessage, Bugfix-
Count, BugfixLinesAdd, BugfixLinesDel, CoChangeCount,
CoChangedFiles, CoChangedNewFiles, TLinesAdd, TLines-
Del, TBugfixLinesAdd and TBugfixLinesDel.Results showed
that Authors, CommitMessages andTLinesAdd are best pre-
dictors for defect prediction.

4.2.17 Complexity Metrics

Olague et al. [54] studied the effectiveness of nine object-
oriented (OO) software complexity metrics for predicting
defective object-oriented (OO) classes in Rhino (an open
source Java-based software project). The metrics used are
as follows: weighted methods per class (WMC), weighted
methods per classMcCabe (WMCMcCabe),McCabe cyclo-
matic complexity, average maximum cyclomatic complexity
of a single method of a class (CCMax), standard deviation
method complexity (SDMC), Number of instance methods
(NIM), Number of trivial methods (NTM). Results have
shown that studied complexity metrics relates well fault-
proneness of object-oriented (OO) class. Dejaeger et al. [90]
used complexity metrics on NASA datasets while predicting
faults in Open Source Software systems. Alenezi et al. [118]
appliedMcCabemetric to predict size and complexity of five
open source software projects.

4.2.18 SNA Metrics

Biçer et al. [57] used social network metrics on issue reposi-
tories while predicting defects for the first time. The authors
collected metrics that are used in Social Network Analysis
(SNA) from communication networks of two projects, RTC
and Drupal. General SNA metrics of developer networks
based on issue reports, which can be extracted from almost
all issue repository systems, are used. The metrics used
are: Betweenness Centrality, Closeness Centrality, Barycen-
ter Centrality, Degree Centrality, Group Degree Centrality
Index, Density, Diameter, Clustering Coefficient, Bridge and
Characteristic Path Length. Results showed that using social
network metrics from issue repositories can dramatically
improve the prediction performance and reduce inspection
cost as compared to the churnmetrics. Premraj et al. [85] used
Network metrics for predicting defects. They compared net-
workmetrics and codemetrics. They concluded that network
metrics offer no advantage over code metrics. Nzeko’o et al.
[125] applied social network analysis to analyze developers
and usersmailing lists for four open source software projects.
The authors analyzed threads in developers and mailing lists.
Zhang et al. [129] presented an empirical study to identify
core developer of AgroUML project by using developers
mailing lists and community mailing lists. The authors found

123

3482 Arab J Sci Eng (2017) 42:3465–3502

that developers within same module communicate closely
and frequently with each other.

4.2.19 Structural Software Metrics

To predict stability of OSS projects, authors [58] reported
18 structural software metrics at the OO-class level. The
structural metrics belong to four categories, namely com-
plexity, inheritance, cohesion, and coupling. Alenezi et al.
[119] applied structural object-oriented metrics to measure
modularity evolution using complexity, coupling and cohe-
sion metrics.

4.2.20 Architectural Change Metrics

Duc et al. [120] presented an empirical study of architec-
tural changes on 14 open source projects using architectural
change metrics for the purpose of measuring architec-
tural changes. The authors consider architectural changes
at system and component levels. They applied two new
architectural metrics for their study: a2a (architecture to
architecture), a system level metric and cvg (cluster cov-
erage) a component level metric. Kouroshfar et al. [126]
presented a study to determine the impact of software archi-
tecture evolution on quality of software using architectural
metrics. These metrics are IMC(intra-module co-changes)
and CMC(cross-module co-changes). The authors conclude
that crosscut multiple architectural modules are more corre-
lated with defects than co-changes that are localized in the
same module.

We identified 20 different categories of metrics that are
used to predict different aspects of OSS studies as presented
in Table 18. We can see from Table 18 that SLOC metric is
mostly usedbydifferent authors to predict different aspects of
OSS studies. Thismetric is used to predict size and defects by
most authors. The class level metrics are used for defect pre-
diction, bug severity and class error-proneness by different
authors as shown in Table 18. We found some contradic-
tions on metric’s predictive power. For example, SLOC is
evaluated as good predictor in [35] and evaluated as bad pre-
dictor for carrying out defect densities in [48]. Similarly, in
[48], bug report metrics provide satisfactory accuracy for
predicting defect densities, whereas [37] uses bug reports
for maintenance purpose and declare them as good indica-
tor of the fixes and found strong correlations between the
number of messages. Similarly, it is observed in [48] that
modification metrics also provide satisfactory accuracy for
predicting defect densities. Moreover, it is also revealed that
file age is a good indicator for defect count. The authors in
[94] declared SLOC as good metric and CBO as best metric
for defect prediction while they found DIT as untrustworthy.
They also realized thatNOCcannot beused at all. The authors
in a study [96] compared CK (Chidamber and Kemerer),

QMOOD (Quality Metrics for Object-Oriented Design) and
MOOD (Metrics for Object-Oriented Design) metrics to pre-
dict defects and results showed that CK metrics are more
reliable for fault prediction.

Finally, we present summarized facts about metrics, types
of these metrics and level at which these metrics are com-
puted and applied by researchers in Table 19. It is visible
from results in Table 19 that most metrics are computed at
file level and very little attention is paid to compute metrics
at class level.

4.3 Models for Evolution Prediction

This subsection discusses proposed models, the context in
which models are used and their strengths and limitations.
Summarized information about evolution prediction models
is presented in Table 20.

4.3.1 Predicting Size

To obtain the prediction of future values, Herraiz et al. [35]
applied ARIMA model (ARIMA models are linear com-
binations of past values of the series, weighted by some
coefficients) on three long-lived projects (FreeBSD, NetBSD
and PostgreSQL). They obtained regression and ARIMA
models for these projects which predict growth of these
projects in the future. Ruohonen et al. [123] presented empir-
ical study based on time series trends to evaluate evolution
of two open source software projects. The results of study
can be interpreted against laws of software evolution.

4.3.2 Predicting Indirect Maintenance Effort Models

The study [39] constructed two indirect maintenance effort
models for the Linux project (121 recent versions of Linux).
Softwaremaintenance can be organized into three categories:
software support utilization, change in the source code (can
be further categorized into two types if function changes),
and updating documentation. It has considered one category
of software maintenance, i.e., source code change. From the
activity-based view, changes in source code can be cate-
gorized as corrective, perfective, or adaptive. The activity
performed on artifact for removing enduring defects but
leaving the anticipated semantics unchanged is known as
“correctivemaintenance”. Including enhancivemaintenance,
adaptive and perfective maintenance are activities performed
with the intention of implementing functionality change for
changing software properties such as security, usability, per-
formance etc. or for adapting new platform (software or
hardware).

123

Arab J Sci Eng (2017) 42:3465–3502 3483

Ta
bl
e
18

E
vo
lu
tio

n
m
et
ri
cs

an
d
as
pe
ct
s
ex
pl
or
ed

fo
r
pr
ed
ic
tio

n

A
sp
ec
ts
ex
pl
or
ed

fo
r
pr
ed
ic
tio

n

M
et
ri
c
ty
pe

Si
ze

M
ai
n.

E
R
ef
ac

D
ef
ec
tP
.

C
la
ss

E
P

E
P

B
ug

S
C
D
A

C
P

D
ef
ec
tC

C
aP

E
C

SO
C

C
E

E
S

SL
O
C

[3
2,
34

,3
5,
98

,1
01

,1
07

,
11
0,
11
1,
11
3,
11
6,
11
7]

[3
8,
10
6]

[3
9]

[4
3,
73

,7
9,
80

,8
3,
85

,8
8,

90
,9
2,
94

]
[1
07

,1
18

]
[1
01

]
[4
8]

C
la
ss

le
ve
lm

et
ri
cs

[7
9,
94

–9
6]

[4
4,
75

,7
7]

[7
8]

[7
9,
94

–9
6]

[1
28

]

C
om

pl
ex
ity

m
et
ri
cs

[9
0]

[5
4]

[1
10

,1
12

,1
14

]

So
ur
ce

co
de
-b
as
ed

gr
ap
hs

[4
0]

[4
0]

[4
0]

Fi
le
le
ve
lm

et
ri
cs

[4
3]

[4
9]

[4
2]

Pr
oj
ec
tl
ev
el
m
et
ri
cs

[7
4]

[4
9]

SN
A
m
et
ri
cs

[5
7,
85

]
[1
25

]
[1
29

]

D
ep
en
de
nc
y
m
et
ri
cs

[5
2]

H
is
to
ri
ca
lm

et
ri
cs

[5
2]

[4
5]

[5
3]

B
ug

re
po

rt
m
et
ri
cs

[4
8]

[3
7]

Pe
op

le
le
ve
lm

et
ri
cs

[4
3]

[1
04

]
[3
7]

M
od

ifi
ca
tio

n
m
et
ri
cs

[4
3]

[4
8]

E
vo
lu
tio

n
m
et
ri
cs

[1
22

]
[5
1]

[1
02

,1
21

]
[1
26

]

V
al
ue

se
ri
es

m
et
ri
cs

[5
1]

B
ug

fix
m
et
ri
cs

[4
3]

R
ep
os
ito

ry
m
et
ri
cs

[3
7]

A
ge

of
pr
oj
ec
tm

et
ri
cs

[3
8]

N
o.

of
cl
on
es

[5
0]

St
ru
ct
ur
al
S/
W

m
et
ri
cs

[1
19

]
[1
19

]
[5
8]

[5
8]

A
rc
hi
te
ct
ur
al
ch
an
ge

m
et
ri
cs

[1
26

]
[1
20

]
[1
20

]

M
ai
n.
E
.:
m
ai
nt
en
an
ce

ef
fo
rt
;R

ef
ac
:r
ef
ac
to
ri
ng
;D

ef
ec
tP

:d
ef
ec
tp

re
di
ct
io
n;

C
la
ss

E
P.
:c
la
ss

er
ro
r-
pr
on
en
es
s;
E
.P
.:
er
ro
r-
pr
on
en
es
s;
B
ug

S.
:b
ug

se
ve
ri
ty
;C

D
A
:c
on
ce
pt

dr
if
ta
na
ly
si
s;
C
P:

ch
an
ge

pr
op

ag
at
io
n;

D
ef
ec
tC

.:
de
fe
ct
co
un

t;
C
aP

:c
ha
ng

e
pr
ed
ic
tio

n;
E
C
:e
vo
lu
tio

n
of

co
nt
ri
bu
tio

n;
SO

C
:s
el
f-
or
ga
ni
ze
d
cr
iti
ca
lit
y;

C
E
:c
lo
ne

ev
ol
ut
io
n;

E
S:

ev
ol
ut
io
na
ry

st
ab
ili
ty

123

3484 Arab J Sci Eng (2017) 42:3465–3502

Table 19 Metrics and their applications

Metric type Study ID How metrics and Sub-metrics are
applied?

Level

SLOC [32,35,38,39,43,49,59,73,
79,80,83,85,88,90,92,94,
98,101,110,111,117,118]

E-Line (summation of KLOC added,
modified and deleted), T-Line
(system size measured in KLOC)
and K-Line (kernel size measured in
KLOC), lines Added, Modified or
Deleted related to the total LOC
(lines of code) of a file, nrVars
(Number of variables), nrFuncs
(Number of functions),
incomingCallRels (Incoming calls),
outgoingCallRels (Outgoing calls),
incomingVarAccessRels (Incoming
variable accesses) and
outgoingVarAccessRels (Outgoing
variable accesses, LT (lines of code
in a file before the change),
AvgLineCode and CountLine,
LOC_total, LOC_blank,
Number_of_lines and
LOC_comments

File level

Class level metrics [44,75,77–79,94–
96,103,128]

CBO, CTM, NOOM, RFC, DIT,
NOO, NOC, NOAM, CTA, NOA,
and WMC. Chidamber and Kemerer
metric suite: Coupling between
Objects (CBO), Lack of Cohesion
(LCOM), Number of Children
(NOC), Depth of inheritance (DOI),
weighted Methods per Class
(WMC), Response for a class (RFC),
Number of Public Methods (NPM),
Lack of cohesion in methods
(LCOM3), Data Access Metric
(DAM), Measure of
Aggregation(MOA), Cyclomatic
Complexity (CC), Inheritance
Coupling (IC) Measure of
Functional Abstraction (MFA),
Cohesion Among Methods of Class
(CAM), Coupling Between Methods
(CBM), Average Method
Complexity (AMC), QMOOD
metrics, MOOD metrics

Class level

Complexity metrics [54,90,112] Weighted methods per class (WMC),
weighted methods per class McCabe
(WMC McCabe), McCabe
cyclomatic complexity, Average
Maximum cyclomatic complexity of
a single method of a class (CCMax),
standard deviation method
complexity (SDMC), Number of
instance methods (NIM), Number of
trivial methods (NTM)

Class and File level

Source code-based graphs [40] NodeRank, Modularity Ratio and Edit
distance

Not mentioned

123

Arab J Sci Eng (2017) 42:3465–3502 3485

Table 19 continued

Metric type Study ID How metrics and Sub-metrics are
applied?

Level

File level metrics [42,43,49] coChangeNew metric and
coChangedFiles metric for
measuring the files changed together,
Number of revisions as revision,
Number of revisions per month as
activityRate, Project grown per
month as grownPerMonth, Total
number of line added and deleted as
totalLineOperations at file level

File level

Project level metrics [49,74] Number of revisions as revision,
Project grown per month as
grownPerMonth, Total number of
line added and deleted as
totalLineOperations and bugFixes

Not mentioned

SNA metrics [57,85,125,129] Betweenness Centrality, Closeness
Centrality, Barycenter Centrality,
Degree Centrality, Group Degree
Centrality Index, Density, Diameter,
Clustering Coefficient, Bridge and
Characteristic Path Length. Size,
Ties, Pairs, Density, Weak Comp, n
Weak Comp, TwoStepReach,
ReachEfficency, Brokerage,
nBrokerage, EgoBetween,
nEgoBetween, mailing list,
community lists

Not mentioned

Dependency metrics [52] Not mentioned Not mentioned

Historical metrics [45,52,53] Defect history, Release history,
Change history, File age, co-changes

File level

Bug report metrics [37,48] nrPRs (Number of problem reports) File level

People level metrics [37,43,104] authorCount, Number of people sent
one message at least for a given
month, Number of people reported
one bug at least for a given month,
Number of people Committed
change at least once to the
versioning system

Not mentioned

Modification metrics [43,48] nrMRs (Number of modification
reports), sharedMRs (Number of
shared modification reports),
addingChanges, modifyingChanges,
and deletingChanges and
changeCount metric

File level

Evolution metrics [34,51,102,121] Lines Added, Lines Deleted, Number
Changes, Number Authors, Author
Switches, Commit Messages, With
no Message, Number Bugfixes,
Bugfix Lines Added, Bugfix Lines
Deleted, Couplings, CoChanged
Files, CoChanged New Files,
Transaction Lines Added,
Transaction Lines Deleted,
Transaction Bugfix Lines Added,
Transaction Bugfix Lines Deleted,
Commits, No of messages

File level

123

3486 Arab J Sci Eng (2017) 42:3465–3502

Table 19 continued

Metric type Study ID How metrics and Sub-metrics are
applied?

Level

Value series metrics [51] LinesAdd, ChangeCount, LinesDel,
AuthorSwitches, Authors,
CommitMessages, BugfixCount,
WithNoMessage, BugfixLinesDel,
BugfixLinesAdd, CoChangedFiles,
CoChangeCount,
CoChangedNewFiles, TLinesDel,
TLinesAdd, TBugfixLinesDel and
TBugfixLinesAdd

File level

Bug fix metrics [43] bugfixCount, bugfixLinesModified,
bugfixLinesAdded and
bugfixLinesDeleted

File level

Repository metrics [37] Not mentioned Not mentioned

Age of project metrics [38] “SF.net age” and “CVS age” Not mentioned

No. of clones [50] Not mentioned Not mentioned

Structural S/W metrics [58] Not mentioned Class level

Architectural change metrics [120] A2a, cvg, CMC, IMC System and component level

Table 20 Evolution prediction models

Proposed models Aspect Study ID Results

Regression models, time
series-based ARIMA models

Size [35] Time series-based ARIMA
models can predict the
growth in the next year of a
project with lower error than
regression models. The
performance of proposed
models may vary, if the
projects are not long lived
and their size is not large

Source-code-based
maintenance effort models

Indirect maintenance effort
models

[39] Model 1. E-Line = a1NC +
a2NO

Model 2. E-Module =
a1T-Module + a2K-Module
+ a3NC + a4NO

1. Model 2 outperforms
Model 1

2. The proposed models may
be inapplicable in the
situation where we do not
know what tasks are included
in the next revisions

Probabilistic models (MLE,
RED, RED-Co, REDCC),
Change prediction model

Predicting Change [53,128] REDCC is slightly better than
RED, and both of these
considerable better than MLE

Change prediction model is
presented based on different
techniques

123

Arab J Sci Eng (2017) 42:3465–3502 3487

Table 20 continued

Proposed models Aspect Study ID Results

Time series models Defect count [41] Results show that the mean
square error (MSE), mean
absolute percentage error
(MAPE) and mean absolute
deviation (MAD) for the
ARIMA(0,1,1) model are all
better (lower) than the
competing ARIMA(1,1,0)
model

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA (1,1,0)(1,1,0) model Change request prediction [36] The model is able to make
reliable forecasts with up to 1
year in advance, concerning
the number of future change
requests. For all the error
statistics, it is the model
leading to the smallest errors

MLR (multiple linear
regression) model

Class error-proneness [44] Not specifically mentioned

BBN models, BDM Change propagation [52] The overall accuracy of BDM
and BHM lies in the same
range, but BDHM clearly
shows better results

BHM BDHM

Linear regression models Fault prediction [46] Results on mozilla and MP
projects showed that QALP
score appear to produce
useful information in an
environment where the
coding style is homogeneous

SRGM Fault prediction [47] Results on seven open source
software projects show that
SRGM model is most reliable
for residual fault prediction

Stability prediction models Stability prediction [58] Results on a large-scale
software show that stability
prediction models outperform
state-of-the-art approaches

Software clustering Fault prediction [70] Results indicate that the models
we build using software
clusters perform better than
those built on the classes in
system

Predicting field defects Predicting field defects [81] It is impossible to predict field
defects by extending Weibull
model, which indicates the
significance of metrics-based
field defects prediction
models

Efficacy of process and code
metrics

Defect prediction [83] Results have shown code
metrics less stable. Whereas,
process metrics outperform in
all cases

123

3488 Arab J Sci Eng (2017) 42:3465–3502

Table 20 continued

Proposed models Aspect Study ID Results

Comparison of network and
code metrics

Defect prediction [85] Network metrics perform better
as compared to the code
metrics for predicting defects

Bayesian network model Development effort prediction [93] The proposed model can handle
missing data very efficiently
and is capable of providing
uncertainty in predicted
values

Fuzzy time series Commits prediction [102] The proposed model forecasts
number of commits per
month and authors claim that
their method outperforms as
compared with ARIMA
models

4.3.3 Predicting Change

Askari et al. [53] proposed three probabilistic models for
predicting suspicious files having changes or bugs. The pri-
mary model is maximum likelihood estimation (MLE). It is
a model that is used for counting changes or bugs happened
to all files and normalizing counts for computing distribu-
tion of probability. The next model is Reflexive Exponential
Decay (RED) in which any modification to a file leads to an
increment in the predictive rate of modification in that file
and crumbles exponentially. Another model is called RED-
Co-Change. It not only increases the predictive rate, but also
increases rate for other files having the relation of previous
co-changes, as a result of each modification to a given file.
Themodelswere tested empirically by two approaches on six
OSS (open source systems), i.e., Top Ten List evaluation and
Information theoretic evaluation. Results show that REDCC
is somewhat better than RED, and both of them are consider-
ably better thanMLE as declared by Top Ten List evaluation.
Malhotra et al. [128] presented a change prediction model
based onmachine learning and search-based techniques. The
authors conclude that search-based techniques outperform as
compared to statistical and machine learning techniques.

4.3.4 Predictors for Bug Severity, Maintenance Effort and
Defect Count Bug Severity Predictor

Bhattacharya et al. [40] presented a new approach that makes
use of graph-based metrics for predicting bugs severity. The
project managers review and allocate severity rank to bug
whenever it is reported on the basis of how much severe
affect it has on the program. They used NodeRank for iden-
tifying important functions and modules, i.e., when buggy,
carries a large probability of exhibiting high-severity bugs.
Bug severity predictors improve the quality of software by
implying more focus on checking and verifying efforts on

high severity parts of software systems. By using six OSS
projects, i.e., Firefox, Blender, MySQL, VLC, Samba, and
OpenSSH for analyzing the hypothesis “Higher NodeRank
functions and modules are inclined to bugs of high severity”
was validated. They also concluded that “The node degree is
not a good indicator for bug severity prediction”.

4.3.5 Maintenance Effort Predictor

According to Bhattacharya et al. [40], leading cause of high
software maintenance cost such as refactoring or adding new
functionality is obscurity related with source code changes.
They intend to recognize modules difficult to change by new
module-level metric known as Modularity Ratio. For main-
tenance effort measurement, number of commits are divided
by the agitated eLOC. For effort estimation, it is largely used
metric. They validated the approach using dataset of four pro-
grams, i.e., Firefox, Blender, MySQL and VLC for analysis
and validated the hypothesis “Modules of higher Modulari-
tyRatio have low maintenance effort.” It was also found that
for a module, as its ModularityRatio increases, its mainte-
nance effort decreases, which shows that software structure
improves.

4.3.6 Defect Count Predictor

According to Bhattacharya et al. [40], stable and highly orga-
nized development team produces higher-quality software as
compared to software offered by disconnected and highly
turnover teams. Hence, it was studied that how does sta-
ble teams and composite structures led to high collaboration
level, which results in high software quality. They theorize
that low defect count time periods are resulted in a case of
established development teams. They make use of Eclipse
bug reports and Firefox for building developer collabora-
tion graphs. They analyzed 129,053 bug reports (May 1998

123

Arab J Sci Eng (2017) 42:3465–3502 3489

to March 2010) for Firefox and reflected on bugs numbers
from 1 to 306,296 (October 2001 toMarch 2010) for Eclipse.
Further, they also validated the hypothesis that “With the
Increase in edit distance in Bug-based Developer Collabo-
ration graphs (If a bug is cannot be resolved by developer
D1, the bug is reassigned to D2 i.e., second developer and a
directed edge is added from D1 to D2 in graph)results in an
increase of defect count”.

Raja et al. [41] proposed the single time series model,
ARIMA(0,1,1), for accurately predicting software evolu-
tion defect patterns. It make comparison of two models,
i.e., ARIMA(0,1,1) and ARIMA(1,1,0). ARIMA(0,1,1) was
declared as a most appropriate model. For evaluating the
precision of the model, the holdout observations are made.
Results reveal that the mean square error (MSE) shows
absolute percentage error (MAPE) and mean absolute devi-
ation (MAD) for the ARIMA(0,1,1)model are lower (better)
than the opposing ARIMA(1,1,0) model. This excellent per-
formance holds constantly for all projects and time spans
within the holdout samples. It is computationally competent,
understandable, and simple to apply MODEL using a partial
amount of data.

4.3.7 Software Change Request Prediction Models

Goulão et al. [36] proposed thatARIMA (1,1,0)(1,1,0)model
for long-term prediction of the overall number of change
requests is valid and more accurate for predicting the evolu-
tion of change requests in Eclipse than the other non-seasonal
models. The model is able to make reliable forecasts with
up to 1 year in advance, concerning the number of future
change requests. For all the error statistics, ARIMA is the
model leading to the smallest errors. The Ljung-Box Q
test indicates, through its high significance value, that the
model is suitable and well-adjusted to the time series. This
model is considered appropriate for estimating future change
requests.

4.3.8 Class Error-Proneness Prediction Models

Shatnawi et al. [44] proposed MLR (multiple linear regres-
sion) models for predicting class error-proneness in three
versions 2.0, 2.1 and 3.0 of Eclipse (an industrial-strength
system that is continuously evolving with thousands of
classes). The study uses eleven class level metrics (CBO,
CTA,CTM,RFC,WMC,DIT,NOC,NOAM,NOOM,NOA,
and NOO) and used UMR (univariate multinomial regres-
sion) analysis to investigate whether eleven metrics were
associated with the three error severity categories (high,
medium, low). A metric was significantly associated with
an error severity category if its P value in the UMR analysis
was less than 0.05. Likelihood ratio test (LRT) was used to
verify the overall significance of the model.

4.3.9 Software Fault Prediction

Binkley et al. [46] applied measure referred to as a QALP
score that make use of techniques from information retrieval
to predict faulty modules. The study undertook two projects:
one open source software, i.e., Mozilla and one proprietary
software, i.e., MP (a software written for a business appli-
cation in a mid-size enterprise). Data were extracted from
the Bugzilla for Mozilla which assign each bug to a set of
classes. ForMP fault datawere collected in a similar in-house
database. Linear mixed-effects regression models are used
to analyze the data. The proposed approach first computes
the structural measures for each module (each Mozilla Class
andMP file). The second step involves computing the QALP
score including three steps: the first step breaks the source
into modules, and the second step separates each module
into comments and code. The final phase applies language
processing techniques to improve the efficiency and accu-
racy of cosine similarity. The linear mixed-effects regression
models were applied for predicting the defects in Mozilla
and MP. Code inspection of Mozilla proved the QALP score
as an ineffective measure for faults prediction, while, for
the second studied program, QALP score shows the inverse
correlation with defect rate that makes it an effective com-
ponent of a fault-predictor. Results have also shown that
the QALP score proves to produce useful information in an
environment of homogeneous coding style. The reason is
extreme difference of programmer’s ranges and forecasting
ability by using QALP scores. Moreover, lack of inward-
looking comments in Mozilla leads to the mediocre model
for it.

A method for predicting enduring defects of the OSS
projects by selecting SRGM (Software Reliability Growth
model) which best predicts the residual defects of an OSS is
proposed [47]. The applied method selects the best model to
help in decision making on when to stop testing and deploy
the software. The author proved the reliability of proposed
model through empirical results on seven open source soft-
ware projects.

Rossi et al. [55] presented a study for determining and
discussing patterns of failure occurrences in three OSS
projects to be used for reliability behavior prediction of
upcoming releases by making use of traditional method of
Software Reliability Growth for forecasting failures occur-
rences. Results show that in all the cases, a predetermined
pattern is tracked for failure occurrences.

4.3.10 Predicting Change Propagation

Mirarab et al. [52] proposed three BBN (Bayesian belief net-
works) models for predicting change propagation, and they
differ in the source of information they used. These models

123

3490 Arab J Sci Eng (2017) 42:3465–3502

are: Bayesian Dependency Model (BDM—uses dependency
information only), Bayesian History Model (BHM—uses
history information only), and Bayesian Dependency and
History Model (BDHM—uses both dependency and history
information).

Results show that, for IR metrics, the overall accuracy of
BDM and BHM lies in the same range but BDHM clearly
shows better results. Moreover, the average point-biserial
correlation of BDHM is better than those of BDM and BHM.
However, unlike the mean values, BDM’s average is better
than BHM’s.

4.3.11 Stability Prediction Models

The authors presented stability prediction models using a
combination of Bayesian classifiers to predict the stability
of OSS components [58]. The proposed models are capable
to explain links between architectural aspects of a software
component and its stability behavior in the context of OSS.
The approach is implemented using generic algorithm, and it
is tested on a large-scale system (JavaAPI). Results show that
this approach outperforms state-of-the-art approaches while
predicting quality and stability of OSS components.

We present summarized information about rest of evolu-
tion prediction models in Table 20.

We realize that time series-based ARIMA models have
been largely used by the research community that cover
aspects such as size, defect count and change request pre-
diction. These models predict growth of project with better
accuracy as compared with other models, but their accuracy
varies depending on size of a project. We revealed that as
modularity ratio of module increases, its maintenance effort
decreases which leads to the improvement in software struc-
ture. The maintenance effort predictors should focus on the
increase in modularity ratio of modules instead of focus-
ing other attributes such as SLOC, etc. The time period in
software development that shows stable development teams
results in low defect count because reassigning bug from
one developer to another results in an increase of its defect
count [40]. SRGMs (Software Reliability Growth Models)
have been used by two selected primary studies that cover
fault prediction of OSS projects [47,55]. The evolution pre-
diction models are found to be constrained to the size of
projects because the performance of a model may vary if
a project is not long lived or the size is not large. Lack of
prior knowledge of future tasks involved may also degrade
model’s performance.

Defect prediction models are prominently used for evo-
lution prediction of open source and close source software
projects. We present comparative overview of feature of
defect prediction models used for evolution prediction of
OSS studies in Table 21.

4.4 Approaches for Evolution Process Support

This subsection discusses proposed methods, tools and
approaches available for OSS evolution process support
and their strengths/limitations. Summarized information
about evolution process support approaches is presented in
Table 22.

4.4.1 EVOSS (Evolution of Free and Open Source Software)

The authors presented EVOSS, a tool for the evolution man-
agement of OSS (Open Source Software) systems [60]. It
is composed of “simulator” and “fault detector” component.
The simulator is used to forecast failures before the effects
made to the actual system and the fault detector component is
used for discovering discrepancies in a system configuration
model. It leads to the improvement of existing tools, capable
of forecasting partial number of upgrade faults. This tool is
a collection of command line tools and can be initiated from
a Linux shell. It is tested in installations of real Linux distri-
bution and this practice demonstrates that EVOSS tool deals
with the strengths and limitations of package managers. Di
Cosmo et al. [64] also proposed an approach called EVOSS
(Evolution of free and Open Source Software), that depends
on model-driven technique for improving upgrade predic-
tions in FOSS products. For making prediction upgrades
more precise, EVOSS deals with both static and dynamic
facets of upgrades. The approach also promotes simulation
upgrades for failures prediction before they make actual
effects to the real system.

4.4.2 Feedback-Driven Quality Assessment

Ouktif et al. [61] proposed the continuous study of open
source software projects for evolution examination using
accessible possessions of code repository (CVS), exchanged
mails and commitment log files. Monitoring evolution con-
sists of three primary services such as complexity, growth,
and quality control mechanism. The method of designing
a environment of software evolution, a general CASE tool
which makes it probable to incorporate functions for the
support of quality improvement and risk alleviation is pro-
posed. The anticipated approach was applied to GRASS
(a large-scale open source GIS). The developed plugins
allowed GRASS maintainers effectively carrying out auto-
mated maintenance and receiving feedback on performed
evolution activities.

4.4.3 Adaptive Change Propagation Heuristics

Malik et al. [62] discussed that propagating changes accu-
rately is vital for the evolution of complex open source
software systems for avoiding the bugs. In the past, numerous

123

Arab J Sci Eng (2017) 42:3465–3502 3491

Ta
bl
e
21

Fe
at
ur
es

of
de
fe
ct
pr
ed
ic
tio

n
m
od

el
s

St
ud
y
ID

an
d
pr
op
os
ed

m
od
el
s/
ap
pr
oa
ch
es

Pr
oj
ec
tt
yp
e
an
d
do
m
ai
n

Pr
og
ra
m
m
in
g
la
ng
ua
ge
s

M
et
ho
ds

us
ed

D
at
a
so
ur
ce
s
us
ed

M
et
ri
cs

us
ed

V
al
id
at
io
n
pr
oc
es
s

[4
0]

T
im

e
se
ri
es

m
od

el
s

A
R
IM

A
(1
,1
,0
)

A
R
IM

A
(0
,1
,1
)

O
SS

C
,C

+
+

C
or
re
la
tio

n
G
ra
ng

er
ca
us
al
ity

te
st

SV
N
/C
V
S
B
ug

T
ra
ck
in
g
Sy

st
em

So
ur
ce

co
de

ba
se

G
ra
ph

M
et
ri
cs

N
od
e
ra
nk

M
od

ul
ar
ity

R
at
io

E
di
t

D
is
ta
nc
e

N
ot

A
dd
re
ss
ed

[4
4]

M
L
R
(m

ul
tip

le
lin

ea
r
re
gr
es
si
on
)

m
od
el

O
SS

JA
V
A

St
at
is
tic

al
an
al
ys
is

R
eg
re
ss
io
n
an
al
ys
is

(B
in
ar
y

re
gr
es
si
on
-u
ni
va
ri
at
e,

m
ul
tiv

ar
ia
te
)

B
ug

T
ra
ck
in
g
Sy

st
em

,
C
ha
ng
el
og

C
la
ss

le
ve
lm

et
ri
cs
:

C
hi
da
m
be
r&

K
em

er
er

m
et
ri
cs

L
&
K
(L
or
en
z

an
d
K
id
d’
s
el
ev
en

m
et
ri
cs
)
L
i’s

m
et
ri
c

su
ite

fo
r
O
O

pr
og
ra
m
m
in
g

In
te
rn
al
an
d
E
xt
er
na
l

va
lid

ity
ad
dr
es
se
d

ID
E

[4
6]

Q
A
L
P
sc
or
e

O
SS

,W
eb

br
ow

se
r

C
,C

+
+

N
ot

m
en
tio

ne
d

B
ug

T
ra
ck
in
g
Sy

st
em

N
ot

sp
ec
ifi
ca
lly

m
en
tio

ne
d

N
ot

ad
dr
es
se
d

[4
7,
55

]
SR

G
M
’s

(S
of
tw
ar
e
R
el
ia
bi
lit
y

G
ro
w
th

M
od
el
s)

O
SS

C
,C

+
+
,J
A
V
A

SR
G
M

So
ur
ce
fo
rg
e,
B
ug
zi
lla

B
ug

T
ra
ck
in
g
Sy

st
em

N
M

C
on

st
ru
ct
V
al
id
ity

W
eb

se
rv
er

W
eb

br
ow

se
r

[7
0]

So
ft
w
ar
e
C
lu
st
er
in
g

O
SS

C
+
+
,J
A
V
A

M
ul
tiv

ar
ia
te
L
in
ea
r

R
eg
re
ss
io
n

PR
O
M
IS
E
re
po
si
to
ry

N
M

In
te
rn
al
,E

xt
er
na
l,

C
on
st
ru
ct
an
d

C
on

cl
us
io
n
va
lid

ity

[7
1]

C
O
D
E
P

(C
O
m
bi
ne
d
D
E
fe
ct

Pr
ed
ic
to
r)

O
SS

C
+
+
,J
A
V
A

PC
A
an
al
ys
is
L
og

is
tic

re
gr
es
si
on

B
ay
es
ia
n

ne
tw
or
k
R
ec
ei
ve
r

O
pe
ra
tin

g
C
ha
ra
ct
er
is
tic

N
M

N
M

A
dd
re
ss
ed

[7
2]

D
at
a
se
le
ct
io
n

Pr
oc
ed
ur
e,
Fe
at
ur
e

Su
bs
et
Se

le
ct
io
n

N
M

N
M

O
bj
ec
tO

ri
en
te
d
M
et
ri
cs

A
dd

re
ss
ed

123

3492 Arab J Sci Eng (2017) 42:3465–3502

Ta
bl
e
21

co
nt
in
ue
d

St
ud
y
ID

an
d
pr
op
os
ed

m
od
el
s/
ap
pr
oa
ch
es

Pr
oj
ec
tt
yp
e
an
d
do
m
ai
n

Pr
og
ra
m
m
in
g
la
ng
ua
ge
s

M
et
ho
ds

us
ed

D
at
a
so
ur
ce
s
us
ed

M
et
ri
cs

us
ed

V
al
id
at
io
n
pr
oc
es
s

[7
3]

U
ni
ve
rs
al
D
ef
ec
t

Pr
ed
ic
tio

n
M
od
el

O
SS

N
M

C
on
fu
si
on

m
at
ri
x,
A
re
a

U
nd
er

C
ur
ve

(A
U
C
),

W
ilc
ox
on

ra
nk

su
m

te
st
s

So
ur
ce
fo
rg
e
an
d
G
oo
gl
e

co
de

C
od
e
an
d
Pr
oc
es
s

m
et
ri
cs

In
te
rn
al
,E

xt
er
na
l,

C
on
st
ru
ct
an
d

re
lia

bi
lit
y
th
re
at
s

[7
5]

D
ef
ec
tP

re
di
ct
io
n

M
od
el

O
SS

JA
V
A

M
ul
tiv

ar
ia
te
lo
gi
st
ic

re
gr
es
si
on

an
al
ys
is
,

m
ul
tiv

ar
ia
te
an
al
ys
is
,

R
O
C
an
al
ys
is

C
hi
da
m
be
r
an
d
K
em

er
er

ja
va

m
et
ri
cs

(c
kj
m
)

In
te
rn
al
th
re
at
s

W
eb

Se
rv
er

[7
6]

C
os
t-
se
ns
iti
ve

di
sc
ri
m
in
at
iv
e

di
ct
io
na
ry

le
ar
ni
ng

(C
D
D
L
)
ap
pr
oa
ch

N
A
SA

N
M

st
at
is
tic

al
te
st
,i
.e
.,

M
cn
em

ar
’s
te
st

N
M

N
M

N
ot

ad
dr
es
se
d

M
er
gi
ng

in
fo
rm

at
io
n

fr
om

C
V
S
re
po
si
to
ry

an
d
B
ug

zi
lla

da
ta
ba
se

O
SS

JA
V
A

U
ni
va
ri
at
e
lo
gi
st
ic

re
gr
es
si
on

an
al
ys
is

C
V
S,

B
ug

T
ra
ck
in
g

Sy
st
em

C
hi
da
m
be
r
an
d
K
em

er
er

ja
va

m
et
ri
cs

(c
kj
m
)

In
te
rn
al
,E

xt
er
na
la
nd

C
on

st
ru
ct
va
lid

ity

JD
K

[7
8]

Pr
ed
ic
tio

n
us
in
g

st
at
is
tic

al
an
d
m
ac
hi
ne

le
ar
ni
ng

m
et
ho
ds

O
SS

JA
V
A

L
og
is
tic

re
gr
es
si
on

A
N
N
,r
an
do
m

fo
re
st
,

ba
gg
in
g,

bo
os
tin

g,
R
O
C
an
al
ys
is

N
M

O
bj
ec
tO

ri
en
te
d
C
K

m
et
ri
cs

an
d
Q
M
O
O
D

m
et
ri
cs

N
ot

ad
dr
es
se
d

W
eb

Se
rv
er

[7
9]

G
en
et
ic

A
lg
or
ith

m
-b
as
ed

ap
pr
oa
ch

O
SS

JA
V
A

N
M

N
M

C
hi
da
m
be
r&

K
em

er
er

m
et
ri
cs

su
ite

N
ot

A
dd
re
ss
ed

[8
0]

JI
T
(J
us
t-
In
-T
im

e)
D
ef
ec
tP

re
di
ct
io
n

O
SS

JA
V
A
,P

er
l,
C
,R

ub
y

SZ
Z
al
go

ri
th
m

V
C
S

T
hr
ee

di
ff
er
en
tL

A
,L

D
,

an
d
LT

(L
in
es

of
co
de

in
a
fil
e
be
fo
re

th
e

ch
an
ge
)
m
et
ri
cs

to
m
ea
su
re

th
e
si
ze

di
m
en
si
on
s

In
te
rn
al
,E

xt
er
na
l

V
al
id
ity

ad
dr
es
se
d

Sp
ea
rm

an
co
rr
el
at
io
n

te
st
s,

A
U
C

123

Arab J Sci Eng (2017) 42:3465–3502 3493

Ta
bl
e
21

co
nt
in
ue
d

St
ud
y
ID

an
d
pr
op
os
ed

m
od
el
s/
ap
pr
oa
ch
es

Pr
oj
ec
tt
yp
e
an
d
do
m
ai
n

Pr
og
ra
m
m
in
g
la
ng
ua
ge
s

M
et
ho
ds

us
ed

D
at
a
so
ur
ce
s
us
ed

M
et
ri
cs

us
ed

V
al
id
at
io
n
pr
oc
es
s

[8
6]

C
on
ce
pt
ua
l

C
oh

es
io
n
of

C
la
ss
es

O
SS

C
+
+

R
eg
re
ss
io
n
an
al
ys
is
,

un
iv
ar
ia
te
an
d

m
ul
tiv

ar
ia
te
lo
gi
st
ic

re
gr
es
si
on

an
al
ys
is

m
et
ho
ds
,L

SI
-b
as
ed

co
he
re
nc
e

m
ea
su
re
m
en
t

B
ug

zi
lla

N
M

N
M

[8
7]

D
ef
ec
tD

ec
ay

M
od
el
:E

D
3M

N
M

N
M

E
xp
on
en
tia
lP

ee
lin

g,
N
on
lin

ea
r
re
gr
es
si
on

N
M

N
M

N
ot

A
dd
re
ss
ed

[8
8]

N
ov
el
be
nc
hm

ar
k

Fr
am

ew
or
k

N
M

N
M

D
if
fe
re
nt

m
ac
hi
ne

le
ar
ni
ng

sc
he
m
es

N
A
SA

an
d
PR

O
M
IS
E

re
po
si
to
ry

L
O
C

N
ot

A
dd
re
ss
ed

[9
0]

B
ay
es
ia
n
ne
tw
or
k

le
ar
ne
rs

N
M

N
M

B
A
Y
E
SI
A
N

N
E
T
W
O
R
K

C
L
A
SS

IF
IE
R
S,

K
2

al
go
ri
th
m
,M

M
H
C

al
go

ri
th
m
,R

O
C
,A

U
C
,

B
on
fe
rr
on
i-
D
un
n
te
st
s

N
A
SA

re
po

si
to
ry

L
O
C
,M

cC
ab
e
H
al
st
ea
d,

M
is
ce
lla

ne
ou

s
m
et
ri
cs

N
ot

A
dd
re
ss
ed

[9
1]

A
ss
oc
ia
tio

n
ru
le

m
in
in
g
m
et
ho
d

N
M

N
M

A
ss
oc
ia
tio

n
ru
le
m
in
in
g,

SQ
L

N
M

N
M

N
ot

A
dd
re
ss
ed

[9
2]

N
eg
at
iv
e
B
in
om

ia
l

R
eg
re
ss
io
n
M
od
el

In
du

st
ri
al
so
ft
w
ar
e
pr
oj
ec
ts

N
M

N
eg
at
iv
e
bi
no

m
ia
lr
eg
.

m
od
el

C
ha
ng
e
lo
g

L
O
C

N
ot

A
dd
re
ss
ed

[1
24

]
M
od
el
D
ri
ve
n

O
SS

JA
V
A

Q
ue
ri
es

R
ep
os
ito

ry
(O

C
L

Q
ue
ri
es
)

N
o
of

Pa
ck
ag
es

N
ot

A
dd
re
ss
ed

123

3494 Arab J Sci Eng (2017) 42:3465–3502

Table 22 Summary of evolution process support approaches/models

Proposed approach Aspect Study ID Results

EVOSS Fault detector [60] The approach is validated by
applying it to Fedora and
Debian-based systems
consisting of ≈1400 installed
packages

Feedback-driven Quality
Assessment

Remote and continuous
analysis of open source
software to monitor evolution

[61] In real time, GRASS
maintainers have successfully
carried out automatic
maintenance and the
feedback of evolution
activities performed

Adaptive Change Propagation
Heuristics

Change Propagation [62] An empirical case study
conducted on four large and
complex open source
systems: FreeBSD (an
operating system), GCC (a
compiler), GCluster (a
clustering framework) and
PostgreSQL (a database)
results demonstrated that
adaptive change propagation
heuristics shows 57%
considerable progress as
compared to the
out-performing static change
propagation heuristics

SE2 Model Feature location (FA), Software
change impact analysis (IA),
and Expert developer
recommendation (DR)

[63] The general accuracy of
correctly recommended
developers is between 47 and
96% and between 43 and
60% for bug reports and
feature requests respectively

A Two-dimensional
Classification Model of OSS

Degree of maturity/visibility of
organizational structure
governing development
projects

[66] The model provides
understanding of the current
status and possible
evolutionary paths

KERIS Extensible modules as the basic
building blocks for software

[67] It allows extensibility of linked
systems by restoring
sub-modules with
well-matched releases
without the need to re-link the
whole system. A compiler
prototype for KERIS is also
implemented

Lean–Kanban approach Reduce the average time
needed to complete
maintenance requests

[68] The results reveal that effective
modeling and simulation is
possible, by putting actors
and events in use. Moreover,
maintenance process in which
flow of issues is gone through
series of tasks, correctly
reproduce key statistics of
real data

123

Arab J Sci Eng (2017) 42:3465–3502 3495

Table 22 continued

Proposed approach Aspect Study ID Results

FLOSS Staged Evolution
Model

FLOSS software life cycle [96] Not mentioned

Maintenance Process Eval Evaluation of OSS maintenance [56] Results showed that most of the
projects were stabilizing and
maintenance was active in all
the projects because most of
the defect reports were
resolved

Exogenous Factors a) Low inclusion of a project in
repository increases its
success?

[99] 1. A general framework relates
several types of FLOSS
repositories and gives a better
perspective of describing the
diversity of results, i.e.,
success of the normal OSS
project

b)The quality of data sources [100] 2. It shows OSS open source
software evolution analysis
and history, and that the
forecasting its future depends
on data sources quality and
consequent process data

c)Comparative analysis
between FLOSS repositories

[59] 3. Results have shown that
during project evolution OSS
repositories act as exogenous
factors

d)SS data analysis [97] 4. Results revealed that largely
used systems in libre software
projects are SCM and offer
detailed information about
software development.
Where, mailing lists and
forums are generally core
communication channels
being used in libre software
projects

FAULTTRACER Ranks program edits according
to their suspiciousness

[69] FAULTTRACER lessen the
changes to be examined
manually by more than 50%
on data sets of real regression
faults, and more than 60% on
seeded faults data set while
comparing method-level
changes in comparison to
existing ranking heuristic

Commenting practice Understanding the processes
and practices of open source
software development

[95] It was realized that the average
comment density varies by
programming language but
remains constant on several
other dimensions

Configuration management Configuration management
process to analyze open
source software projects

[105] It was concluded that
configuration management
process has potential benefits
for coordinating and
synchronizing different
activities of geographically
located personals for OSS
projects

123

3496 Arab J Sci Eng (2017) 42:3465–3502

heuristics have been proposed for change propagation. The
authors proposed adaptive change propagation heuristics.
These are meta-heuristics which are combinations of differ-
ent previously researched heuristics for overall performance
improvement (recall and precision) of change propagation
heuristics. An empirical case study conducted on four large
and complex open source systems: FreeBSD (an operating
system), GCC (a compiler), GCluster (a clustering frame-
work) andPostgreSQL (a database). Results demonstrate that
adaptive change propagation heuristics shows 57% consid-
erable progress as compared to static change propagation
heuristics.

4.4.4 SE2

Kagdi et al. [63] proposed “SE2 “ an integrated approach, for
supporting three important tasks of software evolution and
maintenance such as: software change impact analysis (IA),
expert developer recommendation (DR) and feature loca-
tion (FA). This approach is comprised of evolutionary and
conceptual associations concealed in both software artifacts,
i.e., structured and unstructured. For analyzing and deriv-
ing these relationships,MiningSoftwareRepositories (MSR)
and Information Retrieval (IR)-based techniques are used. A
single framework is used to support all the three tasks. To
assess IA, evaluations are conducted on number of changes
in open source systems httpd, Apache, iBatis, KOffice and
ArgoUML. Results showed that considerable enhancement
in recall and precision values can be obtained by joining
two couplings. Further, an introductory assessment of DR
based on change requests of three OSS open source systems
Eclipse, KOffice and ArgoUMLwas conducted. The general
accuracy of correctly recommended developers is between
47 and 96% and between 43 and 60% for bug reports and
feature requests respectively.

4.4.5 Two-Dimensional Classification Model of OSS

The author [66] proposed two-dimensional classification
model, i.e., Institution (shows thedegreeofmaturity/visibility
of organizational structure governing development projects)
and industrial (shows the degree of industrial solution goals.
If the second is high, it shows the industrial attention to the
completeness of the package. If it is low, it shows the focus
on the development of each component) and it can be used in
designing the evolution of an OSS project in order to best
utilize corporate engagement. The model provides under-
standing of the current status and possible evolutionary paths.

4.4.6 KERIS

Matthias Zenger [67] presented the programming language
KERIS, a Java extension with precise support for software

evolution. Extensible modules are introduced as essential
building blocks for software. These modules are composed
in a hierarchy and reveal system architecture. Module design
differs in the sense that modules are not linked manually.
Rather, it gets inferred. The KERIS module assembly and
refinement method are not constrained to the unexpected
extensibility of atomic modules. It also allows extensibility
of already systems linked by replacing selected sub-modules
with companionable versions without re-linking the whole
system. He has also implemented a compiler prototype for
KERIS, where compiler reads KERIS source code and make
standard Java class files for classes as well as modules.

4.4.7 Simulating the Software Maintenance Process

Concas et al. [68] presented simulation studies showing that
Lean–Kanban method is very helpful because it reduces the
average time needed for completing maintenance requests.
They developed a process simulator for simulating mainte-
nance processes which do not use a WIP limit. Two case
studies are further performed that make use of real mainte-
nance data taken from aMicrosoft project and from aChinese
software firm. Results reflect that effective modeling and
simulating is possible by using actors and events and mainte-
nance process inwhich processing of flowof issues is through
a set sequence activities.

4.4.8 Exogenous Factors

Beecher et al. [99] evaluated how the enclosure of a project
in repository affects its “success”. They selected six repos-
itories and selected 50 projects from each repository. They
further studied four process and product characteristics of
the selected projects. While testing for existence of same
results when studying FLOSS repositories, results showed
that it is not just the repositories that differ in context of prod-
uct and process characteristics (or both), but the two groups
have also shown considerable changes among them. The first
group (KDE and Debian) constantly differ when compared
to a second group (Savannah, SourceForge and RubyForge).
Afterward, it was revealed that two repositories (Debian and
KDE) got considerably good outcomes as compared to the
second group.

The authors address the quality of data sources that give
detail of the dynamics influencing software process data char-
acteristics and quality taken from version control system
[100]. The results reflect that evolution analysis, open source
software history and future forecasting are dependent on the
quality of data sources and subsequent data processes.

Capiluppi et al. [59] presented a relative study on two
repositories of FLOSS (SourceForge and Debian). Archi-
tectural structure of selected projects from every single
repository was assessed. They concluded that a repository

123

Arab J Sci Eng (2017) 42:3465–3502 3497

itself is influenced by the same structure as an exogenous fac-
tor. Robles et al. [97] also address the issues initiated while
preparing and eliciting data analysis for open source soft-
ware projects. They also proposed tools for supporting data
extraction and analysis.

4.4.9 FLOSS Staged Evolution Model

It is a conventional staged model that characterizes the life
cycle of software into series of steps. Despite using a model
which is founded after examining the customary develop-
ment of software, Capiluppi et al. [96] modified the staged
model for its appliance on open source software evolu-
tion. The proposed model consists of four stages: initial
development, evolution changes, servicing and phase out.
Results show the general commonalities among commer-
cial and FLOSS evolutionary behavior such as a point of
stabilization with less functionality added is found in evo-
lutionary behavior some FLOSS where initial development
opts to be super-linear. Apart from the resemblance, three
points of difference are also found such as: releases avail-
ability, changeover between evolution and servicing stage
and changes made to the model is a probable switch among
phases of evolution and phase out.

4.4.10 FAULTTRACER

Zhang et al. [69] presented a new approach, FAULT-
TRACER, for ranking program edits depending upon their
suspiciousness for diminishing developers attempt in exam-
ining the influence of changes manually. It uses spectrum-
based fault localization technique that supposes statements
primarily executed by failed tests are more suspicious. Fur-
ther, an experimental study was conducted using 23 versions
of four Java programs from Software Infrastructure Repos-
itory. FAULTTRACER lessen the changes to be examined
manually by more than 50% on data sets of real regression
faults, and more than 60% on seeded faults data set while
comparing method-level changes in comparison to existing
ranking heuristic. Fault localization component of FAULT-
TRACER is found 80% more efficient as compared to tra-
ditional spectrum-based fault localization. FAULTTRACER
is integrated with Eclipse IDE and is also implemented as a
toolkit freely accessible.

4.4.11 Commenting Practice

In order to understand the practices and processes of OSS
development, Arafat et al. [95] used source code comments
as an indicator of maintainability. The comment density, i.e.,
code metric was focused. Commenting practice is an incor-
porated task in open source software development and that
this project is consistently being followed in successful OSS

projects. They also found that the average comments density
remains constant in several other dimensions but varies by
the programming language.

4.4.12 Maintenance Process Evaluation

Koponen et al. [56] proposed a framework for OSS mainte-
nance evaluation. It includes several features for type, activity
and quality of the maintenance evaluation. It has been evalu-
ated with five case studies. Results of these case studies have
shown that this framework can be used for evaluating main-
tenance of OSS thoughmanual evaluation is very demanding
and time consuming because of large datasets. Case studies
show that most of the projects are stable and maintenance
is active in all the projects as usually reported defects are
resolved. Furthermore, maintenance tasks are not even trace-
able in all case studies; and usually changes even do not refer
to reported defects in most all case studies. Therefore, results
showed that maintenance does not make efficient use of Ver-
sion Management System and defects.

We report 13 different approaches/models/tools available
for evolution process support that cover different aspects
such as fault detection, change propagation, evolution mod-
els, exogenous factors. All approaches have been tested and
validated on well-known sets of OSS projects by differ-
ent researchers. We conclude that SCM systems are largely
used in free software projects and give detailed information
about software development, while forums and mailing lists
are generally the main channels of communication used in
open source software projects. It has also been identified that
FLOSS repositories act as exogenous factors for the evolu-
tion of OSS projects.

5 Validity Threats

Validity is the degree to measure accuracy of a conclusion. It
is concerned with the accuracy of our measurement and the
quality of guidelines followed for this systematic mapping
study. The merits and demerits of the study with respect to
the validity of the outcome can be assessed based on the
discussion of validity threats. Significant threats to validity
are choice of research databases, selection of primary studies,
data extraction and conclusion validity.

5.1 Choice of Research Databases

The selection of limited research databases for contributions
could be seen as a limitation of our systematicmapping study.
We selected most relevant database libraries plus proceed-
ings of International Conference on Open Source Systems
and Journal of Software: Evolution and Process. However, it

123

3498 Arab J Sci Eng (2017) 42:3465–3502

is possible that some relevant studies are missed which are
published in different other venues.

5.2 Selection of Primary Studies

Themainmotive of conducting a systematicmapping studies
is to identify as many empirical studies as possible that cover
state-of-the-art research relevant to the context of the main
topic. For this, a total of seven databases were searched and a
large number of studies were retrieved. The search string was
formulated and refined with combination of different key-
words. This search string was useful in extracting the most
relevant studies needed for the review. Inclusion/exclusion
criteria are applied on the articles followed by a quality
assessment criterion to find out the related articles which
mainly focused on the target topic. However, 98 selected
studies which qualified our assessment criteria may still have
chances about their selection due to involvement of only two
authors of this paper for the selection of primary studies that
might make our results unreliable. It may be also possible
that we missed papers that should be included in 98 primary
studies. We additionally applied a checklist method to deter-
mine the quality of selected primary studies which reduces
the threat of researcher’s biases for the selection of primary
studies. Furthermore, we selected primary studies from aca-
demic indexing services which has limited our data source
to academic contributions, expect with contributions that are
co-authored with industrial researchers.

5.3 Data Extraction

During the final data extraction step, 98 primary studies are
analyzed and different pieces of information are elicited.
Due to the high variability on the quality, location and level
of detail of the information that was provided in the con-
tributions, (findings, research methods and other type of
information) identifying the different pieces of data within
the document was highly difficult. This situation may lead
to missing information due to the fact that only two authors
of this study performed the task of data extraction. Due to
large variations of metrics, models, methods and tools used
for evolution of OSS studies in different contexts, we were
not able to performmeta-analysis of the primary studies. Fur-
thermore, data are extracted from the primary studies with
respect to our research questions, which is primarily about
evolution prediction of OSS studies and evolution process
support. Most studies focused evolution prediction at code
level. It isworthwhile to investigate evolution studies at archi-
tecture, design and requirement levels.

5.4 Conclusion Validity

Conclusion validity is the degree to measure relationship
between the reality and findings of an experiment. Con-
clusion validity of our study refers to the degree to which
the findings and conclusions of our systematic mapping are
empirically sound and reliable. We tried to mitigate this
threat by collecting data about primary studies is a structured
way and derived conclusions following a rigorous analy-
sis process. In Sect. 6, we present conclusions about our
study, including summarization of results, research trends
and future research directions. Our conclusions are based on
statistical data extracted from academic literature. A threat
to conclusion validity may that that we did not compare our
findings with industrial surveys and questionnaires.

6 Summary and Conclusion

We present a systematic mapping of OSS evolution and pro-
cess support studies in this paper. We undertake two aspects
of evolution studies, i.e., OSS Evolution Prediction and OSS
Evolution Process Support in the context of two research
questions. The targeted time period of our research is from
January 2000 to 2015. Automated and manual search for the
relevant literature resulted in 1513 papers that were imported
into Zotero library. Ninety-eight papers are selected for final
review after discarding duplicates, title/abstract and full text
scan. Eighty papers are related to OSS Evolution Prediction,
and eighteen papers focus onOSSEvolution Process support.

In response to our RQ 1, the results reflect that OSS
Evolution Prediction studies have largely focused on Defect
Prediction. A large number of methods, models, metrics and
data sources are presented for predicting defects of OSS
studies. Other aspects of evolution prediction are: change
propagation, size, refactoring, maintenance effort, contribu-
tion evolution, SOC and clone evolution. SVN/CVS is found
to be the largest dataset used. Researchers employed statisti-
cal methods (62%) and machine learning algorithms (21%)
for predicting different aspect of OSS studies. We found that
only 15% studies performed experiments on common case
studies (Linux, Apache) for evolution prediction and evolu-
tion process support of OSS studies as shown in Table 10.
We identified 20 categories of metrics used for the evolution
prediction of different aspects of open source projects, and
SLOC is found to be extensively used metric (26% studies).
SLOC metrics is used for predicting size, defects, mainte-
nance effort, change propagation, refactoring, evolution of
contribution and self-organized criticality. Researchers have
contradictions on the predictive power of metrics used for the
evolution of OSS studies. These contractions are discussed
in Sect. 4.2. There is a need of further research to empir-
ically evaluate predictive power of different metrics. Most

123

Arab J Sci Eng (2017) 42:3465–3502 3499

metrics are applied on the file level for the evolution pre-
diction of OSS studies as highlighted in Table 19. We also
analyzed that class level metrics are applied by few studies
but method-level metrics are applied by none of the selected
primary studies. Moreover, we also reveal that code level
metrics are applied by most researchers for evolution predic-
tion of OSS studies. Little attention is paid to requirements,
design and architectural level metrics for predicting evolu-
tion of OSS studies.

A number of models have been proposed that focus on
different aspects of OSS prediction. We analyzed that time
series-based ARIMA models are largely used that cover
aspects such as size, defect count, maintenance effort and
change request prediction. These models predict growth rate
of projects with better accuracy but their accuracy vary
depending on the size of a project. They also make reli-
able prediction with less error rate. In response to RQ2, we
found that theOSS studies focusing on evolution process sup-
port used different methods, tools and approaches for OSS
evolution process support. OSS Evolution process support
studies have usually focused on evolution models, exoge-
nous factors,maintenance support, fault detection andchange
propagation aspects. A very little effort has been paid to the
other aspects such as Configuration Management, Growth,
Complexity and Control, possible evolutionary paths etc.
SVN/CVS is again found to be the largest explored dataset.
The detailed explanation about these aspects is presented in
Sect. 4.4.

In both cases of evolution prediction and evolution pro-
cess support, the reviewed articles admitted the necessity of
external validity, whereas the ratio of articles not addressing
validation process is considerably higher (56% for evolution
prediction and 68% for evolution process support). We real-
ized that vast heterogeneity of evolution prediction models
building data make their evaluation difficult. Generalization
of evolution prediction models regardless of their applicabil-
ity on project size requires the attention of researchers.

Future research should also focus on predicting change
propagation, size, refactoring, maintenance effort, contribu-
tion evolution, SOC and clone evolution besides defect pre-
diction. The architectural and requirements change evolution
is also undermined area that needs attention of researchers.
The tools and approaches proposed for evolution also admit
the necessity of external validation. Future research should
focus on the above mentioned issues and try to make them
more generalized regardless of the domain of OSS projects.

References

1. Fernandez-Ramil, J.; Lozano, A.; Wermelinger, M.; Capiluppi,
A.: Empirical studies of open source evolution. In: Software Evo-
lution, pp. 263–288. Springer (2008)

2. Spinellis, D.; Giannikas, V.: Organizational adoption of open
source software. J. Syst. Softw. 85(3), 666–682 (2012)

3. Xie, G.; Chen, J.; Neamtiu, I.: Towards a better understanding of
software evolution: an empirical study on open source software.
Proc. Softw. Maint. ICSM 2009, 51–60 (2009)

4. Cosentino, V.; Luis, J.; Cabot, J.: Findings fromGitHub:methods,
datasets and limitations. In: Proceedings of the 13th International
Workshop on Mining Software Repositories, pp. 137–141 (2016)

5. Mahbubul Syeed, M.M.; Hammouda, I.; Systä, T.: Evolution of
open source software projects: a systematic literature review. J.
Softw. 8, 2815–2829 (2013)

6. Breivold H.P.; Chauhan M.A.; Babar M.A.: A systematic review
of studies of open source software evolution. In: Software
Engineering Conference (APSEC), 2010 17th Asia Pacific, pp.
356–365 (2010)

7. Koch, S.: Software evolution in open source projects—a large
scale investigation. J. Softw. Maint. Evol. Res. Pract. 19(6), 361–
382 (2007)

8. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M.: Systematic
mapping studies in software engineering. In: 12th International
Conference on Evaluation and Assessment in Software Engineer-
ing, pp. 71–80 (2008)

9. Lehman, M.M.; Belady, L.A.: Program evolution-processes of
software change. Academic Press, London (1985)

10. Lehman,M.M.; Ramil, J.F.: Rules and tools for software evolution
planning and management. Ann. Softw. Eng. 11, 15–44 (2001)

11. Software Engineering Group. Department of Computer Science,
Guidelines for performing Systematic Literature Reviews in
Software Engineering. EBSE Technical Report EBSE-2007-01,
Version 2.3. 9 (July, 2007)

12. Ivarsson, M.; Gorschek, T.: Technology transfer decision support
in requirements engineering research: a systematic review of REj.
Requir. Eng. 14(2009), 155–175 (2009)

13. Robles G.; Amor J.J.; Gonzalez-Barahona J.M.; Herraiz I.; Evo-
lution and growth in large libre software projects. In: Proceedings
of Eighth International Workshop on Principles of Software Evo-
lution (IWPSE 2005), pp. 165–174 (2005)

14. Capiluppi, A.; Lago, P.; Morisio, M.: Evidences in the evolution
of OS projects through Changelog analyses. In: Proceedings 3rd
Workshop on Open Source Software Engineering, 25th Interna-
tional Conference on Software Engineering, pp. 19–24 (2003)

15. Robles-Martinez, G.; Gonzalez-Barahona, J.M.; Centeno-
Gonzalez, J.; Matellan-Olivera, V.; Rodero-Merino, L.: Studying
the evolution of libre software projects using publicly available
data. In: Proceedings of 3rd Workshop on Open Source Software
Engineering, 25th International Conference on Software Engi-
neering, pp. 111–116 (2003)

16. Fogel, K.: Open source development with cvs. Coriolis Open
Press, Scottsdale (1999)

17. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bai-
ley, J.; Linkman, S.: Systematic literature reviews in software
engineering-a systematic literature review. Inf. Softw. Technol.
51(1), 7–15 (2009)

18. Lee, Y.; Yang, J.; Chang, K.H.: Metrics and evolution in open
source software. In: Seventh International Conference on Quality
Software (QSIC 2007), pp. 191–197 (2007)

19. Kitchenham, B.A.; Budgen, D.; Brereton, O.P.: Using mapping
studies as the basis for further research—A participant–observer
case study. Inf. Softw. Technol. 53(6), 638–651 (2011)

20. Syeed, M.M.; Kilamo, T.; Hammouda, I.; Systä, T: Open source
prediction methods: a systematic literature review. In: IFIP Inter-
national Conference on Open Source Systems, pp. 280–285
(2012)

21. Catal, C.;Diri, B.:A systematic reviewof software fault prediction
studies. Expert Syst. Appl. 36(4), 7346–7354 (2009)

123

3500 Arab J Sci Eng (2017) 42:3465–3502

22. Herraiz, I.; Rodriguez, D.; Robles, G.; Gonzalez-Barahona, J.M.:
The evolution of the laws of software evolution: a discussion based
on a systematic literature review. ACM Comput. Surv. (CSUR)
46(2), 28 (2013)

23. Lehman, M.M.; Ramil, J.F.: An approach to a theory of software
evolution. In: Proceedings of the 4th International Workshop on
Principles of Software Evolution, pp. 70–74 (2001)

24. Banker, R.D.; Datar, S.M.; Kemerer, C.F.; Zweig, D.: Software
complexity and maintenance costs. Commun. ACM 36(11), 81–
94 (1993)

25. Obdam, T.S.; Rademakers, L.W.M.M.; Braam,H., Eecen, P.: Esti-
mating costs of operation&maintenance for offshore wind farms.
In: Proceedings of European Offshore Wind Energy Conference,
pp. 4–6 (2007)

26. Farber, D.: Six barriers to open source adoption, ZDNet Tech
Update, March (2004) [WWW document]

27. Petersen, K.; Vakkalanka, S.; Kuzniarz, L.: Guidelines for con-
ducting systematic mapping studies in software engineering: an
update. Inf. Softw. Technol. 64, 1–18 (2015)

28. Smith, N.; Capiluppi, A.; Ramil, J.F.: A study of open source soft-
ware evolution data using qualitative simulation. Softw. Process:
Improv. Pract. 10(3), 287–300 (2005)

29. Skoulis, I.; Vassiliadis, P.; Zarras, A.V.: Growing upwith stability:
how open-source relational databases evolve. Inf. Syst. 53, 363–
385 (2015)

30. Keele, S.: Guidelines for performing systematic literature reviews
in software engineering. pp. 1–57, Technical report, EBSE Tech-
nical Report EBSE-2007-01 (2007)

31. Chidamber, S.R.; Kemerer, C.F.: A metrics suite for object ori-
ented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)

Primary Studies

32. Godfrey,M.W.; Tu, Q.: Evolution in open source software: A case
study. In: Proceedings of International Conference on Software
Maintenance, pp. 131–142 (2000)

33. Nakakoji, K.; Yamamoto, Y.; Nishinaka, Y.; Kishida, K.; Ye, Y.:
Evolution patterns of open-source software systems and commu-
nities. In: Proceedings International Workshop on Principles of
Software Evolution, pp. 76–85 (2002)

34. Paulson, J.W.; Succi,G.; Eberlein,A.:An empirical study of open-
source and closed-source software products. IEEE Trans. Softw.
Eng. 30(4), 246–256 (2004)

35. Herraiz, I.; Gonzalez-Barahona, J.M.; Robles, G.; German, D.M.:
On the prediction of the evolution of libre software projects. In:
Proceedings of IEEE International Conference on SoftwareMain-
tenance, pp. 405–414 (2007)

36. Goulão, M.; Fonte, N.; Wermelinger, M.; Brito e Abreu, F.:
Software evolution prediction using seasonal time analysis: a
comparative study. In: Proceedings of 16th European Conference
on SoftwareMaintenance andReengineering, pp. 213–222 (2012)

37. Herraiz, I.; Robles, G.; Gonzalez-Barahona, J.M.: Towards pre-
dictor models for large libre software projects. ACM SIGSOFT
Softw. Eng. Notes 30(4), 1–6 (2005)

38. Herraiz, I.; Gonzalez-Barahona, J.M.; Robles, G.: Determinism
and evolution. In: Proceedings of the Working Conference on
Mining Software Repositories, pp. 1–10 (2008)

39. Yu, L.: Indirectly predicting themaintenance effort of open source
software. J. Softw.Maint. Evol. Res. Pract. 18(5), 311–332 (2006)

40. Bhattacharya, P.; Iliofotou, M.; Neamtiu, I.; Faloutsos, M.:
Graph-based analysis and prediction for software evolution. In:
Proceedings of the 34th International Conference on Software
Engineering, pp. 419–429 (2012)

41. Raja, U.; Hale, D.P.; Hale, J.E.: Modeling software evolution
defects: a time series approach. J. Softw. Maint. Evol. Res. Pract.
21(1), 49–71 (2009)

42. Wu, J.; Holt, R.C.; Hassan, A.E.: Empirical evidence for SOC
dynamics in software evolution. In: Proceedings of International
Conference on Software Maintenance, pp. 244–254 (2007)

43. Ratzinger, J.; Sigmund, T.; Vorburger, P.; Gall, H.: Mining soft-
ware evolution to predict refactoring. In: First International
Symposium on Empirical Software Engineering and Measure-
ment, pp. 354–363 (2007)

44. Shatnawi, R.; Li, W.: The effectiveness of software metrics in
identifying error-prone classes in post-release software evolution
process. J. Syst. Softw. 81(11), 1868–1882 (2008)

45. Illes-Seifert, T.; Paech, B.: Exploring the relationship of a file’s
history and its fault-proneness: an empirical method and its
application to open source programs. Inf. Softw. Technol. 52(5),
539–558 (2010)

46. Binkley, D.; Feild, H.; Lawrie, D.; Pighin, M.: Software fault
prediction using language processing. In: Testing: Academic
and Industrial Conference Practice and Research Techniques-
MUTATION, pp. 99–110 (2007)

47. Ullah, N.: A method for predicting open source software residual
defects. Softw. Quality J. 23(1), 1–22 (2014)

48. Knab, P.; Pinzger, M.; Bernstein, A.: Predicting defect densities
in source code files with decision tree learners. In: Proceedings
of the International Workshop on Mining Software Repositories,
pp. 119–125 (2006)

49. Ekanayake, J.; Tappolet, J.; Gall, H.C.; Bernstein, A.: Tracking
concept drift of software projects using defect prediction quality.
In: Proceedings of 6th IEEE International Working Conference
on Mining Software Repositories, pp. 51–60 (2009)

50. Shawky, D.M.; Ali, A.F.: Modeling clones evolution in open
source systems through chaos theory. In: Proceedings of 2nd Inter-
national Conference on Software Technology and Engineering
(ICSTE), vol. 1, pp. V1-159 (2010)

51. Ratzinger, J.; Gall, H.; Pinzger, M.: Quality assessment based
on attribute series of software evolution. In: Proceedings of 14th
Working Conference on Reverse Engineering, pp. 80–89 (2007)

52. Mirarab, S.; Hassouna, A.; Tahvildari, L.: Using bayesian belief
networks to predict change propagation in software systems. In:
Proceedings of 15th IEEE International Conference on Program
Comprehension, pp. 177–188 (2007)

53. Askari, M.; Holt, R.: Information theoretic evaluation of change
prediction models for large-scale software. In: Proceedings of the
2006 International Workshop on Mining Software repositories,
pp. 126–132 (2006)

54. Olague, H.M.; Etzkorn, L.H.;Messimer, S.L.; Delugach, H.S.: An
empirical validation of object oriented class complexity metrics
and their ability to predict error prone classes in highly iterative,
or agile, software: a case study. J. Softw. Maint. Evol. Res. Pract.
20(3), 171–197 (2008)

55. Rossi, B.; Russo, B.; Succi, G.: Modelling failures occurrences
of open source software with reliability growth. In: IFIP Interna-
tional Conference on Open Source Systems, pp. 268–280 (2010)

56. Koponen, T.: Evaluation framework for open source software
maintenance. In: Proceedings of International Conference on
Software Engineering Advances, pp. 52-52 (2006)

57. Biçer, S.; Bener, A.B.; Çağlayan, B.: Defect prediction using
social network analysis on issue repositories. In: Proceedings of
the International Conference on Software and Systems Process
pp. 63–71 (2011)

58. Bouktif, S.; Sahraoui, H.; Ahmed, F.: Predicting stability of
open-source software systems using combination of Bayesian
classifiers. ACM Trans. Manag. Inf. Syst. (TMIS) 5(1), 1–26
(2014)

123

Arab J Sci Eng (2017) 42:3465–3502 3501

59. Capiluppi, A.; Beecher, K.: Structural complexity and decay in
FLOSS systems: An inter-repository study. In: Proceedings of
13th European Conference on SoftwareMaintenance and Reengi-
neering, pp. 169–178 (2009)

60. Di Ruscio, D.; Pelliccione, P.; Pierantonio, A.: EVOSS: A tool for
managing the evolution of free and open source software systems.
In: Proceedings of 34th International Conference on Software
Engineering (ICSE), pp. 1415–1418 (2012)

61. Ouktif, S.; Antoniol, G.;Merlo, E.; Neteler, M.: A feedback based
quality assessment to support open source software evolution: the
GRASS case study. In: Proceedings of 22nd IEEE International
Conference on Software Maintenance, pp. 155–165 (2006)

62. Malik, H.; Hassan, A.E.: Supporting software evolution using
adaptive change propagation heuristics. In: Proceedings of IEEE
International Conference on Software Maintenance, pp. 177–186
(2008)

63. Kagdi, H.; Gethers, M.; Poshyvanyk, D.: SE 2 model to support
software evolution. In: Proceedings of 27th IEEE International
Conference on Software Maintenance, pp. 512–515 (2011)

64. Di Cosmo, R.; Di Ruscio, D.; Pelliccione, P.; Pierantonio, A.;
Zacchiroli, S.: Supporting software evolution in component-based
FOSS systems. Sci. Comput. Program. 76(12), 1144–1160 (2011)

65. Di Ruscio, D.; Pelliccione, P.: Simulating upgrades of complex
systems: the case of Free and Open Source. Softw. Inf. Softw.
Technol. 56(4), 438–462 (2014)

66. Yamakami, T.: A two-dimensional classification model of OSS:
towards successful management of the evolution of OSS. In:
Proceedings of 13th International Conference on Advanced Com-
munication Technology (ICACT), pp. 1336–1341 (2011)

67. Zenger, M.: Keris: evolving software with extensible modules. J.
Softw. Maint. Evol. Res. Pract. 17(5), 333–362 (2005)

68. Concas, G.; Lunesu,M.I.;Marchesi,M.; Zhang, H.: Simulation of
softwaremaintenance process, with andwithout a work in process
limit. J. Softw. Evol. Process 25(12), 1225–1248 (2013)

69. Zhang, L.; Kim, M.; Khurshid, S.: FaultTracer: a spectrumbased
approach to localizing failure-inducing program edits. J. Softw.
Evol. Process 25(12), 1357–1383 (2013)

70. Scanniello, G.; Gravino, C.; Marcus, A.; Menzies, T.: Class level
fault prediction using software clustering. In: Proceedings of
IEEE/ACM 28th International Conference on Automated Soft-
ware Engineering (ASE), pp. 640–645 (2013)

71. Panichella, A.; Oliveto, R.; De Lucia, A.: Cross-project defect
prediction models: L’Union fait la force. In: Software Mainte-
nance, Reengineering and Reverse Engineering (CSMR-WCRE),
pp. 164–173 (2013)

72. He, Z.; Peters, F.; Menzies, T.; Yang, Y.: Learning from open-
source projects: An empirical study on defect prediction. In:
Proceedings of ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement, pp. 45–54 (2013)

73. Zhang, F.; Mockus, A.; Keivanloo, I.; Zou, Y.: Towards building
a universal defect prediction model. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, pp. 182–
191 (2014)

74. Wahyudin, D.; Schatten, A.; Winkler, D.; Tjoa, A.M.; Biffl, S.:
Defect Prediction using Combined Product and Project Metrics-
A Case Study from the Open Source Apache MyFaces Project
Family. In: Proceedings of 34th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (2008)

75. Malhotra, R.: A defect predictionmodel for open source software.
In: Proceedings of the World Congress on Engineering, vol. 2
(2012)

76. Jing, X.Y.; Ying, S.; Zhang, Z.W.; Wu, S.S.; Liu, J.: Dictionary
learning based software defect prediction. In: Proceedings of the
36th International Conference on Software Engineering, pp. 414–
423 (2014)

77. English, M.; Exton, C.; Rigon, I.; Cleary, B.: Fault detection and
prediction in an open-source software project. In: Proceedings of
the 5th International Conference on Predictor Models in Software
Engineering, p. 17 (2009)

78. Malhotra, R.; Jain, A.: Fault prediction using statistical and
machine learning methods for improving software quality. JIPS
8(2), 241–262 (2012)

79. Sandhu, P.S.; Dhiman, S.K.; Goyal, A.: A genetic algorithm based
classification approach for finding fault prone classes. World
Acad. Sci. Eng. Technol. 60, 485–488 (2009)

80. Fukushima,T.;Kamei,Y.;McIntosh, S.;Yamashita,K.;Ubayashi,
N.: An empirical study of just-in-time defect prediction using
cross-project models. In: Proceedings of the 11th Working Con-
ference on Mining Software Repositories, pp. 172–181 (2014)

81. Li, P.L.; Herbsleb, J.; Shaw,M.: Finding predictors of field defects
for open source software systems in commonly available data
sources: a case study of openbsd. In: 11th IEEE International
Symposium on Software Metrics, p. 10 (2005)

82. Caglayan, B.; Bener, A.; Koch, S.:Merits of using repositorymet-
rics in defect prediction for open source projects. In: FLOSS’09.
ICSE Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development, pp. 31–36 (2009)

83. Rahman, F.; Devanbu, P.: How, and why, process metrics are
better. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 432–441 (2013)

84. Olague, H.M.; Etzkorn, L.H.; Gholston, S.; Quattlebaum, S.:
Empirical validation of three software metrics suites to predict
fault-proneness of object-oriented classes developed using highly
iterative or agile software development processes. IEEE Trans.
Softw. Eng. 33(6), 402–419 (2007)

85. Premraj, R.; Herzig, K.: Network versus code metrics to pre-
dict defects: A replication study. In: International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp.
215–224 (2011)

86. Marcus, A.; Poshyvanyk, D.; Ferenc, R.: Using the conceptual
cohesion of classes for fault prediction in object-oriented systems.
IEEE Trans. Softw. Eng. 34(2), 287–300 (2008)

87. Haider, S.W.; Cangussu, J.W.; Cooper, K.M.; Dantu, R.: Estima-
tion of defects based on defect decay model: ED3 M. IEEE Trans.
Softw. Eng. 34(3), 336–356 (2008)

88. Song, Q.; Jia, Z.; Shepperd, M.; Ying, S.; Liu, J.: A general soft-
ware defect-proneness prediction framework. IEEE Trans. Softw.
Eng. 37(3), 356–370 (2011)

89. Zhou, Y.; Leung, H.: Empirical analysis of object-oriented design
metrics for predicting high and low severity faults. IEEE Trans.
Softw. Eng. 32(10), 771–789 (2006)

90. Dejaeger, K.; Verbraken, T.; Baesens, B.: Toward comprehensible
software fault prediction models using bayesian network classi-
fiers. IEEE Trans. Softw. Eng. 39(2), 237–257 (2013)

91. Song,Q.; Shepperd,M.; Cartwright,M.;Mair, C.: Software defect
association mining and defect correction effort prediction. IEEE
Trans. Softw. Eng. 32(2), 69–82 (2006)

92. Ostrand, T.J.; Weyuker, E.J.; Bell, R.M.: Predicting the location
andnumber of faults in large software systems. IEEETrans. Softw.
Eng. 31(4), 340–355 (2005)

93. Pendharkar, P.C.; Subramanian, G.H.; Rodger, J.A.: A probabilis-
tic model for predicting software development effort. IEEE Trans.
Softw. Eng. 31(7), 615–624 (2005)

94. Gyimothy, T.; Ferenc, R.; Siket, I.: Empirical validation of object-
oriented metrics on open source software for fault prediction.
IEEE Trans. Softw. Eng. 31(10), 897–910 (2005)

95. Arafat, O.; Riehle, D.: The commenting practice of open source.
In: Proceedings of the 24th ACM SIGPLAN Conference Com-
panion on Object Oriented Programming Systems Languages and
Applications, pp. 857–864 (2009)

123

3502 Arab J Sci Eng (2017) 42:3465–3502

96. Capiluppi, A.; González-Barahona, J.M.; Herraiz, I.; Rob-
les, G.: Adapting the staged model for software evolution to
free/libre/open source software. In: Proceedings of Ninth Interna-
tional on Principles of Software Evolution: In Conjunction with
the 6th ESEC/FSE Joint Meeting, pp. 79–82 (2007)

97. Robles, G.; González-Barahona, J.M.; Izquierdo-Cortazar, D.;
Herraiz, I.: Tools for the study of the usual data sources found
in libre software projects. Int. J. Open Sour. Softw. Process.
(IJOSSP) 1(1), 24–45 (2009)

98. Gonzalez-Barahona, J.M.; Robles, G.;Michlmayr,M.; Amor, J.J.;
German, D.M.: Macro-level software evolution: a case study of
a large software compilation. Empir. Softw. Eng. 14(3), 262–285
(2009)

99. Beecher, K.; Capiluppi, A.; Boldyreff, C.: identifying exogenous
drivers and evolutionary stages in FLOSS projects. J. Syst. Softw.
82(5), 739–750 (2009)

100. Bachmann, A.; Bernstein, A.: Software process data quality and
characteristics: a historical view on open and closed source
projects. In: Proceedings of the Joint International and Annual
ERCIMWorkshops on Principles of Software Evolution (IWPSE)
and Software Evolution (Evol) Workshops, pp. 119–128 (2009)

101. Aversano, L.; Di Brino, M.; Guardabascio, D.; Salerno, M.;
Tortorella, M.: Understanding enterprise open source software
evolution. Procedia Comput. Sci. 64, 924–931 (2015)

102. Saini, M.; Kaur, K.: Software Evolution Prediction Using Fuzzy
Analysis. In: Proceedings of Fourth International Conference
on Emerging Applications of Information Technology (EAIT),
pp. 349–354 (2014)

103. Aoki, A.; Hayashi, K.; Kishida, K.; Nakakoji, K.; Nishinaka, Y.;
Reeves, B.; and Yamamoto, Y.: A case study of the evolution of
Jun: an object-oriented open-source 3d multimedia library. In:
Proceedings of the 23rd International Conference on Software
Engineering, pp. 524–533 (2001)

104. Mockus, A.; Fielding, R.T.; Herbsleb, J.D.: Two case studies of
open source software development: Apache and mozilla. ACM
Trans. Softw. Eng. Methodol. 11(3), 309–346 (2002)

105. Asklund, U.; Bendix, L.: A study of configuration management
in open source software projects. IEE Proc. Softw. 149(1), 40–46
(2002)

106. Schach, S.R.; Jin, B.; Wright, D.R.; Heller, G.Z.; Offutt, A.J.:
Maintainability of the Linux kernel. IEE Proc. Softw. 149(1), 18–
23 (2002)

107. Bauer, A.; Pizka, M.: The contribution of free software to soft-
ware evolution. In: Sixth International Workshop on Principles of
Software Evolution, pp. 170–179 (2003)

108. Capiluppi, A.: Models for the evolution of OS projects. In: Pro-
ceedings of International Conference on Software Maintenance,
pp. 65–74 (2003)

109. Capiluppi, A.; Morisio, M.; and Lago, P.: Evolution of under-
standability in oss projects. In: Proceedings of Eighth Euromicro
Working Conference on Software Maintenance and Reengineer-
ing, pp. 58–66 (2004)

110. Capiluppi, A.; Ramil, J.F.; e Informatica, D.A.: Studying the evo-
lution of open source systems at different levels of granularity:
Two case studies. In: Proceedings of the 7th International Work-
shop on Principles of Software Evolution, pp. 113–118 (2004)

111. Al-Ajlan, A.: The evolution of open source software using eclipse
metrics. International Conference on New Trends in Information
and Service Science, pp. 211–218 (2009)

112. Capiluppi, A.; Faria, A.E.; Ramil, J.F.: Exploring the relation-
ship between cumulative change and complexity in an open
source system. European Conference on Software Maintenance
and Reengineering (CSMR) (2005)

113. Izurieta, C.; and Bieman, J.: The evolution of freebsd and linux.
In: Proceedings of the IEEE/ACM International Symposium on
Empirical Software Engineering (2006)

114. Wang, Y.; Guo, D.; Shi, H.: Measuring the evolution of open
source software systems with their communities. ACMSIGSOFT
Softw. Eng. Notes 32(6), 7 (2007)

115. Capiluppi, A.; Morisio, M.; Ramil, J.F.: The evolution of source
folder structure in actively evolved open source systems. In: Soft-
ware Metrics, International Symposium on, pp. 2–13 (2004)

116. Fischer, M.; Pinzger, M.; Gall, H.: Populating a release history
database from version control and bug tracking systems. In: Pro-
ceedings of International Conference on Software Maintenance,
pp. 23–32 (2003)

117. Robles, G.; Gonzalez-Barahona, J.M.;Michlmayr,M.; Amor, J.J.:
Mining large software compilations over time: another perspective
of software evolution. International Workshop on Mining Soft-
ware Repositories, pp. 3–9 (2006)

118. Alenezi, M.; Almustafa, K.: Empirical analysis of the complex-
ity evolution in open-source software systems. Int. J. Hyb. Inf.
Technol. 8(2), 257–266 (2015)

119. Alenezi, M.; Zarour, M.: Modularity measurement and evolution
in object-oriented open-source projects. In: Proceedings of the
International Conference on Engineering & MIS, p. 16 (2015)

120. Le, D.M.; Behnamghader, P.; Garcia, J.; Link, D.; Shahbazian,
A.; Medvidovic, N.: An empirical study of architectural change in
open-source software systems. In: Proceedings of the 12th Work-
ing Conference on Mining Software Repositories, pp. 235–245
(2015)

121. Gala-Pérez, S.; Robles, G.; González-Barahona, J.M.; Herraiz,
I.: Intensive metrics for the study of the evolution of open source
projects: Case studies fromApache Software Foundation projects.
In: Proceedings of the 10th Working Conference on Mining Soft-
ware Repositories, pp. 159–168 (2013)

122. Ben Charrada, E.; Koziolek, A.; Glinz, M.: Supporting require-
ments update during software evolution. J. Softw. Evol. Process
27(3), 166–194 (2015)

123. Ruohonen, J.; Hyrynsalmi, S.; Leppänen, V.: Time series trends
in software evolution. J. Softw. Evol. Process 27(12), 990–1015
(2015)

124. Di Ruscio, D.; Pelliccione, P.: A model driven approach to detect
faults in FOSS systems. J. Softw. Evol. Process 27(4), 294–318
(2015)

125. Nzeko’o,A.J.N.; Latapy,M.; Tchuente,M.: SocialNetworkAnal-
ysis of Developers’ and Users’ Mailing Lists of Some Free Open
Source Software. In: Proceedings of IEEE International Congress
on Big Data, pp. 728–732 (2015)

126. Kouroshfar, E.; Mirakhorli, M.; Bagheri, H.; Xiao, L.; Malek,
S.; Cai, Y.: A Study on the Role of Software Architecture in the
Evolution and Quality of Software. In: Proceedings of the 12th
Working Conference on Mining Software Repositories, pp. 246–
257 (2015)

127. Threm, D.; Yu, L.; Ramaswamy, S.; Sudarsan, S.D.: Using
normalized compression distance tomeasure the evolutionary sta-
bility of software systems. In: Proceedings of 26th International
Symposium on Software Reliability Engineering (ISSRE), pp.
112–120 (2015)

128. Malhotra, R.; Khanna, M.: Mining the impact of object ori-
ented metrics for change prediction using Machine Learning
and Search-based techniques. In: Proceedings of International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 228–234 (2015)

129. Zhang,W.;Yang,Y.;Wang,Q.:Network analysis of oss evolution:
An empirical study on argouml project. In: Proceedings of the
12th International Workshop on Principles of Software Evolution
and the 7th annual ERCIMWorkshop on Software Evolution, pp.
71–80 (2011)

123

View publication statsView publication stats

https://www.researchgate.net/publication/316723527

	Evolution Prediction and Process Support of OSS Studies: A Systematic Mapping
	Abstract
	1 Introduction
	2 Related Work
	3 Mapping Methodology
	3.1 Study Protocol
	3.2 Research Questions
	3.3 Search Strategy
	3.4 Search String
	3.5 Searched Venues
	3.6 Inclusion/Exclusion and Scope Determination
	3.7 Study Quality Assessment
	3.8 Data Extraction and Synthesis

	4 Results and Discussion
	4.1 Overview of Studies
	4.1.1 Publication Venues
	4.1.2 Trend of Publication Year
	4.1.3 Mapping of Keywords
	4.1.4 Trend of Authors
	4.1.5 Evolution Prediction Aspects
	4.1.6 Experimental Case Studies
	4.1.7 Aspects Explored
	4.1.8 Distribution of Datasets
	4.1.9 Distribution of Methods
	4.1.10 Distribution of Metrics
	4.1.11 OSS Projects Domain studied
	4.1.12 Validation Process
	4.1.13 Context of the Fault Prediction Models

	4.2 Metrics for Evolution
	4.2.1 SLOC (Source Lines of Code) Metrics
	4.2.2 Dependency Metrics
	4.2.3 People Level Metrics
	4.2.4 File Level Metrics
	4.2.5 Bug Fix Metrics
	4.2.6 Bug Report Metrics
	4.2.7 Modification Metrics
	4.2.8 Repository Metrics
	4.2.9 Age of Project Metrics
	4.2.10 Graph Metrics
	4.2.11 Class Level Metrics
	4.2.12 Evolution Metrics
	4.2.13 Historical Metrics
	4.2.14 Project Metrics
	4.2.15 Number of Clones in Each Version
	4.2.16 Value Series Metrics
	4.2.17 Complexity Metrics
	4.2.18 SNA Metrics
	4.2.19 Structural Software Metrics
	4.2.20 Architectural Change Metrics

	4.3 Models for Evolution Prediction
	4.3.1 Predicting Size
	4.3.2 Predicting Indirect Maintenance Effort Models
	4.3.3 Predicting Change
	4.3.4 Predictors for Bug Severity, Maintenance Effort and Defect Count Bug Severity Predictor
	4.3.5 Maintenance Effort Predictor
	4.3.6 Defect Count Predictor
	4.3.7 Software Change Request Prediction Models
	4.3.8 Class Error-Proneness Prediction Models
	4.3.9 Software Fault Prediction
	4.3.10 Predicting Change Propagation
	4.3.11 Stability Prediction Models

	4.4 Approaches for Evolution Process Support
	4.4.1 EVOSS (Evolution of Free and Open Source Software)
	4.4.2 Feedback-Driven Quality Assessment
	4.4.3 Adaptive Change Propagation Heuristics
	4.4.4 SE2
	4.4.5 Two-Dimensional Classification Model of OSS
	4.4.6 KERIS
	4.4.7 Simulating the Software Maintenance Process
	4.4.8 Exogenous Factors
	4.4.9 FLOSS Staged Evolution Model
	4.4.10 FAULTTRACER
	4.4.11 Commenting Practice
	4.4.12 Maintenance Process Evaluation

	5 Validity Threats
	5.1 Choice of Research Databases
	5.2 Selection of Primary Studies
	5.3 Data Extraction
	5.4 Conclusion Validity

	6 Summary and Conclusion
	References
	Primary Studies

