
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2002; 32:1223–1237 (DOI: 10.1002/spe.480)

Context-based compression of
binary images in parallel

Eugene Ageenko1,∗,†, Martti Forsell2 and Pasi Fränti1

1Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu, Finland
2VTT Electronics, PB 1100, FIN-90571 Oulu, Finland

SUMMARY

Binary images can be compressed efficiently using context-based statistical modeling and arithmetic
coding. However, this approach is fully sequential and therefore additional computing power from parallel
computers cannot be utilized. We attack this problem and show how to implement the context-based
compression in parallel. Our approach is to segment the image into non-overlapping blocks, which are
compressed independently by the processors. We give two alternative solutions about how to construct,
distribute and utilize the model in parallel, and study the effect on the compression performance
and execution time. We show by experiments that the proposed approach achieves speedup that is
proportional to the number of processors. The work efficiency exceeds 50% with any reasonable number of
processors. Copyright  2002 John Wiley & Sons, Ltd.

KEY WORDS: image compression; context modeling; JBIG; parallel algorithms; EREW; PRAM

INTRODUCTION

Binary images can be efficiently compressed using context-based statistical modeling and arithmetic
coding. The latest international compression standards, JBIG [1] (Joint Bi-level Image Group) and
JBIG2 [2,3] are both based on this approach. The methods underlying these standards process the
image pixel-by-pixel using backward-adaptive modeling, in which the compression of a single pixel
depends on all the previous pixel data. Moreover, the bit stream provided by arithmetic coding is
unbreakable and the compression is therefore completely sequential in its nature.

The images in question are binary images such as text documents and engineering drawings, or
images composed of a limited number of binary layers such as topographic maps. The images of
this kind have typically only a few color tones but high spatial resolution to represent fine details

∗Correspondence to: Eugene Ageenko, Department of Computer Science, University of Joensuu, PB 111, FIN-80101 Joensuu,
Finland.
†E-mail: ageenko@cs.joensuu.fi

Contract/grant sponsor: National Technology Agency of Finland (TEKES); contract/grant number: 954/401/99

Published online 19 September 2002
Copyright  2002 John Wiley & Sons, Ltd.

Received 23 July 2001
Revised 24 April 2002

Accepted 23 May 2002

1224 E. AGEENKO, M. FORSELL AND P. FRÄNTI

such as text and graphics objects. The image sizes can be huge. A single-page fax image is about
1000 × 2000 pixels, while a typical topographic image is about 5000 × 5000 pixels. The latter image
can be compressed usually by a factor 10:1 or more, which corresponds to the file size reduction
from 3 megabytes to 300 kilobytes. The compression of a single pixel is very fast consisting of an
index construction, table look-up and a few bit-level operations of the arithmetic coder without any
multiplications. However, the compression time of images containing millions of pixels will easily
reach several minutes. The compression speed can degrade the usability of the compression in on-line
applications.

Although, the research toward parallel computers is still far from being complete, it is inevitable
that parallel computers will eventually take the place of the current sequential computers in everyday
life. For example, let us suppose that we have a workstation with 10 processors instead of only
one. The question is whether we can utilize the extra computing power when compressing and
decompressing the images. It is certain that the user would greatly appreciate it if the image were
decompressed within a second or two instead of 10 or 20 seconds, if there were the computing potential
to do so.

Parallel Random Access Machine (PRAM) is a general model for parallel computation first proposed
by Fortune and Wyllie [4]. The model assumes that the communication between processors comes
at no cost. Therefore, PRAM can be viewed as a virtual parallel machine and serve as a design
model for the development of very fast computational algorithms. Although the PRAM model has
previously been considered somewhat idealistic, there has been a considerable effort to simulate
PRAM on a physically distributed memory machine consisting of processors and memory modules
interconnected through a communication network [5–10]. A few experimental and commercially
available PRAM-style computers have already been designed, including the Saarbrücken Parallel
Random Access Machine [5], Cray MTA supercomputer [7], previously known as the Tera MTA, and
64 SB-RAM [9].

In general, computational problems can be divided into three types: strictly sequential; apparently
sequential; and parallel. In strictly sequential portions, e.g. the IIR-filter, potentially every statement
depends on the result of the preceding statement, and there is no way to implement them in parallel.
In apparently sequential portions, e.g. the prefix sum, potentially every statement in the algorithm
depends on the result of the preceding statement but the computation and control can be rearranged
so that a parallel algorithm can be designed. In parallel portions, e.g. the matrix sum, the number of
dependencies between statements is so low that a parallel algorithm can be designed quite easily with
the PRAM model.

With respect to the previous classification, context-based compression contains strictly sequential
portions, namely the adaptive modeling and arithmetic coding are such processes. Thus, the backward-
adaptive compression cannot be implemented under a parallel model such as PRAM. In this paper, we
attack the above problem and present a method for the context-based compression of binary images
in parallel. Our approach is to divide the compression problem into several smaller sub-problems
by segmenting the image into b × b non-overlapping rectangular blocks. The blocks are processed
independently on parallel processors, and are stored in the same file in a sequential manner assuming
that the file I/O is not a bottleneck. The index table is stored in the file header to locate the starting
points of the code blocks. In this way, decompression can also be performed in parallel. Moreover,
the JBIG2 file format supports this kind of file organization, where the image is divided into separate
blocks.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1225

Bit stream

Pixel

Decoded
image

Original
image

Context

Context

Pixel

Bits

Bits

Encoder

Decoder

Modeling

Modeling

Figure 1. Block diagram of backward-adaptive context-based compression.

A drawback of the block decomposition is the decrease in compression performance due to the
increased learning cost. To alleviate this problem, we consider a forward-adaptive variant of the
statistical modeling [11], in which the blocks share the same initial statistical model optimized for
the entire image. We will give solutions about how the construct, distribute and utilize the model in
parallel, and study the effect on the compression performance and execution time.

In the following sections we briefly recall the context-based compression, describe image
compression using a parallel random access machine, discuss the implementation details, and perform
the experimental study.

CONTEXT-BASED COMPRESSION

In context-based compression, an image is processed pixel-by-pixel in raster-scan order starting from
the top leftmost pixel of the image as shown in Figure 1. The probabilities of the black and white pixels
are conditioned on the context determined by the combination of the already coded neighboring pixels.
A three-line ten-pixel context template is shown in Figure 2. Both the encoder and decoder estimate
the model dynamically during the compression and decompression, respectively. The estimation starts
from scratch and adapts the model to the input data.

The approach is adopted in the international standard JBIG [1] and the emerging standard JBIG2
[2,3]. Unlike JBIG, JBIG2 segments a page into different classes of image data, in particular, textual,
halftone and generic (other), and utilize the repetitive nature of the textual and halftone images.
However, the encoding of the data other than text or halftones remains similar to JBIG with the
difference that a newer version of the coder is used, namely the MQ-coder.

The MQ-coder is an approximate implementation of arithmetic coding tailored for binary data.
Its pre-ancestor, Q-coder, has similar working principles and is introduced in [12]. The coder

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

1226 E. AGEENKO, M. FORSELL AND P. FRÄNTI

Context pixel

? Pixel to be coded

9 10

2

?

4 8

6

3

15

7

Figure 2. Example of a template of 10 pixels resulting in 1024 contexts.

mirrored
states

LPS Probability
0.000010.00010.0010.010.11

transient state
non-transient state

MPS transition
LPS transition

Zero-state

Fast-attack states

�

�

�

�

� � � � � � �� �� �� �� �� �� �� ���

�

��

��

Figure 3. Spatial organization of the state automaton in MQ-coder and the transition sketch for the
fast-attack states. Because of the mirror symmetry regarding the change in sense of LPS and MPS,

only half of the states are depicted.

sub-optimality is compensated by the sophisticated automaton-based probability estimation, providing
fast adaptation to the source data. Instead of maintaining pixel counts, the estimation process is
implemented as a state automaton consisting of 94 states (the QM-coder that is used in JBIG has
226 states). The automaton is a Markov chain containing one state for each probability estimate.
The states are organized in rows that are ordered by the level of adaptation. The automaton has mirror
symmetry about the change in the sense of more-probable symbol (MPS) color, and we therefore
consider only 47 states, see Figure 3.

The statistical model is usually integrated with the coder. It consists of the pointers to the automaton
states, one for each context. The adaptation process starts from the nearly uniform model represented
by the zero state. After the pixel is coded, the model is updated by assigning a new, updated, state index
for the pixel context.

The probability estimation is derived from the arithmetic coder renormalization and is based on the
Bayesian estimation concept [13]. The renormalization of the coding interval occurs always after a

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1227

less-probable symbol (LPS), and if necessary, after a MPS symbol. After each MPS renormalization,
the automaton makes the transition to the next state situated to the right in the same row, having a
smaller LPS probability. After each LPS renormalization, a transition is made to the state with a larger
LPS probability, which is the appropriate state in the row at the next level in case of the transient state,
or to the preceding state in the same row in case of non-transient states. Transient states are, therefore,
visited only during the learning stage, and the pointers stabilize eventually to the non-transient states.
If the statistics change later, the non-transient states can be re-entered from other non-transient states,
making local adaptation possible.

PARALLEL COMPRESSION

Several attempts have been reported in the literature concerning the parallelization of lossless data
compression. Henriques and Ranganathan [14] have proposed a systolic array-based architecture for
implementing the Ziv–Lempel algorithm in parallel. Howard and Vitter [15] have proposed parallel
algorithms using hierarchical modeling with Huffman and quasi-arithmetic coding. Their method
assumes static prediction-based modeling scheme, which is applicable for the lossless compression
of gray-scale images but not necessarily for binary images. They use the PRAM model like us, but
assume a stronger variant capable of concurrent reading and limited concurrent writing.

For context-based binary image compression, efforts have mainly been focused on low-level and
hardware-oriented parallelization. For example, Horie et al. [16] and Tarui et al. [17] have both
proposed special purpose hardware in order to implement JBIG faster. These methods are based on
pipelining the execution logic, i.e. they apply instruction-level parallelism, which cannot be generalized
to a large number of processors. Jiang [18] has focused on the parallelization of the adaptive binary
arithmetic coding. Only a marginal speedup can be achieved at the instruction level due to the strictly
sequential nature of the problem. In theory, the idea generalizes to any number of bits to be processed
in parallel but at the cost of exponentially increasing complexity of the implementation, and at the cost
of decreasing compression performance.

To sum up, the existing approaches cannot be generalized to a massive parallelism without significant
problems. Boliek et al. [19] have recognized the problem and proposed a general solution with
a different approach; divide the input into separate data streams to be compressed independently.
They identify the problems that must be solved to implement such parallelization but they do not give
a practical solution. In the following, we will carry on this approach and introduce an efficient parallel
counterpart to context-based binary image compression. The method is executable in a physically
feasible general-purpose parallel computer with a wide range of the number of processors.

EREW PRAM model

PRAM [4] is a general model for parallel computations. It consists of P sequential processors, each
having a private, or local, memory for its own computation. All processors are connected to a shared
random access memory (see Figure 4). All communication between the processors is done via the
shared memory. All processors execute the same program synchronously, but a processor may branch
within the program independently of other processors. The PRAM model has several different variants
according to the level of shared memory access [20]. In this paper, we refer to just one of them, to

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

1228 E. AGEENKO, M. FORSELL AND P. FRÄNTI

���� �� �

� ���	
 � 	� ���

�
�

�
�

�
�

�
�

���

Figure 4. The PRAM model. P1, . . . , PP are processors.

exclusive read exclusive write (EREW). In this model, processors are not allowed to read or write to
the same memory location simultaneously. Most of the other models can be treated analogously.

We assume that the PRAM model provides us with the following tools. The first tool is the
FOR . . . PARDO loop-statement, which executes the commands inside the loop synchronously in
parallel. Using this command, a simple loop consisting of n iterations and not accessing the same
memory locations can be performed on n processors in O(1) time in comparison to the O(n) time
required by sequential processing. The second tool is the ParSum() routine for computing the sum of
n numbers. Because of the limitations of EREW, it requires O(log n) time. The third tool is the datum
broadcast routine Distribute(), which distributes a single datum to n processors in O(log n) time.

Parallel implementation

The proposed parallel implementation (referred to here as P-JBIG) is based on the decomposition of
the image into B = b × b equally sized blocks. A processor dedicated to the block compresses each
block separately providing a simple division of the problem into parallel sub-problems, see Figure 5.
Furthermore, the block index table indicating the location of the block in the compressed file can be
constructed. It provides direct access to the compressed image file, and therefore enables efficient and
independent decompression of a particular block.

For simplicity, we will assume that the number of blocks B equals the number of processors P . If this
is not practical, it is possible to use standard parallel algorithmic methods to handle the situation. If the
number of processors is greater than the number of blocks then we de-allocate additional processors
for other purposes. On the other hand, if the number of processors is smaller than the number of blocks
then more than one block is processed with a single processor. According to the well-known Brent’s
theorem [21], this processor allocation can be performed without sacrificing the work optimality of the
algorithm.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1229

����

�������

�
� � ��

� � ���

��� ����

	
�

	
�

	
�

�

�

�

��� ���
�����	

	�

�
���

���	�

����� ���	
� �
�� ����������

���	
�

����������

����

� �

�����

���������� ������

�

�

�

���

Figure 5. Parallelization using block decomposition and indexing.

FORWARD-ADAPTIVE VARIANT

The block decomposition has the effect that there are fewer pixels to be coded by a single processor.
This means that the backward-adaptive modeling has less time to adapt to the statistics of the image,
which increases the learning cost. Another problem related to the compression of small blocks is
the inefficiency near block boundaries. The pixels located outside the block cannot be used in the
context template, which deteriorates the compression performance. Previous studies [11] indicate that
the compression inefficiency remains tolerable if the block size is kept to 256 × 256 pixels or higher.

In order to compensate for the compression inefficiency, we consider a forward-adaptive variant of
the parallel compression. The proposed method is based on the ideas presented in [11], and is referred
here as the parallel forward-adaptive method (P-FAM). The method makes two passes over the image:
modeling and actual compression. The sketch of the P-FAM is outlined in Figure 6, and will be detailed
in the following.

Modeling

During the modeling pass, the input image is analyzed and the initial model is constructed. First,
statistics are collected from the image by summing up the number of white and black pixels.
Each processor handles a single block using its own counter (Loop 1). After the blocks have been
processed, the statistics for each of M contexts are summed in parallel into the first column of the
counter tables (Loop 2). In Loop 3, statistics are translated to the nearest fast-attack states of the MQ-
coder (states numbered 0–5 and 38–45 and their mirrored states). Finally, the resulting model (states)
is distributed to every processor (Loop 4). The distribution of the model is necessary due to the access
limitations of the EREW PRAM model.

Coding and decoding

During the coding pass (Loop 5), the blocks are compressed essentially in the same way as if using
P-JBIG method. The difference is that the MQ-coder is initialized not to the blank model (zero state),

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

1230 E. AGEENKO, M. FORSELL AND P. FRÄNTI

{LOOP 1: Analyse image}
FOR p := 1 TO P PARDO BEGIN

FOR (each pixel x of block p) DO BEGIN
c := DetermineContext (x);
total[c, p] := total[c, p] + 1;
IF x = white THEN whites[c, p] := whites[c, p] + 1;

END;
END;

{LOOP 2: Sum the statistics of blocks}
FOR m := 1 TO M PARDO BEGIN

total[m, 1] := ParSum (total[m, 1..P]) ;
whites[m, 1] := ParSum (whites[m, 1..P]) ;

END

{LOOP 3: Construct model}
FOR m := 1 TO M PARDO BEGIN

state[m, 1] := SelectNearestState (whites[m, 1] / total[m, 1]) ;
END

{LOOP 4: Spread the model to the processors}
FOR m := 1 TO M PARDO BEGIN

Distribute(state[m, 1], state[m, 2..P]);
END

{LOOP 5: Compress image}
FOR p := 1 TO P PARDO BEGIN

{LOOP 5.1: Initialize the models}
FOR m := 0 TO M DO BEGIN

InitializeModels (m, state[m, p]);
END;

{LOOP 5.2: Compress the blocks}
FOR (each pixel x of block p) DO BEGIN

c := DetermineContext (x);
state[c, p] := EncodePixel (x, state[c, p]);

END;
END;

Figure 6. The sketch of the P-FAM algorithm.

but to the model constructed in the previous stage. The initialization (Sub-loop 5.1) takes the context
number (m) and the state index (state) as input and restores the respective variables for the appropriate
context in the MQ-coder. The encoding function EncodePixel() takes pixel color and the model and
returns the updated model.

Decompression is similar to the compression, except that the model is read from the compressed file,
eliminating the need for an extra pass over the image. If only a part of an image is decoded, the number
of processors required equals the number of blocks that contains the portion of the required image.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1231

Table I. The computational complexity of the P-FAM algorithm. N ≡ P is assumed.

Loop Parallel time

1. Analysis O(N/P)
2. Statistics summation O(M + log2 max{1, P/M})
3. Model construction O(max{1, M/P })
4. Model redistribution O(M + log2 max{1, P/M})
5.1 Model restoring O(M)
5.2 Coding O(N/P)

Total O(N/P) + O(M + log2 max{1, P/M})

Execution time analysis

According to [8], it is realistic to simulate EREW PRAM on a parallel computer with multithreaded
processors and a coated mesh communication network in O(1) time. Recent experiments with a
prototype 64 SB-PRAM machine featuring the even stronger CRCW PRAM model have shown an
overhead of only about 0.7% between runtime on the real hardware and the theoretical model [9].
The I/O cost is ignored in the following analysis.

The time complexity of the sequential algorithm (JBIG) is O(N). The asymptotic estimations of the
complexity of the different loops of P-FAM are summarized in Table I. The analysis for most loops of
the algorithm is trivial. The image analysis step (Loop 1) requires O(N/P) time, as there are N pixels
to be processed by P processors. The mapping (Loop 3) takes O(M/P) respectively, because there
are M models to be constructed. The model initialization (Loop 5.1) takes O(M) because it must be
performed by every processor. The encoding step (Loop 5.2) requires O(N/P) time in the same way
as the analysis step.

The Loops 2 and 4 are analyzed as follows. All P processors are utilized for these loops.
The summation of the statistics requires approximately log2 P iterations. On the ith iteration,
P/i columns of the length M are summed in parallel using 2i processors for each column. Therefore,
the complexity totals to

O(M/2) + O(M/4) + · · · + O(M/P) = O(M)

The above equation stands only when P is smaller than or equal to M . If P > M , the equation becomes

O(M/2) + O(M/4) + · · · + O(M/M) + O(1) + · · · + O(1) = O(M) + O(log2 P) − O(log2M)

= O(M + log2{P/M})
The difference �log2 P � − �log2 M� is the number of O(1)’s in the above sum. In general, the
complexity of the Loop 2 (and similarly Loop 4) amounts to

O(M + log2 max{1, P/M})
The total complexity of P-FAM is

O(N/P) + O(M + log2 max{1, P/M})

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

1232 E. AGEENKO, M. FORSELL AND P. FRÄNTI

Figure 7. Sample fragments of the test images. All fragments of the size 500 × 500 pixels. Reproduced by
permission of the National Land Survey of Finland.

For large image sizes and a relatively low number of blocks (processors), the P-FAM is asymptotically
P times faster than JBIG. The relative speedup of the parallel implementation regresses when the
number of processors increases. This regress is because the term log2 (P/M) starts to dominate the
time complexity for larger values of P . It only has meaning though, as the logarithmic growth is very
slow in comparison to the overall benefit of the parallelization. For example, in our experiments we
have considered values no higher than M = 1024 and PMAX = 10 000.

EXPERIMENTS

The compression performance and execution speed of sequential and parallel implementations are
demonstrated by compressing a set of GIS Topographic images (see Figure 7). For testing, we use a PC
based on a Pentium-III 600 MHz with RAM-bus architecture, running Windows 2000 Pro. We exclude
file I/O and memory allocation calls from the time computation. In the code size calculation, we exclude
the overhead of the file and include only pure codestream sizes together with the indices and the initial
model, when applicable. We repeat the experiments for a different number of parallel processors P .
We partition the image into b × b blocks and assume that P = b2. The parameter b is varied from
1 to 100 resulting in 1 to 10 000 processors.

Execution time

The execution time simulation is performed using a sequential implementation of the algorithm.
The actions taken to simulate various stages of the algorithm are illustrated in Table II. The compression
of some block may take longer than the compression of another. It is caused by the different complexity
of the data in different blocks. Since the PARDO loop is always synchronized, the time required to
compress all blocks in parallel equals the time required to compress the block of the highest complexity.
We only present the compression times here because coding and decoding processes are symmetrical.

At steps 2 and 4, we also take into account the simulation cost as measured using the forthcoming
on-chip PRAM realization presented in [10]. It takes into account all the practical aspects of EREW
PRAM simulation such as multithreading in processors, communication and routing, and low-level

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1233

Table II. Estimation of the execution times using sequential processing.

Used in Used in
Loop P-JBIG P-FAM Estimation rule

1. Image analysis − + Maximal time required to analyze single block
2. Statistics summation − + 2 · {M + �log2P � − �log2M�} if P > M , and 2 · M if

P ≤ M , multiplied by the time required to add one entry in
the model table to another

3. Model construction − + �M/P � times the time required to restore model for a single
context

4. Model distribution − + {M + �log2P � − �log2M�} if P > M , and M if P ≤ M ,
multiplied by the time required to copy single entry in the
model table

5.1 Model initialization − + Difference in time required for initialization of the model of
the MQ-coder to particular initial model between
initialization to zero-state

5.2 Image coding + + Maximal time required to compress single block

Table III. Reference execution times. Here, P is the number of processors; b is the block dimension; N is the
number of pixels in the block; TX is the time required to execute Loop X, in ms.

Block size P-FAM
P-JBIG

P B N TTOTAL T1 T2 T3 T4 T5.1 T5.2 TTOTAL

1 5000 25 000 000 4441 2714 0 0.211 0 0.005 4466 7180.2
4 2500 6250 000 1113.4 713.52 0.025 0.053 0.005 0.005 1113.6 1827.2

25 1000 1000 000 184.41 118.77 0.025 0.008 0.005 0.005 184.31 303.12
100 500 250 000 52.57 35.25 0.025 0.002 0.005 0.005 52.52 87.81
400 250 62 500 13.92 9.92 0.025 0.0006 0.005 0.005 13.92 23.87

2500 100 10 000 2.66 1.90 0.025 0.0002 0.005 0.005 2.70 4.63
10 000 50 2 500 0.81 0.60 0.025 0.0002 0.005 0.005 0.81 1.44

interleaving in the memory modules featuring realistic latencies. According to our experiments, the
simulation cost is 3% for the ParSum() and 31% for the Distribute() routines. These are the only parts
requiring tightly synchronous executions; other parts may use loose synchronization eliminating the
need for cost analysis.

The execution times are summarized in Table III for a selected number of processors. The speedup
is illustrated in Figure 8. The speedup is computed as a ratio between the sequential time (TSEQ) and
the parallel time (TPAR) using P processors:

speedup(P) = TSEQ/TPAR

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

1234 E. AGEENKO, M. FORSELL AND P. FRÄNTI

1

10

100

1000

10000

1 10 100 1000 10000

Number of processors

S
pe

ed
up

Optimal line P-JBIG P-FAM

Figure 8. Speedup factor.

1.0

1.5

2.0

2.5

3.0

3.5

1 10 100 1000 10000

Number of processors

In
ef

fic
ie

nc
y

P-JBIG P-FAM

Figure 9. Inefficiency of the parallel algorithms.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1235

Table IV. Reference code sizes. Here, P is the number of
processors; b is the block dimension. Code size for the
P-FAM method inclusive of model overhead (1024 bytes).

Uncompressed image size is 3 125 013 bytes.

Code size, bytes
Block size

P b × b P-JBIG P-FAM

1 5000 × 5000 295 611 296 436
4 2500 × 2500 296 632 296 997

25 1000 × 1000 300 441 298 712
100 500 × 500 300 634 298 104
400 250 × 250 305 451 299 411

2500 100 × 100 317 510 302 436
10 000 50 × 50 363 155 323 184

The optimal line in Figure 8 refers to the maximum speedup that can be obtained using P processors.
The forward-adaptive variant (P-FAM) is about 1.6 times slower than the backward-adaptive variant
(P-JBIG) because of the additional analysis stage.

The work inefficiency of the parallel algorithm is illustrated in Figure 9. It measures the factor of
cost increase caused by using the parallel algorithm instead of the sequential, and can be calculated as

inefficiency = cost(P)/TSEQ = P/speedup(P)

The cost of executing an algorithm is defined as the overall workload of the algorithm. The cost of a
sequential algorithm equals its execution time, whereas the cost of a parallel algorithm is calculated as
the number of processors multiplied by the overall execution time:

cost(P) = P · TPAR

The reference execution times are given in Table III. As can be seen, the inefficiency increases with the
growth of the number of processors. For example, the costs of using P-JBIG and P-FAM with 10 000
processors are, respectively, 1.82 and 3.25 times higher than using JBIG.

Code sizes

Average code sizes for the reference numbers of parallel processors are given in Table IV, and the
inefficiency of compression is illustrated in Figure 10. The compression inefficiency is measured as the
factor of increase in the code size,

compression inefficiency = code size(P)/code sizeJBIG

where code size(P) is the code size resultant of the parallel algorithm using P processors, and
code sizeJBIG is the code size resultant of the sequential algorithm, JBIG in particular. The experimental

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

1236 E. AGEENKO, M. FORSELL AND P. FRÄNTI

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 10 100 1000 10000

Number of processors

C
lu

st
er

 d
im

en
si

on
, p

ix
el

s

���

���

���

���

���

���

���

���

��	

��

���

C
om

pr
es

si
on

 in
ef

fic
ie

nc
y

Cluster size P-JBIG P-FAM

Figure 10. Compression inefficiency of the parallel implementation.

results show that the compression inefficiency of the P-JBIG remains within a 5% range when the
number of processors is less than 170. The corresponding number of processors for the P-FAM method
is 1024. For 10 000 processors, the code size increases by a factor of 1.56 in the case of P-JBIG, and
1.31 in the case of P-FAM.

CONCLUSIONS

In JBIG-based methods, the image is compressed sequentially using backward-adaptive context-
based modeling and arithmetic coding. We have shown that this kind of sequential approach can
be implemented efficiently also in parallel using block decomposition. The compressed blocks are
stored into the same file and an index table is included to locate the starting points of the code blocks.
Using the JBIG2 file format, the images are fully compatible with those that compressed sequentially.
The use of parallelization, however, must be decided at the time of compression.

We have shown by experiments that the parallel implementation achieves rather good utilization
of the processors. The inefficiency remains within the factor of two with any reasonable number of
processors. A drawback of parallelization is the decrease of the compression performance when using
a very large number of processors and, therefore, blocks. This drawback can be compensated by the use
of forward-adaptive modeling. It slows down the compression but enables the use of smaller blocks and
consequently, more processors with the same compression performance. Using the proposed P-FAM
method, a 5000 × 5000 pixels map image can be divided into about 1000 blocks with only about a

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

COMPRESSION OF BINARY IMAGES 1237

5% increase in the code size. The corresponding speedup factor is about 400 if 1000 processors are
employed.

As an additional benefit, the block decomposition provides direct access to the compressed image
file. This property is useful when browsing very large images, or in real-time imaging applications and
mobile environments, where the images must be stored in compressed form and only a fraction of the
image needs to be viewed/accessed at a time.

ACKNOWLEDGEMENT

The project was funded by the grant 954/401/99 of the National Technology Agency of Finland (TEKES).

REFERENCES

1. JBIG. Progressive bi-level image compression. ISO/IEC International Standard 11544, 1993.
2. Final committee draft for ISO/IEC International Standard 14492, 1999. http://www.jpeg.org/public/jbigpt2.htm.
3. Howard PG, Kossentini F, Martins B, Forchammer S, Rucklidge WJ, Ono F. The emerging JBIG2 standard. IEEE

Transactions on Circuits and Systems for Video Technology 1998; 8(7):838–848.
4. Fortune S, Wyllie J. Parallelism in random access machines. Proceedings of the 10th STOC. ACM: New York, NY, 1977;

114–118.
5. Abolhassan F, Drefenstedt R, Keller J, Paul WJ, Scheerer D. On the physical design of PRAMs. Computer Journal 1993;

36(8):756–762.
6. Keller J, Paul WJ, Scheerer D. Proceedings of the WDAG ’94, 8th International Workshop on Distributed Algorithms,

Terschelling, The Netherlands (Lecture Notes in Computer Science, vol. 857). Springer, 1994; 17–27.
7. Alverson R et al.. The Tera computer system. Proceedings of the International Conference on Supercomputing. ACM: New

York, NY, 1990; 1–6.
8. Forsell M. Implementation of instruction-level and thread-level parallelism in computers. Dissertations 2, Department of

Computer Science, University of Joensuu, Finland, 1997.
9. Keller J, Kessler C, Träff T. Practical PRAM Programming. Wiley: New York, NY, 2001.

10. Forsell M, Kumar S. Virtual distributed shared memory for network on chip. Proceedings 19th IEEE NORCHIP
Conference, Kista, Sweden. IEEE, 2001; 192–197.

11. Ageenko E, Fränti P. Forward-adaptive method for context-based compression of large binary images. Software—Practice
and Experience 1999; 29(11):943–952.

12. Pennebaker WB, Mitchell JL, Langdon GG, Arps RB. An overview of the basic principles of the Q-coder adaptive binary
arithmetic coder. IBM Journal of Research and Development 1988; 32(6):717–726.

13. Pennebaker WB, Mitchell JL. Probability estimation for the Q-coder. IBM Journal of Research and Development 1988;
32(6):737–759.

14. Henriques S, Ranganathan N. A parallel architecture for data compression. Proceedings 2nd IEEE Symposium on Parallel
and Distributed Processing. IEEE, 1990; 260–266.

15. Howard P, Vitter J. Parallel lossless image compression using Huffman and arithmetic coding. Proceedings of the Data
Compression Conference DCC’92, March 1992. IEEE, 1992; 299–308.

16. Horie H, Shirai H, Iizuka Y, Takahata M. Bi-level image high speed code conversion processor: ImPC2. Proceedings 1998
IEEE Asia–Pacific Conference on Circuits and Systems. November 1998. IEEE, 1998; 615–618.

17. Tarui M, Oshita M, Onoye T, Shirakawa I. High-speed implementation of JBIG arithmetic coder. Proceedings IEEE
TENCON 99, September 1999. IEEE, 1999; 1291–1294.

18. Jiang J. Parallel design of Q-Coders for bilevel image compression. Proceedings IEEE International Conference on Parallel
and Distributed Systems, December 1994. IEEE, 1994; 230–235.

19. Boliek M, Allen J, Schwartz E, Gormish M. Very high speed entropy coding. Proceedings IEEE International Conference
on Image Processing ICIP-94, vol. 3. IEEE, 1994; 625–629.

20. Leighton TF. Introduction to parallel algorithms and architectures. Arrays, Trees, Hypercubes. Morgan Kaufmann: San
Mateo, CA, 1992.

21. Brent R. The parallel evaluation of general arithmetic expressions. Journal of the Association for Computing Machinery
1974; 21(2):201–206.

Copyright  2002 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2002; 32:1223–1237

	INTRODUCTION
	CONTEXT-BASED COMPRESSION
	PARALLEL COMPRESSION
	EREW PRAM model
	Parallel implementation

	FORWARD-ADAPTIVE VARIANT
	Modeling
	Coding and decoding
	Execution time analysis

	EXPERIMENTS
	Execution time
	Code sizes

	CONCLUSIONS

