
Pattern Analysis & Applications (2000)3:358–369
 2000 Springer-Verlag London Limited

Randomised Local Search Algorithm for the
Clustering Problem

P. Fränti1 and J. Kivijärvi2
1Department of Computer Science, University of Joensuu, Joensuu, Finland; 2Turku Centre for Computer Science
(TUCS), Department of Computer Science, University of Turku, Turku, Finland

Abstract: We consider clustering as a combinatorial optimisation problem. Local search provides a simple and effective approach to many
other combinatorial optimisation problems. It is therefore surprising how seldom it has been applied to the clustering problem. Instead,
the best clustering results have been obtained by more complex techniques such as tabu search and genetic algorithms at the cost of high
run time. We introduce a new randomised local search algorithm for the clustering problem. The algorithm is easy to implement,
sufficiently fast, and competitive with the best clustering methods. The ease of implementation makes it possible to tailor the algorithm
for various clustering applications with different distance metrics and evaluation criteria.

Keywords: Clustering; Combinatorial optimisation; Compression; Image processing; Local search; Vector quantisation

1. INTRODUCTION

Clustering, or unsupervised classification, is considered here as
a combinatorial optimisation problem where the aim is to
partition a set of data objects into a predefined number of
clusters. The objects with similar features should be grouped
together and objects with different features placed in separ-
ate groups [1,2]. Clustering has many applications in social
sciences, numerical taxonomy, computer science and image
processing. The size and dimensionality of the data is often
very high, which makes manual processing practically
impossible. A high quality computer-based clustering is
therefore needed.

The general clustering problem includes three subprob-
lems: (i) selection of the evaluation function; (ii) decision
of the number of groups in the clustering; and (iii) the
choice of the clustering algorithm. We consider the last
subproblem, and assume that the number of clusters (groups)
is fixed before-hand. The evaluation function depends upon
the application and the type of data objects. Minimisation
of intracluster diversity is widely used as a criterion, and it
is therefore applied here as well.

There are several established methods for generating a

Received: 14 January 2000
Received in revised form: 2 May 2000
Accepted: 21 June 2000

clustering [1–3]. The most cited and widely used method is
the k-means algorithm [4]. It starts with an initial solution,
which is iteratively improved using two optimality criteria
in turn until a local minimum is reached. The algorithm is
easy to implement and it gives reasonable results in most
cases. Unfortunately, the algorithm makes only local changes
to the original clustering, and it gets stuck at the first local
minimum. The quality of the final clustering is therefore
highly dependent on the initialisation.

Better results have been achieved by optimisation methods
such as Genetic Algorithms (GA) and Tabu Search (TS). A
common property of these methods is that they consider
several possible solutions at time. The GA and TS
approaches give better clustering results, and they are less
dependent on the initialisation [5,6]. A drawback of these
approaches is their high run time. There are many candidate
solutions, and each of them must be fine-tuned by the k-
means algorithm. This makes the overall run time signifi-
cantly higher than that of the k-means, and the methods
are also more complex to implement.

We propose a new clustering algorithm based on the
traditional optimisation technique, local search. We show
that Randomised Local Search (RLS) gives competitive results
to those of the GA and TS with a faster algorithm, and
with considerably simpler implementation. The method is
based on the ideas studied in Fränti et al [6] with the
following enhancements and simplifications. The represen-



359Randomised Local Search Algorithm for the Clustering Problem

tation of solution and the neighbourhood function are
revised so that new candidate solutions can be generated
more efficiently. The use of the time consuming k-means
method can be implemented much faster. The tabu list is
also omitted. These modifications give remarkable speed-up
to the algorithm without losing the quality of the clustering.
The method therefore offers a good trade-off between the
quality of clustering and complexity of the algorithm.

The simplicity of the proposed algorithm makes it a
suitable candidate for a wide variety of clustering appli-
cations. The main modifications in the solution are based
on combinatorial changes in the clustering structure. This
is independent of the chosen distance metric. The most
critical part of the algorithm when changing the distance
metric is the partition step, in which the data objects are
classified into the existing clusters. The classification rule is
an integral part of practically all clustering methods (directly
or indirectly), and must therefore be modified according to
the chosen distance metric and evaluation criterion. Besides
that, the algorithm is expected to be independent of the
changes in the application domain.

The rest of the paper is organised as follows. We start in
Section 2 by giving a formal definition of the clustering
problem, and by summarising existing clustering algorithms
in Section 3. The local search approach is then studied in
Section 4. We consider the local search first in a wider
context by defining the basic components of the algorithm.
Several different design alternatives are discussed for each
component. The randomised local search and its parameter
setup are then introduced in Section 5. Test data sets are
presented in Section 6, and the performance of the new
algorithm is compared with the related clustering methods
in Section 7. Conclusions are drawn in Section 8.

2. CLUSTERING PROBLEM

We use the following notations:

N Number of data objects.
M Number of clusters.
K Number of attributes.
X Set of N data objects X = {x1, x2, %, xN}.
P Set of N cluster indices P = {p1, p2, %, pN}.
C Set of M cluster representatives C = {c1, c2,

%, cM}.

The clustering problem is defined as follows. Given a set of
N data objects (xi), partition the data set into M clusters
such that similar objects are grouped together and objects
with different features belong to different groups. Partition
(P) defines the clustering by giving for each data object the
cluster index (pi) of the group to which it is assigned. Each
group is described by its representative data object (ci).

Object dissimilarity. Each object xi has K attributes (xk
i ),

which together form a feature vector. For simplicity, we
assume that the attributes are numerical and have the same
scale. If this is not the case, the attributes must first be
normalised. The dissimilarity between two objects x1 and x2

is measured by a distance function d(x1, x2) between the
two feature vectors.

Evaluation of clustering. The most important choice in the
clustering method is the objective function f for evaluating
the clustering. The choice of the function depends upon
the application, and there is no universal solution of which
measure should be used. However, once the objective func-
tion is decided the clustering problem can be formulated as
a combinatorial optimisation problem. The task is to find
such a partition P that minimises f.

A commonly used objective function is the sum of squared
distances of the data objects to their cluster representatives.
Given a partition P and the cluster representatives C, it is
calculated as:

f(P, C) = ON
i=1

d(xi, cpi
)2 (1)

where d is a distance function. Euclidean distance is the most
widely used distance function in the clustering context, and
it is calculated as:

d(x1, x2) = !OK
i=1

(xi
1 − xi

2)2 (2)

Thereafter, given a partition P, the optimal choice for the
cluster representatives C minimising (1) are the cluster
centroids, calculated as:

cj =

O
pi=j

xi

O
pi=j

1
, 1 # j # M (3)

The objective function (1) is implicitly applied in the k-
means method. Hierarchical clustering methods, however, do
not usually define the objective function directly. For
example, agglomerative clustering methods measure the dis-
tance between the clusters, and use this criterion for sel-
ecting the clusters to be merged [7]. The most popular
method, Ward’s method, also minimises (1) in each step of
the algorithm [8]. For these reasons, we assume the sum of
squared distances as the objective function in the rest of
this paper.

Number of clusters. In applications such as vector quantis-
ation [3], the number of clusters (M) is merely a question
of resource allocation. It is therefore a parameter of the
clustering algorithm. In some other applications, the number
of clusters must also be solved. The choice of the correct
number of clusters is an important subproblem of clustering,
and should be considered separately. The decision is typically
made by the researcher of the application area, but analytical
methods also exist [9,10] for helping in the decision. A
common approach is to generate several clusterings for
various values of M and compare them against some evalu-
ation criteria. In the rest of this paper, we assume that the
number of clusters is fixed.



360 P. Fränti and J. Kivijärvi

3. CLUSTERING ALGORITHMS

The clustering problem in its combinatorial form has been
shown to be NP-complete [11]. No polynomial time algor-
ithm is known to find the globally optimal solution, but
reasonable suboptimal solutions are typically obtained by
heuristic algorithms. Next we recall four groups of clus-
tering algorithms.

3.1. K-means

The k-means algorithm [4] starts with an initial solution,
which is iteratively improved until a local minimum is
reached (see Fig. 1). In the first step, the data objects are
partitioned into a set of M clusters by mapping each object
to the nearest cluster centroid of the previous iteration.
In the second step, the cluster centroids are recalculated
corresponding to the new partition. The quality of the new
solution is always better than or equal to the previous one.
The algorithm is iterated as long as improvement is achi-
eved. The number of iterations depends upon the data set,
and upon the quality of the initial solution. Ten to fifty
iterations are usually needed when starting from a random
clustering.

The k-means algorithm is easy to implement, and it gives
reasonable results in most cases. However, the method itself
is only a descent method, and it gets stuck at the first local
minimum. The quality of the final clustering is therefore
highly sensitive to the initialisation, and there is high
variation between the results of different initialisations. An
advantage of the k-means method is that it can improve
almost any existing solution not obtained by a k-means
based method. The method is therefore highly applicable
when integrated with other clustering methods as a local
optimiser [5,6,12]. In the vector quantisation context, the
method is known as Generalized Lloyd Algorithm (GLA), or
the LBG method due to Linde et al. [13].

3.2. Agglomerative Clustering

Another approach is to generate the clustering hier-
archically. Agglomerative methods start by initialising each
data object as a separate cluster. Two clusters are merged
at each step of the algorithm, and the process is repeated
until the desired number of clusters is obtained. The clusters
to be merged are always those that are closest to each other

Fig. 1. Structure of the k-means algorithm.

among all possible cluster pairs. Agglomerative clustering
also provides a taxonomy (dendrogram) of the groups as a
by-product.

There are several ways to measure the ‘distance’ of two
clusters: in a single linkage method (nearest neighbour) it is
the minimum distance of the individual data objects belong-
ing to the different groups; and in the complete linkage
method (furthest neighbour) it is the maximum of these dis-
tances. Ward’s method [8] selects the cluster pair that
increases the objective function value least. This is a natural
way for minimising (1). In the vector quantisation context,
this method is known as Pairwise Nearest Neighbour (PNN)
due to Equitz [14].

The Ward’s method is simple to implement and it usually
outperforms the k-means and most of the other hierarchical
clustering methods in the minimisation of (1). The biggest
deficiency of the algorithm is its speed. It has generally
been considered as an O(N3) time algorithm, which is a
severe restriction in the case of large data sets. In a recent
study, however, it was shown that the method can be
implemented by an O(tN2) time algorithm, where t is
significantly smaller than N in practice [15].

3.3. Divisive Clustering

Divisive clustering uses an opposite, top-down approach for
generating the clustering. The method starts with a single
cluster including all the data objects. New clusters are then
created one at a time by dividing existing clusters. The
splitting process is repeated until the desired number of
clusters is reached. The divisive approach usually requires
much less computation than the bottom-up approach of
agglomeration, and it also provides taxonomy of the groups.

Despite its benefits, the divisive clustering is far less
used than the agglomerative clustering because of two main
problems. The first is that there is no easy solution for
defining the way the cluster should be split. The second
problem is that partitions made in the earlier stages cannot
be changed later. Inaccurate divisions can therefore be very
harmful for the quality of the final clustering. Fortunately,
these problems have recently been studied in the vector
quantisation literature, and good solutions exist for both
problems [16,17].

The best known approach for the splitting is to use
Principal Component Analysis (PCA) [18]. The main idea is
to calculate the principal axis of the data vectors in the
cluster. The data objects are then classified by a (K-1)-
dimensional hyperplane perpendicular to the principal axis.
The optimal location for the hyperplane is obtained by
considering each object as a tentative dividing point through
which the hyperplane passes. This technique can be
implemented using an efficient O(N·logN·logM) +
O(N·K2·logM) time algorithm (see Fränti et al [17] for
details).

The second problem can be solved by fine-tuning the
partition boundaries after each split operation. The new
(smaller) clusters due to the division may attract data objects
from neighbouring clusters. Wrong decisions in the early
divisions can therefore be corrected by repartition. The



361Randomised Local Search Algorithm for the Clustering Problem

PCA-based divisive method with this kind of partition
refinement gives comparable results to that of the Ward’s
method in the minimisation of (1), with a faster O(NM)
algorithm [17]. The problem of the method is that the best
results are obtained with a rather complicated algorithm, in
comparison to the k-means and the agglomerative methods.

3.4. Optimisation Methods

Various optimisation methods, such as local search, tabu
search, stochastic relaxation, neural networks and genetic algor-
ithms, have also been applied to the clustering problem
[5,6,19–21]. A common property of these methods is that
they consider several possible solutions and generate a new
solution (or a set of solutions) at each step on the basis of
the current one [22,23]. The use of several candidates directs
the search towards the highest improvement in the optimis-
ation function value. The key question is how to create
new candidate solutions.

Tabu Search (TS) is a variant of the traditional local search,
which uses suboptimal moves to allow the search to continue
past local minima. A tabu list is used to prevent the search
from returning to solutions that have been visited recently.
This forces the search into new directions instead of sticking
in a local minimum and its neighbourhood. The algorithm
in Fränti et al [6] generates new solutions by making random
modifications to the current solution and fine-tuning it by
two iterations of the k-means. This was shown to give high
quality clustering results at the cost of high run time.

Genetic Algorithms (GA) maintain a set of solutions
(population). In each iteration the algorithm generates new
solutions by genetic operations, such as crossover and
mutation. Only the best solutions survive to the next iter-
ation (generation). New candidates are created in the cross-
over by combining two existing solutions (parents). A simple
approach uses random crossover and the k-means as a local
optimiser, but this can hardly perform any better than a
simple local search with similar modifications. However, the
GA has been shown to outperform all existing methods [5]
when a well-defined deterministic crossover operation is
applied. The drawback of the GA is that a large number
of candidate solutions must be generated. This makes the
overall run time significantly higher than that of the k-
means and the hierarchical methods.

4. DESIGN ALTERNATIVES FOR
LOCAL SEARCH

The structure of a local search algorithm is shown in Fig.
2. The algorithm starts with an initial solution, which is
iteratively improved using neighbourhood search and selec-
tion. In each iteration a set of candidate solutions is generated
by making small modifications to the existing solution. The
best candidate is then chosen as the new solution. The
search is iterated a fixed number of iterations, or until a
stopping criterion is met.

Fig. 2. Structure of the local search.

In a local search algorithm, the following design problems
are to be considered:

I Representation of a solution.
I Neighbourhood function.
I Search strategy.

The representation of a solution is an important choice in
the algorithm. It determines the data structures which are
to be modified. The neighbourhood function defines the way
in which the new solutions are generated. An application of
the neighbourhood function is referred as a move in the
neighbourhood search. The neighbourhood size is usually
very large, and only a small subset of all possible neighbours
are generated. The search strategy determines the way in
which the next solution is chosen among the candidates.
The most obvious approach is to select the solution minimis-
ing the objective function (1).

4.1. Representing a Solution

A solution could be represented and processed as a bit string
(binary data) without any semantic interpretation of the
content. New solutions would then be generated by turning
a number of randomly chosen bits in the solution. However,
this is not a very efficient way to improve the solution, and
it is possible that certain bit combinations do not represent
a valid solution. It is therefore much more efficient to use
a problem-specific representation and operate directly on the
data structures in the problem domain.

In the clustering problem there are two main data struc-
tures: the partition P of the data objects, and the cluster
representatives C. In the context of minimising (1) using
Euclidean distance, the P and C depend upon each other,
so that if one of them has been given, the optimal choice
of the other one can be uniquely constructed. This is
formalised in the following two optimality conditions [3]:

I Nearest neighbour condition: for a given set of cluster
centroids, any data object can be optimally classified by
assigning it to the cluster whose centroid is closest to the
data object in respect to the distance function.

I Centroid condition: for a given partition, the optimal cluster
representative minimising the distortion is the centroid of
the cluster members.

It is therefore sufficient to determine only P or C to define
a solution, although both of them must be generated in
order to evaluate the solution. The preceding reasoning
gives three alternative approaches for representing a solution:



362 P. Fränti and J. Kivijärvi

I Partition: (P)
I Centroid: (C)
I Combined: (P, C)

The first approach operates with P and generates C (when
needed) using the centroid condition. This is a natural
representation in traditional clustering problems, since the
primary aim is to generate the partition. The approach is
computationally fast requiring only O(N) time. The problem
is that only local changes may be generated to the solution
by modifying the partition.

The second approach operates with C and generates the
partition using the nearest neighbour condition. This is a
natural way to represent the solution in vector quantisation
applications, since the aim is to create a codebook
(corresponding to the set of cluster representatives). This
approach is effective because the entire clustering structure
may be revised through modifications of the cluster represen-
tatives. A drawback is that the generation of the partition
is computationally expensive requiring O(NM) time.

We take the third approach and maintain both P and
C. The key point is that both data structures are needed for
evaluating the clustering, and it would be computationally
inefficient to recalculate either data structure from scratch
in every step of the algorithm. Instead, the data structures
of the existing solutions are utilised. We aim at achieving
the power of the second representation (having only C) but
avoiding its slowness.

4.2. Neighbourhood Function

The neighbourhood function generates new candidate sol-
utions by making modifications to the current solution. The
number of modifications must be small enough so as not to
destroy the original solution completely, but also large
enough so that the search may pass local minima. Some
level of randomness should be included in the neighbour-
hood function, but it is unlikely that random modifications
alone will improve the clustering. A good neighbourhood
function is balanced between random and deterministic
modifications.

The modifications should make global changes to the
clustering structure, and at the same time, perform local
fine tuning (as in the k-means) towards a local optimum.
Global changes can be made by changing the location of
the clusters through modifying the cluster representatives.
These changes are needed for obtaining significantly different
solutions from the current one. The purpose of local changes
is to fine-tune the current solution towards a local optimum
so that it is competitive with the existing solution. In the
following, we describe different ways to generate global and
local changes.

4.2.1. Methods for Global Rearrangement.
Random swap. A randomly chosen cluster is made obsolete
and a new one is created. This is performed by replacing
the chosen cluster representative cj by a randomly chosen
data object xi:

cj ← xi u j = random(1,M), i = random(1,N) (4)

The change is effective if the step is followed by partition
refinement. The idea is due to Fränti et al [6], with the
difference that a single swap is enough. Further changes in
a single step may disturb the current clustering too much
to be able to improve the solution. A single swap requires
O(1) time, on average, and at most O(M) time if duplicates
are not allowed when selecting the new representative. We
will use the random swap as the basic component in our
neighbourhood function.

Deterministic swap. A deterministic variant of the swapping
method is proposed in Fritzke [24]. The method removes
the cluster whose absence decreases the quality of the clus-
tering least. A new cluster is added in the vicinity of the
cluster that has the largest distortion. The swap is performed
as in the previous method by changing the cluster represen-
tatives. Partition refinement is thus needed after the swap.
The method is computationally expensive, requiring O(NM)
time due to the calculation of secondary partition for each
data object.

Split-and-merge. The split-and-merge approaches [12,25] are
similar to the preceding swapping methods, but they operate
with the partitions. At each step, two nearby clusters are
merged and reallocated elsewhere by splitting another clus-
ter. The clusters to be merged are optimally chosen. The
split can be performed heuristically, as in Sarkar et al [25],
or using principal component analysis, as in Kaukoranta et
al [12]. The methods include the partition update implicitly.
No explicit refinement is therefore needed. A single split-
and-merge phase can be performed in O(M2) time [12],
on average.

4.2.2. Methods for Local Refinement.
Optimal representatives (due to the k-means). At any stage
of the algorithm, the existing solution can be improved by
recalculating the cluster representatives according to the
centroid condition:

cj ←
O
pi=j

xi

O
pi=j

1
∀ j P [1, M] (5)

This is a rather trivial operation, and it takes only O(M)
time.

Optimal partition (due to the k-means). At any stage of
the algorithm, the existing partition may be improved by
regenerating the partition according to the nearest neigh-
bour condition:

pi ← arg min
1#j#M

d(xi, cj)2 ∀ i P [1, N] (6)

The partition optimality is important for achieving competi-
tive solutions, but it is also computationally expensive taking
O(NM) time.

Object rejection. The idea is to perform optimal partition
considering only a single object at a time. We take any
cluster j and find the optimal partition for the data objects
in this cluster:



363Randomised Local Search Algorithm for the Clustering Problem

pi ← arg min
1#k#M

d(xi, ck)2 ∀ i u pi = j (7)

Effectively, the chosen cluster may ‘reject’ the objects whose
partition was not optimally chosen. The step requires O(N)
time, on average, since there are M distance calculations,
and N/M objects to be checked, on average.

Object attraction. The idea is similar to the object rejection.
We take any cluster j and check the distance of every data
object xi to the centroid of their current cluster (pi), and
the distance to the chosen cluster (j). If we find out that
a data object is closer to the chosen centroid, then its
partition is changed:

pi ← arg min
k=j~k=pi

d(xi, ck)2 ∀ i P [1, N] (8)

Effectively, the chosen cluster may ‘attract’ new objects from
its neighbouring clusters. The step requires O(N) time, since
there are only two distance calculations for each of the
N objects.

Local repartition. Local repartition is a combination of the
preceding object rejection (7) and object attraction (8)
rules. It can be used as a partition refinement after the
swapping methods. In the object rejection, the target cluster
is chosen as the obsolete cluster that was removed in the
swap. In the object attraction, the target cluster is chosen
as the new cluster that was added in the swap. The motiv-
ation is that the original partition is a valid starting point
for the new partition, and unnecessary computations should
not be wasted for full repartition. Furthermore, if the original
partition was optimal (in respect to the previous C), the
new partition is also optimal (in respect to the modified
C). In this case, the local repartition performs optimal
partition. The requirement of the optimality itself, however,
is not necessary for the LS algorithm. The step requires
O(N) time in total.

Partition swapping. The idea of the random swapping in
Section 4.2.1 can also be applied to partition refinement.
Any data object i may be moved to another randomly
chosen cluster:

pi ← random(1, M) (9)

This kind of blind swapping, however, is not effective unless
the new cluster is a neighbouring cluster. Even so, the
partition swapping performs only local changes, and it is
therefore not a very interesting choice for the neighbourhood
function for local search.

4.3. Search Strategy

The most obvious search strategy is the steepest descent
method. It evaluates all the candidate solutions in the
neighbourhood and selects the one minimising the objective
function. With a large number of candidates the search is
more selective, as it seeks for the maximum improvement.
An alternative approach is the first-improvement method,
which accepts any candidate solution if it improves the
objective function value. This is effectively the same as the

steepest descent approach with the neighbourhood size 1.
The studies in Anderson [26] indicate that the first-improve-
ment method would be a better choice in most real world
problems. It is expected to find the optimum faster because
there are fewer candidates to be evaluated, and it is also
less likely to get stuck into a local optimum.

Suboptimal moves can also be allowed during the search
by accepting solutions that do not improve the objective
function value. The motivation of allowing suboptimal
moves is to help the search to pass over local minima.
Stochastic relaxation, for example, adds noise to the evaluation
of the objective function. The amount of noise gradually
decreases at each iteration step, and eventually, when the
noise has been completely eliminated, the search reduces
back to normal local search. Tabu search uses a tabu list of
previous moves, and prevents the search from returning to
solutions that have been visited recently.

In a typical clustering problem, however, the local optima
are not a serious problem. The size and dimensions of the
search space are usually very large. Local search with a large
neighbourhood and random sampling are therefore sufficient
for preventing the search from getting stuck to a local
minima. The key is to select a neighbourhood function
that includes randomness, but is also capable for generating
competitive candidates.

There is also an important group of deterministic neigh-
bourhood functions that generates only one candidate. Such
methods are the k-means algorithm, the deterministic swap
(Section 4.2.1), and the split-and-merge method (Section
4.2.1). Local search based on these neighbourhood functions
can gradually improve any solution until a local minimum
is reached. In principle, these methods could be improved
by repeating the search from several different starting points.
However, experiments [5,6,12] have demonstrated that the
repetition is not a successful approach for improving descent
methods in general.

5. RANDOMISED LOCAL SEARCH

Our design for the local search based clustering algorithm
is described in Fig. 3. In the algorithm we combine the
best ideas from the previous section so that the following
three objectives would be satisfied. The main goal is to
obtain a high quality clustering. Simple implementation

Fig. 3. Two variants of the local search algorithm. The difference
between the algorithms is that the RLS-2 algorithm performs two
k-means iterations instead of the OptimalRepresentatives-operation.
The number of iterations is fixed to T = 5000 in the rest of
the paper.



364 P. Fränti and J. Kivijärvi

and low computational complexity are the other criteria in
the design.

Initialisation. The initial solution is generated by taking M
randomly chosen data objects as the cluster representatives.
Optimal partition is generated using the nearest neighbour
condition. This initialisation is simple to implement, and it
distributes the clusters evenly all over the data space except
to the unoccupied areas. However, practically any valid
solution would be good enough because the algorithm is
designed to be insensitive to the initialisation.

Iterations. We apply the first-improvement strategy by gen-
erating only one candidate at each iteration. The candidate
is accepted if it improves the current solution. This approach
is simplest to implement, and the use of larger neighbour-
hood was not shown to give any improvement over the
first-improvement approach. The algorithm is iterated for a
fixed number of iterations.

Neighbourhood function. A new candidate solution is gen-
erated using the following operations. The clustering struc-
ture of the current solution is first modified using the random
swap technique. The partition of the new solution is then
adjusted (in respect to the modified set of cluster
representatives) by the local repartition operation. The clus-
ter representatives are also updated according to the fine-
tuned partition by calculating the optimal cluster representa-
tives. Finally, the quality of the new solution is evaluated
and compared to the previous solution. The three-step pro-
cedure generates global changes to the clustering structure,
and at the same time, it performs local fine-tuning for the
partition and for the cluster representatives.

K-means iterations. The random swap modifies the clus-
tering structure by changing one cluster per iteration. How-
ever, even a single swap is sometimes too big a change in
comparison to the amount of local fine-tuning. The local
refinement can therefore be enhanced by applying the k-
means algorithm on each iteration. This would direct the
search more efficiently by resulting in better intermediate
solutions, but it would also slow down the algorithm. In
practice, the k-means algorithm can be implemented much
faster within the RLS algorithm, for two reasons: (i) using
the grouping technique [27], most of the distance calcu-
lations can be avoided when k-means is applied to a solution
that is already reasonably close to a local optimum; and (ii)
just two k-means iterations is usually enough [5,6].

Demonstration. A single step of the algorithm is illustrated
in Fig. 4 for a data set containing 15 distinctive but some-
what mixed clusters. In the original solution (Fig. 4(a)),
there are two incorrect placements of clusters where there
are clearly separate sets of data points partitioned into one
clusters. At the same time, there are two smaller partitions
at places where there should not be any. Next we demon-
strate how the local search algorithm is capable of correcting
one of the two misplacements of the clusters.

The algorithm proceeds by removing the top rightmost
cluster (Fig. 4(b)) and by creating a new cluster centroid
at a randomly chosen place, which happens to be not so

far away. The objects in the obsolete cluster are repartitioned
into their neighbouring clusters, and the new cluster is
created by attracting objects from the neighbouring clusters
(Fig. 4(c)). Note that the random swapping only partially
solves the problem. Although it successfully removes a false
cluster, it puts the new centroid into a place where another
cluster is already located. Nevertheless, this is good enough
because the k-means iterations are now capable of making
the necessary fine-tuning by moving the other cluster cen-
troid down to the place where the new cluster should be
created (Fig. 4(d)). The new solution is better than the
original one, but further iterations of local search are still
required to correct the other incorrect placement of a cluster.

Computational complexity. The bottleneck of the algorithm
(without the k-means) is the local repartition phase. It
requires O(N) time originating from the distance calcu-
lations. The expected number of distance calculations is N
in the object rejection phase, and 2N in the object attrac-
tion phase. In addition to that, the evaluation of the
objective function value requires N distance calculations
summing up to 4N distance calculations in total. If the k-
means iterations are included the number of distance calcu-
lations is O(NM).

6. EXAMPLE DATA SETS

The following data sets are considered: Bridge, Bridge-2, Miss
America, House, Lates mariae and SS2. Due to our vector
quantisation and image compression background, the first
four data sets originate from this context. We consider these
data sets merely as test cases of the clustering problem.

In vector quantisation, the aim is to map the input data
objects (vectors) into a representative subset of the vectors,
called code vectors. This subset is referred as a codebook, and
it can be constructed using any clustering algorithm. In
data compression applications, reduction in storage space is
achieved by storing the index of the nearest code vector
instead of each original data vector. More details on the
vector quantisation and image compression applications can
be found elsewhere [3,28,29].

Bridge consists of 4 × 4 spatial pixel blocks sampled from
the image (8 bits per pixel). Each pixel corresponds to a
single attribute having a value in the range [0, 255]. The
data set is very sparse and no clear cluster boundaries can
be found. Bridge-2 has the blocks of Bridge after a BTC-like
quantisation into two values according to the average pixel
value of the block [30]. The attributes of this data set are
binary values (0/1) which makes it an important special
case for the clustering. According to our experiments, most
of the traditional methods do not apply very well for this
kind of binary data.

The third data set (Miss America) has been obtained by
subtracting two subsequent image frames of the original
video image sequence, and then constructing 4 × 4 spatial
pixel blocks from the residuals. Only the first two frames
have been used. The application of this kind of data is
found in video image compression [31]. The data set is



365Randomised Local Search Algorithm for the Clustering Problem

Fig. 4. Illustration of the process for generating a new candidate solution by RLS-2. Clusters are illustrated by drawing convex hulls around
them. The larger dots represent the cluster centroids.

similar to the first set, except that the data objects are
presumably more clustered due to the motion compensation
(subtraction of subsequent frames).

The fourth data set (House) consists of the RGB colour
vectors from the corresponding colour image. This data
could be applied for palette generation in colour image
quantisation [32,33]. The data objects have only three attri-
butes (red, green and blue colour values), but there are a
high number of samples (65,536). The data space consists
of a sparse collection of data objects spread into a wide
area, but there are also some clearly isolated and more
compact clusters.

The fifth data set (Lates mariae) records 215 data samples
from pelagic fishes on Lake Tanganyika. The data originates
from a research of biology, where the occurrence of 52

different DNA fragments were tested from each fish sample
(using RAPD analysis) and a binary decision was obtained
as to whether the fragment was present or absent. This data
has applications in studies of genetic variations among the
species [34]. From the clustering point of view, the set is
an example of data with binary attributes. Due to only a
moderate number of samples (215), the data set is an easy
case for the clustering, compared to the first four sets.

The sixth data set is the standard clustering test problem
SS2 of Späth [35, pp. 103–104]. The data set contains 89
postal zones in Bavaria (Germany), and their attributes are
the number of self-employed people, civil servants, clerks
and manual workers in these areas. The attributes are nor-
malised to the scale [0, 1] according to their minimum and
maximum values. The dimensions of this set are rather small



366 P. Fränti and J. Kivijärvi

in comparison to the other sets. However, it serves as a
school book example of a typical small scale clustering prob-
lem.

The data sets and their properties are summarised in Fig.
5. In the experiments made here, we will fix the number
of clusters to 256 for the image data sets, 8 for the DNA
data set, and 7 for the SS2 data set. The data samples of
the binary set Lates Mariae are treated as real numbers in
the range [0, 1].

7. TEST RESULTS

We study the performance of the main RLS-variants (RLS-
1 and RLS-2) by generating clusterings for the six data sets
introduced in Section 6. We are primarily interested in the
objective function value and the time spent in the clustering
process; although the quality is the primary aim of the
clustering, the run time is also important. We use the
following methods as the point of comparison:

I Random clustering
I K-means [4]
I Ward’s method [8]
I Tabu search (TS) [6]
I Genetic algorithm (GA) [5]

Random clustering is generated by selecting M random data
objects as cluster representatives, and by mapping all the
data objects to their nearest representative, according to the
distance function d. The random clustering is used as the
starting point in the k-means, TS and GA implementations.
The parameter setup for the TS and GA methods are the
best ones obtained by Fränti et al [5,6]. The Ward’s method
(or PNN) is a variant of the agglomerative clustering. We
use the implementation presented in Fränti et al [15].

The time complexities of the RLS-1, RLS-2, k-means and
the Ward’s methods are O(T1N), O(T1NM), O(T2NM) and
O(tN2), where T1 and T2 denote to the number of iterations
in the RLS and in the k-means algorithms. In a single
iteration the RLS-1 algorithm is significantly faster than the
k-means, but the total number of iterations is much higher.
The actual run times depend upon the data set and
implementation details. The Ward’s method is asymptotically

Fig. 5. Sources for the first five data sets.

slower than the other methods, but it is fast enough for
smaller data sets to be competitive.

The clustering results are summarised in Tables 1, 2 and
3. The k-means is clearly the fastest (excluding the random
clustering) but the quality is worst. The TS and GA methods
are in the other extreme: they produce the best clustering
results, but the methods are significantly slower than the
rest. The RLS algorithms offer good trade-offs. The RLS-1
gives slightly better results than the Ward’s method with a
slightly faster algorithm. In the case of a very large data set
(House), the difference in run time is remarkable. The
results of the RLS-2 method are comparable to those of the
TS with much smaller run times. The results of the GA are
sometimes better, but at the cost of much higher run time.

We stated in Section 4 that the RLS algorithm is designed
to be insensitive to the initialisation. This can be verified
in two ways: (i) by repeating the algorithm starting from
different random initialisations; and (ii) starting from the
result of another clustering algorithm. The results in Fig. 6
show that there is very little variation between the different
runs. The RLS algorithm is also capable of improving the
clustering result of all the other algorithms tested. The RLS-
2 gives results of a similar quality regardless of the method
used in the initialisation. The k-means method, on the other
hand, is much more sensitive to the initialisation.

Overall, the RLS algorithms converge rather slowly and
a relatively large number of iterations is therefore needed
(see Fig. 7). In the case of Bridge and House, the RLS-1
outperforms the k-means after about 1000 iterations, the
RLS-2 after 5–10 iterations. The RLS-2 outperforms the
Ward’s method after about 500 iterations. From Fig. 7, it is
also obvious that there is room for further improvement if
more time is spent. Additional results have shown that the
RLS-2 outperforms the GA after about 10 hours of time for
Bridge. The best result we have obtained is 161.33 after one
million iterations (about 80 hours).

The use of more than one candidate seems not to be of
any help. The current experiments confirm the previous
results of Fränti et al [5,6], indicating that the quality of
the best clustering depends mainly upon the total number
of candidate solutions tested. However, if the run time is
limited, the first-improvement approach was shown to be
better than the use of a larger neighbourhood with a limited



367Randomised Local Search Algorithm for the Clustering Problem

Table 1. Performance comparisons of various algorithms. The results of the random clustering are the best results of 100 test
runs. The results of the k-means are averages of 100 test runs, RLS results of 10 test runs, TS and GA results of five test runs.
Ward’s method is a deterministic method, and its result is always the same. The total number of tested candidates in the (k-
means, RLS, TS and GA) were (22, 5000, 10,000, 2250)

Bridge Miss America House Bridge-2 Lates mariae SS2

Random 251.32 8.34 12.12 1.51 0.120 1.76
K-means 179.68 5.96 7.81 1.48 0.071 1.14
Ward 169.15 5.52 6.36 1.44 0.063 0.34
RLS-1 169.67 5.44 6.20 1.28 0.063 0.31
RLS-2 164.64 5.28 5.96 1.26 0.063 0.31
TS 164.23 5.22 5.94 1.27 0.063 0.31
GA 162.09 5.18 5.92 1.28 0.063 0.31

Table 2. The standard deviations of the repeated test results of Table 1

Bridge Miss America House Bridge-2 Lates mariae SS2

Random 4.765 0.169 13.194 0.019 0.996 2.647
K-means 1.442 0.056 0.196 0.015 0.457 0.899
Ward 0.000 0.000 0.000 0.000 0.000 0.000
RLS-1 0.452 0.025 0.022 0.004 0.000 0.000
RLS-2 0.205 0.022 0.010 0.001 0.000 0.000
TS 0.345 0.012 0.010 0.001 0.000 0.000
GA 0.305 0.005 0.009 0.002 0.000 0.000

Table 3. Run time (mins) comparison of various algorithms. It is noted that the parameter setup in the cases of RLS, TS and
GA were optimised for large data sets. For example, the optimal clustering for the smaller sets (Lates mariae, SS2) could be
found with a significantly less number of iterations

Bridge Miss America House Bridge-2 Lates mariae SS2

Random 0:01 0:03 0:06 0:01 0:00 0:00
K-means 0:25 0:58 4:53 0:07 0:00 0:00
Ward 9:48 13:32 177:54 2:12 0:01 0:00
RLS-1 5:28 8:25 14:22 3:31 0:48 0:03
RLS-2 35:40 34:23 53:10 6:26 1:33 0:09
TS 296:28 1149:19 2153:42 376:11 4:45 0:21
GA 135:02 535:59 904:47 236:43 2:05 0:11

Fig. 6. The effect of initialisation on the performance of the RLS algorithms (for Bridge). The methods were repeated 10 times each. The
darker part in the columns represents the difference between the best and the worst results. The numbers in the boxes are for the best
results. The arrows indicate the amount of improvement from the initial clustering.



368 P. Fränti and J. Kivijärvi

Fig. 7. Quality of the clustering as a function of the iterations.

number of iterations. Otherwise, we did not observe any
significant differences between the two approaches.

The last parameter of the RLS algorithm is the neighbour-
hood function. We chose the random swap because it is the
best compromise between quality, run time and simplicity of
implementation. In some cases, the split-and-merge approach
[12] would have been a better choice (similar results with
a faster algorithm), but the method is much more complex
to implement, and it performs worse in the case of binary
data sets. The deterministic swap [24] was not very promising,
being always slower and giving worse results than the ran-
dom swap (with or without k-means iterations). The biggest
deficiency of these two approaches is that they are determin-
istic descent methods seeking for the nearest local minimum.
Unlike the random swap, they won’t give any significant
improvement after finding a local minimum.

8. SUMMARY

The key question of cluster analysis is how to partition a
set of data objects into a given number of clusters. We
consider the clustering as combinatorial optimisation prob-
lem. The main goal is to obtain a high quality clustering,
but simplicity of implementation and low computational
complexity are also important criteria in the design of the
algorithm. The k-means and Ward’s method are the most
widely used methods, probably because of their easy
implementation and reasonable results. The best clustering
results, however, have been obtained by optimisation tech-
niques such as tabu search and genetic algorithms.

We introduce a new clustering algorithm based on the
traditional local search. The key questions in the design are
the representation of a solution, the neighbourhood function,
and the search strategy. The neighbourhood function is
balanced between random and deterministic modifications.
The modifications make global changes to the clustering
structure, and at the same time, perform local fine tuning
towards a local optimum. A large number of iterations is
needed, since the method converges slowly due to the
randomised approach. The modifications, however, are quite
simple, and can be performed efficiently. A simple first-
improvement approach is used as the search strategy.

Experiments show that the new Randomised Local Search

(RLS) approach outperforms the k-means and Ward’s method.
The method also gives competitive results to those of the
GA and TS with a faster algorithm, and with a much simpler
implementation. It thus offers a good trade-off between the
quality of the clustering and the complexity of the algorithm.
The RLS algorithm is relatively insensitive to the initialis-
ation, and was capable of improving the clustering result of
all the tested algorithms. There was very little variation
between different runs.

With simple modifications, the method can be
implemented for other distance metrics and evaluation cri-
teria. For example, stochastic complexity has been applied
with the method as the evaluation function for the classi-
fication of bacteria [36]. The RLS algorithm can be applied
to the more general case, where the number of clusters
must also be solved. A straightforward approach repeats the
clustering with various numbers of clusters using a suitable
evaluation criterion, where the number of clusters is a
parameter. For more efficient implementation, the random
swap operation itself can be modified by making the cluster
removal and creation the basic operations. In this way, the
number of clusters would be variable during the search, and
the same search strategy could be applied with a single run
of the algorithm.

References

1. Everitt BS. Cluster Analysis (3rd ed), Edward Arnold/Halsted
Press, London, 1992

2. Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, New York, 1990

3. Gersho A, Gray RM. Vector Quantization and Signal Com-
pression. Kluwer Academic, Dordrecht, 1992

4. McQueen JB. Some methods of classification and analysis of
multivariate observations. Proc 5th Berkeley Symp Mathemat
Statist Probability 1967; 1:281–296

5. Fränti P, Kivijärvi J, Kaukoranta T, Nevalainen O. Genetic
algorithms for large scale clustering problems. The Computer J
1997; 40(9):547–554

6. Fränti P, Kivijärvi J, Nevalainen O. Tabu search algorithm for
codebook generation in VQ. Pattern Recognition 1998; 31(8):
1139–1148

7. Cunningham KM, Ogilvie JC. Evaluation of hierarchical group-
ing techniques, a preliminary study. The Computer J 1972;
15(3):209–213



369Randomised Local Search Algorithm for the Clustering Problem

8. Ward JH. Hierarchical grouping to optimize an objective func-
tion. J Am Statist Assoc 1963; 58:236–244

9. Gyllenberg M, Koski T, Verlaan M. Classification of binary
vectors by stochastic complexity. J Multivariate Analysis 1997;
63(1):47–72

10. Dubes R, Jain A. Algorithms that Cluster Data. Prentice-Hall,
Englewood Cliffs, NJ, 1987

11. Garey MR, Johnson DS, Witsenhausen HS. The complexity of
the generalized Lloyd-Max problem. IEEE Trans Infor Theory
1982; 28(2):255–256

12. Kaukoranta T, Fränti P, Nevalainen O. Iterative split-and-
merge algorithm for VQ codebook generation. Optical Eng
1998; 37(10):2726–2732

13. Linde Y, Buzo A, Gray RM. An algorithm for vector quantizer
design. IEEE Trans Comm 1980; 28(1):84–95

14. Equitz WH. A new vector quantization clustering algorithm.
IEEE Trans Acoustics, Speech and Signal Process 1989; 37(10):
1568–1575

15. Fränti P, Kaukoranta T, Shen D-F, Chang K-S. Fast and memory
efficient implementation of the exact PNN. IEEE Trans Image
Process 2000; 9(5):773–777

16. Wu X, Zhang K. A better tree-structured vector quantizer. Proc
Data Compression Conf., Snowbird, UT 1991; 392–401

17. Fränti P, Kaukoranta T, Nevalainen O. On the splitting method
for vector quantization codebook generation. Optical Eng 1997;
36(11):3043–3051

18. Kotz S, Johnson NL, Read CB (eds). Encyclopedia of Statistical
Sciences 6. Wiley, New York, 1985

19. Al-Sultan K. A tabu search approach to the clustering problem.
Pattern Recognition 1995; 28(9):1443–1451

20. Zeger K, Gersho A. Stochastic relaxation algorithm for improved
vector quantiser design. Electronics Lett 1989; 25(14):896–898

21. Nasrabadi NM, Feng Y. Vector quantization of images based
upon the Kohonen self-organization feature maps. Neural Net-
works 1988; 1(1):518

22. Reeves C. Modern Heuristic Techniques for Combinatorical
Optimization Problems. McGraw-Hill, 1995

23. Goldberg DE. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA, 1989

24. Fritzke B. The LBG-U method for vector quantization – an
improvement over LBG inspired from neural networks. Neural
Processing Lett 1997; 5(1):35–45

25. Sarkar M, Yegnanarayana B, Khemani D. A clustering algorithm
using an evolutionary programming-based approach. Pattern Rec-
ognition Lett 1997; 18(10):975–986

26. Anderson EJ. Mechanisms for local search. Euro J Operational
Res 1996; 88(1):139–151

27. Kaukoranta T, Fränti P, Nevalainen O. A fast exact GLA based
on code vector activity detection. IEEE Trans Image Process
2000; 9(8)

28. Nasrabadi NM, King RA. Image coding using vector quantiz-
ation: a review. IEEE Trans Comm 1988; 36(8):957–971

29. Barnes CF, Rizvi SA, Nasrabadi NM. Advances in residual
vector quantization: a review. IEEE Trans Image Process 1996;
5(2):226–262

30. Fränti P, Kaukoranta T, Nevalainen O. On the design of a
hierarchical BTC-VQ compression system. Signal Processing:
Image Comm 1996; 8(11):551–562

31. Fowler JE Jr, Carbonara MR, Ahalt SC. Image coding using
differential vector quantization. IEEE Trans Circuits and Systems
for Video Technology 1993; 3(5):350–367

32. Orchard MT, Bouman CA. Color quantization of images. IEEE
Trans Signal Process 1991; 39(12):2677–2690

33. Wu X. YIQ Vector quantization in a new color palette architec-
ture. IEEE Trans on Image Process 1996; 5(2):321–329

34. Kuusipalo L. Diversification of endemic Nile perch Lates Mariae
(Centropomidae, Pisces) populations in Lake Tanganyika, East
Africa, studied with RAPD-PCR. Proc Symposium on Lake
Tanganyika Research, Kuopio, Finland, 1995; 60–61

35. Späth H. Cluster Analysis Algorithms for Data Reduction and
Classification of Objects. Ellis Horwood, West Sussex, 1980

36. Fränti P, Gyllenberg HH, Gyllenberg M, Kivijärvi J, Koski T,
Lund T, Nevalainen O. Minimizing stochastic complexity using
local search and GLA with applications to classification of
bacteria. Biosystems 2000; 57(1):37–48

Pasi Fränti received his MSc and PhD degrees in computer science in 1991 and
1994, respectively, from the University of Turku, Finland. From 1996 to 1999
he was a postdoctoral researcher at the University of Joensuu, funded by the
Academy of Finland. Since 2000 he has been a professor in the same department.
His primary research interests are in image compression, vector quantisation and
clustering algorithms.

Juha Kivijärvi received his MSc degree in computer science from the University
of Turku, Finland, in 1998. Currently, he is a doctoral student at the Turku
Centre for Computer Science (TUCS), University of Turku, Finland. His research
interests are in vector quantisation and clustering techniques.

Correspondence and offprint requests to: P. Fränti, Department of Computer
Science, University of Joensuu, Box 111, FIN-80101 Joensuu, Finland.
E-mail: frantiKcs.joensuu.fi


