
MIKKO MALINEN

New Alternatives for

k-Means Clustering

Publications of the University of Eastern Finland

Dissertations in Forestry and Natural Sciences

No 178

Academic Dissertation

To be presented by permission of the Faculty of Science and Forestry for public

examination in the Metria M100 Auditorium at the University of Eastern Finland,

Joensuu, on June, 25, 2015,

at 12 o’clock noon.

School of Computing



Kopio Niini Oy

Helsinki, 2015

Editors: Research director Pertti Pasanen, Prof. Pekka Kilpeläinen,
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University of Tampere

School of Information Sciences

FI-33014 Tampereen yliopisto

FINLAND

email: em@sis.uta.fi

Professor Olli Nevalainen, Ph.D.

University of Turku

Department of Information Technology

FI-20014 TURUN YLIOPISTO

FINLAND

email: olli.nevalainen@utu.fi

Opponent: Professor Refael Hassin, Ph.D.

Tel-Aviv University

Department of Statistics and Operations Research

Tel-Aviv 69978

ISRAEL

email: hassin@post.tau.ac.il



ABSTRACT

This work contains several theoretical and numerical studies on

data clustering. The total squared error (TSE) between the data

points and the nearest centroids is expressed as an analytic func-

tion, the gradient of that function is calculated, and the gradient

descent method is used to minimize the TSE.

In balance-constrained clustering, we optimize TSE, but so that

the number of points in clusters are equal. In balance-driven clus-

tering, balance is an aim but is not mandatory. We use a cost func-

tion summing all squared pairwise distances and show that it can

be expressed as a function which has factors for both balance and

TSE. In Balanced k-Means, we use the Hungarian algorithm to find

the minimum TSE, subject to the constraint that the clusters are of

equal size.

In traditional clustering, one fits the model to the data. We

present also a clustering method, that takes an opposite approach.

We fit the data to an artificial model and make a gradual inverse

transform to move the data its original locations and perform k-

means at every step.

We apply the divide-and-conquer method for quickly calculate

an approximate minimum spanning tree. In the method, we divide

the dataset into clusters and calculate a minimum spanning tree

of each cluster. To complete the minimum spanning tree, we then

combine the clusters.

Universal Decimal Classification: 004.93, 517.547.3, 519.237.8

AMS Mathematics Subject Classification: 30G25, 62H30, 68T10

INSPEC Thesaurus: pattern clustering; classification; functions; gradient

methods; mean square error methods; nonlinear programming; optimiza-

tion; data analysis

Yleinen suomalainen asiasanasto: data; klusterit; järjestäminen; luokitus;

analyyttiset funktiot; virheanalyysi; optimointi; algoritmit
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1 Introduction

We are living the middle of a digital revolution. ”Digital revolu-

tion” means that most of the information content we store and

transmit will be coded in digital form, that is, in bits. The digi-

tal revolution could be considered to have started, when Shannon

introduced the term bit in the 1940’s. One term that has become

popular the last years, is ”Big data”. This means that datasets are

becoming bigger in number and size.

1.1 CLUSTERING IS AN NP-HARD PROBLEM

Clustering is an important tool in data mining and machine learn-

ing. It aims at partitioning the objects of a dataset so that simi-

lar objects will be put into the same clusters and different objects

in different clusters. Sum-of-squares clustering, which is the most

commonly used clustering approach, and which this thesis mostly

discusses, is an NP-hard problem [1]. This means that an opti-

mal clustering solution cannot be achieved except for very small

datasets. When the number of clusters k is constant, Euclidean sum-

of-squares clustering can be done in polynomial O(nkd+1) time [2],

where d is the number of dimensions. This is slow in practice, since

the power kd + 1 is high, and thus, suboptimal algorithms are used.

1.2 THE AIMS OF CLUSTERING

Clustering aims at assigning similar objects into the same groups

and dissimilar objects into different groups. Similarity is typically

measured by the distance between the objects. The most typical

criterion for the goodness of a clustering is the mean squared error

(MSE) or total squared error (TSE), which are related: they dif-

fer only by a constant factor. The goodness of clustering can be

also measured by cluster validity indices, but these are typically
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not used as a cost function, because of the more complicated op-

timization entailed. Widely used external validity indices are the

Adjusted Rand index [3], the Van Dongen index [4], and the Nor-

malized mutual information index [5]. MSE or TSE is the most

common cost function in clustering. It is often called the k-means

method, which means the MSE cost function.

The time complexity of clustering varies from O(n) in grid-

based clustering to O(n3) in the PNN algorithm [6]. The most com-

mon clustering algorithm k-means takes time

T(n) = O(I · k · n), (1.1)

where k is the number of clusters and I is the number of iterations.

The k-means algorithm is fast in practice, but in worst case, it can

be slow when the number of iterations is large. An upper bound

for the number of iterations is O(nkd) [7].

In balanced clustering, we need to balance the clusters in addi-

tion to optimize the MSE. Sometimes balance is an aim, but not a

mandatory requirement, as in the Scut method in paper III, where

we have both MSE and balance affecting the cost function. Some-

times, the balance is a mandatory requirement, and the MSE opti-

mization is a secondary criterion, as in paper IV.

1.3 DISTANCE MEASURE AND CLUSTERING CRITERION

Clustering requires two choices to be made: how to measure the

distance between two points, and how to measure the error of the

clustering. One distance measure is the L1 norm, i. e., the Manhat-

tan distance

d1(x̄, c̄) =
d

∑
i=1

||x{i} − c{i}||, (1.2)

where (x̄, c̄) are vectors

x̄ = (x{1}, x{2}, ..., x{d}) and c̄ = (c{1}, c{2}, ..., c{d}) (1.3)

2 Dissertations in Forestry and Natural Sciences No 178



Introduction

and by x{i} and c{i} we mean the i:th component (feature) of vectors

(points) x̄ and c̄, respectively. Another commonly used distance

measure is the L2 norm, the Euclidean distance

d2(x̄, c̄) =

√√√√ d

∑
i=1

(x{i} − c{i})2. (1.4)

The Minkowski norm Lp can also be used with freely chosen p:

dp(x̄, c̄) = (
d

∑
i=1

(x{i} − c{i})p)1/p. (1.5)

The L∞ norm can also be used

d∞(x̄, c̄) = max(x{i} − c{i}). (1.6)

In this thesis, we use Euclidean distance, but in paper I we also tell

how the L∞-norm could be used in practice.

The clustering criterion determines how the distances affect the

error measure. Some error measures are sum-of-squares, that is,

the total squared error, mean squared error, infinite norm error and

mean absolute error. The total squared error of the clustering is

calculated as

TSE = ∑
Xi∈Pj

||Xi − Cj||2, (1.7)

where Xi is the data point, Cj is the centroid, and Pj is the partition

of cluster j. The mean squared error MSE is defined as

MSE = TSE/n, (1.8)

where n is the number of points in the dataset. MSE is the most

widely used criterion, and minimizing MSE leads to the same re-

sult as minimizing TSE. Some other criteria are the mean absolute

error and the infinite norm error. The mean absolute error leads

to a clustering which gives less weight to outliers, which are sin-

gle points outside the dense regions of the dataset. Outliers often

follow from incorrect measurements in data collecting.

Dissertations in Forestry and Natural Sciences No 178 3
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2 Solving Clustering

2.1 THE NUMBER OF CLUSTERS

Most clustering algorithms require the user to give the number of

clusters as an input to the algorithm. Some algorithms determine

the number of clusters at run time. Often the user has no a pri-

ori information about the proper number of clusters, and then the

calculation of a validity index may be needed to obtain this infor-

mation.

Two widely used validity indices for this purpose are the Sil-

houette coefficient [8] and the F-ratio (WB-index) [9]. Also, a way

to determine the number of clusters is the minimum description

length (MDL) principle [10] by Rissanen. In MDL for clustering

one calculates the length of the code needed to describe the data

plus code length to describe the model. This sum varies when the

number of clusters changes. The first term decreases and the second

term increases when the number of clusters increase. The minimum

description length is the minimum of this sum. It is one of the few

connections between information theory and clustering. The prin-

ciple is written here formally in its general form [10], which is most

useful in a short introduction like this:

Find a model with which the observed data and the model can be encoded

with the shortest code length

min
θ,k

[log
1

f (X; θ, k)
+ L(θ, k)], (2.1)

where f is the maximum likelihood of the model, θ and k are the

parameters defining the model, and L(θ, k) denotes the code length

for the parameters defining the model.

Dissertations in Forestry and Natural Sciences No 178 5
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2.2 CLUSTERING ALGORITHMS

When the cost function has been defined the clustering problem

becomes an algorithmic problem.

2.2.1 k-Means

The k-means algorithm [11] starts by initializing the k centroids.

Typically, a random selection among the data points is made, but

other techniques are discussed in [12–14]. Then k-means consists of

two repeatedly executed steps [15]:

Assignment step: Assign each data point Xi to clusters specified

by the nearest centroid:

P
(t)
j = {Xi : ‖Xi − C

(t)
j ‖ ≤ ‖Xi − C

(t)
j∗ ‖

for all j∗ = 1, ..., k}.

Update step: Calculate the mean of each cluster:

C
(t+1)
j =

1

|P(t)
j | ∑

Xi∈P
(t)
j

Xi.

These steps are repeated until the centroid locations do not change

anymore. The k-means assignment step and update step are op-

timal with respect to MSE in the sense that the partitioning step

minimizes the MSE for a given set of centroids and the update

step minimizes MSE for a given partitioning. The solution con-

verges to a local optimum but without a guarantee of global op-

timality. To get better results than k-means, slower agglomerative

algorithms [6, 16, 17] or more complex k-means variants [14, 18–20]

are sometimes used. Gaussian mixture models can also be used

(Expectation-Maximization algorithm) [21, 22].

2.2.2 Random Swap

To overcome the low accuracy of k-means, the randomized local search

(RLS) algorithm [18] has been developed. It is often called the

6 Dissertations in Forestry and Natural Sciences No 178
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random swap algorithm. Once a clustering result is available, one

centroid is randomly swapped to another location and k-means is

performed. If the result gets better, it is saved. The swapping is

continued until the desired number of iterations is done. With a

large enough number of iterations, often 5000, it gives good results,

making it one of the best clustering algorithms available. For a

pseudocode of random swap see Algorithm 1.

Algorithm 1 Random Swap

C ← SelectRandomDataObjects(k)

P ← OptimalPartition(C)

repeat

Cnew ← RandomSwap(C)

Pnew ← LocalRepartition(P, Cnew)

k-Means(Pnew, Cnew)

if MSE(Pnew, Cnew) < MSE(P, C) then

(P, C) ← (Pnew, Cnew)

end if

until T times

2.2.3 Other Hierarchical and Partitional Algorithms

The pairwise nearest neighbor (PNN) algorithm [6] gives good ac-

curacy, but with a high time complexity: T = O(n3). It starts with

all points in their own clusters. It finds the point pair which has the

lowest merge cost and merges it. This merging is continued until

the number of clusters is the desired k. A faster version of PNN [16]

runs with a time complexity O(τn2), where τ is a data-dependent

variable expressing the size of the neighborhood.

k-Means++ [14], which is based on k-means, emphasizes a good

choice of initial centroids, see Algorithm 2. Let D(Xi) denote the

distance from a data point Xi to its closest centroid. C1 is initialized

as Xrand(1..n). The variable i is selected by the function

Dissertations in Forestry and Natural Sciences No 178 7
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Algorithm 2 k-means++

C1 ← RandomInit()

j ← 2

repeat

i ← RandomWeightedBySquaredDistance()

Cj ← Xi

j ← j + 1

until j > k

C ← kmeans(C, k)

output C

RandomWeightedBySquaredDistance() =

min i

s.t.
D(X1)

2 + D(X2)2 + ... + D(Xi)
2

D(X1)2 + D(X2)2 + ... + D(Xn)2
> rand([0, 1[). (2.2)

As a result, new centers are added, most likely to the areas lacking

centroids. k-Means++ also has a performance guarantee [14]

E[TSE] ≤ 8(ln k + 2)TSEOPT. (2.3)

X-means [19] splits clusters as long as the Bayesian information

criterion (BIC) gives a lower value for the slit than for the non-slit

cluster.

Global k-means [20] tries all points as candidate initial centroid

locations, and performs k-means. It gives good results, but with

slow speed.

For a comparison of results of several clustering algorithms, see

the summary Chapter 9 of this thesis or [17].

8 Dissertations in Forestry and Natural Sciences No 178



3 Clustering by Analytic

Functions

Data clustering is a combinatorial optimization problem. The pub-

lication I shows that clustering is also an optimization problem for

an analytic function. The mean squared error, or in this case, the

total squared error can be expressed as an analytic function. With

an analytic function we benefit from the existence of standard op-

timization methods: the gradient of this function is calculated and

the descent method is used to minimize the function.

The MSE and TSE values can be calculated when the data points

and centroid locations are known. The process involves finding the

nearest centroid for each data point. We write cij for the feature j of

the centroid of cluster i. The squared error function can be written

as

f (c̄) = ∑
u

min
i
{∑

j

(cij − xuj)
2}. (3.1)

The min operation forces one to choose the nearest centroid for each

data point. This function is not analytic because of the min oper-

ations. A question is whether we can express f (c̄) as an analytic

function which then could be given as input to a gradient-based

optimization method. The answer is given in the following section.

3.1 FORMULATION OF THE METHOD

We write the p-norm as

‖x̄‖p = (
d

∑
i=1

|xi|p)1/p. (3.2)

The maximum value of the xi’s can be expressed as

max(|xi|) = lim
p→∞

‖x̄‖p = lim
p→∞

(
n

∑
i=1

|xi|p)1/p. (3.3)

Dissertations in Forestry and Natural Sciences No 178 9
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Since we are interested in the minimum value, we take the inverses
1
xi

and find their maximum. Then another inverse is taken to obtain

the minimum of the xi:

min(|xi|) = lim
p→∞

(
d

∑
i=1

1

|xi|p )
−1/p. (3.4)

3.2 ESTIMATION OF INFINITE POWER

Although calculations of the infinity norm (p = ∞) without com-

parison operations are not possible, we can estimate the exact value

by setting p to a high value. The error of the estimate is

ε = (
d

∑
i=1

1

|xi|p )
−1/p − lim

p2→∞
(

d

∑
i=1

1

|xi|p2
)−1/p2 . (3.5)

The estimation can be made up to any accuracy, the estimation error

being

|ε| ≥ 0.

To see how close we can come in practice, a mathematical software

package Matlab run was made:

1/nthroot((1/x1)∧p + (1/x2)∧p, p).

For example, with the values x1, x2 = 500, p = 100 we got the result

496.54. When the values of x1 and x2 are far from each other, we

get an accurate estimate, but when the numbers are close to each

other, an approximation error is present.

3.3 ANALYTIC FORMULATION OF TSE

Combining (3.1) and (3.4) yields

f (c̄) = ∑
u

[ lim
p→∞

((∑
i

1

| ∑j(cij − xuj)2 |p )
−1/p)]. (3.6)

10 Dissertations in Forestry and Natural Sciences No 178



Clustering by Analytic Functions

Proceeding from (3.6) by removing lim, we can now write f̂ (c̄) as

an estimator for f (c̄):

f̂ (c̄) = ∑
u

[(∑
i

(∑
j

(cij − xuj)
2)−p)−

1
p ]. (3.7)

This is an analytic estimator, although the exact f (c̄) cannot be writ-

ten as an analytic function when the data points lie in the middle

of cluster centroids in a certain way.

The partial derivatives and the gradient can also be calculated.

The formula for partial derivatives is calculated using the chain

rule:

∂ f̂ (c̄)

∂cst
=∑

u

[− 1

p
· (∑

i

(∑
j

(cij − xuj)
2)−p)−

p+1
p

·∑
i

(−p · (∑
j

(cij − xuj)
2)−(p+1)) · 2 · (cst − xut)].

(3.8)

3.4 TIME COMPLEXITY

The time complexity for calculating the estimator of the total squared

error has been derived in paper I as

T( f̂ (c̄)) = O(n · d · k · p). (3.9)

The time complexity of calculating f̂ (c̄) grows linearly with the

number of data points n, dimensionality d, number of centroids k,

and power p. The time complexity of calculating a partial deriva-

tive is

T(partial derivative) = O(n · d · k · p).

The time complexity for calculating all partial derivatives, which is

the same as the gradient, is

T(all partial derivatives) = O(n · d · k · p).

Dissertations in Forestry and Natural Sciences No 178 11
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This differs only by the factor p from one iteration time complexity

of the k-means O(k · n · d). In these time complexity calculations a

result concerning the time complexity of calculation of the nth root

is used [23].

3.5 ANALYTIC OPTIMIZATION OF TSE

Since we can calculate the values of f̂ (c̄) and the gradient, we can

find a (local) minimum of f̂ (c̄) by the gradient descent method.

In the gradient descent method, the solution points converge itera-

tively to a minimum:

c̄i+1 = c̄i −∇ f̂ (c̄i) · l, (3.10)

where l is the step length. The value of l can be calculated at every

iteration, starting from some lmax and halving it recursively until

f̂ (c̄i+1) < f̂ (c̄i).

Equation (3.8) for the partial derivatives depends on p. For any

p ≥ 0, either a local or the global minimum of (3.7) is found. Setting

p large enough, we get a satisfactory estimator f̂ (c̄), although there

is often some bias in this estimator and a p that is too small may

lead to a different clustering result.

The analytic clustering method presented here corresponds to

the k-means algorithm [11]. It can be used to obtain a local mini-

mum of the squared error function similarly to k-means, or to sim-

ulate the random swap algorithm [18] by changing one cluster cen-

troid randomly. In the random swap algorithm, a centroid and a

datapoint are chosen randomly, and a trial movement of this cen-

troid to this datapoint is made. If the k-means with the new centroid

provide better results than the earlier solution, the centroid remains

swapped. Such trial swaps are then repeated for a fixed number of

times.
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Analytic clustering and k-means work in the same way, although

their implementations differ. Their step length is different. The dif-

ference in the clustering result also originates from the approxima-

tion of the ∞-norm by the p-norm.

We have used an approximation to the infinity norm to find the

nearest centroids for the datapoints, and used the sum-of-squares

for the distance metric. The infinity norm, on the other hand, could

be used to cluster with the infinity norm distance metric. The Eu-

clidean norm (p = 2) is normally used in the literature, but exper-

iments with other norms are also published. For example, p = 1

gives the k-medians clustering, e.g. [24], and p → 0 gives the cat-

egorical k-modes clustering. Papers on the k-midrange clustering

(e.g. [25,26]) employ the infinity norm (p = ∞) in finding the range

of a cluster. In [27] a p = ∞ formulation has been given for the more

general fuzzy case. A description and comparison of different for-

mulations has been given in [28]. With the infinity norm distance

metric, the distance of a data point from a centroid is calculated

by taking the dominant feature of the difference vector between

the data point and the centroid. Our contribution in this regard is

that we can form an analytic estimator for the cost function even

if the distance metric were the infinity norm. This would make

the formula for f̂ (c̄) and the formula for the partial derivatives a

somewhat more complicated but nevertheless possible.

The experimental results are illustrated in Table 3.1 and show

that analytic clustering and k-means clustering provide comparable

results.
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Table 3.1: Averages of TSE values of 30 runs of analytic and traditional methods. The TSE

values are divided by 1013 or 106 (wine set) or 104 (breast set) or 1 (yeast set). Processing

times in seconds for different datasets and methods.

Dataset Total squared error Processing time

K-means Random swap K-means Random swap

Anal. Trad. Anal. Trad. Anal. Trad. Anal. Trad.

s1 1.93 1.91 1.37 1.39 4.73 0.04 52.46 0.36

s2 2.04 2.03 1.52 1.62 6.97 0.08 51.55 0.61

s3 1.89 1.91 1.76 1.78 4.59 0.06 59.03 0.58

s4 1.70 1.68 1.58 1.60 5.43 0.23 49.12 1.13

iris 22.22 22.22 22.22 22.22 0.12 0.01 0.48 0.03

thyroid 74.86 74.80 73.91 73.91 0.22 0.02 0.72 0.04

wine 2.41 2.43 2.37 2.37 0.44 0.02 4.39 0.04

breast 1.97 1.97 1.97 1.97 0.15 0.02 1.07 0.04

yeast 48.87 48.79 45.83 46.06 5.15 0.12 50.00 0.91
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4 Clustering by Gradual

Data Transformation

The traditional approach to clustering is to fit a model (partition

or prototypes) to the given data. In publication II we propose a

completely opposite approach: fitting the data to a given clustering

model that is optimal for similar pathological (not normal) data of

equal size and dimensions. We then perform an inverse transform

from this pathological data back to the original data while refin-

ing the optimal clustering structure during the process. The key

idea is that we do not need to find an optimal global allocation of

the prototypes. Instead, we only need to perform local fine-tuning

of the clustering prototypes during the transformation in order to

preserve the already optimal clustering structure.

We first generate an artificial data X∗ of the same size (n) and

dimension (d) as the input data, so that the data vectors are divided

into k perfectly separated clusters without any variation. We then

perform a one-to-one bijective mapping of the input data to the

artificial data (X → X∗).

The key point is that we already have a clustering that is op-

timal for the artificial data, but not for the real data. In the next

step, we perform an inverse transform of the artificial data back to

the original data by a sequence of gradual changes. While doing

this, the clustering model is updated after each change by k-means.

If the changes are small, the data vectors will gradually move to

their original position without breaking the clustering structure.

The details of the algorithm including the pseudocode are given

in Section 4.1. An online animator demonstrating the progress of

the algorithm is available at http://cs.uef.fi/sipu/clustering/

animator/. The animation starts when “Gradual k-means” is cho-

sen from the menu.
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The main design problems of this approach are to find a suit-

able artificial data structure, how to perform the mapping, and how

to control the inverse transformation. We will demonstrate next

that the proposed approach works with simple design choices, and

overcomes the locality problem of k-means. It cannot be proven to

provide optimal results every time, as there are bad cases where

it fails to find the optimal solution. Nevertheless, we show by ex-

periments that the method is significantly better than k-means and

k-means++, and competes equally with repeated k-means. Also, it

is rare that it ends up with a bad solution as is typical to k-means.

Experiments will show that only a few transformation steps are

needed to obtain a good quality clustering.

4.1 DATA INITIALIZATION

In the following subsections, we will go through the phases of the

algorithm. For the pseudocode, see Algorithm 3. We call this algo-

rithm k-means*, because of the repeated use of k-means. However,

instead of applying k-means to the original data points, we create

another artificial data set which is prearranged into k clearly sepa-

rated zero-variance clusters.

The algorithm starts by choosing the artificial clustering struc-

ture and then dividing the artificial data points among these equally.

We do this by creating a new dataset X2 and by assigning each data

point in the original dataset X1 to a corresponding data point in X2.

We consider seven different structures for the initialization:

• line

• diagonal

• random

• random with optimal partition

• initialization used in k-means++

• line with uneven clusters

• point.
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Figure 4.1: Original dataset and line init (left) or random init (right) with sample map-

pings shown by arrows.

In the line structure, the clusters are arranged along a line. The

k locations are set as the middle value of the range in each dimen-

sion, except the last dimension where the k clusters are distributed

uniformly along the line, see Figure 4.1 (left) and the animator

http://cs.uef.fi/sipu/clustering/animator/. The range of 10%

nearest to the borders are left without clusters.

In the diagonal structure, the k locations are set uniformly to the

diagonal of the range of the dataset.

In the random structure, the initial clusters are selected randomly

from among the data point locations in the original dataset, see Fig-

ure 4.1 (right). In these structuring strategies, data point locations

are initialized randomly to these cluster locations. Even distribu-

tion among the clusters is a natural choice. To further justify this,

lower cardinality clusters could more easily become empty later,

which was an undesirable situation.

The fourth structure is random locations but using optimal parti-

tions for the mapping. This means assigning the data points to the

nearest clusters.

The fifth structure corresponds to the initialization strategy used

in k-means++ [14].

The sixth structure is the line with uneven clusters, in which we
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place twice as many points at the most centrally located half of the

cluster locations than at the other locations.

The seventh structure is the point. It is like the line structure

but we put the clusters in a very short line, which, in a larger scale,

looks like a single point. In this way, the dataset “explodes” from a

single point during the inverse transform. This structure is useful

mainly for the visualization purposes in the web-animator.

The k-means++-style structure with evenly distributed data points

is the recommended structure because it works best in practice, and

therefore we use it inthe further experiments. In choosing the struc-

ture, good results are achieved when there is a notable separation

between the clusters and evenly distributed data points in the clus-

ters.

Once the initial structure has been chosen, each data point in

the original data set is assigned to a corresponding data point in

the initial structure. The data points in this manually created data

set are randomly but evenly located.

4.2 INVERSE TRANSFORMATION STEPS

The algorithm proceeds by executing a given number (> 1) of in-

verse transformation steps given as a user-set integer parameter.

The default value for steps is 20. At each step, all data points are

transformed towards their original location by the amount

1

steps
· (X1,i − X2,i), (4.1)

where X1,i is the location of the ith datapoint in the original data

and X2,i is its location in the artificial structure. After every trans-

form, k-means is executed given the previous centroids along with

the modified dataset as input. After all the steps have been com-

pleted, the resulting set of centroids C is output.

It is possible that two points that belong to the same cluster in

the final dataset will be put into different clusters in the artificially

created dataset. Then they smoothly move to their final locations

during the inverse transform.
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Table 4.1: Time complexity of the k-means* algorithm.

Theoretical

k free k = O(n) k = O(
√

n) k = O(1)

Initialization O(n) O(n) O(n) O(n)

Data set transform O(n) O(n) O(n) O(n)

Empty clusters

removal O(kn) O(n2) O(n1.5) O(n)

k-means O(knkd+1) O(nO(n)·d+2) O(nO(
√

nd+ 3
2 )) O(nkd+1)

Algorithm total O(knkd+1) O(nO(n)·d+2) O(nO(
√

nd+ 3
2 )) O(nkd+1)

Fixed k-means

k free k = O(n) k = O(
√

n) k = O(1)

Initialization O(n) O(n) O(n) O(n)

Data set transform O(n) O(n) O(n) O(n)

Empty clusters

removal O(kn) O(n2) O(n1.5) O(n)

k-means O(kn) O(n2) O(n1.5) O(n)

Algorithm total O(kn) O(n2) O(n1.5) O(n)

4.3 TIME COMPLEXITY

The worst case complexities of the phases are listed in Table 4.1.

The overall time complexity is not more than for the k-means, see

Table 4.1.

4.4 EXPERIMENTAL RESULTS

We ran the algorithm with different values of steps and for several

data sets. For the MSE calculation we use the formula

MSE =
∑

k
j=1 ∑Xi∈Cj

|| Xi − Cj ||2
n · d

,

where MSE is normalized by the number of features in the data.

All the datasets can be found on the SIPU web page [29].
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Algorithm 3 k-means*

Input: data set X1, number of clusters k, steps,

Output: Codebook C.

n ← size(X1)

[X2, C] ← Initialize()

for repeats = 1 to steps do

for i = 1 to n do

X3,i ← X2,i + (repeats/steps) ∗ (X1,i − X2,i)

end for

C ← kmeans(X3, k, C)

end for

output C

The sets s1, s2, s3 and s4 are artificial datasets consisting of

Gaussian clusters with same variance but increasing overlap. Given

15 seeds, data points are randomly generated around them. In a1

and DIM sets, the clusters are clearly separated, whereas in s1-s4

they are overlap more. These sets are chosen because they are still

easy enough for a good algorithm to find the clusters correctly but

hard enough for a bad algorithm to fail. The results for the number

of steps 2-20 are plotted in Figure 4.2.

We observe that 20 steps is enough for k-means* (Figure 4.2).

Many clustering results of these data sets stabilize at around 6 steps.

More steps give only a marginal additional benefit, but at the cost

of a longer execution time. For some of the data sets, even just

one step gives the best result. In these cases, initial positions for

centroids just happened to be good.
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Figure 4.2: Results of k-means* (average over 200 runs) for datasets s1, s2, s3, s4, thyroid,

wine, a1 and DIM32 with different numbers of steps. For repeated k-means there are an

equal number of repeats as there are steps in the proposed algorithm. For s1 and s4, the

75% error bounds are also shown. We observe that 20 steps is enough for this algorithm.
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5 All-Pairwise Squared Dis-

tances as Cost

All-pairwise squared distances has been used as a cost function in

clustering [30, 31]. In publication III, we showed that it leads to

more balanced clustering than centroid-based distance functions as

in k-means. Clustering by all-pairwise squared distances is formu-

lated as a cut-based method, and it is closely related to the MAX

k-CUT method. We introduce two algorithms for the problem, both

of which are faster than the existing one based on l2
2-Stirling approx-

imation. The first algorithm uses semidefinite programming as in

MAX k-CUT. The second algorithm is an on-line variant of classi-

cal k-means. We show by experiments that the proposed approach

provides better overall joint optimization of the mean squared error

and cluster balance than the compared methods.

5.1 BALANCED CLUSTERING

A balanced clustering is defined as a clustering where the points are

evenly distributed into the clusters. In other words, every cluster in-

cludes either �n/k
 or �n/k� points. We define balanced clustering

as a problem which aims at maximizing the balance and minimiz-

ing some other cost function, such as MSE. Balanced clustering is

desirable in workload-balancing algorithms. For example, one algo-

rithm for the multiple traveling salesman problem [32] clusters the

cities so that each cluster is solved by one salesman. It is desirable

that each salesman has an equal workload.

Balanced clustering, in general, is a 2-objective optimization

problem, in which two aims contradict each other: to minimize

a cost function such as MSE, and to balance cluster sizes at the

same time. Traditional clustering aims at minimizing MSE com-

pletely without considering cluster size balance. Balancing, on the
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Table 5.1: Classification of some balanced clustering algorithms.

Balance-constrained Type

Balanced k-means (publication IV) k-means

Constrained k-means [33] k-means

Size constrained [34] integer linear programming

Balance-driven Type

Scut (publication III) on-line k-means

FSCL [35] assignment

FSCL additive bias [36] assignment

Cluster sampled data [37] k-means

Ratio cut [38] divisive

Ncut [39] divisive

Mcut [40] divisive

SRcut [41] divisive

Submodular fractional submodular fractional

programming [42] programming

other hand, would be trivial if we did not care about MSE: Then we

would simply divide the vectors into equal size clusters randomly.

For optimizing both, there are two approaches: balance-constrained

and balance-driven clustering.

In balance-constrained clustering, cluster size balance is a manda-

tory requirement that must be met, and minimizing MSE is a sec-

ondary criterion. In balance-driven clustering, balanced clustering

is an aim, but it is not mandatory. It is a compromise between

the two goals: balance and the MSE. The solution is a weighted

cost function between MSE and the balance, or it is a heuristic, that

aims at minimizing MSE but indirectly creates a more balanced re-

sult than optimizing MSE alone.

Existing algorithms for balanced clustering are grouped into

these two classes in Table 5.1. As more application-specific ap-

proaches, networking uses balanced clustering to obtain some de-

sirable goals [43, 44].
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5.2 CUT-BASED METHODS

Cut-based clustering is a process where the dataset is cut into smaller

parts based on the similarity S(Xl , Xs) or the cost d(Xl , Xs) between

pairs of points. By cut(A, B) one means partitioning a dataset into

two parts A and B, and the value of cut(A, B) is the total weight

between all pairs of points between the sets A and B:

cut(A, B) = ∑
Xl∈A,Xs∈B

wls. (5.1)

The weights w can be defined either as distances or similarities be-

tween the two points. Unless otherwise noted, we use (squared)

Euclidean distances in publication III. The cut(A, B) equals the to-

tal pairwise weights of A ∪ B subtracted by the pairwise weights

within the parts A and B:

cut(A, B) = W − W(A)− W(B), (5.2)

where

W =
n

∑
l=1

n

∑
s=1

wls, (5.3)

and

W(A) = ∑
Xl∈A,Xs∈A

wls, (5.4)

and W(B) is defined respectively. In cut-based clustering, two

common objective functions are Ratio cut [38] and Normalized cut

(Ncut, for short) [39]. Both of these methods favor balanced clus-

tering [45]. In practice, one approximates these problems by relax-

ation, i.e., solving a nearby easier problem. Relaxing Ncut leads to

normalised spectral clustering, while relaxing RatioCut leads to un-

normalised spectral clustering [45]. There exists also a semidefinite-

programming based relaxation for Ncut [46].

5.3 MAX K-CUT METHOD

In the weighted MAX k-CUT problem [47], one partitions a graph

into k subgraphs so that the sum of the weights of the edges be-

tween the subgraphs is maximised. The weights are distances.
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cut(P1, P̄1) = 12

cut(P2, P̄2) = 12

cut(P3, P̄3) = 13

cut(P4, P̄4) = 17

∑ = 54.

1/2 · 54 = 27

Figure 5.1: An example of MAX k-CUT, when k = 4.

MAX k-CUT aims at partitioning the data into k clusters P1, ..., Pk.

Following the notation of Section 5.2 and inserting a factor 1/2 in

order to avoid summing the weights twice, the MAX k-CUT prob-

lem is defined as

max
Pj,1≤j≤k

1

2

k

∑
j=1

cut(Pj, P̄j). (5.5)

There is an example of MAX k-CUT in Figure 5.1. MAX k-CUT is

an NP-hard problem [48] for general weights.

If we use Euclidean distance for the weights of the edges be-

tween every pair of points, then taking optimal weighted MAX k-

CUT results in the minimum intra-cluster pairwise distances among

any k-CUT. If we use squared distances as weights of the edges, we

end up with minimum intra-cluster pairwise squared distances. If

we use squared Euclidean distances as weights, the problem is ex-

pected to remain NP-hard.

5.4 SQUARED CUT (SCUT)

Publication III deals with the Squared cut, Scut method, which uses

all pairwise squared distances as the cost function. This cost func-

tion has been presented in [49], where it is called l2
2 k-clustering.

However, we formulate it by using the TSE’s of the clusters and

show that the method leads to a more balanced clustering prob-

lem than TSE itself. It is formulated as a cut-based method and

it resembles the MAX k-CUT method [30]. We present two algo-
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rithms for the problem; both more practical than the exhaustive

search proposed in [31] for l2
2 k-clustering. The first algorithm is

based on semidefinite programming, similar to MAX k-CUT, and the

second one is an on-line k-means algorithm directly optimizing the

cost function.

A general k-clustering problem by Sahni and Gonzales [30] de-

fines the cost by calculating all pairwise distances within the clus-

ters for any arbitrary weighted graphs. Guttmann-Beck and Has-

sin [50] studies the problem when the distances satisfy the triangle

inequality. Schulman [49] gives probabilistic algorithms for l2
2 k-

clustering [30]. The running time is linear if the dimension d is of

the order o(log n/ log log n) but, otherwise, it is nO(log log n). De la

Vega et al. [31] improved and extended Schulman’s result, giving

a true polynomial time approximation algorithm for arbitrary di-

mension. However, even their algorithm is slow in practice. We

therefore present faster algorithms for the Scut method.

In Scut, we form the graph by assigning squared Euclidean dis-

tances as the weights of the edges between every pair of points. In

a single cluster j, the intra-cluster pairwise squared distances are

of the form nj · TSEj, where nj is the number of points in cluster

j [51], p. 52. The generalisation of this to all clusters is known as

Huygens’s theorem, which states that the total squared error (TSE)

equals the sum over all clusters, over all squared distances between

pairs of entities within that cluster divided by its cardinality:

W(Aj) = nAj
· TSE(Aj) for all j.

Huygens’s theorem is crucial for our method, because it relates the

pairwise distances to the intra-cluster TSE, and thus, to the Scut

cost function:

Scut = n1 · TSE1 + n2 · TSE2 + ... + nk · TSEk, (5.6)

where nj is the number of points and TSEj is the total squared error

of the jth cluster. Based on (1.8), this may also be written as

Scut = n2
1 · MSE1 + n2

2 · MSE2 + ... + n2
k · MSEk, (5.7)
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Algorithm 4 Scut

Input: dataset X, number of clusters k

Output: partitioning of points P

for each edge of the graph do

Weight of edge wij ← Euclidean distance(Xi, Xj)
2

end for

Approximate MAX k-CUT.

Output partitioning of points P.

�� �� ��� ��

Figure 5.2: Two different sized clusters with the same MSE.

where MSEj is the mean squared error of the jth cluster. In cut-

notation the cost function is total pairwise weights minus the value

of MAX k-CUT:

Scut = W − max
Pj,1≤j≤k

1

2

k

∑
i=1

cut(Pj, P̄j). (5.8)

From this we conclude that using squared distances and optimizing

MAX k-CUT results in the optimization of the Scut cost function

(5.6). For approximating Scut, the Algorithm 4 can be used. Our

cut-based method has an MSE-based cost function and it tends to

balance the clusters because of the n2
j factors in (5.7). This can be

seen by the following simple example where two clusters have the

same squared error: MSE1 = MSE2 = MSE (Figure 5.2). The

total errors of these are 22 · MSE1 = 4 · MSE, and 102 · MSE2 =

100 · MSE. Adding one more point would increase the error by
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(n + 1)2 · MSE − n2 · MSE = (2n + 1) · MSE. In the example in

Figure 5.2, the cost would increase by 5 · MSE (cluster 1) and 21 ·
MSE (cluster 2). The cost function therefore always favors putting

points into a smaller cluster, and therefore, it tends to make more

balanced clusters. Figure 5.3 demonstrates the calculation of the

cost.

Figure 5.3: Calculation of the cost. Edge weights are squared Euclidean distances.

5.5 APPROXIMATING SCUT

5.5.1 Approximation algorithms

Weighted MAX k-CUT is an NP-hard problem but it can be solved

by an approximation algorithm based on semidefinite programming

(SDP) in polynomial time [47]. Although polynomial, the algo-

rithm is slow. According to our experiments, it can only be used

for datasets with just over 150 points. A faster approximation al-

gorithm has been presented by Zhu and Guo [48]. It begins with

an arbitrary partitioning of the points, and moves a point from one

subset to another if the sum of the weights of edges across different

subsets decreases. The algorithm stops when no further improve-

ments can be attained. In subection 5.5.2, we will propose an even

faster algorithm, which instead of maximising MAX k-CUT mini-

mizes the Scut cost function (5.6). Nevertheless, the result will be

the same.
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Algorithm 5 Fast approximation algorithm (on-line k-means) for

Scut

Input: dataset X, number of clusters k, number of points n

Output: partitioning of points P

Create some initial partitioning P.

changed ← TRUE

while changed do

changed ← FALSE

for i = 1 to n do

for l = 1 to k do

if ΔScut < 0 then

move point i to the cluster l

update centroids and TSE’s of previous cluster and clus-

ter l

changed ← TRUE

end if

end for

end for

end while

Output partitioning of points P.

5.5.2 Fast Approximation Algorithm for Scut

We next define an on-line k-means variant of the Scut method. In

the algorithm, the points are repeatedly re-partitioned to the cluster

which provides the lowest value for the Scut cost function. The

partition of the points is done one-by-one, and a change of cluster

will cause an immediate update of the two clusters affected (their

centroid and size). We use the fact that calculating the pairwise

total squared distance within clusters is the same as calculating the

Scut cost function in TSE form (5.6). We next derive a fast O(1)

update formula which calculates the cost function change when a

point is moved from one cluster to another. We keep on moving

points to other clusters as long as the cost function decreases, see

Algorithm 5. The approximation ratio derived in publication III, is
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nB = 7

TSEB = 24

ΔTSEremove = −18.67
� �

�����	��

��
���

���
��������
�����

nA = 3

TSEA = 3

ΔTSEadd = 3.00

Figure 5.4: Changing point from cluster B to A decreasing cost by 121.02.

εk =
W − w(P(k))

W − w(P(k)∗)

=
W − w(P(k))

max(0, W − 1
αk
· w(P(k)))

, (5.9)

where W is all pairwise weights, w(P(k)) is cut by the approxi-

mation algorithm, w(P(k)∗) is optimal cut and αk > 1 − k−1. The

update formula follows the merge cost in the agglomerative clus-

tering algorithm [6]. It includes the change in TSE when adding a

point, the change in TSE when removing a point, and the overall

cost in terms of the cost function (5.6). The costs are obtained as

follows:

Addition:

ΔTSEadd =
nA

nA + 1
· ||CA − Xi||2. (5.10)

Removal:

ΔTSEremove = −nB − 1

nB
· || nB

nB − 1
· CB − 1

nB − 1
· Xi − Xi||2

= −nB − 1

nB
|| nB

nB − 1
· CB − nB

nB − 1
· Xi||2

= − nB

nB − 1
· ||CB − Xi||2. (5.11)

The total cost of clusters A and B before the move is

Scutbe f ore = nA · TSEA + nB · TSEB, (5.12)

where nA and nB are the number of points in the clusters A and B

before the operation, CA and CB are the centroid locations before
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the tentative move operation and Xi is the data point involved in

the operation. The total cost after the move is

Scuta f ter = (nA + 1) · (TSEA + ΔTSEadd)

+ (nB − 1) · (TSEB + ΔTSEremove). (5.13)

From these we get the change in cost

ΔScut = Scuta f ter − Scutbe f ore (5.14)

= TSEA − TSEB + (nA + 1) · ΔTSEadd + (nB − 1) · ΔTSEremove,

(5.15)

= TSEA − TSEB + (nA + 1) · nA

nA + 1
· ||CA − Xi||2 (5.16)

+ (nB − 1) · − nB

nB − 1
· ||CB − Xi||2. (5.17)

See an example of a point changing its cluster in Figure 5.4, where

the changes in the TSEs are the following: ΔTSEadd = 3/4 · 22 =

3.00 and ΔTSEremove = −7/6 · 42 = −18.67. In Figure 5.4, the change

in cost function is ΔScut = 3 − 24 + (3 + 1) · 3 + (7 − 1) · −18.67 =

−121.02.

5.6 EXPERIMENTS

To solve the semidefinite program instances, we use the SeDuMi

solver [52] and the Yalmip modelling language [53]. We use datasets

from SIPU [29]. To compare how close the obtained clustering

is to balance-constrained clustering (an equal distribution of sizes

�n/k�), we measure the balance by calculating the difference in the

cluster sizes and a balanced n/k distribution, calculated by

2 · ∑
j

max(nj − �n

k
�, 0). (5.18)

. We first compare Scut with the SDP algorithm against repeated k-

means. The best results of 100 repeats (lowest distances) are chosen.

In the SDP algorithm we repeat only the point assignment phase.
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Table 5.2: Balances and execution times of the proposed Scut method with the SDP algo-

rithm and k-means clustering. 100 repeats, in the SDP algorithm only the point assign-

ment phase is repeated.

Dataset n k balance time

repeated repeated repeated repeated

Scut k-means Scut k-means

iris 150 3 2 6 8h 25min 0.50s

SUBSAMPLES:

s1 150 15 42 30 9h 35min 0.70s

s1 50 3 2 6 34s 0.44s

s1 50 2 0 8 28s 0.34s

s2 150 15 48 24 6h 50min 0.76s

s2 50 3 2 4 27s 0.40s

s2 50 2 0 4 32s 0.38s

s3 150 15 44 28 7h 46min 0.89s

s3 50 3 2 6 31s 0.43s

s3 50 2 0 2 26s 0.41s

s4 150 15 40 30 7h 01min 0.93s

s4 50 3 0 6 28s 0.42s

s4 50 2 0 0 30s 0.36s

a1 50 20 4 4 11s 0.45s

DIM32 50 16 0 6 8s 0.46s

iris 50 3 0 10 33s 0.44s

thyroid 50 2 0 28 28s 0.38s

wine 50 3 2 6 30s 0.40s

breast 50 2 2 34 18s 0.35s

yeast times100 50 10 8 8 10s 0.48s

glass 50 7 6 6 9s 0.44s

wdbc 50 2 0 20 11s 0.28s

best 14 times 4 times
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Table 5.3: Best balances and total execution times of the proposed Scut with the fast ap-

proximation algorithm and k-means clustering for 100 runs.

Dataset n k balance time

Scut- repeated Scut- repeated

fast k-means fast k-means

s1 5000 15 180 184 4min 2.3s

s2 5000 15 160 172 4min 4.0s

s3 5000 15 260 338 5min 3.6s

s4 5000 15 392 458 6min 7.0s

a1 3000 20 36 40 5min 3.2s

DIM32 1024 16 0 0 42s 2.6s

iris 150 3 4 6 0.9s 0.4s

thyroid 215 2 126 168 1.0s 0.3s

wine 178 3 22 22 0.8s 0.3s

breast 699 2 216 230 1.3s 0.3s

yeast times100 1484 10 298 362 1min 21s 4.2s

glass 214 7 110 106 4.6s 1.1s

wdbc 569 2 546 546 0.9s 0.4s
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The results in Table 5.2 show that 64% of the clustering results

are more balanced with the proposed method than with the re-

peated k-means method. They were equally balanced in 18% of

the cases, and in the remaining 18% of the cases a k-means result

was more balanced. Optimization works well with small datasets

(systematically better than k-means) but with bigger datasets the

benefit is smaller. The time complexity is polynomial, but the com-

puting time increases quickly when the number of points increases.

With 50 points, the computing time is approximately 20 s, but with

150 points it is approximately 7 hours. The memory requirement

for 150 points is 4.4 GB. The results in Table 5.3 are for the fast on-

line k-means algorithm, for which we can use bigger datasets. In 9

cases the repeated Scut gave better result than repeated k-means, in

3 cases it was equal and in 1 case it was worse.
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6 Balance-constrained Clus-

tering

Table 5.1 lists some balance-constrained clustering algorithms. We

review them here.

Bradley et al. [33] and Demiriz et al. [54] present a constrained

k-means algorithm, which is like k-means, but the assignment step is

implemented as a linear program, in which the minimum number

of points τh of clusters can be set as parameters. Setting τh = �n/k

gives balance-constrained clustering. The constrained k-means clus-

tering algorithm works as follows:

Given m points in R
n, minimum cluster membership values τh ≥

0, h = 1, ..., k and cluster centers C
(t)
1 , C

(t)
2 , ..., C

(t)
k at iteration t, com-

pute C
(t+1)
1 , C

(t+1)
2 , ..., C

(t+1)
k at iteration t + 1 using the following

two steps:

Cluster Assignment. Let Tt
i,h be a solution to the following lin-

ear program with C
(t)
h fixed:
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minimizeT

m

∑
i=1

k

∑
h=1

Ti,h · (1

2
||Xi − C

(t)
h ||22) (6.1)

subject to
m

∑
i=1

Ti,h ≥ τh, h = 1, ..., k (6.2)

k

∑
h=1

Ti,h = 1, i = 1, ..., m (6.3)

Ti,h ≥ 0, i = 1, ..., m, h = 1, ..., k. (6.4)

Cluster Update.

C
(t+1)
h =

⎧⎪⎨
⎪⎩

∑
m
i=1 T

(t)
i,h Xi

∑
m
i=1 T

(t)
i,h

if ∑
m
i=1 T

(t)
i,h > 0,

C
(t)
h otherwise.

These steps are repeated until C
(t+1)
h = C

(t)
h , for all h = 1, ..., k.

The algorithm terminates in a finite number of iterations at a

partitioning that is locally optimal [33]. At each iteration, the clus-

ter assignment step cannot increase the objective function of con-

strained k-means (3) in [33]. The cluster update step either strictly

decreases the value of the objective function or the algorithm ter-

minates. Since there are a finite number of ways to assign m points

to k clusters such that cluster h has at least τh points, constrained

k-means algorithm does not permit repeated assignments, and the

objective of constrained k-means (3) in [33] is strictly nonincreasing

and bounded below by zero, the algorithm must terminate at some

cluster assignment that is locally optimal.

Zhu et al. [34] try to find a partition close to the given partition,

but such that the cluster size constraints are fulfilled.

In publication IV, we formulate balanced k-means algorithm; it

belongs to the balance-constrained clustering category. It is oth-

erwise the same as standard k-means but it guarantees balanced

cluster sizes. It is also a special case of constrained k-means, where

38 Dissertations in Forestry and Natural Sciences No 178



Balance-constrained Clustering

cluster sizes are set equal. However, instead of using linear pro-

gramming in the assignment phase, we formulate the partitioning

as a pairing problem [55], which can be solved optimally by the

Hungarian algorithm in O(n3) time.

6.1 BALANCED K-MEANS

To describe the balanced k-means algorithm, we need to define

what is an assignment problem. The formal definition of an as-

signment problem (or linear assignment problem) is as follows.

Suppose given two sets (A and S), of equal size, and a weight

wa,i, a ∈ A, i ∈ S, the goal is to find a bijection f : A → S so

that the cost function

Cost = ∑
a∈A

wa, f (a)

is minimized. In the proposed algorithm, A corresponds to the

cluster slots and S to the data points, see Figure 6.1.

In balanced k-means, we proceed as in the common k-means,

but the assignment phase is different: instead of selecting the near-

est centroids, we have n pre-allocated slots (n/k slots per clus-

ter), and datapoints can be assigned only to these slots, see Fig-

ure 6.1. This will force all clusters to be of same size, assuming that

�n/k� = �n/k
 = n/k. Otherwise, there will be (n mod k) clusters

of size �n/k�, and k − (n mod k) clusters of size �n/k
.

To find an assignment that minimizes the MSE, we use the Hun-

garian algorithm [55]. First we construct a bipartite graph consist-

ing of n datapoints and n cluster slots, see Figure 6.2. We then

partition the cluster slots into clusters of as even number of slots as

possible.

We generate centroid locations to the partitioned cluster slots,

one centroid to each cluster. The initial centroid locations can be

drawn randomly from all data points. The edge weight is the

squared distance from the point to the cluster centroid it is assigned

to. Unlike the standard assignment problem with fixed weights,

here the weights dynamically change after each k-means iteration
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Figure 6.1: Assigning points to centroids via cluster slots.

Figure 6.2: Minimum MSE calculation with balanced clusters. Modeling with bipartite

graph.
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according to the newly calculated centroids. After this, we perform

the Hungarian algorithm to get the minimal weight pairing. The

squared distances are stored in an n × n matrix, for the needs of

the Hungarian algorithm. The update step is similar to that of k-

means, where the new centroids are calculated as the means of the

data points assigned to each cluster:

C
(t+1)
j =

1

nj
· ∑

Xi∈C
(t)
j

Xi. (6.5)

The weights of the edges are updated immediately after the up-

date step. The pseudocode is in Algorithm 6. In the calculation of

the edge weights, the index of the cluster slot is denoted by a and

mod is used to calculate to which cluster a slot belongs (index = a

mod k). The edge weights are calculated by

wa,i = dist(Xi , Ct
(a mod k)+1)

2, (6.6)

for each cluster slot a and point i. The resulting partition of points

Xi, i ∈ [1, n], is

X f (a) ∈ P(a mod k)+1. (6.7)
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Algorithm 6 Balanced k-means

Input: dataset X, number of clusters k

Output: partitioning of dataset.

Initialize centroid locations C0.

t ← 0

repeat

Assignment step:

Calculate edge weights.

Solve an assignment problem.

Update step:

Calculate new centroid locations Ct+1

t ← t + 1

until centroid locations do not change.

Output partitioning.

The convergence result for the constrained k-means in the begin-

ning of this chapter applies to balanced k-means as well, since the

linear programming in constrained k-means and the pairing in bal-

anced k-means do essentially the same thing when the parameters

are suitably set. We can express the convergence result principle as

follows.

1. The result never gets worse

2. The algorithm ends when the result does not get better.

We consider the assignment step to be optimal with respect to

MSE because of pairing and the update step to be optimal, because

MSE is clusterwise minimized as is in k-means.

6.2 TIME COMPLEXITY

The time complexity of the assignment step in k-means is O(k · n).

Constrained k-means involves linear programming. It takes O(v3.5)

time, where v is the number of variables, by Karmarkar’s projec-
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tive algorithm [56, 57], which is the fastest interior point algorithm

known to the authors. Since v = k · n, the time complexity is

O(k3.5n3.5). The assignment step of the proposed balanced k-means

algorithm can be solved in O(n3) time with the Hungarian algo-

rithm, because the number of points and cluster slots (k · (n/k)) is

equal to n. This makes it much faster than in the constrained k-

means, and therefore allows therefore significantly bigger datasets

to be clustered.

Table 6.1: MSE, and time/run of 100 runs of Balanced k-means and Constrained k-means.

Dataset n k Algorithm Best Mean Time

s2 5000 15 Bal. k-means 2.86 (one run) 1h 40min

Constr. k-means − − -

s1 1000 15 Bal. k-means 2.89 (one run) 47s

subset Constr. k-means 2.61 (one run) 26min

s1 500 15 Bal. k-means 3.48 3.73 8s

subset Constr. k-means 3.34 3.36 30s

k-means 2.54 4.21 0.01s

s1 500 7 Bal. k-means 14.2 15.7 10s

subset Constr. k-means 14.1 15.6 8s

s2 500 15 Bal. k-means 3.60 3.77 8s

subset Constr. k-means 3.42 3.43 29s

s3 500 15 Bal. k-means 3.60 3.69 9s

subset Constr. k-means 3.55 3.57 35s

s4 500 15 Bal. k-means 3.46 3.61 12s

subset Constr. k-means 3.42 3.53 45s

thyroid 215 2 Bal. k-means 4.00 4.00 2.5s

Constr. k-means 4.00 4.00 0.25s

wine 178 3 Bal. k-means 3.31 3.33 0.36s

Constr. k-means 3.31 3.31 0.12s

iris 150 3 Bal. k-means 9.35 9.39 0.34s

Constr. k-means 9.35 9.35 0.14s
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Figure 6.3: Running time with different-sized subsets of s1 dataset.

6.3 EXPERIMENTS

In the experiments we use artificial datasets s1–s4, which have Gaus-

sian clusters with increasing overlap, and the real-world datasets

thyroid, wine and iris. The source of the datasets is [29]. As a

platform, Intel Core i5-3470 3.20GHz processor was used. We have

been able to cluster datasets of 5000 points. A comparison of the

MSE values of the constrained k-means with that of the balanced k-

means is shown in Table 6.1, and the corresponding running times

in Figure 6.3. The results indicate that constrained k-means gives

slightly better MSE in many cases, but that balanced k-means is

significantly faster when the size of the dataset increases. For a

dataset with a size of 5000, constrained k-means could no longer

provide the result within one day. The difference in the MSE is

most likely due to the fact that balanced k-means strictly forces bal-

ance within ±1 points, but constrained k-means does not. It may

happen that constrained k-means has many clusters of size �n/k
,

but some smaller amount of clusters of size bigger than �n/k�.

44 Dissertations in Forestry and Natural Sciences No 178



7 Clustering Based on Mini-

mum Spanning Trees

Constructing a minimum spanning tree (MST) is needed in some

clustering algorithms. We review here path-based clustering, for

which constructing a minimum spanning tree quickly is beneficial.

Path-based clustering is used when the shapes of the clusters are

expected to be non-spherical, as manifolds.

7.1 CLUSTERING ALGORITHM

Path-based clustering employs the minimax distance to measure the

dissimilarities of the data points [58, 59]. For a pair of data points

Xi, Xj, the minimax distance Dij is defined as:

Dij = min
P k

ij

{ max
(Xp,Xp+1)∈P k

ij

d(Xp, Xp+1)} (7.1)

where P k
ij denotes all possible paths between Xi and Xj, k is an

index that enumerates the paths, and d(Xp, Xp+1) is the Euclidean

distance between two neighboring points Xp and Xp+1.

The minimax distance can be computed by an all-pair shortest

path algorithm, such as the Floyd Warshall algorithm. However,

this algorithm runs in time O(n3). An MST is used to compute the

minimax distance more efficiently by Kim and Choi [60]. To make

the path-based clustering robust to outliers, Chang and Yeung [61]

improved the minimax distance and incorporated it into spectral

clustering.

7.2 FAST APPROXIMATE MINIMUM SPANNING TREE

The paper V presents the fast minimum spanning tree (FMST) algo-

rithm. It divides the dataset into clusters by k-means and calculates

Dissertations in Forestry and Natural Sciences No 178 45



Mikko Malinen: New Alternatives for k-Means Clustering

the MSTs of the individual clusters by an exact algorithm. Then

it combines these sub-MSTs. Figure 7.1 shows the phases of the

construction.

(a) Data set (b) Partitions by K-means (c) MSTs of the subsets (d) Connected MSTs

(e) Partitions on borders (f) MSTs of the subsets (g) Connected MSTs (h) Approximate MST 

Divide-and-conquer stage:

Refinement stage:

Figure 7.1: Phases of FMST algorithm.

7.3 ACCURACY AND TIME COMPLEXITY

The MST of a dataset can be constructed in O(n2) time with Prim’s

algorithm (we deal with complete graph). The exponent is too high

for big datasets, so a faster variant of the algorithm is needed. We

propose the FMST algorithm, which theoretically can achieve a time

complexity of O(n1.5). To get an estimate on its time complexity in

practice, runs were made with different sizes of subsets of data and

curves T = aNb were fitted to that data to find the exponent b. The

running time in practice was found to be near an1.5, see Table 7.1.

The difference between theoretical and practical time complexity is

due to the fact that the theoretical analysis makes the assumption

that the cluster sizes are equal. This binds the publication V to

balanced clustering.
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Table 7.1: The exponent b obtained by fitting T = aNb. FMST denotes the proposed

method.

b

t4.8k MNIST ConfLongDemo MiniBooNE

n 8000 10000 164,860 130,065

d 2 748 3 50

FMST 1.57 1.62 1.54 1.44

Prim’s Alg. 1.88 2.01 1.99 2.00

The resulting MST is not necessarily correct, but there may be

some erroneous edges, the error rate being circa 2%–17% of the

edges according to experiments.

The accuracy of the algorithm was tested on a clustering appli-

cation. We tested the FMST within the path-based method on three

synthetic datasets (Pathbased, Compound and S1) [29].

For computing the minimax distances, Prim’s algorithm and

FMST are used. In Fig. 7.2, one can see that the clustering results

on the three datasets are almost equal. Quantitative measures are

given in Table 7.2, which contains two validity indexes [3]. They in-

dicate that the results of using Prim’s algorithm on the first dataset

are slightly better than the FMST, but the difference is insignificant.
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Prim’s algorithm Proposed FMST
pathbased

compound

s1

Figure 7.2: Prim’s algorithm (left) and the proposed FMST based (right) clustering results

for datasets pathbased (top), compound (middle) and s1 (bottom).

48 Dissertations in Forestry and Natural Sciences No 178



Clustering Based on Minimum Spanning Trees

Table 7.2: The quantitative measures of clustering results (Rand and Adjusted Rand in-

dices). FMST denotes the proposed method.

Datasets
Rand AR

Prim FMST Prim FMST

Pathbased 0.94 0.94 0.87 0.86

Compound 0.99 0.99 0.98 0.98

S1 0.995 0.995 0.96 0.96
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8 Summary of Contributions

In this chapter we summarize the contributions of the original pub-

lications I–V. The publications I–IV introduce new clustering al-

gorithms and the publication V introduces a heuristic minimum

spanning tree calculation.

I: Data clustering is a combinatorial optimization problem. This

publication shows that the clustering problem can be also consid-

ered as an optimization problem for an analytic function. The mean

squared error can be written approximately as an analytic function.

The gradient of this analytic function can be calculated and stan-

dard descent methods can be used to minimize this function. This

analytic function formulation is a novel finding.

II: A model in clustering means the representatives of clusters.

Traditionally, clustering works by fitting a model to the data. In this

publication, we use the opposite starting point: we fit the data to

an existing cluster model. We then gradually move the data points

towards the original dataset, refining the centroid locations by k-

means at every step. This is a novel approach and the quality of the

clustering competes with the repeated k-means algorithm, where

we set the number of repeats to be the same as the number of steps

in our algorithm.

III: In this publication, we show that a clustering method where

the total squared errors of the individual clusters are weighted by

the number of points in the clusters, provides more balanced clus-

tering than the unweighted TSE criterion. We also present a fast

on-line algorithm for this problem. Balanced clustering is needed

in some applications of workload balancing.

IV: This publication introduces a new balance-contrained clus-

tering algorithm. In balance-constrained clustering, the sizes of the

clusters are equal (+/- one point). The algorithm is based on k-

means, but it differs in the assignment step, which is defined as

a pairing problem and solved by the Hungarian algorithm. This
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makes the algorithm significantly faster than constrained k-means,

and allows datasets of over 5000 points to be clustered.

V: We apply a divide-and-conquer technique to the calculation

of an approximate minimum spanning tree. We do the divide step

with the k-means algorithm. The theoretical analysis is based on

the assumption that the clusters are balanced after the divide step,

which binds this publication to balanced clustering. A minimum

spanning tree can be part of a clustering algorithm. This makes the

quick computation of the minimum spanning tree desirable.
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9 Summary of Results

We show the details of the datasets used throughout this thesis

in Table 9.1. The main results for all the proposed algorithms are

shown in Tables 9.2 and 9.3. The methods of MSE vs. balance plots

are listed in Table 9.4 and the MSE vs. balance plots are in Fig-

ures 9.1 and 9.2. In these plots the datsets s1 150 and s4 150 are

subsets of 150 points of datasets s1 and s4.

In Figures 9.1 and 9.2 we see that constrained k-means and bal-

anced k-means have perfect balance (values 0), and Scut performs

well with regard to both MSE and balance.
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Table 9.1: Details of the used datasets.

dataset type n k d used in publication

I II III IV V

s1 synthetic 5000 15 2 x x x x

s2 synthetic 5000 15 2 x x x x

s3 synthetic 5000 15 2 x x x

s4 synthetic 5000 15 2 x x x

a1 synthetic 3000 20 2 x x

DIM32 high-dim. 1024 16 32 x x

DIM64 high-dim. 1024 16 64 x

DIM128 high-dim. 1024 16 128 x

DIM256 high-dim. 1024 16 256 x

Bridge image 4096 256 16 x

Missa image 6480 256 16 x

House image 34112 256 3 x

Glass real 214 7 9 x x

Wdbc real 569 2 32 x x

Yeast real 1484 10 8 x x x

Wine real 178 3 13 x x x x

Thyroid real 215 2 5 x x x x

Iris real 150 3 4 x x x x

Breast real 699 2 9 x x x

Pathbased shape 300 3 2 x

Compound shape 399 6 2 x
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Table 9.2: Averages of MSE/d values of 10–200 runs of methods. *) Best known values

are among all the methods or by 2 hours run of random swap algorithm [18] or by GA [17].
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Table 9.3: Processing time in seconds for different datasets and methods.
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Summary of Results

Table 9.4: Methods compared in Figures 9.1–9.2.

Method Reference Abbreviation

Analytic clustering publication I Analyt

k-means* publication II k-means*

Scut publication III Scut

Balanced k-means publication IV Bal km

Constrained k-means [33, 54], publication IV Constr

k-means [11] k-means

Genetic algorithm [62] GA

Ncut [39, 63] Ncut
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Figure 9.1: MSE vs. balance for different methods. Means of 100 runs.
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Figure 9.2: MSE vs. balance for different methods. Means of 100 runs.
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10 Conclusions

In the publication I we have formulated the TSE as an analytic func-

tion and shown that the optimization of TSE can be made by gra-

dient descent method. The results of the algorithm are comparable

to k-means. As future work, the same technique could be used to

produce clustering with infinity norm distance function.

In publication II we have introduced a completely new approach

for optimizing MSE. The results are better than those of k-means++

and are comparable to repeated k-means.

In publication III we formulate l2
2 k-clustering cost function us-

ing TSE and show that it leads to more balanced clusters than tra-

ditional clustering methods. The algorithm can be used when both

good MSE and good balance are needed.

In publication IV, we introduce a balance-constrained cluster-

ing method, balanced k-means. The algorithm provides MSE opti-

mization with the constraint that cluster sizes are balanced. The

algorithm is fast compared to constrained k-means, and it provides

clustering of datasets as big as over 5000 points. The algorithm can

be used, for example, in workload balancing. As future work, a

faster variant of balanced k-means could be produced. It should be

fast enough to be used in the context of the publication V to achieve

the theoretical result in practice.

In publication V, approximate MST is obtained theoretically in

O(n1.5) time compared to O(n2) of Prim’s exact algorithm. The

resulting MST was used in path-based clustering.

Overall, this thesis provides new alternatives to k-means clus-

tering, either comparable to k-means, as in publications I and II, or

having some special purpose, such as in publications III and IV.
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Data clustering is a combinatorial optimization problem. This article shows that clustering
is also an optimization problem for an analytic function. The mean squared error, or in this
case, the squared error can expressed as an analytic function. With an analytic function we
benefit from the existence of standard optimization methods: the gradient of this function
is calculated and the descent method is used to minimize the function.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [2], where we group n data points into k clusters. Each cluster
has a centre (centroid) which is the mean of the cluster and one tries to minimize the mean squared distance (mean squared
error, MSE) of the data points from the nearest centroid. When the number of clusters k is constant, this problem becomes
polynomial in time and can be solved in Oðnkdþ1Þ time [14]. Although polynomial, this problem is slow to solve optimally. In
practice, suboptimal algorithms are used. The method of k-means clustering [17] is fast and simple, although its worst-case
running time is superpolynomial with a lower bound of 2Xð ffiffinp Þ for the number of iterations [3].

Given a set of observations ðx1;x2; . . . ;xnÞ, where each observation is a d-dimensional real vector, then k-means clustering
aims to partition the n observations into k sets ðk < nÞ S ¼ fS1; S2; . . . ; Skg so as to minimize the within-cluster sums of
squares:

arg min
S

Xk

i¼1

X
xj2Si

xj � li

�� ��2; ð1Þ

where li is the mean of Si. Given an initial set of k means mð1Þ
1 ; . . . ; mð1Þ

k , which may be specified randomly from the set of
data points or by some heuristic [19,22,4], the k-means algorithm proceeds by alternating between two steps: [16].

Assignment step: Assign each observation to the cluster with the closest mean (i.e. partition the observations according
to the Voronoi diagram generated by the means).

SðtÞi ¼ xj : xj �mðtÞ
i

��� ��� 6 kxj �mðtÞ
i� k 8 i� ¼ 1; . . . ; k

n o
: ð2Þ

Update step: Calculate the new means as the centroids of the observations in each cluster:
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mðtþ1Þ
i ¼ 1

SðtÞi

��� ���
X
xj2SðtÞi

xj: ð3Þ

The algorithm has converged when the assignments no longer change.
The advantage of k-means is that it finds a locally optimized solution for any given initial solution by repeating this sim-

ple two-step procedure. However, k-means cannot solve global problems in the clustering structure, and thus, it will work
perfectly only if the global cluster structure is already optimized. By optimized global clustering structure we mean centroid
locations from which optimal locations can be found by k-means. This is the main reason why slower agglomerative clus-
tering is sometimes used [10,13,12], or other more complex k-means variants [11,18,4,15] are applied. Gaussian mixture
models can be used (Expectation–Maximization algorithm) [8,25] and cut-based methods have been found to give compet-
itive results [9]. To get a glimpse of the recent research in clustering, see [1,24,26], which deal with particle swarm optimi-
zation, ant-based clustering and minimum spanning tree based split-and-merge algorithm.

The method presented in this paper corresponds to k-means and is based on representing the squared error (SE) as an
analytic function. The MSE or SE value can be calculated when the data points and centroid locations are known. The process
involves finding the nearest centroid for each data point. An example dataset is shown in Fig. 1. We write cij for the centroid
of cluster i, feature j. The squared error function can be written as

f ð�cÞ ¼
X
u

mini

X
j

ðcij � xujÞ2
( )

: ð4Þ

The min operation forces one to choose the nearest centroid for each data point. This function is not analytic because of
the min operations. A question is whether we can express f ð�cÞ as an analytic function which then could be given as input to a
gradient-based optimization method. The answer is given in the following section.

2. Analytic clustering

2.1. Formulation of the method

We write the p-norm as

k�xkp ¼
Xn
i¼1

jxijp
 !1=p

: ð5Þ

The maximum value of xi’s can be expressed as

maxðjxijÞ ¼ lim
p!1

k�xkp ¼ lim
p!1

Xn
i¼1

jxijp
 !1=p

ð6Þ

Since we are interested in the minimum value, we take the inverses 1
xi
and find their maximum. Then another inverse is

taken to obtain the minimum of the xi:

minðjxijÞ ¼ lim
p!1

Xn
i¼1

1
jxijp

 !�1=p

ð7Þ

Fig. 1. A set of two clusters i = 1, 2 with five data points (0,3), (1,2), (2,4), (8,2), (8,4) in two dimensions (features) j = 1, 2. The feature j of data point k is
represented as xkj .
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2.2. Estimation of infinite power

Although calculations of the infinity norm without comparison operations are not possible, we can estimate the exact
value by setting p to a high value. The estimation error is

� ¼
Xn
i¼1

1
jxijp

 !�1=p

� lim
p2!1

Xn
i¼1

1
jxijp2

 !�1=p2

ð8Þ

The estimation can be made up to any accuracy, the estimation error being

j�j > 0:

To see how close we can come in practice, a mathematical software package run was made:

1=nthrootðð1=x1Þ^pþ ð1=x2Þ^p;pÞ:
For example, with the values x1; x2 ¼ 500; p ¼ 100 we got the result 496.54. When the values of x1 and x2 are far from

each other, we get an accurate estimate, but when the numbers are close to each other, an approximation error is present. In
Table 1, the inaccuracy of the estimate is shown for different values of p and xi. In this table, the estimate with two equal
values x1 ¼ x2 is calculated. In Fig. 2, the inaccuracy is calculated as a function of p. In this example, p cannot be increased
much more, although it would give a more accurate answer. In Fig. 3, we see how large values of p can be used in maximum
value calculations with this package. Moreover, in Fig. 4, we see how accurate the estimates can be using these maximum
powers. On the basis of these results, we recommend scaling the values of xi to the range [0.5,2] to achieve the best accuracy.
Typically, dataset values are integers and range in magnitude from 0 to 500 or floats and range in magnitude from 0 to 1.

2.3. Analytic formulation of SE

Combining (4) and (7) yields

f ð�cÞ ¼
X
u

lim
p!1

X
i

1X
j

ðcij � xujÞ2
�����

�����
p

0BBBBB@

1CCCCCA
�1=p0BBBBB@

1CCCCCA

2666664

3777775: ð9Þ

Proceeding from (9) by removing lim, we can now write f̂ ð�cÞ as an estimator for f ð�cÞ:

f̂ ð�cÞ ¼
X
u

X
i

X
j

ðcij � xujÞ2
 !�p !�1

p
24 35: ð10Þ

This is an analytic estimator, although the exact f ð�cÞ cannot be written as an analytic function when the data points lie in
the middle of cluster centroids in a certain way.

Partial derivatives and the gradient can also be calculated. The formula for partial derivatives is calculated using the chain
rule:

@ f̂ ð�cÞ
@cst

¼
X
u

�1
p
�
X
i

X
j

ðcij � xujÞ2
 !�p !�pþ1

p

�
X
i

ð�p �
X
j

ðcij � xujÞ2
 !�ðpþ1Þ

Þ � 2 � ðcst � xutÞ

264
375: ð11Þ

Table 1
Inaccuracy of the estimate of the maximum value of ((6)) as p and xi , (i ¼ 1; 2) change.

p xi ¼ 1 (%) xi ¼ 10 (%) xi ¼ 100 (%) xi ¼ 500 (%)

0 100 100 100 100
10 7 7 7 7
20 3 3 3 3
30 2 2 2 2
40 2 2 2 2
50 1.4 1.4 1.4 1.4
60 1.1 1.1 1.1 1.1
70 1.0 1.0 1.0 1.0
80 0.9 0.9 0.9 0.9
90 0.8 0.8 0.8 0.8

100 0.7 0.7 0.7 0.7
110 0.6 0.6 0.6 0.6
120 0.6 0.6 0.6 N/A
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2.4. Time complexity

For analysing the time complexity of calculating f̂ ð�cÞ, which is presented in ((10)), we know that ð�Þ�p ¼ 1
ð�Þp involves p divi-

sions and that one division requires constant time in computer, and ð�Þ1p takes Oðlog pÞ [7]. Using these, we can calculate

Tðf̂ ð�cÞÞ ¼ d � ðMultþ AddÞ � k � ðTð^ � pÞ þ AddÞ þ T ^ � 1
p

� �� �
� n ¼ Oðd �Mult � k � Tð^ � pÞ � nÞ

¼ Oðd �Mult � k � p � nÞ ¼ Oðn � d � k � pÞ: ð12Þ
The time complexity of calculating f̂ ð�cÞ grows linearly with the number of data points n, dimensionality d, number of cen-

troids k, and power p.
To calculate the time complexity of the partial derivative (s), which are presented in ((11)), we divide this into three parts,

A, B, C:

0 20 40 60 80 100 1200.1%

1%

10%

100%

p
In
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cu
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Fig. 2. Inaccuracy of estimate of the maximum value of ((6)) as a function of p (xi ¼ 1 to xi ¼ 500; i ¼ 1; 2).
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Fig. 3. Maximum power that can be calculated by a mathematical software package with different values of xi .

0 1 2 3 4 5
0.01%

0.1%

1%

x
i

In
ac

cu
ra

cy

Fig. 4. Inaccuracy as a function of xi , i ¼ 1; 2, and when p is maximal.

34 M.I. Malinen, P. Fränti / Information Sciences 217 (2012) 31–38



A ¼
X
i

X
j

ðcij � xujÞ2
 !�p !�pþ1

p

B ¼
X
i

�p �
X
j

ðcij � xujÞ2
 !�ðpþ1Þ0@ 1A

C ¼ ðcst � xutÞ:

ð13Þ

Knowing that ð�Þ�pþ1
p ¼ ð�Þ�1 � ð�Þ�1

p , we can write

TðAÞ ¼ d � ðMultþ AddÞ � k � ðTð^ � pÞ þ AddÞ þ T ^ � 1
p

� �
;

TðBÞ ¼ Oðd � ðMultþ AddÞ � Tð^ � ðpþ 1ÞÞ � kÞ;
TðCÞ ¼ Subtr;

ð14Þ

and

Tðpartial derivativeÞ ¼ OðTðAÞ þ TðBÞ þ TðCÞÞ � nÞ ¼ OðTðBÞ � nÞ ¼ Oðd �Mult � Tð^ðpþ 1ÞÞ � k � nÞ ¼ Oðd � p � k � nÞ
¼ Oðn � d � k � pÞ: ð15Þ

To calculate all partial derivatives, we have to calculate part C for each partial derivative. The parts A and B are the same
for all derivatives. Since we calculate part C n times, and there are k � d partial derivatives, we get

Tðall partial derivativesÞ ¼ Oðndkpþ n � TðCÞ � k � dÞ ¼ Oðndkpþ n � k � d � SubtrÞ ¼ OðndkpÞ: ð16Þ
This is linear in time for n; d; k and p, and differs only by the factor p from one iteration time complexity of the k-means

Oðk � n � dÞ.

2.5. Analytic optimization of SE

Since we can calculate the values of f̂ ð�cÞ and the gradient, we can find a (local) minimum of f̂ ð�cÞ by the gradient descent
method. In the gradient descent method the points converge iteratively to a minimum:

�ciþ1 ¼ �ci �rf̂ ð�ciÞ � l; ð17Þ
where l is the step length. The value of l can be calculated at every iteration, starting from some lmax and halving it recursively
until f̂ ð�ciþ1Þ < f̂ ð�ciÞ.

Eq. (11) for the partial derivatives depends on p. For any p P 0, either a local or the global minimum of (10) is found. Set-
ting p large enough, we get a satisfactory estimator f̂ ð�cÞ, although there is always some bias in this estimator and a p that is
too small may lead to a different clustering result.

There is also an alternative way to minimize f̂ ð�cÞ. Minimizing f̂ ð�cÞ to the global minimum could be done by solving all �c
from (18) and trying them, one at a time, in f̂ ð�cÞ, because at a minimum point (global or local) all components of the gradient
must be zero:

X
i;j

@ f̂ ð�cÞ
@cij

 !2

¼ 0: ð18Þ

This alternative way has only theoretical significance, since it is not known how to find all solutions of (18). There are at
least imax! solutions to this equation, since from each solution (which surely exist), imax! solutions can be obtained by permut-
ing the centroids.

The analytic clustering method presented here corresponds to the k-means algorithm [17]. It can be used to obtain a local
minimum of the squared error function similarly to k-means, or to simulate the random swap algorithm [11] by changing
one cluster centroid randomly. In the random swap algorithm, a centroid and a datapoint are chosen randomly, and a trial
movement of this centroid to this datapoint is made. If the k-means with the new centroid provide better results than the
earlier solution, the centroid remains swapped. Such trial swaps are then repeated for a fixed number of times.

Analytic clustering and k-means work in the same way, although their implementations differ. Their step length is differ-
ent. The difference in the clustering result also originates from the approximation of the 1-norm by the p-norm.

We have used an approximation to the infinity norm to find the nearest centroids for the datapoints, and used the sum-
of-squares for the distance metric. The infinity norm, on the other hand, could be used to cluster with the infinity norm dis-
tance metric. Most partitioning clustering papers use the p ¼ 2 (Euclidean norm) as the distance metric as we do, but some
papers have experimented with different norms. For example, p ¼ 1 gives the k-medians clustering, e.g. [23], and p ! 0 gives
the categorical k-modes clustering. Papers on the k-midrange clustering (e.g. [6,20]) employ the infinity norm (p ¼ 1) in
finding the range of a cluster. In [5] a p ¼ 1 formulation has been given for the more general fuzzy case. A description
and comparison of different formulations has been given in [21]. With the infinity norm distance metric, the distance of a
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data point from a centroid is the dominant feature of the difference vector between the data point and the centroid. Our con-
tribution in this regard is that we can form an analytic estimator for the cost function even if the distance metric were the
infinity norm. This would make the formula for f̂ ð�cÞ and the formula for the partial derivatives a little bit more complicated
but nevertheless possible as a future direction, and thus, it is omitted here.

3. Experiments

We test this new clustering method not by using the p-norm but using the min-function to calculate the distances to the
nearest centroids and a line search instead of the gradient descent method. We use several small and mid-size datasets (see
Fig. 5) and compare the results of the analytic clustering, the k-means clustering, the random swap clustering, and the ana-
lytic random swap clustering. The number of clusters is based on the known number of clusters in the datasets. The results
are illustrated in Table 2 and show that analytic clustering and k-means clustering provide comparable results. In these
experiments, the analytic random swap algorithm sometimes gives a better (lower) SE value than random swapping. We also
calculated the Adjusted Rand index, a neutral measure of clustering performance beyond sum of squares, for ten runs of the
analytic clustering and the k-means clustering as well as for the random swap variants of these. Runs are done for the s-sets.
The means of the Rand indices are shown in Table 3. These results indicate that the clustering performance is very similar
between the analytic and the traditional methods. The running time for the s-sets is reasonable (e.g., 4.6 s for analytic clus-

s1 s2 s3
d = 2 d = 2 d = 2

n=5000 n = 5000 n = 5000
k = 15 k =15 k = 15

s4 iris thyroid
d=2 d = 4 d = 5
n=5000 n=150 n=215
k=15 k = 2 k = 2

wine breast yeast
d = 1 3 d = 9 d = 8
n=178 n=699 n=1484
k = 3 k = 2 k=10

Fig. 5. Datasets s1, s2, s3, s4, iris, thyroid, wine, breast and yeast used in experiments. Two first dimensions are shown.
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tering vs. 0.1 s for k-means). The proposed method can theoretically be applied to large datasets as well, or datasets with a
large number of dimensions or clusters. The time complexity is linear with respect to all of these factors. However, in our
implementation, we use line search to optimize and use min-function to calculate the nearest centroids, and we have expe-
rienced that time consuming increases heavily when these factors increase, and larger datasets are too heavy for this. See the
running time comparisons in Table 2. The software used to compute the values in Table 2 is available at http://cs.uef.fi/sipu/
soft.

Experiments with the s-sets show that the proposed approach leads to similar membership results for the individual data
points. Out of the 15 centroids, typically 12–13 are approximately at the same locations and the other two or three at dif-
ferent locations.

4. Conclusions

We proposed a way to form an analytic squared error function. From this function, the partial derivatives can be calcu-
lated, and then a gradient descent method can be used to find a local minimum of the squared error. Analytic clustering and
k-means clustering provide approximately the same result, whereas analytic random swap clustering sometimes gives a bet-
ter result than random swapping. In k-means, there are two phases in one iteration, but in analytic clustering these two
phases are combined into a single phase. As a future work, we could consider an implementation including also the gradient
calculation and the use of the gradient descent method. Also, then, it would be natural to set a suitable value for the power p,
for which now only an extreme theoretical upper limit can be calculated.
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a b s t r a c t

Traditional approach to clustering is to fit a model (partition or prototypes) for the given data. We
propose a completely opposite approach by fitting the data into a given clustering model that is optimal
for similar pathological data of equal size and dimensions. We then perform inverse transform from this
pathological data back to the original data while refining the optimal clustering structure during the
process. The key idea is that we do not need to find optimal global allocation of the prototypes. Instead,
we only need to perform local fine-tuning of the clustering prototypes during the transformation in
order to preserve the already optimal clustering structure.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [1],
where one assigns n data points to k clusters. The aim is to
minimize the mean squared error (MSE), which is the mean
distance of the data points from the nearest centroids. When the
number of clusters k is constant, Euclidean sum-of-squares clus-
tering can be done in polynomial Oðnkdþ1Þ time [2], where d is the
number of dimensions. This is slow in practice, since the power
kdþ1 is high, and thus, suboptimal algorithms are used. The K-
means algorithm [3] is fast and simple, although its worst-case
running time is high, since the upper bound for the number of
iterations is OðnkdÞ [4].

In k-means, given a set of data points ðx1; x2;…; xnÞ, one tries to
assign the data points into k sets ðkonÞ, S¼ fS1; S2;…; Skg, so that
MSE is minimized:

arg min
S

∑
k

i ¼ 1
∑

xj A Si

‖xj�μi‖
2

where μi is the mean of Si. An initial set of the k means
mð1Þ

1 ;…;mð1Þ
k may be given randomly or by some heuristic [5–7].

The k-means algorithm alternates between the two steps [8]:
Assignment step: Assign the data points to clusters specified by

the nearest centroid:

SðtÞ
i ¼ xj : Jxj�mðtÞ

i Jr Jxj�mðtÞ
in
J ; 8 in ¼ 1;…; k

n o

Update step: Calculate the mean of each cluster:

mðtþ1Þ
i ¼ 1

jSðtÞ
i j

∑
xj A SðtÞ

i

xj

The k-means algorithm converges when the assignments no
longer change. In practice, the k-means algorithm stops when
the criterion of inertia does not vary significantly: it is useful to
avoid non-convergence when the clusters are symmetrical, and in
the other cluster configurations, to avoid too long time of
convergence.

The main advantage of k-means is that it always finds a local
optimum for any given initial centroid locations. The main draw-
back of k-means is that it cannot solve global problems in the
clustering structure (see Fig. 1). By solved global clustering
structure we mean such initial centroid locations from which the
optimum can be reached by k-means. This is why slower agglom-
erative clustering [9–11], or more complex k-means variants
[7,12–14] are sometimes used. K-meansþ þ [7] is like k-means,
but there is a more complex initialization of centroids. Gaussian
mixture models can also be used (Expectation-Maximization
algorithm) [15,16] and cut-based methods have been found to
give competitive results [17]. To get a view of the recent research
in clustering, see [18–20], which deal with analytic clustering,
particle swarm optimization and minimum spanning tree based
split-and-merge algorithm.

In this paper, we attack the clustering problem by a completely
different approach than the traditional methods. Instead of trying
to solve the correct global allocation of the clusters by fitting the
clustering model to the data X, we do the opposite and fit the data
to an optimal clustering structure. We first generate an artificial
data Xn of the same size (n) and dimension (d) as the input data, so
that the data vectors are divided into k perfectly separated clusters
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without any variation. We then perform one-to-one bijective
mapping of the input data to the artificial data (X-Xn).

The key point is that we already have a clustering that is
optimal for the artificial data, but not for the real data. In the next
step, we then perform inverse transform of the artificial data back
to the original data by a sequence of gradual changes. While doing
this, the clustering model is updated after each change by k-
means. If the changes are small, the data vectors will gradually
move to their original position without breaking the clustering
structure. The details of the algorithm including the pseudocode
are given in Section 2. An online animator demonstrating the
progress of the algorithm is available at http://cs.uef.fi/sipu/cluster
ing/animator/. The animation starts when “Gradual k-means” is
chosen from the menu.

The main design problems of this approach are to find a
suitable artificial data structure, how to perform the mapping,
and how to control the inverse transformation. We will demon-
strate next that the proposed approach works with simple design
choices, and overcomes the locality problem of k-means. It cannot
be proven to provide optimal result every time, as there are
pathological counter-examples where it fails to find the optimal
solution. Nevertheless, we show by experiments that the method
is significantly better than k-means, significantly better than k-
meansþ þ and competes equally with repeated k-means. It also
rarely ends up to a bad solution that is typical to k-means.
Experiments will show that only a few transformation steps are
needed to obtain a good quality clustering.

2. K-meansn algorithm

In the following subsections, we will go through the phases of
the algorithm. For pseudocode, see Algorithm 1. We call this
algorithm k-meansn, because of the repeated use of k-means.
However, instead of applying k-means to the original data points,
we create another artificial dataset which is prearranged into k
clearly separated zero-variance clusters.

2.1. Data initialization

The algorithm starts by choosing the artificial clustering struc-
ture and then dividing the data points among these equally. We do
this by creating a new dataset X2 and by assigning each data point
in the original dataset X1 to a corresponding data point in X2, see
Fig. 2. We consider seven different structures for the initialization:

� line
� diagonal
� random
� random with optimal partition
� initialization used in k-meansþ þ
� line with uneven clusters
� point.

In the line structure, the clusters are arranged along a line.
The k locations are set as the middle value of the range in each
dimension, except the last dimension where the k clusters are
distributed uniformly along the line, see Fig. 3 (left) and the
animator http://cs.uef.fi/sipu/clustering/animator/. The range of
10% nearest to the borders is left without clusters. In the diagonal
structure, the k locations are set uniformly to the diagonal of the
range of the dataset. In the random structure, the initial clusters
are selected randomly among the data point locations in the
original dataset, see Fig. 3 (right). In these structuring strategies,
data point locations are initialized randomly to these cluster
locations. Even distribution among the clusters is a natural choice.
To justify it further, lower cardinality clusters can more easily
become empty later, which is an undesirable situation.

The fourth structure is random locations but using optimal parti-
tions for the mapping. This means assigning the data points to the
nearest clusters. The fifth structure corresponds to the initialization
strategy used in k-meansþ þ [7]. This initialization is done as follows:
at any given time, let DðXiÞ denote the shortest distance from a data
point Xi to its closest centroid we have already chosen.

Choose first centroid C1 uniformly at random from X.
Repeat: Choose the next centroid as a point Xi, using a weighted

probability distribution where a point is chosen with probability
proportional to DðXiÞ2.

Until we have chosen a total of k centroids.
As a result, new centers are added more likely to the areas lacking

centroids. The sixth structure is the line with uneven clusters, inwhich

Fig. 1. Results of k-means for three random initializations (left) showing that k-means cannot solve global problems in the clustering structure. Circles show clusters that
have too many centroids. Arrows show clusters that have too few centroids. Clustering result obtained by the proposed method (right).

Fig. 2. Original dataset (left), and the corresponding artificial dataset using line init
(right).
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we place twice more points to most centrally located half of the cluster
locations. The seventh structure is the point. It is like line structure but
we put the clusters in a very short line, which looks like a single point
in larger scale. In this way the dataset “explodes” from a single point
during the inverse transform. This structure is useful mainly for the
visualization purpose in the web-animator. The k-meansþ þ-style
structure with evenly distributed data points is the recommended
structure because it works best in practice, and therefore we use it in
further experiments. In choosing the structure, good results are
achieved when there is a notable separation between clusters and
evenly distributed data points in clusters.

Once the initial structure is chosen, each data point in the
original dataset is assigned to a corresponding data point in the
initial structure. The data points in this manually-created dataset
are randomly but evenly located in this initial structure.

2.2. Inverse transformation steps

The algorithm proceeds by executing a given number of steps,
which is a user-set integer parameter (steps41). Default value for
steps is 20. At each step, all data points are transformed towards
their original location by amount

1
steps

� ðX1;i�X2;iÞ; ð1Þ

where X1;i is the location of the i:th datapoint in the original data
and X2;i is its location in the artificial structure. After every
transform, k-means is executed given the previous codebook along
with the modified dataset as input. After all the steps have been
completed, the resulting codebook C is output.

It is possible, that two points that belong to the same cluster
in the original dataset will be put to different clusters in the
manually-created dataset. Then they smoothly move to final
locations during the inverse transform.

Algorithm 1. K-meansn.

Input: dataset X1, number of clusters k, steps,
Output: Codebook C.

n’sizeðX1Þ
½X2;C�’InitializeðÞ
for repeats¼1 to steps do
for i¼1 to n do

X3;i’X2;iþðrepeats=stepsÞnðX1;i�X2;iÞ
end for
C’kmeansðX3; k;CÞ

end for
output C

Fig. 3. Original dataset and line init (left) or random init (right) with sample mappings shown by arrows.

Fig. 4. Progress of the algorithm for a subset of 5 clusters of dataset a3. Data spreads towards the original dataset, and centroids follow in optimal locations. The subfigures
correspond to phases 0%, 10%, 20%,…,100% completed.
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2.3. Optimality considerations

The basic idea is that if the codebook was all the time optimal
for all intermediate datasets, the generated final clustering would
also be optimal for the original data. In fact, many times this
optimality is reached; see Fig. 4 for an example how the algorithm
proceeds. However, the optimality cannot be always guaranteed.

There are a couple of counter-examples, which may happen
during the execution of the algorithm. The first is non-optimality of
global allocation, which in some form is present in all practical
clustering algorithms. Consider the setting in Fig. 5. The data points
x1‥6 are traversing away from their centroid C1. Two centroids
would be needed there, one for the data points x1‥3 and another
one for the data points x4‥6. On the other hand, the data points
x13‥15 and x16‥18 are approaching each other and only one of the
centroids C3 or C4 would be needed. This counter-example shows
that this algorithm cannot guarantee optimal result, in general.

2.4. Empty cluster generation

Another undesired situation that may happen during the
clustering is generation of an empty cluster, see Fig. 6. Here the
data points x1‥6 are traversing away from their centroid C2 and
eventually leave the cluster empty. This is undesirable, because
one cannot execute k-means with an empty cluster. However, this
problem is easy to detect and can be fixed in most cases by a
random swap strategy [12]. Here the problematic centroid is
swapped to a new location randomly chosen from the data points.
We move the centroids of empty clusters in the same manner.

2.5. Time complexity

The worst case complexities of the phases are listed in Table 1.
The overall time complexity is not more than for the k-means, see

Table 1. The proposed algorithm is asymptotically faster than
global k-means and even faster than the fast variant of global k-
means, see Table 2.

The derivation of the complexities in Table 1 is straightforward,
and we therefore discuss here only the empty cluster detection
and removal phases. There are n data points, which will be
assigned to k centroids. To detect empty clusters we have to go

Fig. 5. Clustering that leads to non-optimal solution.

Fig. 6. A progress, which leads to an empty cluster.

Table 1
Time complexity of the proposed algorithm.

Algorithm k free k¼OðnÞ k¼Oð ffiffiffi
n

p Þ k¼Oð1Þ

Theoretical
Initialization O(n) O(n) O(n) O(n)
Dataset transform O(n) O(n) O(n) O(n)
Empty clusters removal O(kn) Oðn2Þ Oðn1:5Þ O(n)
k-means Oðknkdþ1Þ OðnOðnÞ�dþ2Þ OðnOð ffiffinp

dþ3=2ÞÞ Oðnkdþ1Þ

Algorithm total Oðknkdþ1Þ OðnOðnÞ�dþ2Þ OðnOð ffiffinp
dþ3=2ÞÞ Oðnkdþ1Þ

Fixed k-means
Initialization O(n) O(n) O(n) O(n)
Dataset transform O(n) O(n) O(n) O(n)
Empty clusters removal O(kn) Oðn2Þ Oðn1:5Þ O(n)
k-means O(kn) Oðn2Þ Oðn1:5Þ O(n)

Algorithm total O(kn) Oðn2Þ Oðn1:5Þ O(n)

Table 2
Time complexity comparison for k-meansn and global k-means.

Algorithm Time complexity for fixed k-means

Global k-means Oðn � k � complexity of k�meansÞ ¼Oðk2 � n2Þ
Fast global k-means Oðk � complexity of k�meansÞ ¼Oðk2 � nÞ
K-meansn Oðsteps � complexity of k�meansÞ ¼Oðsteps � k � nÞ
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through all the n points and find for them the nearest of the k
centroids. So detecting empty clusters takes O(kn) time.

For the empty clusters removal phase, we introduce two
variants. The first is a one, which is more accurate, but slower,
Oðk2nÞ in time complexity. The second is a faster variant with O(kn)
time complexity. We present now first the accurate and then the
fast variant.

Accurate removal: For the removal phase, there are k centroids,
and therefore, at most k�1 empty clusters. Each empty cluster is
replaced by a new location from one of the n datapoints. The new
location is chosen so that it belongs to a cluster with more than
one point. To find such a location takes O(k) time in the worst case.
The number of points in a cluster is calculated in the detection
phase. Also, the new location is chosen so that there is not another
centroid in that location. To check this it takes O(k) time per
location. After changing centroid location we have to detect again

empty clusters. This loop together with the detection we repeat
until all the at most k�1 empty clusters are filled. So the total time
complexity for empty cluster removals is Oðk2nÞ.

Fast removal: In the detection phase, also the number of points
per cluster and the nearest data points from the centroids of the
non-empty clusters are calculated. The subphases of the removal
are as follows:

� Move the centroids of the non-empty clusters to the calculated
nearest data points, T1 ¼ OðkÞ.

� For all the ok centroids, that form the empty clusters:
○ choose the biggest cluster, that has more than one data

point, T2 ¼OðkÞ.
○ choose the first free data point from this cluster, and put the

centroid there, T3 ¼OðnÞ.
○ re-partition this cluster, T4 ¼OðnÞ.

Fig. 7. Datasets s1–s4, and first two dimensions of the other datasets.
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The total time complexity of removals is T1þk � ðT2þT3þT4Þ ¼
OðknÞ. This variant suffers somewhat from the fact that the
centroids are moved to their nearest datapoints to ensure non-
empty clusters.

Theoretically, k-means is the bottleneck of the algorithm. In the
worst case, it takes Oðknkdþ1Þ time, which results in total time
complexity of Oðnkdþ1Þ when k is constant. This over-estimates the
expected time complexity, which in practice, can be significantly
lower. By limiting the number of k-means iterations to a constant,
the time complexity reduces to linear time O(n), when k is
constant. When k equals to

ffiffiffi
n

p
, the time complexity is Oðn1:5Þ.

3. Experimental results

We ran the algorithm with a different number of steps and for
several datasets. For MSE calculation we use the formula

MSE¼
∑k

j ¼ 1∑Xi ACj
‖Xi�Cj‖2

n � d ;

where MSE is normalized per feature. Some of the datasets used in
the experiments are plotted in Fig. 7. All the datasets can be found
in the SIPU web page http://cs.uef.fi/sipu/datasets. Some inter-
mediate datasets and codebooks for a subset of a3 were plotted
already in Fig. 4. The sets s1, s2, s3 and s4 are artificial datasets
consisting of Gaussian clusters with the same variance but
increasing overlap. Given 15 seeds, data points are randomly
generated around them. In a1 and DIM sets the clusters are clearly
separated whereas in s1–s4 they are more overlapping. These sets
are chosen because they are still easy enough for a good algorithm
to find the clusters correctly but hard enough for a bad algorithm
to fail. We performed several runs by varying the number of steps
between 1‥20, 1000, 100,000, and 500,000. Most relevant results
are collected in Table 3, and the results for the number of steps
2‥20 are plotted in Fig. 8.

From the experience we observe that 20 steps are enough for
this algorithm (Fig. 8 and Table 3). Many clustering results of these
datasets stabilize at around 6 steps. More steps give only a
marginal additional benefit, but at the cost of longer execution
time. For some of the datasets, even just 1 step gives the best
result. In these cases, initial positions for centroids just happen to
be good. Phases of clustering show that 1 step gives as good result
as 2 steps for a particular run for a particular dataset (Fig. 9). When
the number of steps is large, the results sometimes get worse,
because the codebook stays too tightly in a local optimum and the
change of dataset is too marginal.

We tested the algorithm against k-means, k-meansþ þ [7], global
k-means [14] and repeated k-means. As a comparison, we made also
runs with alternative structures. The results indicate that, on average,
the best structures are the initial structure used in k-meansþ þ
and the random, see Table 4. The proposed algorithm with the
k-meansþ þ-style initialization structure is better than k-meansþ þ
itself in the case of 15 out of 19 datasets. For one dataset the results are
equal and for three datasets it is worse. These results show that the
proposed algorithm is favorable to k-meansþ þ . The individual cases
when it fails are due to statistical reasons. A clustering algorithm
cannot be guaranteed to be better than other in every case. In real-
world applications, k-means is often applied by repeating it several
times starting from different random initializations and the best
solution is kept finally. The intrinsic difference between our approach
and the above trick is that we use educated calculation to obtain the
centroids to current step, where the previous steps contribute to the
current step, whereas repeated k-means initializes randomly at every
repeat. From Table 5, we can see that the proposed algorithm is
significantly better than k-means and k-meansþ þ . In most cases, it
competes equally with repeated k-means, but in the case of high
dimensionality datasets it works significantly better.

For high-dimensional clustered data, k-meansþ þ-style initial
structure works best. We therefore recommend this initialization
for high-dimensional unknown distributions. In most other cases,
the random structure is equally good and can be used as an
alternative, see Table 4.

Overall, different initial artificial structures lead to different
clustering results. Our experiments did not reveal any unsuccessful
cases in this. The worst results were obtained by random structure
with optimal partition, but even for it, the results were at the same
level as that of k-means. We did not observe any systematic
dependency between the result and the size, dimensionality or
type of data.

The method can also be considered as a post-processing algorithm
similarly as k-means. We tested the method with the initial structure
given by (complete) k-means, (complete) k-meansþ þ and by Ran-
dom Swap [12] (one of the best methods available). Results for these
have been added in Table 6. We can see that the results for the
proposed method using Random Swap as preprocessing are signifi-
cantly better than running Repeated k-means.

We calculated also Adjusted Rand index [21], Van Dongen
index [22] and Normalized mutual information index [23], to
validate the clustering quality. The results in Table 7 indicate that
the proposed method has a clear advantage over k-means.

Finding optimal codebook with high probability is another impor-
tant goal of clustering. We used dataset s2 to compare the results of

Table 3
MSE for dataset s2 as a function of number of steps. K-meansþ þ-style structure. Mean of 200 runs except when steps Z1000. (n) estimated from the best known result in
[11].

Number of steps (k-meansn)
or repeats (repeated k-means)

K-meansn Repeated k-means

MSE (�109) Time MSE (�109) Time

2 1.55 1 s 1.72 0.1 s
3 1.54 1 s 1.65 0.1 s
4 1.57 1 s 1.56 0.1 s
20 1.47 2 s 1.35 1 s
100 1.46 5 s 1.33 3 s
1000 1.45 24 s 1.33 9 s
100,000 1.33 26 min 1.33 58 min
500,000 1.33 128 min 1.33 290 min

K-means 1.94 0.2 s
Global k-means 1.33 6 min
Fast global k-means 1.33 3 s
Optimaln 1.33 N/A
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the proposed algorithm (using 20 steps), and results of the k-means
and k-meansþ þ algorithms to the known ground truth codebook of
s2. We calculated how many clusters are mis-located, i.e., how many
swaps of centroids would be needed to correct the global allocation of
a codebook to that of the ground truth. Of the 50 runs, 18 ended up to

the optimal allocation, whereas k-means succeeded only with 7 runs,
see Table 8. Among these 50 test runs the proposed algorithm had
never more than 1 incorrect cluster allocation, whereas k-means had
up to 4 and k-meansþ þ had up to 2 in the worst case. Fig. 10
demonstrates typical results.

Fig. 8. Results of the algorithm (average over 200 runs) for datasets s1, s2, s3, s4, thyroid, wine, a1 and DIM32 with a different number of steps. For repeated k-means there
are equal number of repeats than there are steps in the proposed algorithm. For s1 and s4 sets also 75% error bounds are shown. Step size 20 will be selected.
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Fig. 9. Phases of clustering for 1 step and 2 steps for dataset s2.

Table 4
MSE for different datasets, averages over several (Z10) runs, 10 or 20 steps are used. Most significant digits are shown.

Dataset K-meansn

Diagonal Line Random k-meansþ þ style Random þ optimal partition Line with uneven clusters

s1 1.21 1.01 1.22 1.05 1.93 1.04
s2 1.65 1.52 1.41 1.40 2.04 1.46
s3 1.75 1.71 1.74 1.78 1.95 1.73
s4 1.67 1.63 1.60 1.59 1.70 1.64
a1 2.40 2.40 2.35 2.38 3.07 2.25

DIM32 151 136 64 7.10 517 113
DIM64 98 168 65 3.31 466 157
DIM128 153 92 101 2.10 573 132
DIM256 135 159 60 0.92 674 125

Bridge 165 165 165 165 167 168
Missa 5.11 5.15 5.24 5.19 5.32 5.16
House 9.67 9.48 9.55 9.49 9.80 9.88

Thyroid 6.93 6.92 6.96 6.96 6.98 6.92
Iris 2.33 2.33 2.33 2.42 2.42 2.33
Wine 1.89 1.90 1.89 1.93 1.92 1.89
Breast 3.13 3.13 3.13 3.13 3.13 3.13
Yeast 0.044 0.051 0.037 0.041 0.039 0.050
wdbc 2.62 2.62 2.62 2.62 2.62 2.62
Glass 0.22 0.23 0.22 0.22 0.23 0.24

Best 7 8 7 10 2 6

Table 5
MSE for different datasets, averages over several (Z10) runs. Most significant digits are shown. (n) The best known results are obtained from among all the methods or by
2 h run of random swap algorithm [12].

Dataset Dimensionality K-means Repeated k-means K-meansþ þ K-meansn (proposed) Fast GKM Best knownn

s1 2 1.85 1.07 1.28 1.05 0.89 0.89
s2 2 1.94 1.38 1.55 1.40 1.33 1.33
s3 2 1.97 1.71 1.95 1.78 1.69 1.69
s4 2 1.69 1.57 1.70 1.59 1.57 1.57
a1 2 3.28 2.32 2.66 2.38 2.02 2.02

DIM32 32 424 159 7.18 7.10 7.10 7.10
DIM64 64 498 181 3.39 3.31 3.39 3.31
DIM128 128 615 276 2.17 2.10 2.17 2.10
DIM256 256 671 296 0.99 0.92 0.99 0.92

Bridge 16 168 166 177 165 164 161
Missa 16 5.33 5.28 5.62 5.19 5.34 5.11
House 3 9.88 9.63 6.38 9.49 5.94 5.86

Thyroid 5 6.97 6.88 6.96 6.96 1.52 1.52
Iris 4 3.70 2.33 2.60 2.42 2.02 2.02
Wine 13 1.92 1.89 0.89 1.93 0.88 0.88
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The reason why the algorithm works well is that starting from
an artificial structure, we have an optimal clustering. Then, when
making the gradual inverse transform, we do not have to optimize
the structure of clustering (it is already optimal). It is enough
that the data points move one by one from clusters to others by
k-means operations. The operation is the same as in k-means, but
the clustering of the starting point is already optimal. If the
structure remains optimal during the transformation, an optimal
result will be obtained. Bare k-means cannot do this except only in
special cases, that is usually is tried to compensate by using
Repeated k-means or k-meansþ þ .

Table 5 (continued )

Dataset Dimensionality K-means Repeated k-means K-meansþ þ K-meansn (proposed) Fast GKM Best knownn

Breast 9 3.13 3.13 3.20 3.13 3.13 3.13
Yeast 8 0.0041 0.0038 0.061 0.041 0.0039 0.0038
wdbc 31 2.62 2.61 1.28 2.62 2.62 1.28
Glass 9 0.16 0.15 0.28 0.22 0.16 0.15

Best 1 4 1 5 10 19

Table 6
MSE for k-meansn as postprocessing, having different clustering algorithms as preprocessing. Averages over 20 runs, 20 steps are used. Most significant digits are shown.

Dataset Repeated k-means K-meansn

K-means K-meansþ þ Random swap, 20 swap trials Random swap, 100 swap trials

s1 1.07 0.99 1.08 0.99 0.89
s2 1.38 1.53 1.51 1.46 1.33
s3 1.71 1.80 1.76 1.77 1.69
s4 1.57 1.58 1.59 1.59 1.57
a1 2.32 2.54 2.37 2.31 2.02

DIM32 159 79.4 11.68 44.8 7.10
DIM64 181 59.4 3.31 48.5 9.35
DIM128 276 44.7 2.10 67.9 2.10
DIM256 296 107.1 0.92 16.2 16.5

Bridge 166 164 164 164 164
Missa 5.28 5.20 5.19 5.19 5.18
House 9.63 9.43 9.42 9.42 9.30

Thyroid 6.88 6.95 6.93 6.89 6.88
Iris 2.33 2.33 2.33 2.38 2.33
Wine 1.89 1.93 1.93 1.90 1.89
Breast 3.13 3.13 3.13 3.13 3.13
Yeast 0.0038 0.042 0.040 0.039 0.0038
wdbc 2.61 2.62 2.62 2.62 2.62
Glass 0.15 0.21 0.21 0.21 0.15

Best 8 3 6 2 16

Table 8
Occurrences of wrong clusters obtained by the k-means, k-meansþ þ and
proposed algorithms in 50 runs for s2.

Incorrect clusters K-means
(%)

k-meansþ þ
(%)

Proposed
(line structure) (%)

0 14 28 36
1 38 60 64
2 34 12 0
3 10 0 0
4 2 0 0

Total 100 100 100

Table 7
Adjusted Rand, Normalized Van Dongen and NMI indices for s-sets. Line structure
(Rand), K-meansþ þ initialization structure (NVD and NMI), 10 steps, mean of 30
runs (Rand) and mean of 10 runs (NVD and NMI). Best value for Rand is 1, for NVD
it is 0 and for NMI it is 1.

Adjusted rand

Dataset k-means Proposed GKM

s1 0.85 0.98 1.00
s2 0.86 0.93 0.99
s3 0.83 0.95 0.96
s4 0.83 0.87 0.94

NMI

Dataset k-means Proposed GKM

s1 0.94 0.98 1.00
s2 0.96 0.97 0.99
s3 0.91 0.93 0.97
s4 0.91 0.93 0.95

Normalized Van Dongen

Dataset k-means GKM Proposed

s1 0.08 0.03 0.001
s2 0.04 0.04 0.004
s3 0.09 0.06 0.02
s4 0.09 0.04 0.03
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4. Conclusions

We have proposed an alternative approach for clustering by
fitting the data to the clustering model and not vice versa. Instead
of solving the clustering problem as such, the problem is to find a
proper inverse transform from the artificial data with optimal
cluster allocation, to the original data. Although it cannot solve all
pathological cases, we have demonstrated that the algorithm, with
a relatively simple design, can solve the problem in many cases.

The method is designed as a clustering algorithm where the
initial structure is not important. We only considered simple
structures, of which the initialization of k-meansþ þ is most
complicated (note that entire k-meansþ þ is not applied). How-
ever, it could also be considered as a post-processing algorithm
similarly as k-means. But then it is not limited to be post-
processing to k-meansþ þ but for any other algorithm.

Future work is how to optimize the number of steps in order to
avoid extensive computation but still retain the quality. Adding
randomness to the process could also be used to avoid the
pathological cases. The optimality of these variants and their
efficiency in comparison to other algorithms have also theoretical
interest.
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Abstract

All pairwise squared distances has been used as a cost function in cluster-

ing. In this paper, we show that it will lead to more balanced clustering

than centroid-based distance functions like in k-means. It is formulated as

a cut-based method, and it is closely related to MAX k-CUT method. We

introduce two algorithms for the problem which are both faster than the

existing one based on l22-Stirling approximation. The first algorithm uses

semidefinite programming as in MAX k-CUT. The second algorithm is an

on-line variant of classical k-means. We show by experiments that the pro-

posed approach provides better overall joint optimisation of mean squared

error and cluster balance than the compared methods.
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1. Introduction1

1.1. K-means clustering2

Euclidean sum-of-squares clustering (k-means clustering) is an NP-hard

problem [1] where one groups n points into k clusters. Clusters are rep-

resented by centre points (centroids) and the aim is to minimise the mean

squared error (MSE ), calculated as the mean distance of points from their

nearest centroid. K-means clustering minimises

Cost = TSE1 + TSE2 + ... + TSEk, (1)

where TSEi is the total squared error of the ith cluster. This can also be

written as

Cost = n1 ·MSE1 + n2 ·MSE2 + ...+ nk ·MSEk, (2)

2



where ni is the number of points and MSEi is the mean squared error of ith

cluster. TSE and MSE for a single cluster j are calculated as

TSEj =
∑

Xi∈Cj

||Xi − Cj||2 (3)

MSEj =
TSEj

ni

. (4)

When k is constant, the clustering problem can be solved in polynomial3

O(nkd+1) time [2]. Although polynomial, this is slow, and suboptimal algo-4

rithms are therefore used. K-means algorithm [3] is fast and simple, although5

its worst-case number of iterations is O(nkd). The advantage of k-means is6

that it solves a local optimum starting from any initial centroid locations7

by a simple iterative two-step procedure. A drawback of k-means is that it8

cannot always solve the optimal global clustering structure. By optimised9

global clustering structure we mean centroid locations from which the global10

optimum can be solved by k-means. This is the main reason why slower ag-11

glomerative clustering [4, 5, 6], or more complex k-means variants [7, 8, 9, 10]12

are used. Gaussian mixture models (EM algorithm) [11, 12] and cut-based13

methods have also been found to give competitive results [13]. Recent re-14

search has considered clustering by analytic function [14], and trying to fit15

3



the data into the model instead of fitting the model to the data [15].16

1.2. Balanced clustering17

Sometimes a balanced clustering result is desirable. Balanced clustering18

is defined as a clustering where the points are evenly distributed into the clus-19

ters. In other words, every cluster includes either �n/k
 or �n/k� points. We20

define a balanced clustering as a problem which aims at maximizing balance21

and minimising some other cost function such as MSE. Balanced clustering22

is desirable in workload-balancing algorithms. For example, one algorithm23

to multiple traveling salesman problem [16] clusters the cities so that each24

cluster is solved by one salesman. It is desirable that each salesman has an25

equal workload.26

27

Balanced clustering, in general, is a 2-objective optimisation problem, in28

which two aims contradict each other: to minimise a cost function such as29

MSE, and to balance cluster sizes at the same time. Traditional clustering30

aims at minimising MSE completely without considering cluster size balance.31

Balancing, on the other hand, would be trivial if we did not care about MSE32

simply by dividing vectors into equal size clusters randomly. For optimiz-33

ing both, there are two approaches: Balance-constrained and balance-driven34

4



clustering.35

36

In balance-constrained clustering, cluster size balance is a mandatory re-37

quirement that must be met, and minimising MSE is a secondary criterion.38

In balance-driven clustering, balanced clustering is an aim, but it is not39

mandatory. It is a compromize between the two goals, namely the balance40

and the MSE. The solution is a weighted cost function between MSE and the41

balance, or it is a heuristic, which aims at minimising MSE but indirectly42

creates a more balanced result than optimizing MSE alone.43

44

Next, we review existing methods that aim at balanced clustering. Bradley45

et al. [17] present a constrained k-means algorithm in which the assignment46

step of k-means is implemented as a linear program in which a minimum47

number of points in a cluster is set as a constraint. In our recent paper [18]48

we present balanced k-means algorithm which has fixed size clusters. It solves49

the k-means assignment step as an assignment problem. The method in [19]50

tries to find a partition close to the given partition, but so that cluster size51

constraints are fulfilled. Banerjee and Ghosh [20] present an algorithm based52

on frequency sensitive competitive learning (FSCL) where the centroids com-53

5



pete for points. It multiplicatively scales the error (distance from the data54

point to the centroid) by the number of times that a centroid has won in the55

past. Thus, bigger clusters are less likely to gain points in the future. Althoff56

et al. [21] uses FSCL, but their solution incorporates additive distance bias57

instead of multiplicative distance bias. They report that their algorithm is58

more stable for high-dimensional feature spaces. Banerjee and Ghosh [22]59

introduced a fast (O(kNlogN)) algorithm for balanced clustering in three60

steps: sampling the given data, clustering the sampled data and populating61

the clusters with the data points that were not sampled in the first step.62

Size regularized cut SRCut [23] is defined as the sum of the inter-cluster sim-63

ilarity and a regularization term measuring the relative size of two clusters.64

In [24] there is a balancing aiming term in cost function. There are also65

application-based solutions in networking [25], which aim at network load66

balancing, where clustering is done by self-organization without central con-67

trol. In [26], energy-balanced routing between sensors is aimed so that most68

suitable balanced amount of nodes will be the members of the clusters.69

Classification of some algorithms into these two classes can be found from70

Table 1.71
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Table 1: Classification of some balanced clustering algorithms.

Balance-constrained Type
Balanced k-means [18] k-means
Constrained k-means [17] k-means
Size constrained [19] integer linear programming
Balance-driven Type
FSCL [20] assignment
FSCL additive bias [21] assignment
Cluster sampled data [22] k-means
Ratio cut [27] divisive
Ncut [28] divisive
Mcut [13] divisive
SRcut [23] divisive
Submodular fractional programming [24] submodular fractional programming

1.3. Cut-based methods72

Cut-based clustering is a process where the dataset is cut into smaller

parts based on similarity S(Xl, Xs) or cost d(Xl, Xs) between pairs of points.

By cut(A,B) one means partitioning a dataset into two parts A and B, and

the value of cut(A,B) is the total weight between all pairs of points between

the sets A and B:

cut(A,B) =
∑

Xl∈A,Xs∈B

wls. (5)

The weigths w can be defined either as distances or similarities between the

two points. Unless otherwise noted, we use (squared) Euclidean distances

7



in this paper. The cut(A,B) equals the total pairwise weights of A ∪ B

subtracted by the pairwise weights within the parts A and B:

cut(A,B) = W −W (A)−W (B), (6)

where

W =

n−1∑
l=1

n∑
s=i+1

wls, (7)

W (A) =
∑

Xl∈A,Xs∈A

wls, (8)

and W (B) respectively.73

In cut-based clustering, two common objective functions are Ratio cut

[27] and Normalised cut, Ncut, [28]. In these cost functions the weights

are the similarities between the points. In Ratio Cut, the cost of a cut is

normalised by the number of points nA or nB, while in Ncut it is normalised

by similarities to all other points in the dataset. Both of these normalisations

8



favour balanced cuts [29], p.401. One minimises the following definitions:

RatioCut(A,B) =
cut(A, Ā)

nA

+
cut(B, B̄)

nB

(9)

Ncut(A,B) =
cut(A, Ā)

assoc(A,X)
+

cut(B, B̄)

assoc(B,X)
(10)

=
cut(A, Ā)

W (A) + cut(A, Ā)
+

cut(B, B̄)

W (B) + cut(B, B̄)
(11)

where Ā is the complement point set of A, B̄ is the complement point set of

B, W (A) is the total similarities between the pairs of points within cluster

A, and the association assoc(A,X) is the total similarities between points in

partition A and all points:

assoc(A,X) = W (A) + cut(A, Ā). (12)

As an example, following the formulas (9) and (11), in Figure 1 the Ratio74

cut would be RatioCut(A,B) = (0.33+ 0.25+ 0.50+ 0.50+ 0.33+ 0.33)/2+75

(0.33 + 0.25 + 0.50 + 0.50 + 0.33 + 0.33)/3 ≈ 1.87 and the Ncut would be76

Ncut(A,B) = (0.33+0.25+0.50+0.50+0.33+0.33)/(1+(0.33+0.25+0.50+77

0.50+0.33+0.33))+ (0.33+0.25+0.50+0.50+0.33+0.33)/(2.75+ (0.33+78

0.25+0.50+0.50+0.33+0.33)) ≈ 1.14. Optimising the cost functions (9) and79

9



W = 28
W (A) = 1
W (B) = 2.75
cut(A,B) = 2.24
RatioCut(A,B) ≈ 1.87
Ncut(A,B) ≈ 1.14

Figure 1: An example of a cut.

(11) aims at minimising the cuts (the numerators), while at the same time80

maximising the denominators. In practice, one approximates this problem81

by relaxation, i.e. solving a nearby easier problem. Relaxing Ncut leads to82

normalised spectral clustering, while relaxing RatioCut leads to unnormalised83

spectral clustering [29]. There exists also semidefinite programming -based84

relaxation for Ncut [30].85

The paper [13] presents a cut-based clustering algorithm Mcut, which

tends to make balanced clusters. In their algorithm, similarity of each pair

of points is considered. They aim at minimising cut(A,B), the similarity of

partitions A and B while maximising the similarities within the partitions

10



(W (A) and W (B)) at the same time. The cost function is

Mcut(A,B) =
cut(A,B)

W (A)
+

cut(A,B)

W (B)
. (13)

As an example, following the formula (13), in Figure 1 the Mcut is Mcut(A,B) =86

(0.33+0.25+0.50+0.50+0.33+0.33)/1+(0.33+0.25+0.50+0.50+0.33+87

0.33)/2.75 ≈ 3.05.88

The weakness of Ratio cut, Ncut and Mcut is that they cut the graph89

only in two parts. This implies that a divisive algorithm should be applied,90

which would result in unequal partition. For example balanced clustering91

with k = 2 would be 50%-50% partition of the points. Further dividing with92

the same criterion would end up to 50%-25%-25% partition. But we would93

like to have a method, which optimises the balance for the desired number94

of clusters jointly, which would enable a lower MSE.95

96

1.4. MAX k-CUT method97

In weighted MAX k-CUT problem [31] one partitions a graph into k

subgraphs so that the sum of weights of edges between the subgraphs is

maximised. The weights are distances. MAX k-CUT aims at partitioning

11
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cut(P1, P̄1) = 12
cut(P2, P̄2) = 12
cut(P3, P̄3) = 13
cut(P4, P̄4) = 17∑

= 54. 1/2 · 54 = 27

Figure 2: An example of MAX k-CUT, when k = 4.

the data into k clusters P1, ..., Pk. Following the notation of Section 1.3 and

writing factor 1/2 in order to avoid summing the weights twice, the MAX

k-CUT problem is defined as

max
Pj ,1≤j≤k

1

2

k∑
j=1

cut(Pj , P̄j). (14)

See an example of MAX k-CUT in Figure 2. This is an NP-hard problem98

[32] for general weights. No polynomial time exact algorithm is known to99

solve this.100

If we use Euclidean distance for the weights of the edges between every101

pair of points, then taking optimal weighted MAX k-CUT results in mini-102

mum intra-cluster pairwise distances among any k-CUT. If we use squared103

distances as weights of the edges we end up with minimum intra-cluster pair-104

wise squared distances. If we use squared Euclidean distances as weights, the105

12



problem is expected to remain NP-hard.106

1.5. Scut107

In this paper we deal with Squared cut, Scut method, which uses all108

pairwise squared distances as cost function. This cost function has been109

presented in [33], where it is called l22 k-clustering. However, we formulate it110

by using TSE’s of clusters and show that the method leads to more balanced111

clustering problem than TSE itself. It is formulated as a cut-based method112

and it has been shown that it is a close relative to MAX k-CUT method [34].113

We present two algorithms for the problem; both more practical than the114

exhaustive search proposed in [35] to l22 k-clustering. The first algorithm is115

based on semidefinite programming similar to MAX k-CUT, and the second116

one is an on-line k-means algorithm directly optimising the cost function.117

A general k-Clustering problem in [34] defines the cost by calculating all118

pairwise distances within the clusters for any arbitrary weighted graphs. The119

paper [36] studies the problem when distances satisfy the triangle inequality.120

Paper by Schulman [33] gave probabilistic algorithms for l22 k-Clustering. The121

running time is linear if dimension d = o(logn/ log log n) but otherwise it is122

nO(log logn). De la Vega et al [35] improved and extended Schulman’s result,123

giving a true polynomial time approximation algorithm for arbitrary dimen-124

13



sion. However, even their algorithm is too slow in practise. We therefore125

present faster algorithms for the Squared cut method.126

In Scut, we form the graph by assigning squared Euclidean distances as

weights of the edges between every pair of points. In a single cluster j, intra-

cluster pairwise squared distances = nj ·TSEj, see a proof in [37], p.52. This

generalisation to all clusters is known as the Huygens’ theorem, which states

that total squared error (TSE ) equals to the sum over all clusters, over all

squared distances between pairs of entities within that cluster divided by its

cardinality:

W (Aj) = nAj
· TSE(Aj) ∀j

Huygens’ theorem is crucial for our method because it relates the pairwise

distances to intra-cluster TSE, and thus, to the Scut cost function:

Scut = n1 · TSE1 + n2 · TSE2 + ...+ nk · TSEk, (15)

where nj is the number of points and TSEj is the total squared error of the

14



Algorithm 1 Scut
Input: dataset X, number of clusters k
Output: partitioning of points P

for each edge of the graph do

Weight of edge wij ← Euclidean distance(Xi, Xj)
2

end for

Approximate MAX k-CUT.
Output partitioning of points P.

jth cluster. Based on (3), this may also be written as

Scut = n2
1 ·MSE1 + n2

2 ·MSE2 + ...+ n2
k ·MSEk, (16)

where MSEj is the mean squared error of jth cluster. In cut-notation the

cost function is total pairwise weights minus the value of MAX k-CUT:

Scut = W − max
Pj ,1≤j≤k

1

2

k∑
i=1

cut(Pj , P̄j). (17)

From this we conclude that using squared distances and optimising MAX k-127

CUT results in optimisation of the Scut cost function (15). For approximat-128

ing Scut, the Algorithm 1 can be used. Our cut-based method has an MSE -129

based cost function and it tends to balance clusters because of the n2
j factors130

in (16). This can be seen by the following simple example where two clusters131

have the same squared error: MSE1 = MSE2 = MSE (Figure 3). Total er-132

15
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Figure 3: Two different sized clusters with the same MSE.

ror of these are 22 ·MSE1 = 4 ·MSE, and 102 ·MSE2 = 100 ·MSE. Adding133

one more point would increase the error by (n + 1)2 ·MSE − n2 · MSE =134

(2n + 1) · MSE. In the example in Figure 3, the cost would increase by135

5 ·MSE (cluster 1) and 21 ·MSE (cluster 2). The cost function therefore136

always favours putting points into a smaller cluster, and therefore, it tends137

to make more balanced clusters. Figure 4 demonstrates the calculation of138

the cost.139

140

2. Approximating Scut141

2.1. Approximation algorithms142

The weighted MAX k-CUT is an NP-hard problem and it can be solved143

by an approximation algorithm based on semidefinite programming (SDP)144

16



Figure 4: Calculation of the cost. Edge weights are squared Euclidean distances.

in polynomial time [31]. Although polynomial time the algorithm is slow.145

According to our experiments it can only be used for datasets with just over146

150 points. A faster approximation algorithm has been presented in [32].147

It begins with an arbitrary partitioning of the points, and moves a point148

from one subset to another if the sum of weights of edges across different149

subsets decreases. The algorithm stops when no further improvements can150

be attained by all possible moving of one point. In Section 2.3, we will151

propose even a faster algorithm, which instead of maximising MAX k-CUT,152

it minimises the Scut cost function (15). Nevertheless, the result will be the153

same as that of MAX k-CUT.154

2.2. Approximation ratio155

The goodness of all of these three approximation algorithms is αk > 1−

k−1. The constant αk is a goodness measure of MAX k-CUT approximation

17



algorithm, and corresponds to the goodness of the sum of inter-cluster edge

weights that are cut away. To be able to say what the goodness is with

respect to the cost function (15), we need to calculate the remaining intra-

cluster edge weights. For this we need to calculate the dataset-specific total

sum of pairwise weights W . This corresponds to weights when nothing has

been cut off. It is calculated by treating the whole dataset as one cluster.

Goodness with respect to the cost function can then be calculated by the

following analysis (see also Figure 5). εk is the value of the cost function by

approximation divided by optimal value of the cost function. That is

εk =
W − w(P(k))

W − w(P(k)∗)

=
W − w(P(k))

max(0,W − 1
αk

· w(P(k))) (18)

For example, since we have a lower bound αk > 1 − k−1, we get an upper156

bound for εk. Then εk > 1. This εk can be treated as an expected approxi-157

mation ratio for the proposed algorithm. However, it is dataset-specific. In158

practise, the denominator in equation (18) becomes zero in all the cases we159

tried, so in these cases all what can be said is εk < ∞. Thus, we have to be160

satisfied with having αk, the approximation ratio for MAX k-CUT.161
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Figure 5: Derivation of the approximation ratio.

2.3. Fast approximation algorithm for Scut162

We next define on-line k-means variant for the Scut method. In the al-

gorithm, points are repeatedly re-partitioned to the cluster which provides

lowest value for the Scut cost function. The partition of the points is done

one-by-one, and a change of cluster will cause immediate update of the two

affeceted clusters (their centroid and size). We use the fact that calculating

the pairwise total squared distance within clusters is the same as calculating

the Scut cost function in TSE form (15). We derive next a fast O(1) update

formula which calculates how much the value of the cost function changes

when a point is moved from one cluster to another. We keep on moving points

to other clusters as long as the cost function decreases, see Algorithm 2. The

19



Algorithm 2 Fast approximation algorithm for Scut
Input: dataset X, number of clusters k, number of points n
Output: partitioning of points P

Create some initial partitioning P.
changed ← TRUE
while changed do

changed ← FALSE
for i = 1 to n do

for l = 1 to k do

if ΔCost < 0 then

move point i to cluster l
update centroids and TSE’s
changed ← TRUE

end if

end for

end for

end while

Output partitioning of points P.

approximation ratio is the same as in (18), where αk > 1− k−1. The update

formula follows the merge cost in agglomerative clustering algorithm [4]. It

includes the change of TSE when adding a point, the change of TSE when

removing a point, and the overall cost with respect to cost function (15).

Addition:

ΔTSEadd =
nA

nA + 1
· ||CA −Xi||2 (19)
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nB = 7
TSEB = 24
ΔTSEremove = −15
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nA = 3
TSEA = 3
ΔTSEadd = 4

Figure 6: Changing point from cluster B to A decreasing cost by 121.02.

Removal:

ΔTSEremove = −nB − 1

nB

· || nB

nB − 1
· CB − 1

nB − 1
·Xi −Xi||2

= −nB − 1

nB

|| nB

nB − 1
· CB − nB

nB − 1
·Xi||2

= − nB

nB − 1
· ||CB −Xi||2 (20)

Total cost before the move with respect to the two clusters, is:

Scutbefore = nA · TSEA + nB · TSEB, (21)

where nA and nB are the number of points in the clusters A and B before the

operation, CA and CB are the centroid locations before the operation and Xi
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is the data point involved in the operation. Total cost after the move is:

Scutafter = (nA+1) · (TSEA+ΔTSEadd)+ (nB −1) · (TSEB +ΔTSEremove)

(22)

From these we get the change in cost

ΔScut = Scutafter − Scutbefore (23)

= TSEA − TSEB + (nA + 1) ·ΔTSEadd + (nB − 1) ·ΔTSEremove,

(24)

= TSEA − TSEB + (nA + 1) · nA

nA + 1
· ||CA −Xi||2 (25)

+ (nB − 1) · − nB

nB − 1
· ||CB −Xi||2. (26)

See an example case of a point changing cluster in Figure 6, where the changes163

in TSE :s are: ΔTSEadd = 3/4 · 22 = 3.00 and ΔTSEremove = −7/6 · 42 =164

−18.67. In Figure 6, the change in cost function would be ΔScut = 3− 24+165

(3 + 1) · 3 + (7− 1) · −18.67 = −121.02.166

3. Experiments167

For solving the semidefinite program instances we use SeDuMi solver [38]168
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Algorithm 3 Balance
Input: number of points n, number of clusters k, an array of cluster sizes
cluster size(1..k).
Output: balance.

balance ← 0
for j = 1 to k do

if cluster size(j) > ceil(n/k) then
balance ← balance + cluster size(j)− ceil(n/k);

end if

end for

balance ← 2 · balance;
output balance

and Yalmip modelling language [39]. We use datasets from SIPU2. Earth169

mover’s distance (EMD) measures the distance between two probability dis-170

tributions [40]. EMD is not usable as such in our calculations, because it171

requires distance between bins (or clusters). To compare how close the ob-172

tained clustering is to balance-constrained clustering (equal distribution of173

sizes �n/k�), we measure the balance by calculating the difference in the174

cluster sizes and a balanced n/k distribution, calculated by Algorithm 3. We175

first compare Scut with SDP algorithm against repeated k-means. The best176

results of 100 repeats (lowest distance) are chosen. In SDP algorithm we re-177

peat only the point assignment phase. See an example solution in Figure 7.178

179

2http://cs.uef.fi/sipu/datasets
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Table 2: Balances and execution times of the proposed Scut method with the SDP algo-
rithm and k-means clustering. 100 repeats, in SDP algorithm only the point assignment
phase is repeated.

Dataset points clusters balance time
n k repeated repeated repeated repeated

Scut k-means Scut k-means
iris 150 3 2 6 8h 25min 0.50s
SUBSAMPLES:
s1 150 15 42 30 9h 35min 0.70s
s1 50 3 2 6 34s 0.44s
s1 50 2 0 8 28s 0.34s
s2 150 15 48 24 6h 50min 0.76s
s2 50 3 2 4 27s 0.40s
s2 50 2 0 4 32s 0.38s
s3 150 15 44 28 7h 46min 0.89s
s3 50 3 2 6 31s 0.43s
s3 50 2 0 2 26s 0.41s
s4 150 15 40 30 7h 01min 0.93s
s4 50 3 0 6 28s 0.42s
s4 50 2 0 0 30s 0.36s
a1 50 20 4 4 11s 0.45s
DIM32 50 16 0 6 8s 0.46s
iris 50 3 0 10 33s 0.44s
thyroid 50 2 0 28 28s 0.38s
wine 50 3 2 6 30s 0.40s
breast 50 2 2 34 18s 0.35s
yeast times100 50 10 8 8 10s 0.48s
glass 50 7 6 6 9s 0.44s
wdbc 50 2 0 20 11s 0.28s
best 14 times 4 times
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Figure 7: Example clustering results with the repeated k-means (left) and the proposed
method (right) for a subset of 50 points of dataset s1.

Table 3: Best balances and total execution times of the proposed Scut with the fast
approximation algorithm and k-means clustering for 100 runs.

Dataset points clusters balance time
n k Scut- repeated Scut- repeated

fast k-means fast k-means
s1 5000 15 180 184 4min 2.3s
s2 5000 15 160 172 4min 4.0s
s3 5000 15 260 338 5min 3.6s
s4 5000 15 392 458 6min 7.0s
a1 3000 20 36 40 5min 3.2s
DIM32 1024 16 0 0 42s 2.6s
iris 150 3 4 6 0.9s 0.4s
thyroid 215 2 126 168 1.0s 0.3s
wine 178 3 22 22 0.8s 0.3s
breast 699 2 216 230 1.3s 0.3s
yeast times100 1484 10 298 362 1min 21s 4.2s
glass 214 7 110 106 4.6s 1.1s
wdbc 569 2 546 546 0.9s 0.4s
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Table 4: Algorithms for joint EMD* and MSE comparison

Algorithm Reference
Scut Proposed
k-means [3]
Constrained k-means [17]
Genetic algorithm [41]
Ncut [28]

The results in Table 2 show that 64% of the clustering results are more180

balanced with the proposed method than with the repeated k-means method.181

They were equally balanced in 18% of the cases, and in the remaining 18%182

of the cases a k-means result was more balanced. Optimisation works well183

with small datasets (systematically better than k-means) but with bigger184

datasets the benefit remains smaller. The time complexity is polynomial,185

but the computing time increases fast when the number of points increases.186

With 50 points the computing time is approximately 20 s, but with 150187

points it is approximately 7 hours. The memory requirement for 150 points188

is 4.4 GB. The results in Table 3 are for the fast approximation algorithm for189

which we can use bigger datasets. In 9 cases the repeated Scut gave better190

result than repeated k-means, in 3 cases it was equal and in 1 case it was191

worse.192

We also conducted a joint comparison of balance and MSE by repeating193
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the algorithms Scut, k-means, constrained k-means, genetic algorithm and194

Ncut (Table 4). Genetic algorithm combines properties of several clusterings195

in one generation to make better clustering for the next generation. It is196

the best representative for optimising MSE. In Scut and repeated k-means197

we chose results with the best balance. In constrained k-means, cluster size198

parameters were set to balance=0 and MSE was then optimised. In Ncut we199

used implementation [42] by T. Cour, S. Yu and J. Shi from University of200

Pennsylvania. We used 100 repetitions for all algorithms and chose the best201

results, see Figure 8. Genetic algorithm optimises MSE best, but the result202

is less balanced. Scut always provides balance of 0 or 2 whilst constrained k-203

means always 0. Ncut did not perform well in this experiment. Overall, Scut204

performs well in both balance and MSE, and is a Pareto-optimal point in 3205

out of 4 cases, meaning that no other algorithm provides better results both206

in balance andMSE for the same data. According to visual inspections of the207

2-d datasets s1 and s4, the points are properly clustered with no overlapping208

between clusters, when either the proposed method or k-means in used.209

We calculated all pairwise squared distances W for some datasets and210

the mean value for the approximated MAX k-CUT obtained by 100 runs of211

the fast algorithm, see Table 5. We see that in most cases the cut contains212
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Table 5: All pairwise square distances W and mean value of 100 runs for the arcs of
approximated MAX k-CUT. Only significant numbers are shown.

Dataset number of W approximated % from W
clusters MAX k-CUT

thyroid 2 2.30 1.67 73%
breast 2 34 29 85%
wdbc 2 5.05 4.80 95%
iris 3 8.94 8.24 92%
s1 15 2.884 2.879 99.8%
DIM32 16 9.827 9.826 99.99%

over 90% of all the edge weights. This gives a high value in approximation213

factor ε, in practise ε = ∞ for the tested sets. This means that a guaranteed214

approximation cannot be made for many datasets.215

4. Conclusions216

We have formulated all-pairwise squared distances cost function as cut-217

based method called Squared cut (Scut) using MSE and cluster sizes. We218

showed that this method leads to more balanced clustering. We use the so-219

lution of MAX k-CUT problem to minimise pairwise intra-cluster squared220

distances and Huygens’ theorem to show that this corresponds to minimisa-221

tion of the cost function. Since Scut is expected to be an NP-hard problem, it222

cannot be solved for practical-sized datasets. We applied an algorithm based223

on approximation of MAX k-CUT, and also introduced a fast on-line k-means224
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algorithm to minimise the cost function directly. We showed by experiments225

that the proposed approach provides better overall joint optimization ofMSE226

and cluster balance than the compared methods.227
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[14] M. I. Malinen, P. Fränti, Clustering by analytic functions, Information267

Sciences 217 (2012) 31 – 38.268
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“Balanced k-means for clustering”

Joint Int. Workshop on Structural,

Syntactic, and Statistical Pattern

Recognition (S+SSPR 2014),

LNCS 8621, 32–41,

Joensuu, Finland,

20–22 August, 2014.

Reprinted with permission by

Springer.





Balanced K-Means for Clustering

Mikko I. Malinen and Pasi Fränti
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Abstract. We present a k-means-based clustering algorithm, which op-
timizes mean square error, for given cluster sizes. A straightforward ap-
plication is balanced clustering, where the sizes of each cluster are equal.
In k-means assignment phase, the algorithm solves the assignment prob-
lem by Hungarian algorithm. This is a novel approach, and makes the
assignment phase time complexity O(n3), which is faster than the previ-
ous O(k3.5n3.5) time linear programming used in constrained k-means.
This enables clustering of bigger datasets of size over 5000 points.

Keywords: clustering, balanced clustering, assignment problem,
Hungarian algorithm.

1 Introduction

Euclidean sum-of-squares clustering is an NP-hard problem [1], which groups n
data points into k clusters so that intra-cluster distances are low and inter-cluster
distances are high. Each group is represented by a center point (centroid). The
most common criterion to optimize is the mean square error (MSE):

MSE =

k∑
j=1

∑
Xi∈Cj

|| Xi − Cj ||2
n

, (1)

where Xi denotes data point locations and Cj denotes centroid locations. K-
means [19] is the most commonly used clustering algorithm, which provides a
localminimum of MSE given the number of clusters as input. K-means algorithm
consists of two repeatedly executed steps:

Assignment Step: Assign the data points to clusters specified by the nearest
centroid:

P
(t)
j = {Xi : ‖Xi − C

(t)
j ‖ ≤ ‖Xi − C

(t)
j∗ ‖

∀ j∗ = 1, ..., k}
Update Step: Calculate the mean of each cluster:

C
(t+1)

j =
1

|P (t)
j |

∑

Xi∈P
(t)
j

Xi
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These steps are repeated until centroid locations do not change anymore. K-
means assignment step and update step are optimal with respect to MSE: The
partitioning step minimizes MSE for a given set of centroids; the update step
minimizes MSE for a given partitioning. The solution therefore converges to a
local optimum but without guarantee of global optimality. To get better results
than in k-means, slower agglomerative algorithms [10,13,12] or more complex
k-means variants [3,11,21,18] are sometimes used.

In balanced clustering there are an equal number of points in each cluster. Bal-
anced clustering is desirable for example in divide-and-conquermethods where the
divide step is done by clustering. Examples can be found in circuit design [14] and
in photo query systems [2], where the photos are clustered according to their con-
tent. Applications can also be used in workloadbalancing algorithms. For example,
in [20] multiple traveling salesman problem clusters the cities, so that each sales-
man operates in one cluster. It is desirable that each salesman has equal workload.
Networking utilizes balanced clustering to obtain some desirable goals [17,23].

We next review existing balanced clustering algorithms. In frequency sensitive
competitive learning (FSCL) the centroids compete of points [5]. It multiplica-
tively increases the distance of the centroids to the data point by the times the
centroid has already won points. Bigger clusters are therefore less likely to win
more points. The method in [2] uses FSCL, but with additive bias instead of
multiplicative bias. The method in [4] uses a fast (O(kNlogN)) algorithm for
balanced clustering based on three steps: sample the given data, cluster the sam-
pled data and populate the clusters with the data points that were not sampled.
The article [6] and book chapter [9] present a constrained k-means algorithm,
which is like k-means, but the assignment step is implemented as a linear pro-
gram, in which the minimum number of points τh of clusters can be set as
parameters. The constrained k-means clustering algorithm works as follows:

Given m points in R
n, minimum cluster membership values τh ≥ 0, h = 1, ..., k

and cluster centers C
(t)
1

, C
(t)
2

, ..., C
(t)
k at iteration t, compute C

(t+1)

1
, C

(t+1)

2
,

..., C
(t+1)

k at iteration t+ 1 using the following 2 steps:

Cluster Assignment. Let T t
i,h be a solution to the following linear program

with C
(t)
h fixed:

minimizeT

m∑
i=1

k∑
h=1

Ti,h · (1
2
||Xi − C

(t)
h ||22) (2)

subject to

m∑
i=1

Ti,h ≥ τh, h = 1, ..., k (3)

k∑
h=1

Ti,h = 1, i = 1, ...,m (4)

Ti,h ≥ 0, i = 1, ...,m, h = 1, ..., k. (5)
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Cluster Update. Update C
(t+1)

h as follows:

C
(t+1)

h =

⎧⎨
⎩

∑m
i=1 T

(t)
i,hXi

∑
m
i=1 T

(t)
i,h

if
∑m

i=1
T

(t)
i,h > 0,

C
(t)
h otherwise.

These steps are repeated until C
(t+1)

h = C
(t)
h , ∀h = 1, ..., k.

A cut-based method Ratio cut [14] includes cluster sizes in its cost function

RatioCut(P1, ..., Pk) =

k∑
i=1

cut(Pi, P̄i)

|Pi| .

Here Pi:s are the partitions. Size regularized cut SRCut [8] is defined as the sum
of the inter-cluster similarity and a regularization term measuring the relative
size of two clusters. In [16] there is a balancing aiming term in cost function
and [24] tries to find a partition close to the given partition, but so that cluster
size constraints are fulfilled. There are also application-based solutions in net-
working [17], which aim at network load balancing, where clustering is done by
self-organization without central control. In [23], energy-balanced routing be-
tween sensors is aimed so that most suitable balanced amount of nodes will be
the members of the clusters.

Balanced clustering, in general, is a 2-objective optimization problem, in which
two aims contradict each other: to minimize MSE and to balance cluster sizes.
Traditional clustering aims at minimizing MSE without considering cluster size
balance. Balancing, on the other hand, would be trivial if we did not care about
MSE; simply by dividing points to equal size clusters randomly. For optimizing
both, there are two alternative approaches: Balance-constrained and balance-
driven clustering.

In balance-constrained clustering, cluster size balance is a mandatory require-
ment thatmust bemet, andminimizing MSE is a secondary criterion. In balance-
driven clustering, balance is an aim but not mandatory. It is a compromize be-
tween these two goals, namely the balance and the MSE. The solution can be
a weighted compromize between MSE and the balance, or a heuristic that aims
at minimizing MSE but indirectly creates a more balanced result than standard
k-means. Existing algorithms are grouped into these two classes in Table 1.

In this paper, we formulate balanced k-means, so that it belongs to the first
category. It is otherwise the same as standard k-means but it guarantees balanced
cluster sizes. It is also a special case of constrained k-means, where cluster sizes
are set equal. However, instead of using linear programming in the assignment
phase, we formulate the partitioning as a pairing problem [7], which can be
solved optimally by Hungarian algorithm in O(n3) time.
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Table 1. Classification of some balanced clustering algorithms

Balance-constrained

Balanced k-means (proposed)
Constrained k-means [6]
Size constrained [24]

Balance-driven

FSCL [5]
FSCL with additive bias [2]
Cluster sampled data [4]
Ratio cut [14]
SRcut [8]
Submodular fractional programming [16]

2 Balanced k-Means

To describe balanced k-means, we need to define what is an assignment problem.
The formal definition of assignment problem (or linear assignment problem)
is as follows. Given two sets (A and S), of equal size, and a weight function
W : A × S → R. The goal is to find a bijection f : A → S so that the cost
function is minimized:

Cost =
∑
a∈A

W (a, f(a)).

In the context of the proposed algorithm, sets A and S correspond respectively
to cluster slots and to data points, see Figure 1.

In balanced k-means, we proceed as in k-means, but the assignment phase is
different: Instead of selecting the nearest centroids we have n pre-allocated slots
(n/k slots per cluster), and datapoints can be assigned only to these slots, see
Figure 1. This will force all clusters to be of same size assuming that �n/k� =
	n/k
 = n/k. Otherwise there will be (n mod k) clusters of size �n/k�, and
k − (n mod k) clusters of size 	n/k
.

To find assignment that minimizes MSE, we solve an assignment problem
using Hungarian algorithm [7]. First we construct a bipartite graph consisting n
datapoints and n cluster slots, see Figure 2. We then partition the cluster slots
in clusters of as even number of slots as possible.

We give centroid locations to partitioned cluster slots, one centroid to each
cluster. The initial centroid locations can be drawn randomly from all data
points. The edge weight is the squared distance from the point to the cluster
centroid it is assigned to. Contrary to standard assignment problem with fixed
weights, here the weights dynamically change after each k-means iteration ac-
cording to the newly calculated centroids. After this, we perform the Hungarian
algorithm to get the minimal weight pairing. The squared distances are stored
in a n× n matrix, for the sake of the Hungarian algorithm. The update step is
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Fig. 1. Assigning points to centroids via cluster slots

Fig. 2. Minimum MSE calculation with balanced clusters. Modeling with bipartite
graph.

similar to that of k-means, where the new centroids are calculated as the means
of the data points assigned to each cluster:

C
(t+1)

i =
1

ni
·

∑

Xj∈C
(t)
i

Xj . (6)

The weights of the edges are updated immediately after the update step. The
pseudocode of the algorithm is in Algorithm 1. In calculation of edge weights,
the number of cluster slot is denoted by a and mod is used in calculation of
cluster where a cluster slot belongs to. The edge weights are calculated by

W (a, i) = dist(Xi, C
t
(a mod k)+1

)2 ∀a ∈ [1, n] ∀i ∈ [1, n]. (7)
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Algorithm 1. Balanced k-means
Input: dataset X , number of clusters k
Output: partitioning of dataset.

Initialize centroid locations C0.
t ← 0
repeat

Assignment step:
Calculate edge weights.
Solve an Assignment problem.

Update step:
Calculate new centroid locations Ct+1

t ← t+ 1
until centroid locations do not change.
Output partitioning.

After convergence of the algorithm the partition of points Xi, i ∈ [1, n], is

Xf(a) ∈ P(a mod k)+1. (8)

There is a convergence result in [6] (Proposition 2.3) for constrained k-means.
The result says that the algorithm terminates in a finite number of iterations at
a partitioning that is locally optimal. At each iteration, the cluster assignment
step cannot increase the objective function of constrained k-means (3) in [6].
The cluster update step will either strictly decrease the value of the objective
function or the algorithm will terminate. Since there are a finite number of
ways to assign m points to k clusters so that cluster h has at least τh points,
since constrained k-means algorithm does not permit repeated assignments, and
since the objective of constrained k-means (3) in [6] is strictly nonincreasing and
bounded below by zero, the algorithmmust terminate at some cluster assignment
that is locally optimal. The same convergence result applies to balanced k-means
as well. The assignment step is optimal with respect to MSE because of pairing
and the update step is optimal, because MSE is clusterwise minimized as is in
k-means.

3 Time Complexity

Time complexity of the assignment step in k-means is O(k · n). Constrained k-
means involves linear programming. It takes O(v3.5) time, where v is the number
of variables, by Karmarkars projective algorithm [15,22], which is the fastest in-
terior point algorithm known to the authors. Since v = k ·n, the time complexity
is O(k3.5n3.5). The assignment step of the proposed balanced k-means algorithm
can be solved in O(n3) time with the Hungarian algorithm. This makes it much
faster than in the constrained k-means, and allows therefore significantly bigger
datasets to be clustered.
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Fig. 3. Sample clustering result. Most significant differences between balanced cluster-
ing and standard k-means (non-balanced) clustering are marked and pointed out by
arrows.

Table 2. MSE, standard deviation of MSE and time/run of 100 runs

Dataset Size Clusters Algorithm Best Mean St.dev. Time

s2 5000 15 Balanced k-means 2.86 (one run) (one run) 1h 40min
Constrained k-means - - - -

s1 1000 15 Balanced k-means 2.89 (one run) (one run) 47s
subset Constrained k-means 2.61 (one run) (one run) 26min

s1 500 15 Balanced k-means 3.48 3.73 0.21 8s
subset Constrained k-means 3.34 3.36 0.16 30s

K-means 2.54 4.21 1.19 0.01s

s1 500 7 Balanced k-means 14.2 15.7 1.7 10s
subset Constrained k-means 14.1 15.6 1.6 8s

s2 500 15 Balanced k-means 3.60 3.77 0.12 8s
subset Constrained k-means 3.42 3.43 0.08 29s

s3 500 15 Balanced k-means 3.60 3.69 0.17 9s
subset Constrained k-means 3.55 3.57 0.12 35s

s4 500 15 Balanced k-means 3.46 3.61 1.68 12s
subset Constrained k-means 3.42 3.53 0.20 45s

thyroid 215 2 Balanced k-means 4.00 4.00 0.001 2.5s
Constrained k-means 4.00 4.00 0.001 0.25s

wine 178 3 Balanced k-means 3.31 3.33 0.031 0.36s
Constrained k-means 3.31 3.31 0.000 0.12s

iris 150 3 Balanced k-means 9.35 3.39 0.43 0.34s
Constrained k-means 9.35 3.35 0.001 0.14s
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Fig. 4. Running time with different-sized subsets of s1 dataset

4 Experiments

In the experiments we use artificial datasets s1-s4, which have Gaussian clus-
ters with increasing overlap and real-world datasets thyroid, wine and iris. The
source of the datasets is http://cs.uef.fi/sipu/datasets/. As a platform,
Intel Core i5-3470 3.20GHz processor was used. We have been able to cluster
datasets of size 5000 points. One example partitioning can be seen in Figure 3, for
which the running time was 1h40min. Comparison of MSE values of constrained
k-means and balanced k-means is shown in Table 2, running times in Figure 4.
The results indicate that constrained k-means gives slightly better MSE in many
cases, but that balanced k-means is significantly faster when the size of dataset
increases. For dataset of size 5000 constrained k-means could no longer provide
result within one day. The difference in MSE is most likely due to the fact that
balanced k-means strictly forces balance within ±1 points, but constrained k-
means does not. It may happen, that constrained k-means has many clusters of
size 	n/k
, but some smaller amount of clusters of size bigger than �n/k�.

5 Conclusions

We have presented balanced k-means clustering algorithm which guarantees
equal-sized clusters. The algorithm is a special case of constrained k-means,
where cluster sizes are equal, but much faster. The experimental results show
that the balanced k-means gives slightly higher MSE-values to that of the con-
strained k-means, but about 3 times faster already for small datasets. Balanced
k-means is able to cluster bigger datasets than constrained k-means. However,
even the proposed method may still be too slow for practical application and
therefore, our future work will focus on finding some faster sub-optimal algorithm
for the assignment step.
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a b s t r a c t

Minimum spanning trees (MSTs) have long been used in data mining, pattern recognition
and machine learning. However, it is difficult to apply traditional MST algorithms to a large
dataset since the time complexity of the algorithms is quadratic. In this paper, we present a
fast MST (FMST) algorithm on the complete graph of N points. The proposed algorithm
employs a divide-and-conquer scheme to produce an approximate MST with theoretical
time complexity of OðN1:5Þ, which is faster than the conventional MST algorithms with
OðN2Þ. It consists of two stages. In the first stage, called the divide-and-conquer stage, K-
means is employed to partition a dataset into

ffiffiffiffi
N

p
clusters. Then an exact MST algorithm

is applied to each cluster and the produced
ffiffiffiffi
N

p
MSTs are connected in terms of a proposed

criterion to form an approximate MST. In the second stage, called the refinement stage, the
clusters produced in the first stage form

ffiffiffiffi
N

p
� 1 neighboring pairs, and the dataset is repar-

titioned into
ffiffiffiffi
N

p
� 1 clusters with the purpose of partitioning the neighboring boundaries

of a neighboring pair into a cluster. With the
ffiffiffiffi
N

p � 1 clusters, another approximate MST is
constructed. Finally, the two approximate MSTs are combined into a graph and a more
accurate MST is generated from it. The proposed algorithm can be regarded as a frame-
work, since any exact MST algorithm can be incorporated into the framework to reduce
its running time. Experimental results show that the proposed approximate MST algorithm
is computationally efficient, and the approximation is close to the exact MST so that in
practical applications the performance does not suffer.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A minimum spanning tree (MST) is a spanning tree of an undirected and weighted graph such that the sum of the weights
is minimized. As it can roughly estimate the intrinsic structure of a dataset, MST has been broadly applied in image segmen-
tation [2,47], cluster analysis [46,51–53], classification [27], manifold learning [48,49], density estimation [30], diversity esti-
mation [33], and some applications of the variant problems of MST [10,36,43]. Since the pioneering algorithm of computing
an MST was proposed by Otakar Borůvka in 1926 [6], the studies of the problem have focused on finding the optimal exact
MST algorithm, fast and approximate MST algorithms, distributed MST algorithms and parallel MST algorithms.

The studies on constructing an exact MST start with Borůvka’s algorithm [6]. This algorithm begins with each vertex of a
graph being a tree. Then for each tree it iteratively selects the shortest edge connecting the tree to the rest, and combines the
edge into the forest formed by all the trees, until the forest is connected. The computational complexity of this algorithm is

http://dx.doi.org/10.1016/j.ins.2014.10.012
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OðE logVÞ, where E is the number of edges, and V is the number of vertices in the graph. Similar algorithms have been
invented by Choquet [13], Florek et al. [19] and Sollin [42], respectively.

One of the most typical examples is Prim’s algorithm, which was proposed by Jarník [26], Prim [39] and Dijkstra [15]. It
first arbitrarily selects a vertex as a tree, and then repeatedly adds the shortest edge that connects a new vertex to the tree,
until all the vertices are included. The time complexity of Prim’s algorithm is OðE logVÞ. If Fibonacci heap is employed to
implement a min-priority queue to find the shortest edge, the computational time is reduced to OðEþ V logVÞ [14].

Kruskal’s algorithm is another widely used exact MST algorithm [32]. In this algorithm, all the edges are sorted by their
weights in non-decreasing order. It starts with each vertex being a tree, and iteratively combines the trees by adding edges in
the sorted order excluding those leading to a cycle, until all the trees are combined into one tree. The running time of
Kruskal’s algorithm is OðE logVÞ.

Several fast MST algorithms have been proposed. For a sparse graph, Yao [50], and Cheriton and Tarjan [11] proposed
algorithms with OðE log logVÞ time. Fredman and Tarjan [20] proposed the Fibonacci heap as a data structure of implement-
ing the priority queue for constructing an exact MST. With the heaps, the computational complexity is reduced to OðEbðE;VÞÞ,
where bðE;VÞ ¼ minfijlogðiÞV 6 E=Vg. Gabow et al. [21] incorporated the idea of Packets [22] into the Fibonacci heap, and
reduced the complexity to OðE logbðE;VÞÞ.

Recent progress on the exact MST algorithm was made by Chazelle [9]. He discovered a new heap structure, called soft
heap, to implement the priority queue, and as a result, the time complexity is reduced to OðEaðE;VÞÞ, where a is the inverse
of the Ackermann function. March et al. [35] proposed a dual-tree on a kd-tree and a dual-tree on a cover-tree for construct-
ing MST, with claimed time complexity as OðN logNaðNÞÞ � OðN logNÞ.

Distributed MST and parallel MST algorithms have also been studied in the literature. The first algorithm of the distrib-
uted MST problem was presented by Gallager et al. [23]. The algorithm supposes that a processor exits at each vertex and
knows initially only the weights of the adjacent edges. It runs in OðV logVÞ time. Several faster OðVÞ time distributed MST
algorithms have been proposed by Awerbuch [3] and Abdel-Wahab et al. [1], respectively. Peleg and Rubinovich [37] pre-
sented a lower bound of time complexity OðDþ

ffiffiffiffi
V

p
= logVÞ for constructing a distributed MST on a network, where

D ¼ XðlogVÞ is the diameter of the network. Moreover, Khan and Pandurangan [29] proposed a distributed approximate
MST algorithm on networks and its complexity is eOðDþ LÞ, where L is the local shortest path diameter.

Chong et al. [12] presented a parallel algorithm to construct an MST in OðlogVÞ time by employing a linear number of
processors. Pettie and Ramachandran [38] proposed a randomized parallel algorithm to compute a minimum spanning for-
est, which also runs in logarithmic time. Bader and Cong [4] presented four parallel algorithms, of which three algorithms are
variants of Borůvka’s. For different graphs, their algorithms can find MSTs four to six times faster using eight processors than
the sequential algorithms.

Several approximate MST algorithms have been proposed. The algorithms in [7,44] are composed of two steps. In the first
step, a sparse graph is extracted from the complete graph, and then in the second step, an exact MST algorithm is applied to
the extracted graph. In these algorithms, different methods for extracting sparse graphs have been employed. For example,
Vaidya [44] used a group of grids to partition a dataset into cubical boxes of identical size. For each box, a representative
point was determined. Any two representatives of two cubical boxes were connected if the corresponding edge length
was between two given thresholds. Within a cubical box, points were connected to the representative. Callahan and Kosaraju
[7] applied a well-separated pair decomposition of the dataset to extract a sparse graph.

Recent studies that focused on finding an approximate MST and applying it to clustering can be found in [34,45]. Wang
et al. [45] employed a divide-and-conquer scheme to construct an approximate MST. However, their goal was not to find the
MST but merely to detect the long edges of the MST at an early stage for clustering. An initial spanning tree is constructed by
randomly storing the dataset in a list, in which each data point is connected to its predecessor (or successor). At the same
time, the weight of each edge from a data point to its predecessor (or successor) are assigned. To optimize the spanning tree,
the dataset is divided into multiple subsets with a divisive hierarchical clustering algorithm (DHCA), and the nearest neigh-
bor of a data point within a subset is found by a brute force search. Accordingly, the spanning tree is updated. The algorithm
is performed repeatedly and the spanning tree is optimized further after each run.

Lai et al. [34] proposed an approximate MST algorithm based on Hilbert curve for clustering. It consists of two phases. The
first phase is to construct an approximate MST with the Hilbert curve, and the second phase is to partition the dataset into
subsets by measuring the densities of the points along the approximate MST with a specified density threshold. The process
of constructing an approximate MST is iterative and the number of iterations is ðdþ 1Þ, where d is the number of dimensions
of the dataset. In each iteration, an approximate MST is generated similarly as in Prim’s algorithm. The main difference is that
Lai’s method maintains a min-priority queue by considering the approximate MST produced in the last iteration and the
neighbors of the visited points determined by a Hilbert sorted linear list, while Prim’s algorithm considers all the neighbors
of a visited point. However, the accuracy of Lai’s method depends on the order of the Hilbert curve and the number of neigh-
bors of a visited point in the linear list.

In this paper, we propose an approximate and fast MST (FMST) algorithm based on the divide-and-conquer technique, of
which the preliminary version of the idea was presented in a conference paper [54]. It consists of two stages: divide-and-
conquer and refinement. In the divide-and-conquer stage, the dataset is partitioned by K-means into

ffiffiffiffi
N

p
clusters, and the

exact MSTs of all the clusters are constructed and merged. In the refinement stage, boundaries of the clusters are considered.
It runs in OðN1:5Þ time when Prim’s or Kruskal’s algorithm is used in its divide-and-conquer stage, and in practical use does
not reduce the quality compared to an exact MST.
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The rest of this paper is organized as follows. In Section 2, the fast divide-and-conquer MST algorithm is presented. The
time complexity of the proposed method is analyzed in Section 3, and experiments on the efficiency and accuracy of the pro-
posed algorithm are given in Section 4. Finally, we conclude this work in Section 5.

2. Proposed method

2.1. Overview of the proposed method

The efficiency of constructing an MST or a K nearest neighbor graph (KNNG) is determined by the number of comparisons
of the distances between two data points. In the methods like brute force for KNNG and Kruskal’s for MST, many unnecessary
comparisons exist. For example, to find the K nearest neighbor of a point, it is not necessary to search the entire dataset but a
small local portion; to construct an MST with Kruskal’s algorithm in a complete graph, it is not necessary to sort all
NðN � 1Þ=2 edges but to find ð1þ aÞN edges with least weights, where ðN � 3Þ=2 � aP �1=N. With this observation in
mind, we employ a divide-and-conquer technique to build an MST with improved efficiency.

In general, a divide-and-conquer paradigm consists of three steps according to [14]:

1. Divide step. The problem is divided into a collection of subproblems that are similar to the original problem but smaller in
size.

2. Conquer step. The subproblems are solved separately, and corresponding subresults are achieved.
3. Combine step. The subresults are combined to form the final result of the problem.

Following this divide-and-conquer paradigm, we constructed a two-stage fast approximate MST method as follows:

1. Divide-and-conquer stage
1.1 Divide step. For a given dataset of N data points, K-means is applied to partition the dataset into

ffiffiffiffi
N

p
subsets.

1.2 Conquer step. An exact MST algorithm such as Kruskal’s or Prim’s algorithm is employed to construct an exact MST
for each subset.

1.3 Combine step.
ffiffiffiffi
N

p
MSTs are combined using a connection criterion to form a primary approximate MST.

2. Refinement stage
2.1 Partitions focused on borders of the clusters produced in the previous stage are constructed.
2.2 A secondary approximate MST is constructed with the conquer and combine steps in the previous stage.
2.3 The two approximate MSTs are merged and a new more accurate is obtained by using an exact MST algorithm.

The process is illustrated in Fig. 1. In the first stage, an approximate MST is produced. However, its accuracy is insufficient
compared to the corresponding exact MST, because many of the data points that are located on the boundaries of the subsets
are connected incorrectly in the MST. This is because an exact MST algorithm is applied only to data points within a subset
but not to those crossing the boundaries of the subsets. To compensate for the drawback, a refinement stage is designed.

In the refinement stage, we re-partition the dataset so that the neighboring data points from different subsets will belong
to the same partition. After this, the two approximate MSTs are merged, and the number of edges in the combined graph is at
most 2ðN � 1Þ. The final MST is built from this graph by an exact MST algorithm. The details of the method will be described
in the following subsections.

2.2. Partition dataset with K-means

For two points connected by an edge in an MST, at least one is the nearest neighbor of the other, which implies that the
connections have a locality property. Therefore, in the divide step, it is expected that the subsets preserve this locality. As K-
means can partition some of local neighboring data points into the same group, we employ K-means to partition the dataset.

K-means requires the number of clusters to be known and the initial center points to be determined, and we will discuss
these two problems below.

2.2.1. The number of clusters K
In this study, we set the number of clusters K to

ffiffiffiffi
N

p
based on the following two reasons. One is that the maximum num-

ber of clusters in some clustering algorithms is often set to
ffiffiffiffi
N

p
as a rule of thumb [5,41]. That means if a dataset is parti-

tioned into
ffiffiffiffi
N

p
subsets, each subset may consist of data points coming from an identical genuine cluster so that the

requirement of the locality property when constructing an MST is met.
The other reason is that the overall time complexity of the proposed approximate MST algorithm is minimized if K is set

to
ffiffiffiffi
N

p
, assuming that the data points are equally divided into the clusters. This choice will be theoretically and experimen-

tally studied in more detail in Sections 3 and 4, respectively.
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2.2.2. Initialization of K-means
Clustering results of K-means are sensitive to the initial cluster centers. A bad selection of the initial cluster centers may

have negative effects on the time complexity and accuracy of the proposed method. However, we still randomly select the
initial centers due to the following considerations.

First, although a random selection may lead to a skewed partition, such as a linear partition, the time complexity of the
proposed method is still OðN1:5Þ, see Theorem 2 in Section 4. Second, in the proposed method, a refinement stage is designed
to cope with the data points on the cluster boundaries. This process makes the accuracy relatively stable, and random selec-
tion of initial cluster centers is reasonable.

2.2.3. Divide-and-conquer algorithm
After the dataset has been divided into

ffiffiffiffi
N

p
subsets by K-means, the MSTs of the subsets are constructed with an exact

MST algorithm, such as Prim’s or Kruskal’s. This corresponds to the conquer step in the divide and conquer scheme, it is triv-
ial and illustrated in Fig. 1(c). The algorithm of K-means based on divide and conquer is described as follows:

Divide and Conquer Using K-means (DAC)
Input: Dataset X;
Output: MSTs of the subsets partitioned from X

Step 1. Set the number of subsets K ¼
ffiffiffiffi
N

p
.

Step 2. Apply K-means to X to achieve K subsets S ¼ fS1; . . . ; SKg, where the initial centers are randomly selected.
Step 3. Apply an exact MST algorithm to each subset in S, and an MST of Si, denoted by MSTðSiÞ, is obtained,

where 1 6 i 6 K .

The next step is to combine the MSTs of the K subsets into a whole MST.

2.3. Combine MSTs of the K subsets

An intuitive solution to combining MSTs is brute force: For the MST of a cluster, the shortest edge between it and the
MSTs of other clusters is computed. But this solution is time consuming, and therefore a fast MST-based effective solution
is also presented. The two solutions are discussed below.

(a) Data set (b) Partitions by K-means (c) MSTs of the subsets (d) Connected MSTs

(e) Partitions on borders (f) MSTs of the subsets (g) Connected MSTs (h) Approximate MST 

Divide-and-conquer stage:

Refinement stage:

Fig. 1. The scheme of the proposed FMST algorithm. (a) A given dataset. (b) The dataset is partitioned into
ffiffiffiffi
N

p
subsets by K-means. The dashed lines form

the corresponding Voronoi graph with respect to cluster centers (the big gray circles). (c) An exact MST algorithm is applied to each subset. (d) MSTs of the
subsets are connected. (e) The dataset is partitioned again so that the neighboring data points in different subsets of (b) are partitioned into identical
partitions. (f) An exact MST algorithm such as Prim’s algorithm is used again on the secondary partition. (g) MSTs of the subsets are connected. (h) A more
accurate approximate MST is produced by merging the two approximate MSTs in (d) and (g) respectively.

4 C. Zhong et al. / Information Sciences 295 (2015) 1–17



2.3.1. Brute force solution
Suppose we combine a subset Sl with another subset, where 1 6 l 6 K . Let xi; xj be data points and xi 2 Sl; xj 2 X � Sl. The

edge that connects Sl to another subset can be found by brute force:

e ¼ argmin
ei2El

qðeiÞ ð1Þ

where El ¼ feðxi; xjÞjxi 2 Sl ^ xj 2 X � Slg; eðxi; xjÞ is the edge between vertices xi and xj;qðeiÞ is the weight of edge ei. The whole
MST is obtained by iteratively adding e into the MSTs and finding the new connecting edge between the merged subset and
the remaining part. This process is similar to single-link clustering [21].

However, the computational cost of the brute force method is high. Suppose that each subset has an equal size of N=K ,
and K is an even number. The running time Tc of combining the K trees into the whole MST is:

Tc ¼ 2� N
K
� ðK � 1Þ � N

K
þ 2� N

K
� ðK � 2Þ � N

K
þ � � � þ ðK=2Þ � N

K
� ðK=2Þ � N

K

� �
¼ K2

6
þ K

4
� 1
6

 !
� N2

K

¼ OðKN2Þ ¼ OðN2:5Þ ð2Þ
Consequently, a more efficient combining method is needed.

2.3.2. MST-based solution
The efficiency of the combining process can be improved in two aspects. First, in each combining iteration only one pair of

neighboring subsets is considered in finding the connecting edge. Intuitively, it is not necessary to take into account subsets
that are far from each other, because no edge in an exact MST connects the subsets. This consideration will save some com-
putations. Second, to determine the connecting edge of a pair of neighboring subsets, the data points in the two subsets will
be scanned only once. The implementation of the two techniques is discussed in detail.

Determine the neighboring subsets. As the aforementioned brute force solution runs in the same way as single-link clus-
tering [24] and all the information required by single-link can be provided by the corresponding MST of the same data,
we make use of the MST to determine the neighboring subsets and improve the efficiency of the combination process.

If each subset has one representative, an MST of the representatives of the K subsets can roughly indicate which pairs of
subsets could be connected. For simplicity, the mean point, called the center, of a subset is selected as its representative.
After an MST of the centers (MSTcen) is constructed, each pair of subsets whose centers are connected by an edge of
MSTcen is combined. Although not all of the neighboring subsets can be discovered by MSTcen, the dedicated refinement stage
could remedy this drawback to some extent.

The centers of the subsets in Fig. 1(c) are illustrated as the solid points in Fig. 2(a), and MSTcen is composed of the dashed
edges in Fig. 2(b).

Determine the connecting edges. To combine MSTs of a pair of neighboring subsets, an intuitive way is to find the shortest
edge between the two subsets and connect the MSTs by this edge. Under the condition of an average partition, finding the
shortest edge between two subsets takes N steps, and therefore, the time complexity of the whole connection process is
OðN1:5Þ. Although this does not increase the total time complexity of the proposed method, the absolute running time is still
somewhat high.

To make the connecting process faster, a novel way to detect the connecting edges is illustrated in Fig. 3. Here, c2 and c4
are the centers of the subset S2 and S4, respectively. Suppose a is the nearest point to c4 from S2, and b is the nearest point to
c2 from S4. The edge eða; bÞ is selected as the connecting edge between S2 and S4. The computational cost of this is low.
Although the edges found are not always optimal, this can be compensated by the refinement stage.

sdiortnec fo TSM )b(stesbus fo sdiortneC )a( (c) Connected subsets

c8

c5 c6

c7

c3
c4

c2c1

c8

c5 c6

c7

c3
c4

c2c1

c8

c5 c6

c7

c3
c4

c2c1

Fig. 2. The combine step of MSTs of the proposed algorithm. In (a), centers of the partitions (c1, . . . , c8) are calculated. In (b), a MST of the centers,MSTcen , is
constructed with an exact MST algorithm. In (c), each pair of subsets whose centers are neighbors with respect to MSTcen in (b) is connected.
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Consequently, the algorithm for combining the MSTs of the subsets is summarized as follows:

Combine Algorithm (CA)
Input: MSTs of the subsets partitioned from X : MSTðS1Þ; . . . ;MSTðSKÞ.
Output: Approximate MST of X, denoted by MST1, and MST of the centers of S1; . . . ; SK , denoted by MSTcen;

Step 1. Compute the center ci of subset Si;1 6 i 6 K .
Step 2. Construct an MST, MSTcen, of c1; . . . ; cK by an exact MST algorithm.
Step 3. For each pair of subsets ðSi; SjÞ that their centers ci and cj are connected by an edge e 2 MSTcen, discover the edge

by DCE (Detect the Connecting Edge) that connects MSTðSiÞ and MSTðSjÞ.
Step 4. Add all the connecting edges discovered in Step 3 to MSTðS1Þ; . . . ;MSTðSKÞ, and MST1 is achieved.

Detect the Connecting Edge (DCE)
Input: A pair of subsets to be connected, ðSi; SjÞ;
Output: The edge connecting MSTðSiÞ and MSTðSjÞ;
Step 1. Find the data point a 2 Si such that the distance between a and the center of Sj is minimized.
Step 2. Find the data point b 2 Sj such that the distance between b and the center of Si is minimized.
Step 3. Select edge eða; bÞ as the connecting edge.

2.4. Refine the MST focusing on boundaries

However, the accuracy of the approximate MST achieved so far is far from the exact MST. The reason is that, when the
MST of a subset is built, the data points that lie in the boundary of the subset are considered only within the subset, but
not across the boundaries. In Fig. 4, subsets S6 and S3 have a common boundary, and their MSTs are constructed indepen-
dently. In the MST of S3, point a and b are connected to each other. But in the exact MST they are connected to the points
in S6 rather than in S3. Therefore, data points located on the boundaries are prone to be misconnected. Based on this obser-
vation, the refinement stage is designed.

2.4.1. Partition dataset focusing on boundaries
In this step, another complimentary partition is constructed so that the clusters would locate at the boundary areas of the

previous K-means partition. We first calculate the midpoints of each edge of MSTcen. These midpoints generally lie near the
boundaries, and are therefore employed as the initial cluster centers. The dataset is then partitioned by K-means. The par-
tition process of this stage is different from that of the first stage. In this stage, the initial cluster centers are specified and the
maximum number of iterations is set to 1 for the purpose of focusing on the boundaries. Since MSTcen has

ffiffiffiffi
N

p � 1 edges,
there will be

ffiffiffiffi
N

p
� 1 clusters in this stage. The process is illustrated in Fig. 5.

In Fig. 5(a), the midpoints of the edges of MSTcen are computed as m1; . . . ;m7. In Fig. 5(b), the dataset is partitioned with
respect to these seven midpoints.

2.4.2. Build secondary approximate MST
After the dataset has been re-partitioned, the conquer and combine steps are similar to those used for producing the

primary approximate MST. The algorithm is summarized as follows:

a

b

c8

c5 c6
c7

c3
c4

c2c1

S4

S2

Fig. 3. Detecting the connecting edge between S4 and S2.
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Secondary Approximate MST (SAM)
Input: MST of the subset centers MSTcen, dataset X;
Output: Approximate MST of X;MST2;

Step 1. Compute the midpoint mi of an edge ei 2 MSTcen, where 1 6 i 6 K � 1.
Step 2. Partition dataset X into K � 1 subsets, S01; . . . ; S

0
K�1, by assigning each point to its nearest point from m1; . . . ;mK�1.

Step 3. Build MSTs, MST S01
	 


; . . . ;MST S0K�1

	 

, with an exact MST algorithm.

Step 4. Combine the K � 1 MSTs with CA to produce an approximate MST MST2.

2.5. Combine two rounds of approximate MSTs

So far we have two approximate MSTs on dataset X;MST1 and MST2. To produce the final approximate MST, we first
merge the two approximate MSTs to produce a graph, which has no more than 2ðN � 1Þ edges, and then apply an exact
MST algorithm to this graph to achieve the final approximate MST of X.

Finally, the overall algorithm of the proposed method is summarized as follows:

Fast MST (FMST)
Input: Dataset X;
Output: Approximate MST of X;

(continued on next page)

Subset MST edges on border Exact MST edges

a b

c

S3

S6

d

S3

S6

a b

c
d

Fig. 4. The data points on the subset boundaries are prone to be misconnected.

(a) Midpoints between 

     centers

m7

m4
m5

m6

m3

m1

m2

(b) Partitions on borders

c8

c5 c6

c7

c3
c4

c2

c1

Fig. 5. Boundary-based partition. In (a), the black solid points, m1; . . . ;m7, are the midpoints of the edges of MSTcen . In (b), each data point is assigned to its
nearest midpoint, and the dataset is partitioned by the midpoints. The corresponding Voronoi graph is with respect to the midpoints.
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Step 1. Apply DAC to X to produce the K MSTs.
Step 2. Apply CA to the KMSTs to produce the first approximate MST,MST1, and the MST of the subset centers, MSTcen.
Step 3. Apply SAM to MSTcen and X to generate the secondary approximate MST, MST2.
Step 4. Merge MST1 and MST2 into a graph G.
Step 5. Apply an exact MST algorithm to G, and the final approximate MST is achieved.

3. Complexity and accuracy analysis

3.1. Complexity analysis

The overall time complexity of the proposed algorithm FMST, TFMST , can be evaluated as:

TFMST ¼ TDAC þ TCA þ TSAM þ TCOM ð3Þ
where TDAC ; TCA and TSAM are the time complexities of the algorithms DAC, CA and SAM, respectively, and TCOM is the running
time of an exact MST algorithm on the combination of MST1 and MST2.

DAC consists of two operations: partitioning the dataset Xwith K-means and constructing the MSTs of the subsets with an
exact MST algorithm. Now we consider the time complexity of DAC by the following theorems.

Theorem 1. Suppose a dataset with N points is equally partitioned into K subsets by K-means, and an MST of each subset is
produced by an exact algorithm. If the total running time for partitioning the dataset and constructing MSTs of the K subsets is T,
then argminKT ¼

ffiffiffiffi
N

p
.

Proof. Suppose the dataset is partitioned into K clusters equally so that the number of data points in each cluster equals
N=K. The time complexity of partitioning the dataset and constructing the MSTs of K subsets are T1 ¼ NKId and

T2 ¼ KðN=KÞ2, respectively, where I is the number of iterations of K-means and d is the dimension of the dataset. The total
complexity is T ¼ T1 þ T2 ¼ NKIdþ N2=K . To find the optimal K corresponding to the minimum T, we solve
@T=@K ¼ NId� N2=K2 ¼ 0 which results in K ¼

ffiffiffiffiffiffiffiffiffiffi
N=Id

p
. Therefore, K ¼

ffiffiffiffi
N

p
and T ¼ OðN1:5Þ under the assumption that

I � N and d � N. Because convergence of K-means is not necessary in our method, we set I to 20 in all of our experiments.
For very high dimensional datasets, d � N may not hold, but for modern large datasets it may hold. The situation for high
dimensional datasets is discussed in Section 4.5. h

Although the above theorem holds under the ideal condition of average partition, it can be supported by more evidence
when the condition is not satisfied, for example, linear partition and multinomial partition.

Theorem 2. Suppose a dataset is linearly partitioned into K subsets. If K ¼
ffiffiffiffi
N

p
, then the time complexity is OðN1:5Þ.

Proof. Let n1;n2; . . . ;nK be the numbers of data points of the K clusters. The K numbers form an arithmetic series, namely,
ni � ni�1 ¼ c, where n1 ¼ 0 and c is a constant. The arithmetic series sums up to sum ¼ K � nK=2 ¼ N, and thus, we have
nK ¼ 2N=K and c ¼ 2N=½KðK � 1Þ	. The time complexity of constructing MSTs of the subsets is then:

T2 ¼ n2
1 þ n2

2 þ � � � þ n2
K�1 ¼ c2 þ ð2cÞ2 þ � � � þ ½ðK � 1Þc	2 ¼ c2 � ðK � 1ÞKð2K � 1Þ

6

¼ 2N
ðK � 1ÞK
� �2

� ðK � 1ÞKð2K � 1Þ
6

¼ 2
3
� ð2K � 1ÞN2

KðK � 1Þ ð4Þ

If K ¼ ffiffiffiffi
N

p
, then T2 ¼ 4

3N
1:5 þ 2

3
N1:5

N0:5�1
¼ OðN1:5Þ. Therefore, T ¼ T1 þ T2 ¼ OðN1:5Þ holds. h

Theorem 3. Suppose a dataset is partitioned into K subsets, and the sizes of the K subsets follow a multinomial distribution. If
K ¼

ffiffiffiffi
N

p
, then the time complexity is OðN1:5Þ.

Proof. Let n1;n2; . . . ;nK be the numbers of data points of the K clusters. Suppose the data points are randomly assigned into
the K clusters, and n1;n2; . . . ;nK 
 Multinomial N; 1K ; . . . ;

1
K

	 

. We have ExðniÞ ¼ N=K and VarðniÞ ¼ ðN=KÞ � ð1� 1=KÞ. Since

Ex n2
i

	 
 ¼ ½ExðniÞ	2 þ VarðniÞ ¼ N2=K2 þ N � ðK � 1Þ=K2, the expected complexity of constructing MSTs is T2 ¼PK
i¼1n

2
i ¼

K � Ex n2
i

	 
 ¼ N2=K þ N � ðK � 1Þ=K , if K ¼
ffiffiffiffi
N

p
, then T2 ¼ OðN1:5Þ. Therefore T ¼ T1 þ T2 ¼ OðN1:5Þ holds. h

According to the above theorems, we have TDAC ¼ OðN1:5Þ.
In CA, the time complexity of computing the mean points of the subsets is OðNÞ, as one scan of the dataset is enough.

Constructing MST of the K mean points by an exact MST algorithm takes only OðNÞ time. In Step 3, the number of subset
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pairs is K � 1, and for each pair, determining the connecting edge by DCE requires one scan on the two subsets, respectively.
Thus, the time complexity of Step 3 is Oð2N � ðK � 1Þ=KÞ, which equals OðNÞ. The total computational cost of CA is therefore
OðNÞ.

In SAM, Step 1 computes K � 1 midpoints, which takes OðN0:5Þ time. Step 2 takes OðN � ðK � 1ÞÞ to partition the dataset.
The running time of Step 3 is OððK � 1Þ � N2=ðK � 1Þ2Þ ¼ OðN2=ðK � 1ÞÞ. Step 4 is to call CA and has the time complexity of
OðNÞ. Therefore, the time complexity of SAM is OðN1:5Þ.

The number of edges in the graph that is formed by combiningMST1 andMST2 is at most 2ðN � 1Þ. The time complexity of
applying an exact MST algorithm to this graph is only Oð2ðN � 1Þ logNÞ. Thus, TCOM ¼ OðN logNÞ.

To sum up, the time cost of the proposed algorithm is ðc1N1:5 þ c2N logN þ c3N þ N0:5Þ ¼ OðN1:5Þ. The hidden constants
are not remarkable; according to our experiments we estimate them as c1 ¼ 3þ d � I; c2 ¼ 2; c3 ¼ 5. The space complexity
of the algorithm is the same as that of K-means and Prim, which are OðNÞ if a Fibonacci heap is used within Prim’s algorithm.

3.2. Accuracy analysis

Most inaccuracies originate from points that are in the boundary regions of the partitions of K-means. The secondary par-
tition is generated in order to capture these problematic points into the same clusters. Inaccuracies after the refinement
stage can, therefore, originate only if two points should be connected by the exact MST, but are partitioned into different
clusters both in the primary and in the secondary partition, and neither of the two conquer stages will be able to connect
these points. In Fig. 6, few such pair of points are shown that belong to different clusters in both partitions. For example,
point a and b belong to different clusters of the first partition, but are in the same cluster of the second.

Since partitions generated by K-means form a Voronoi graph [16], the analysis of the inaccuracy can be related to the
degree by which the secondary Voronoi edges overlap that of the Voronoi edges of the primary partition. Let jEj denote
the number of edges of a Voronoi graph, in two-dimensional space, jEj is bounded by K � 1 6 jEj � 3K � 6, where K is the
number of clusters (the Voronoi regions). In a higher dimensional case it is more difficult to analyze.

A favorable case is demonstrated in Fig. 7. The first row is a dataset which consists of 400 points and is randomly distrib-
uted. In the second row, the dataset is partitioned into six clusters by K-means, and a collinear Voronoi graph is achieved. In
the third row, the secondary partition has five clusters, each of which completely cover one boundary region in the second
row. An exact MST is produced in the last row.

4. Experiments

In this section, experimental results are presented to illustrate the efficiency and the accuracy of the proposed fast
approximate MST algorithm. The accuracy of FMST is tested with both synthetic datasets and real applications. As a frame-
work, the proposed algorithm can be incorporated with any exact or even approximate MST algorithm, of which the running
time is definitely reduced. Here we only take into account Kruskal’s and Prim’s algorithms because of their popularity. As in
Kruskal’s algorithm, all the edges need to be sorted into nondecreasing order, it is difficult to apply the algorithm to large
datasets. Furthermore, as Prim’s algorithm may employ a Fibonacci heap to reduce the running time, we therefore use it
rather than Kruskal’s algorithm in our experiments as the exact MST algorithm.

Experiments were conducted on a PC with an Intel Core2 2.4 GHz CPU and 4 GB memory running Windows 7. The algo-
rithm for testing the running time is implemented in C++, while the other tests are performed in Matlab (R2009b).

4.1. Running time

4.1.1. Running time on different datasets
We first perform experiments on four typical datasets with different sizes and dimensions to test the running time. The

four datasets are described as Table 1.
Dataset t4.8k1 is designed to test the CHAMELEON clustering algorithm in [28]. MNIST2 is a dataset of ten handwriting digits

and contains 60,000 training patterns and 10,000 test patterns of 784 dimensions, we use just the test set. The last two sets are
from the UCI machine learning repository.3 ConfLongDemo has eight attributes, of which only three numerical attributes are
used here.

From each dataset, subsets with different sizes are randomly selected to test the running time as a function of data size.
The subset sizes of the first two datasets gradually increase with step 20, the third with step 100 and the last with step 1000.

In general, the running time for constructing an MST of a dataset depends on the size of the dataset but not on the under-
lying structure of the dataset. In our FMST method, K-means is employed to partition a dataset, and the size of the subsets
depends on the initialization of K-means and the distributions of the datasets, which leads to different time costs. We there-
fore perform FMST ten times on each dataset to alleviate the effects of the random initialization of K-means.

1 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
2 http://yann.lecun.com/exdb/mnist.
3 http://archive.ics.uci.edu/ml/.
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The running time of FMST and Prim’s algorithm on the four datasets is illustrated in the first row of Fig. 8. From the
results, we can see that FMST is computationally more efficient than Prim’s algorithm, especially for the large datasets Conf-
LongDemo and MiniBooNE. The efficiency for MiniBooNE shown in the rightmost of the second and third row in Fig. 8, how-
ever, deteriorates because of the high dimensionality.

Although the complexity analysis indicates that the time complexity of the proposed FMST is OðN1:5Þ, the actual running
time can be different. We analyzed the actual processing time by fitting an exponential function T ¼ aNb, where T is the run-
ning time and N is the number of data points. The results are shown in Table 2.

4.1.2. Running time with different Ks
We have discussed the number of clusters K and set it to

ffiffiffiffi
N

p
in Section 2.2.1, and have also presented some supporting

theorems in Section 3. In practical applications, however, the value is slightly small. Some experiments were performed on

ba

Fig. 6. Merge of two Voronoi graphs. Voronoi graph in solid line is corresponding to the first partition, and that in dashed line corresponding to the
secondary partition. Only the first partition is illustrated.

Original dataset

First partition

Second partition

Final result

Fig. 7. The collinear Voronoi graph case.

Table 1
The description of four datasets.

t4.8k MNIST ConfLongDemo MiniBooNE

Data size 8000 10,000 164,860 130,065
Dimension 2 784 3 50
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dataset t4.8k and ConfLongDemo to study the effect of different Ks on running time. The experimental results are illustrated
in Fig. 9, fromwhich we find that if K is set to 38 for t4.8k and 120 for ConfLongDemo, the running time will be minimum. But
according to the previous analysis, Kwould be set to

ffiffiffiffi
N

p
, namely 89 and 406 for the two datasets, respectively. Therefore, K is

practically set to
ffiffiffi
N

p
C , where C > 1. For dataset t4.8k and ConfLongDemo, C is approximately 3. The phenomenon is explained

as follows.
From the analysis of the time complexity in Section 3, we can see that themain computational cost comes from K-means, in

which a large K leads to a high cost. If partitions produced by K-means have the same size, when K is set to
ffiffiffiffi
N

p
, the time com-

plexity isminimized.However, thepartitionspractically haveunbalancedsizes. Fromthe viewpoint of divide-and-conquer, the
proposedmethodwith a large Kwill have a small time cost for constructing themeta-MSTs, but the unbalanced partitions can
reduce this gain, and the large K only increases the time cost of K-means. Therefore, before K is increased to

ffiffiffiffi
N

p
, theminimum

time cost can be achieved.

4.2. Accuracy on synthetic datasets

4.2.1. Measures by edge error rate and weight error rate
The accuracy is another important aspect of FMST. Two accuracy rates are defined: edge error rate ERedge and weight error

rate ERweight . Before ERedge is defined, we present the notation of an equivalent edge of an MST, because the MST may not be
unique. The equivalence property is described as:

Equivalence Property. Let T and T 0 be the two different MSTs of a dataset. For any edge e 2 ðT n T 0Þ, there must exist
another edge e0 2 ðT 0 n TÞ such that ðT 0 n fe0gÞ [ feg is also an MST. We call e and e0 a pair of equivalent edges.

Proof. The equivalency property can be operationally restated as: Let T and T 0 be the two different MSTs of a dataset, for any
edge e 2 ðT n T 0Þ, there must exist another edge e0 2 ðT 0 n TÞ such that wðeÞ ¼ wðe0Þ and e connects T 0

1 and T 0
2, where T 0

1 and T 0
2

are the two subtrees generated by removing e0 from T 0;wðeÞ is the weight of e.
Let G be the cycle formed by feg [ T 0, we have:

8e0 2 ðG n feg n ðT \ T 0ÞÞ;wðeÞ P wðe0Þ ð5Þ
Otherwise, an edge in G n feg n ðT \ T 0Þ should be replaced by e when constructing T 0.

N

Fig. 8. The results of the test on the four datasets. FMST-Prime denotes the proposed method based on Prim’s algorithm. The first row shows the running
time of t4.8k, ConfLongDemo, MNIST and MiniBooNE, respectively. The second row shows corresponding edge error rates. The third row shows
corresponding weight error rates.
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Furthermore, the following claim holds: there must exist at least one edge e0 2 ðG n feg n ðT \ T 0ÞÞ, such that the cycle
formed by fe0g [ T contains e. We prove this claim by contradiction.

Assuming that all the cycles G0
j formed by e0j

n o
[ T do not contain e, where e0j 2 ðG n feg n ðT \ T 0ÞÞ;

1 6 j 6 jG n feg n ðT \ T 0Þj, let Gunion ¼ G0
1 n e01

 �	 
 [ � � � [ G0

l n e0l

 �	 


, where l ¼ jG n feg n ðT \ T 0Þj. G can be expressed as
feg [ e01


 � [ � � � [ e0l

 � [ Gdelta, where Gdelta � ðT \ T 0Þ. As G is a cycle, Gunion [ feg [ Gdelta must also be a cycle, this is

contradictory because Gunion � T;Gdelta � T and e 2 T . Therefore the claim is correct.
As a result, there must exist at least one edge e0 2 ðG n feg n ðT \ T 0ÞÞ such that wðe0Þ P wðeÞ.
Combining this result with (5), we have the following: for e 2 ðT n T 0Þ, there must exist an edge e0 2 ðT 0 n TÞ such that

wðeÞ ¼ wðe0Þ. Furthermore, as e and e0 are in the same cycle G; ðT 0 n fe0gÞ [ feg is still an MST. h

According to the equivalency property, we define a criterion to determine whether an edge belongs to an MST:
Let T be an MST and e be an edge of a graph. If there exists an edge e0 2 T such that jej ¼ je0j and e connects T1 and T2,

where T1 and T2 are the two subtrees achieved by removing e0 from T, then e is a correct edge, i.e., belongs to an MST.
Suppose Eappr is the set of the correct edges in an approximate MST, the edge error rate ERedge is defined as:

ERedge ¼ N � jEapprj � 1
N � 1

ð6Þ

The second measure is defined as the difference of the sum of the weights in FMST and the exact MST, which is called the
weight error rate ERweight:

ERweight ¼ Wappr �Wexact

Wexact
ð7Þ

where Wexact and Wappr are the sum of the weights of the exact MST and FMST, respectively.
The edge error rates and weight error rates of the four datasets are shown in the third row of Fig. 8. We can see that both

the edge error rate and the weight error rate decrease with the increase in data size. For datasets with high dimensions, the
edge error rates are greater, for example, the maximum edge error rates of MNIST are approximately 18.5%, while those of
t4.8k and ConfLongDemo are less than 3.2%. In contrast, the weight error rates decrease when the dimensionality increases.
For instance, the weight error rates of MNIST are less than 3.9%. This is the phenomenon of the curse of dimensionality. The
high dimensional case will be discussed further in Section 4.5.

Table 2
The exponent bs obtained by fitting T ¼ aNb . FMST denotes the proposed method.

b

t4.8k MNIST ConfLongDemo MiniBooNE

FMST 1.57 1.62 1.54 1.44
Prim’s alg. 1.88 2.01 1.99 2.00
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Fig. 9. Performances (running time and weight error rate) as a function of K. The left shows the running time and weight error rate of FMST on t4.8k, and the
right on ConfLongDemo.
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4.2.2. Accuracy with different Ks
Globally, the edge and weight error rates increase with K. This is because the greater the K, the greater the number of split

boundaries, fromwhich the error edges come. But when K is small, the error rates increase slowly with K. In Fig. 9, we can see
that the weight error rates are still low when K is set to approximate

ffiffiffi
N

p
3 .

4.2.3. Comparison to other approaches
We first compare the proposed FMST with the approach in [34]. The approach in [34] is designed to detect the clusters

efficiently by removing the longer edges of the MST, and an approximate MST is generated in the first stage.
The accuracy of the approximate MST produced in [34] is relevant to a parameter: the number of the nearest neighbors of

a data point. This parameter is used to update the priority queue when an algorithm like Prim’s is employed to construct an
MST. In general, the larger the number, the more accurate the approximate MST. However, this parameter is also relevant to
the computational cost of the approximate MST, which is OðdNðbþ kþ k logNÞÞ, where k is the number of nearest neighbors
and b is the number bits of a Hilbert number. Here we only focus on the accuracy of the method, and the number of nearest
neighbors is set to N � 0:05;N � 0:10;N � 0:15, respectively. The accuracy is tested on t4k.8k, and the result is shown in Fig. 10.
From the result, the edge error rates are more than 22%, and much higher than that of FMST, even if the number of nearest
neighbors is set to N � 0:15, which leads to a loss in the computational efficiency of the method.

We then compare FMST with two other methods: MST using cover-tree by March et al. [35] and the divide-and-conquer
approach byWang et al. [45] on the following datasets: MNIST, ConfLongDemo, MiniBooNE and ConfLongDemo � 6. To com-
pare the performances on a large data set, ConfLongDemo � 6 is generated. It has 989,160 data points, and is achieved as
follows: Move two copies of ConfLongDemo to the right of the dataset along the first coordinate axis, and then copy the
whole data and move the copy to the right along the second coordinate axis.

The results measured by running time (RT) and weight error rate in Table 3 confirm that Wang’s approach is faster due to
the recursive dividing of the data, but suffers from lower quality results, especially with the ConfLongDemo dataset, this is
because the approach focuses on finding the longest edges of an MST in the early stage for efficient clustering but does not
focus on constructing a high quality approximate MST. The method by March et al. is different and produces exact MSTs. It
works very fast on lower dimensional datasets, but inefficiently on high dimensional data such as MNIST and MiniBooNE.
FMST is slower than Wang’s approach on all of the tested datasets, but has better quality. In [35], kd-tree and similar struc-
tures are used, which are known to work well with low-dimensional data. The proposed method is slower than March’s
method for lower dimensional datasets, but faster for the higher dimensional.

4.3. Accuracy on clustering

In this subsection, the accuracy of FMST is tested on a clustering application. Path-based clustering employs the minimax
distance metric to measure the dissimilarities of data points [17,18]. For a pair of data points xi; xj, the minimax distance Dij is
defined as:

Dij ¼ min
Pk
ij

max
ðxp ;xpþ1Þ2Pk

ij

dðxp; xpþ1Þ
( )

ð8Þ

where Pk
ij denotes all possible paths between xi and xj and k is an index to enumerate the paths, and dðxp; xpþ1Þ is the Euclid-

ean distance between xp and xpþ1.
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Fig. 10. The edge error rate of Lai’s method on t4.8k.
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The minimax distance can be computed by an all-pair shortest path algorithm, such as the Floyd Warshall algorithm.
However, this algorithm runs in time OðN3Þ. An MST can be used to compute the minimax distance more efficiently in
[31]. To make the path-based clustering robust to outliers, Chang and Yeung [8] improved the minimax distance and incor-
porated it into spectral clustering. We tested the FMST within this method on three synthetic datasets (Pathbased, Com-
pound and S1).4

For computing the minimax distances, Prim’s algorithm and FMST are used. In Fig. 11, one can see that the clustering
results on three datasets are almost the same. The quantitative measures are given in Table 4, which contains four validity

Table 3
The proposed method FMST is compared to MST-Wang [45] and MST-March [35] methods.

Methods MNIST MiniBooNE ConfLongDemo ConfLong Demo � 6

RT(S) ERweight (%) RT(S) ERweight (%) RT(S) ERweight (%) RT(S) ERweight (%)

FMST 164 3.3 781 0.3 174 0.5 16,201 0.2
MST-Wang 26 43.4 64 40.5 51 38.2 5262 46.8
MST-March 1135 0 2181 0 18 0 133 0

Prim’s Algorithm based clustering on 
Pathbased data

Prim’s Algorithm based clustering on 
Compound data

Prim’s Algorithm based clustering on 
S1 data

The proposed FMST based clustering on 

Pathbased data

The proposed FMST based clustering on 
Compound data

The proposed FMST based clustering on 
S1 data

Fig. 11. Prim’s algorithm and the proposed FMST based clustering results.

Table 4
The quantitative measures of clustering results. FMST denotes the proposed method.

Datasets FMST Prim’s algorithm

Rand AR Jac FM Rand AR Jac FM

Pathbased 0.937 0.859 0.829 0.906 0.942 0.870 0.841 0.913
Compound 0.993 0.982 0.973 0.986 0.994 0.984 0.977 0.988
S1 0.995 0.964 0.936 0.967 0.995 0.964 0.935 0.966

4 http://cs.joensuu.fi/sipu/datasets/.
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indexes and indicates that the results on the first two datasets of Prim’s algorithm-based clustering are slightly better than
those of the FMST-based clustering.

4.4. Accuracy on manifold learning

MST has been used for manifold learning [48,49]. For a KNN based neighborhood graph, an improperly selected k may
lead to a disconnected graph, and degrade the performance of manifold learning. To address this problem, Yang [48] used
MSTs to construct a k-edge connected neighborhood graph. We implement the method of [48], with exact MST and FMST
respectively, to reduce the dimensionality of a manifold.

The FMST-based and the exact MST-based dimensionality reduction were performed on the dataset Swiss-roll, which has
20,000 data points. In experiments, we selected the first 10,000 data points because of the memory requirement, and set
k ¼ 3. The accuracy of the FMST-based dimensionality reduction is compared with that of an exact MST-based dimension-
ality reduction in Fig. 12. The intrinsic dimensionality of Swiss-roll can be detected by the ‘‘elbow’’ of the curves in (b) and
(d). Obviously, the MST graph based method and the FMST graph based method have almost identical residual variance, and
both indicate the intrinsic dimensionality is 2. Furthermore, Fig. 12(a) and (c) shows that the two methods have similar two-
dimensional embedding results.

4.5. Discussion on high dimensional datasets

As described in the experiments, the performances of both computation and accuracy of the proposed method are
reduced when applied to high-dimensional datasets. Since the time complexity of FMST is OðN1:5Þ under the condition of
d � N, when the number of dimensions d is becoming large and even approximate to N, the computational cost will degrade
to OðN2:5Þ. However, it is still more efficient than the corresponding Kruskal’s or Prim’s algorithms.

The accuracy of FMST is reduced because of the curse of dimensionality, which includes distance concentration phenom-
enon and the hubness phenomenon [40]. The distance concentration phenomenon is that the distances between all pairs of
data points from a high dimensional dataset are almost equal, in other words, the traditional distance measures become inef-
fective, and the distances computed with the measures become unstable [25]. For constructing an MST in terms of these dis-
tances, the results of Kruskal’s or Prim’s algorithm are meaningless, so is the accuracy of the proposed FMST. Furthermore,
the hubness phenomenon in a high-dimensional dataset, which implies some data points may appear in many more KNN
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Fig. 12. Two 3-MST graph based ISOMAP results using exact MST (Prim’s algorithm) and FMST, respectively. In (a) and (c), the two dimensional embedding
is illustrated. (b) and (d) are corresponding resolutions.
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lists than other data points, shows that the nearest neighbors also become meaningless. Obviously, hubness affects the con-
struction of an MST in the same way.

The intuitive way to address the above problems caused by the curse of dimensionality is to employ dimensionality
reduction methods, such as ISOMAP, LLE, or subspace based methods for a concrete task in machine learning, such as sub-
space based clustering. Similarly, for constructing an MST of a high dimensional dataset, one may preprocess the dataset
with dimensionality reduction or subspace based methods for the purpose of getting more meaningful MSTs.

5. Conclusion

In this paper, we have proposed a fast MST algorithm with a divide-and-conquer scheme. Under the assumption that the
dataset is partitioned into equal sized subsets in the divide step, the time complexity of the proposed algorithm is theoret-
ically OðN1:5Þ. Although this assumption may not hold practically, the complexity is still approximately OðN1:5Þ. The accuracy
of the FMST was analyzed experimentally using edge error rate and weight error rate. Furthermore, two practical applica-
tions were considered, and the experiments indicate that the proposed FMST can be applied to large datasets.
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