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Abstract

In this paper, we compare the performance of two iterative clustering methods when applied to an extensive data
set describing strains of the bacterial family Enterobacteriaceae. In both methods, the classification (i.e. the number
of classes and the partitioning) is determined by minimizing stochastic complexity. The first method performs the
minimization by repeated application of the generalized Lloyd algorithm (GLA). The second method uses an
optimization technique known as local search (LS). The method modifies the current solution by making global
changes to the class structure and it, then, performs local fine-tuning to find a local optimum. It is observed that if
we fix the number of classes, the LS finds a classification with a lower stochastic complexity value than GLA. In
addition, the variance of the solutions is much smaller for the LS due to its more systematic method of searching.
Overall, the two algorithms produce similar classifications but they merge certain natural classes with microbiological
relevance in different ways. © 2000 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

Minimization of stochastic complexity (SC)
(Rissanen, 1989) has proven to be an efficient
method in numerical taxonomy, that is, in the
classification and identification of bacteria based
on phenetic features (Gyllenberg et al., 1997a,

1998, 2000). Stochastic complexity is an extension
of Shannon’s idea of information. Whereas in
Shannon’s case there is only one completely
known probability model, stochastic complexity is
computed with the help of a model class with
unknown parameters. Stochastic complexity is
taken to represent the information in a sequence
of data with regard to the model class. In our
adaptation of this notion to classification prob-* Corresponding author.
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lems, we presuppose one of the standard statisti-
cal model classes in classification studies, the class
of finite mixtures of multivariate Bernoulli distri-
bution (Bock, 1996). Gyllenberg et al. (1997a,
2000) classified a large set of strains of Enterobac-
teriaceae by this method. They compared the
classification found by minimization of SC to a
well-established classification of the same material
(Farmer et al., 1985). The study revealed similar-
ity as well as some important differences between
the two classifications.

Fig. 3. Histograms of the SC-values produced by the two
algorithms when 100 trials were performed.

Fig. 1. SC curve as function of k produced by the LS and the
GLA.

In the present study, we consider the role of the
clustering algorithm in numerical taxonomy. In
particular, we want to answer two questions in
this context. First, we compare the performance
of the two clustering clustering algorithms mea-
sured by the best values of the cost function.
Second, it is by no means evident that different
algorithms would produce similar results. Even if
the values of the cost function were similar, it
would not imply that the classifications were the
same. This is because the algorithms may con-
verge to different local minima with the same
value. The cost function, on the other hand,
guides the clustering algorithm to find certain
types of solution.

We use the classification of 5313 strains of
bacteria belonging to the Enterobacteriaceae fam-
ily as a case study. In particular, we discuss two
efficient clustering algorithms, the generalized
lloyd algorithm (GLA) (Linde et al., 1980); and
the local search (LS) (Fränti et al., 1998; Fränti
and Kivijärvi, 2000). The GLA has been applied
to the Enterobacteriaceae data by Gyllenberg et
al. (1997a), where a classification into 69 classes
was obtained.

Local search (LS) is one alternative amongst
effective clustering algorithms based on optimiza-
tion techniques. It has originally been applied to
the construction of the codebook in vector quan-
tization. In this context, it has turned out to be

Fig. 2. SC curve from the interesting range. The black dots
point the candidates for being minimum points within the
range.
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Table 1
SCENTE vs. LSENTE concordance matrix, labels are class numbers (LS on the rows)a
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Table 1 (Continued)
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Table 1 (Continued)

a The values represent the number of the vectors appearing in both the classifications in the particular class.
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Fig. 4. Frequency histograms of the distortion values for the GLA- and LS-classifications. Distortion intervals (length of 0.5) are
on x-axis and counts on y-axis.

Fig. 5. Cluster size histograms of the GLA- and LS-classifications. Size intervals (length of 10) are on x-axis and counts on y-axis.

very competitive finding extremely effective code-
books in reasonable time (Fränti and Kivijärvi,
2000). In vector quantization, the LS has been
applied using the mean square error as the cost
function. In the present paper, we give necessary
modifications for the method in order to apply
stochastic complexity as the cost function in the
LS. Other well known methods that could be for
the clustering by SC are for example genetic al-
gorithms (Fränti et al., 1997) and simulated an-
nealing (Zeger and Gersho, 1989) but the
simplicity of the LS makes it more suitable with
the SC.

2. The classification problem

Let S={x̄ (l)�l=1, 2, …, t} be a set of t elements
(feature vectors) of the form x̄ (l)=(x1

(l), x2
(l), …,

xd
(l)); xi

(l)�{0, 1} for all l�{1, 2, …, t}, i�{1, 2,
…, d}, d being the dimension of the vectors. Our
task is to determine a classification of S into k
classes so that the cost of the classification is

minimal. We must consider three sub problems
when generating a classification,
1. selecting a measure for the cost of the
classification;
2. determining the number of classes used in the
classification; and
3. selecting a suitable clustering algorithm.

These sub problems are interrelated but there
are still many degrees of freedom in each selec-
tion. The choice of the number of classes has been
discussed in (Gyllenberg et al., 1997b). In this
paper, our main interest is to understand how the
clustering algorithm itself affects the outcome.

Table 2
Distance between the classifications according to Eq. (5)

CFARM SCENTE LSENTE

*CFARM
SCENTE 1441.0 *
LSENTE *1388.5 565.0
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Table 3
Most important differences in microbiological context appearing in Table 2

Class in NomenspeciesClass in Actions in LSENTE
LSENTESCENTE or genus

1 1 E. coli 16 E. coli strains moved to class 11
Shigella3+36 �20 S. dysenteriae separated to class 362
Klebsiella3 �20 E. aerogenes separated to class 565

�15 K. pneumoniae strains moved to class 27
6+61 15 C. freundii �60 strains separated to 31

E. cloacae10+47 �40 strains separated to 479
E. coli13+21+33 �40 strains of SCENTE(21) moved to class 76

�40 strains of SCENTE(33) moved to class 11
E. coli15 10 strains separated to class 211
Enterobacter60 �10 other than E. taylorae strains moved to class 1018
Pro6idencia20 �35 P. rustigianii strains separated to class 5032+50
Enterobacter44 �25 E. cloacae strains moved to class 1030

31 Klebsiella27 �15 K. rhinoscleromatis strains moved to class 33
E. americana54 �10 E. americana strains of SCENTE(54) moved to class 3635+54

3338 Klebsiella �10 strains moved to class 27
4840 Salmonella �10 S. enteritidis moved to class 38

Serratia61+62 �20 S. odorifera strains separated to class 62, other strains separated to47
class 61

Salmonella3855+65
Hafnia6457 �10 Hafnia strains moved to class 18

+Koserella
Trash classes67+68 68
Trash class69 Single strain joined to class 12

2.1. Stochastic complexity

We describe mathematically a classification of
strains with d binary (0 or 1) features into k
classes by the numbers

lj ; j=1, …, k ; lj]0; %
k

j=1

lj=1

and

uij ; i=1, …, d ; j=1, …, k(05uij51),

where lj is the relative frequency of strains in the
jth class and uij is the relative frequency of 1 s in
the ith position in the jth class. The centroid of
the jth class is the vector (u1j, u2j, …, udj). The
distribution of feature vectors x= (x1, x2, …, xd),
(xi=1 or 0) of strains in class j is given by

pj(x)= 5
d

i=1

u ij
xi(1−uij)

1−xi (1)

(Dybowski & Franklin, 1968; Willcox et al., 1980)

As a statistical model of the classification we,
therefore, choose the distribution

p(x)= %
k

j=1

lj pj(x) (2)

with the numbers k, lj and uij being the parame-
ters of the model. We emphasize that this statisti-
cal representation is simply a mathematically
convenient way of defining the classification
model and it does not imply any randomness in
the data.

It was shown by Gyllenberg et al. (1997b) that
the stochastic complexity SC of a set of t strains
with respect to the above model is

SC= log2
� t !

t1! … tk !
�

+ log2
�t+k−1

t
�

+ %
k

j=1

%
d

i=1

log2
� (tj+1)!

tij !(tj− tij)!
�

(3)

where tj is the number of strains in class j and tij
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is the number of strains in class j with ith feature
equal to one. The two first terms in (Eq. (3))
describe the complexity of the classification and
the third term, the complexity of the strains with
respect to the classification.

To classify the feature vectors by minimizing
stochastic complexity, we apply the Shannon-
codelength instead of the L2-distance that was
originally used by Linde et al. (1980) (see also
Gersho and Gray, 1992)

CL(x,Cj)

=− %
d

i=1

�
(1−xji)log2

�
1−

tji

tj

�
+xji log2

tji

tj

�
− log2

tj

t
, (4)

The vector (t1j/tj, … tdj/tj) is the centroid of the
class uj and the number tj/t is the estimate of the
parameter lj and is called weight of the class.
Minimization of expression Eq. (4) clearly mini-
mizes the expression Eq. (3).

2.2. The generalized Lloyd algorithm

Given the number k of classes, the GLA for
minimizing SC works as follows,

Step 1. Draw k initial centroids randomly from
the set of input vectors S.
REPEAT TEN TIMES.

Step 2.1. Assign each input vector to the
closest cluster centroid with L2-distance.
Step 2.2. Calculate new cluster centroids.

REPEAT.
Step 3.1. Assign each input vector to the
closest cluster centroid with Formula 4.
Step 3.2. Calculate new cluster centroids and
class weights, and evaluate the distortion
with Eq. (3).

UNTIL no more improvement in distortion
value.
The algorithm (also known as LBG or k-

means) (McQueen, 1967; Linde et al., 1980) starts
with an initial solution, which is iteratively im-
proved using the two step procedure. In the first
step (step 2.1), the data objects are partitioned
into a set of k clusters by mapping each object to
the closest cluster centroid. In the second step

(step 2.2), the centroids and the weights of the
clusters are updated. We represent the centroids
by floating point numbers (i.e. the components of
a centroid are the relative frequencies of one-bits).
The process is first repeated ten times using the
L2-distance for the following reasons, (i) an initial
solution is needed for calculating the cluster
weights; (ii) the CL-distance is highly dependent
of the quality of the initial solution; and, there-
fore, we need more than one iteration with L2;
(iii) the use of the L2-distance reduces the compu-
tational load of the algorithm. In the next steps
(steps 3.1 and 3.2), the GLA is performed using
the CL-distance. This process is repeated as long
as improvement is achieved in the cost function
value (SC).

Another problem is connected with the so-
called orphaned centroids (also known as the
empty cell problem). Orphaned centroids have no
vectors assigned to them in the steps 2.2 and 3.2
of the algorithm. The orphaned centroids must be
eliminated, otherwise the number of non-empty
classes would be less than the prescribed k.
Whenever an orphaned centroid occurs, it is re-
placed by splitting an existing class having the
greatest distortion. The centroid of the new class
is taken as the vector with the greatest distance to
the original centroid of the split class, as proposed
by Kaukoranta et al. (1996). The GLA iterations
then continue with the modified set of centroids.

A significant benefit of the GLA is its fast
operation. On the other hand, the main drawback
of the GLA is that it is only a simple descent
method and, therefore, converges at the first local
minimum. The result depends strongly on the
quality of the initial solution. An easy way to
improve the method is to repeat the algorithm for
several different initial solutions and select the
one with minimal value of the cost function (Eq.
(3)). In the following, we use this approach.

2.3. The local search algorithm

Local search (LS) uses a different approach to
avoid the problem of local minima. Next we give
an improved version of the LS algorithm by
Fränti et al. (1998) which is simplified for gaining
speed (Fränti and Kivijärvi, 2000), and modified
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to use SC as the cost function instead of the MSE.
The algorithm forms an initial classification and
iteratively improves it by applying a randomizing
function, and the GLA. Given the number of
classes k, the control flow of the LS method is as
follows.

Step 1. Draw k initial centroids (from the input
data) randomly.
Step 2. Assign each input vector to the closest
cluster centroid.
ITERATE T times

Step 3.1. Replace a randomly chosen class.
Step 3.2. Re-assign each input vector accord-
ing to the changed class.
Step 3.3. Perform two iterations of the GLA
using L2 distance.
Step 3.4. Evaluate the cost function value Eq.
(3).
Step 3.5. If the modifications improved the
classification, accept the new classification.
Otherwise restore the previous classification.

Step 4. Perform the GLA using the CL-crite-
rion Eq. (4) for the final solution.
The initial classification is generated as in the

GLA, i.e. the algorithm selects items randomly as
the class representatives (HMO, hypothetical
mean organism). The rest of the strains are as-
signed to the closest class representative according
to the L2-distance. A new trial classification is
then generated by making random modifications
to the current one, a randomly chosen class is
made obsolete and a new one is created by select-
ing any sample strain as the new HMO. The
resulting classification is improved by the GLA.
This generates changes in the class representatives
of the trial classification. The trial classification is
accepted if it improves the cost function value,
which is the SC.

The advantage of the LS over the GLA is that
it makes global changes to the clustering struc-
ture, and at the same time performs local fine
tuning towards a local optimum. In our practical
tests, we let the algorithm run for 5000 iterations
in total, and two iterations of the GLA is applied
for each trial solution. This gives us a good
balance between the global changes in the cluster-
ing structure and the local modifications in the
classification. During the search (step 3), we do

not use the Shannon-codelength (CL) when as-
signing the vectors to the clusters because it is
problematic with the chosen randomization func-
tion. It is also much slower and does not enhance
the performance according to our tests. The final
solution, however, is fine-tuned by the GLA using
the CL-criterion. The steps 1–3 of our LS-al-
gorithm, thus, form a preprocessing phase for the
SC-clustering.

2.4. Number of classes

The optimum number of classes is, by defini-
tion, the value k* at which the overall minimum
of SC is attained. A straightforward solution is,
therefore, to apply the GLA and the LS for every
reasonable number of classes (1–110). From the
results of each fixed k, we take the one with
minimal stochastic complexity. The LS was per-
formed only once with the iteration count 5000
whereas the GLA was repeated 50–200 times.

2.5. Difference between the classifications

There are basically two ways for measuring the
difference between classifications, either we mea-
sure the smallest number of modifications (usually
set operations) that are needed to make the two
classifications equal, or we count some well
defined differences between them (Day, 1981).
Modifications and differences can be defined in
various ways and they should be chosen carefully
to suit the application. We illustrate the difference
between two given classifications denoted by P %=
{C %1, …, C %k%} and P¦={C¦1, …, C¦k¦}. The Con-
cordance matrix M is a k % by k¦ matrix with entry
Mij defined as the number of elements in C %i S
C¦j . The distance between two classifications can
now be calculated from the concordance matrix
by

D=
1
2
�%i=1

k% �%j=1
k¦ Mij−maxj=1

k¦ Mij

�
+%j=1

k¦ �%i=1
k% Mij−maxi=1

k% Mij

�n
(5)

The distance D can be interpreted as the aver-
age number of differently classified vectors when
comparing P % to P¦ and vice versa. The third
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alternative is to trust a domain expert, here to a
microbiologist, and let him judge the classifica-
tions P % and P¦ against the best state of art
knowledge of the taxonomy of the strains. This
evaluation gives us insight of the usability of our
algorithms and proximity functions.

3. Application to classification of Entero-
bacteriaceae

The data set (called ENTE) consists of t=5313
strains of bacteria belonging to the Enterobacteri-
aceae family. The strains have been isolated dur-
ing the years 1950–1988 and identified by CDC
in Atlanta, Georgia (Farmer et al., 1985). The
material consists of 104 nomenspecies. We refer to
nomenspecies classification as CFARM (SC/t=
23.12). Each strain is characterized by a binary
vector of d=47 bits representing outcomes of
biochemical tests. For a detailed description of
the material, see Farmer et al. (1985).

4. Results

Gyllenberg et al. (1997a) calculated the SC min-
imizing classification of ENTE using GLA and
obtained a classification into 69 classes with the
SC-value 21.42. This classification is called
SCENTE. At least 20 repetitions were run for
each k, the best candidates were inspected 50–200
times. Thus, the total running time for SC-mini-
mization was very long, a few days with an effi-
cient computer, although the partitioning of one
candidate is a quick operation (few minutes). The
LS is about 100–200 times slower than the GLA
for a single classification. The LS, on the other
hand, is rather independent of the initialization
and, therefore, only a single run is enough
whereas the GLA, as mentioned above, had to be
repeated 50–200 times. This balances the compu-
tational differences of the methods.

As the first step, we classified the material with
the LS for all k-values from 1 to 110 and com-
pared the SC-values with the ones obtained previ-
ously by the GLA. They both give the minimum
SC-values approximately in the same range (see

Fig. 1). The curve for the LS is very flat for
k-values in the range k=60–72 (see Fig. 2). The
LS found SC values from 21.28 to 21.33 with the
mean 21.30 and S.D. 0.016 for these k-values.
This means that there are several values of k
which produce almost equally good classification
in the sense of minimizing SC. The corresponding
SC-values for the GLA vary from 21.42 to 21.72
with the mean 21.53 and S.D. 0.094.

We studied the methods more closely on the
previously found minimum point (k=69). The
results obtained by the LS have less variation and
are consistently better than the results of GLA
(Fig. 3). For example, the LS always produced
classification with smaller SC-value than the best
SC-value obtained by the GLA. The correspond-
ing SC-values for the LS vary from 21.27 to 21.35,
and for the GLA from 21.51 to 22.18.

As a second step, we compared the two classifi-
cations by producing the class concordance ma-
trix for them. We focus on differences between the
LS and GLA classifications, see Table 1. The rows
of the matrix stand for the classes of the LS-so-
lution and the columns for the classes of the
GLA-solution. Note that the class indices are se-
lected by the size of the classes in descending
order. If the two classifications resemble each
other there is a good concordance between some
corresponding pairs of classes from LS and GLA.
To increase the level of illustration, we have ad-
ditionally arranged the rows and columns of the
matrix such that the greatest matrix-elements ap-
pear on the diagonal. The total number of ele-
ments of a particular class appear as row/column
sum.

Table 1 shows that the class with index 6 of
LSENTE consists of 303 strains which are scat-
tered over classes 13 (88 strains), 33 (60), 21 (40),
23 (6), 4 (4), 11 (1), 41 (1), 42 (2) and 16 (1) of
SCENTE. The joining of the three classes 13, 33
and 21 in other classification is natural because
these represent the species E. coli. Similar phe-
nomena can be found for example in E. americana
strains with SCENTE classes 35 and 54. These
two classes are joined in LSENTE into class 26.
The phenomenon of splitting and merging of
classes appears also in the other direction. The
GLA class 6 contains most of the citrobacters. In
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the LSENTE classification, the C. freundii strains
are scattered over two major classes (15, 31).

Fig. 4 shows the distribution of the distortion
values (average Hamming distance from HMO)
for the two classifications. The distortion values
of both LSENTE and SCENTE resemble normal
distribution. Fig. 5 demonstrates the class size
distributions, first bar represents number of
classes having size in range 1–10, and second
11–20 and so forth. There are some small classes
in both classifications and they are likely due to
some badly fitting vectors in data (i.e. trash).

As a third step, we calculated the distance D
between the classifications and CFARM. The re-
sults of Table 2 show that the LSENTE and
SCENTE classifications, whose stochastic com-
plexities were smaller, are closer to each other
than to CFARM. On the other hand, the
LSENTE and SCENTE classifications are almost
as far from CFARM.

As a fourth step, we compared the classifica-
tions made by the classification algorithm to the
expert class (CFARM). Our data had scientific
names (104 nomenspecies) and identification
numbers attached to the vectors. This allows us
to analyze how well the obtained classifications
conform to the currently established classification
of Enterobacteriaceae. Most of the data repre-
sent species of E. coli, hence we concentrate on
this part.

The E. coli strains tend to divide into two
groups. These correspond to the so-called active
and inactive E. coli (Farmer et al., 1985). The
LSENTE classes 6, 13, 14 represent inactive E.
coli group and the classes 1, 2, 4, 7, 17, 39, 43
active group. Similarly, E. coli is divided into
two remote groups of SCENTE classes 15, 21,
33, 13, 11 and 42, 41, 4, 10, 5, 16, 1. We noted
before that LSENTE class 6 was scattered to
many classes in SCENTE (mainly 13, 21, 33). It
seems that LS has managed to classify the inac-
tive group of E. coli more efficiently. On the
other hand, the active E.coli’s are classified simi-
larly in both classifications. We have listed most
microbiologically relevant differences in Table 3.
We find these phenomena similar to the findings
of Gyllenberg et al. (1998) Gyllenberg et al.
(2000).

5. Conclusions

We have compared two clustering algorithms
using a taxonomic problem in microbiology as a
case study. One of the algorithms is the classical
GLA algorithm whereas the other applies an effi-
cient local search strategy to improve the classifi-
cation. A general observation is that the
classifications do not differ radically when evalu-
ated by SC. The LS was somewhat more effec-
tive than GLA.

The comparison of the classifications reveals
several interesting facts. A class may be split into
two or more classes in the classifications ob-
tained by GLA and LS. The splitting of the
clusters is usually reasonable from a microbio-
logical point of view.

In spite of the different strategies in the GLA
and the LS, the distributions of the class sizes of
the two classifications look similar. This is most
likely due to the data used in this experiment. It
turned out that the repeated use of GLA with
random initial solutions can produce good clas-
sifications. Iterative optimization techniques like
LS are, however, more reliable in the sense that
they search more systematically for the global
optimum. To demonstrate this, we calculated the
histogram of SC values, which shows that results
of LS are more biased to better SC-values. Even
though the implementation of the LS and the
GLA is a relatively easy task, we were con-
fronted by some practical issues, which need spe-
cial consideration. These include the case when a
cluster consists of a single strain only. In this
case, vectors are seldom mapped to this new
cluster when the entropy distance (6) is used. The
use of the L2-distance solves this problem. The
overall evaluation of the preference of the two
classifiers favor the LS because the GLA is more
dependent on setting of the initial centroids, and
as shown above, the LS will more likely produce
a good solution.
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Fränti, P., Kivijärvi, J., Nevalainen, O., 1998. Tabu search
algorithm for codebook generation in vector quantization.
Pattern Recognition 31 (8), 1139–1148.

Gersho, A., Gray, R.M., 1992. Vector Quantization and Signal
Compression. Kluwer Academic Publishers, Dordrecht.

Gyllenberg, H.G., Gyllenberg, M., Koski, T., Lund, T., Schin-
dler, J., Verlaan, M., 1997a. Classification of Enterobacteri-
aceae by minimization of stochastic complexity.
Microbiology 143, 721–732.

Gyllenberg, M., Koski, T., Verlaan, M., 1997b. Classification
of binary vectors by stochastic complexity. J. Multivariate
Anal. 63, 47–72.

Gyllenberg, H.G., Gyllenberg, M., Koski, T., Lund, T., 1998.
Stochastic complexity as a taxonomic tool. Comput. Meth-
ods Programs Biomed. 56, 11–22.

Gyllenberg, H.G., Gyllenberg, M., Koski, T., Lund, T., Schin-
dler, J., 2000. Enterobacteriaceae taxonomy approached by
stochastic complexity. Quant. Microbiol. 1, 157–170.
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