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Abstract. We study how much the k-means can be improved if initialized by
random projections. The first variant takes two random data points and projects
the points to the axis defined by these two points. The second one uses furthest
point heuristic for the second point. When repeated 100 times, cluster level errors
of a single run of k-means reduces from CI = 4.5 to 0.8, on average. We also
propose simple projective indicator that predicts when the projection-heuristic is
expected to work well.
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1 Introduction

K-means groups N data points into k clusters by minimizing the sum of squared distances
between the data points and their nearest cluster centers (centroid). It takes any initial
solution as an input and then improves it iteratively. A random set of points is the most
common choice for the initialization. K-means is very popular because of its simple
implementation. It has also been used as a part of other clustering algorithms such as
genetic algorithms [14, 25], random swap [16], spectral clustering [34] and density
clustering [3].

The best property of k-means is its excellent fine-tuning capability. Given a rough
location of initial cluster centers, it can optimize their locations locally. The main limi-
tation is that k-means cannot optimize the locations globally. Problems appear especially
when clusters are well separated, or when stable clusters block the movements of the
centroids, see Fig. 1. A poor initialization can therefore lead to an inferior local
minimum.

To compensate the problem, alternative initialization heuristics have been consid-
ered. These include Maxmin heuristic, sorting heuristic, density and projection heuris-
tics. Comparative studies [8, 22, 27, 30] have found that no single technique would
outperform the others in all cases. A clear state-of-the-art is missing.

Another way to improve k-means is to repeat it several times [11]. The idea is simply
to restart k-means from different initial solutions, and then keeping the best result. This
requires that the initialization technique include some randomness in the process to
produce different initial solutions. We refer this as repeated k-means (RKM).

For the initialization, projection-based heuristics aim at finding one-dimensional
projection that would allow the data to be divided to roughly equal size clusters [1, 31,
35]. Most obvious choices are diagonal and the principal axis. Diagonal axis works well
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Fig. 1. Example of sub-optimal convergence of k-means.

with image data when the points are strongly correlated. Principal axis finds the direction
with maximum variance. It has been widely used also in split-based algorithms that
iteratively split one cluster at a time [4, 15, 23, 35].

In general, projection heuristic transforms the clustering to an easier segmentation
problem, which can be optimally solved for a given objective function using dynamic
programming [32]. However, it is unlikely that the data points would nicely fit along
a linear axis in the space. Even a more complex non-linear principal curve was also
considered in [9] but the final result still depended on the fine-tuning by k-means. Open
questions are when the projection-based technique is expected to work, and how to
choose the best projection axis.

In this paper, we study two simple variants to be used with repeated k-means: random
and furthest point projections. The first takes two random data points without any sanity
checks. The key idea is the randomness; single selection may provide poor initialization
but when repeating several times, the chances to find one good initialization increases
significantly.

The second heuristic is slightly more deterministic but still random. We start by
selecting a random point, which will be the first reference point. We then calculate its
furthest point and select it as the second reference point. The projection axis is the line
passing through the two reference points. We again rely on randomness, but now the
choices are expected to be more sensible, potentially providing better results using fewer
trials.

The projection technique works when the data has one-dimensional structure, see
Fig. 2. Otherwise, it may not provide additional benefit compared to the simple random
initialization. We therefore introduce a simple projective indicator that predicts how
well the data can be represented by a linear projection. This indicator can also be used



682 S. Sieranoja and P. Frénti

to evaluate the goodness of the random projection before performing the actual clus-
tering, which can speed-up the process.

Fig. 2. The principle of the projection heuristic: when it works (left) and when not (right).

2 Projection-Based Initialization

The goal is to find a simple one-dimensional projection that can be used to create trivial
equal size clusters along the axis, and yet, provide meaningful initial clustering. We
merely seek to find a better initialization to k-means than the random heuristic, and
generating it as simply as possible.

2.1 One-Dimensional Projections

The original idea was to project the data points on a single direction and then solving
the initial partition along this direction [2]. Simplest way to do it is to sort the data
according to the chosen axis, and then select every (N/k)™ point. In [33], the points are
sorted according to their distance to origin. If the attributes are non-negative, then this
is essentially the same as projecting the data to the diagonal axis. Such projection is
trivial to implement by calculating the average of the attribute values. The diagonal axis
has also been used for speeding-up nearest neighbor searches in clustering [28].

In [1], the points are sorted according to the dimension with the largest variance.
This adapts to the data slightly better than just using the diagonal. A more general
approach would be to use principal axis, which is the direction along which the variance
is maximal. It has also been used in divisive clustering algorithms [4, 15, 23, 35].
However, calculation of the principal axis takes O(DN)-O(D’N) depending on the
variant [15]. To speed-up the process, only diagonal covariance matrix was computed
in [31]. A more complex principal curve has also been used for clustering [9].

2.2 Random Projection in Higher Dimensions

Higher dimensional projections have also been considered. In [12], the data was
projected in 2—dimensional subspace by selecting the highest variance attribute as the
first dimension, and as second the one that has minimum absolute correlation with the
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first. According to [10], Gaussian clusters can be projected into O(log k) dimensions
while still preserving the approximate level of separation between the clusters. It was
shown that random projection can change the shape of the clusters to be more spherical.
The following methodology was also suggested: perform random projection into a lower
dimensional space, perform clustering, and use the result for obtaining clustering in the
high dimensional space. This is exactly what we do here: perform one-dimensional
projection followed by k-means in the full space.

Random projections have also been used in clustering ensemble [13] where indi-
vidual clustering result is aggregated into a combined similarity matrix. Final clustering
is then obtained by agglomerative clustering using the similarity matrix instead of the
original data. This was shown to provide better and more robust clustering than PCA +
EM (k-means variant for Gaussian clusters).

The diversity of the individual solution was also found to be an important element
of the algorithm in [13]. We had similar observation in [18], where having some level
of randomness in the algorithm was essential in swap-based clustering. Both these results
suggest that random projections might be suitable for k-means initialization better than
some fixed deterministic projection.

In [7], random projections were motivated by the need for speed in clustering of data
streams. Quasilinear time complexity, O(N-logN), was set as a requirement. The speed
was also the main motivation in [5] where the problem was considered as feature extrac-
tion, which aims at selecting such (linear) combination of the original features that the
clustering quality would not be compromised.

In [6], k-means is applied several times, each time increasing the dimensionality
after the convergence of k-means. In other words, least accurate version of the data is
clustered first, and at each of the following steps, the accuracy is gradually increased.
This approach is analogous to cooling in simulated annealing.

2.3 Random Projection

Although the above-mentioned solutions are also based on random projections, they do
it in higher-dimensions. Their main goal was not to loose the clustering accuracy.
However, we merely seek a simple initialization to k-means. We perform the random
projection in one-dimensional space for two particular reasons:

Simplicity
Speed-up benefits

The random projection works as follows:

1. Select random data point r;
Select random data point 7,

Unlike higher dimensional projections, one-dimensional projection induces unique
sorting of the data. This could also be used to speed-up the nearest centroid searches
without any further loss in the accuracy [28]. Significant reduction of processing time
was reported when used jointly with the centroid activity detection [24]: speed-up factor
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of 27:1 (Bridge dataset) and 62:1 (Miss America dataset); both 16-dimensional image
data. Although speed-up is not our goal, it is worth to taken into account.

2.4 Furthest Point Projection

Our second heuristic is based on the classical furthest point heuristic where the next
centroid is always selected as the one that is furthest to all other centroids [21]. However,
instead of selecting every centroid as the next furthest, we only need to find two reference
points. To involve some level of randomness in the process, we select the first reference
point randomly:

1. Select random data point 7,
2. Find the furthest point r, of r,

The projection axis is then defined by the reference points r; and r,. The process
is illustrated in Fig. 3. Since the first point is chosen randomly, the heuristic may
create different solution in different runs, which is the purpose.

Furthest point Projection axis Projected points
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Fig. 3. Sample data and the projections.

2.5 Repeated K-means

Both heuristics are used with the k-means algorithm as follows. We repeat the algo-
rithm R = 100 times, and select the best final result. The pseudo code of this overall
algorithm is shown in Fig. 4. For a single projection axis, we predict its goodness as
follows:

AR =Y (dist(a, b))/N?,Va,b 0
ab

AL = Z dist(x, p.)/N @)

Projective = AR 3)

AL
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Repeated K-means(x):
fbest =
FOR r=1to 100 DO
y « Projection(x);
y « Sort(y);
FOR i=1to k DO
mid = (int) i*(N/k) + 0.5;
cfi] = y[mid];
f < Evaluate(x,c);
IF f <fost THEN f< foq

RandomProjection(x)
r1 < RandomNumber(1,N);
r2 « RandomNumber(1,N);

FOR i=1to N DO
pli] « Project(x[il, r1, r2);

FurthestPointProjection(x):
r1 < Random(1,N);
r2 < FindFurthest(X, x[r0]);

FOR i=1to N DO
pli] « Project(x[i], r1, r2);

Fig. 4. Pseudo code of the considered projection-based techniques.

The divider AR is the average pairwise distance of all data points in the original
space, and the nominator AL is the average distance of the points (x) to the projection

axis (py)-

3 Experiments

We compare the two projection-based heuristics against the two most common heuris-
tics: random initialization, Maxmin heuristic [21]. We use the datasets shown in
Table 1. These include several artificial datasets, and real image datasets.

In case of artificial data with known ground truth, the success of the clustering is
evaluated by Centroid Index (CI) [17], which counts how many cluster centroids are
wrongly located. Value CI = 0 indicates correct clustering. Reference results are also
given for single run of k-means, and when k-means is re-started 100 times (repeated).
In case of image data, we calculate sum of squared errors (Fig. 5).
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Table 1. Datasets used in the experiments.

Data set Ref. Type of data | Points (V) Clusters (k) Dimension (d)
Bridge [16] Image blocks | 4096 256 16
House [16] RGB image 34112 256 3
Miss America | [16] Residual 6480 256 16
blocks
Europe Differential 169673 256 2
values
Birch, Bich2 | [36] Artificial 100000 100 2
Si =S, [19] Artificial 5000 15 2
A —As [26] Artificial 3000-7500 20-50 2
Unbalance [29] Artificial 6500 8 2
DIM-32 [20] Artificial 1024 16 32
Bridge House Miss America Europe
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Fig. 5. Datasets and their calculated projective values according to (3).
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The results are summarized in Table 2 where the correct clustering results are
emphasized by green color. As expected, single run of k-means rarely finds the correct
clustering regardless of the initialization. On average, CI = 4.5 centroids are wrongly
located with random heuristic, and about CI = 2 with the other heuristics.

Table 2. Performance comparison of the various k-means initialization heuristics: random,
furthest point, and the two projection-based: random (Proj-Rand) and the furthest point (Proj-FP).

Artificial data (Single run):

Method S1 S2 S3 S4 | A1 A2 A3 (Unb| B1 B2 [D32]| Av.
Random 19 14 13 09|25 46 66|39 | 67 166 3.6 | 45
Furthestpoint [ 0.7 1.0 07 1.0 | 10 26 2909 |55 73|00 ]| 21
Proj-Rand 12 09 08 06|12 33 52|40/(53 02][09]22
Proj-FP 1.2 09 08 06|11 33 50|40 ] 54 00| 1.0] 21

Artificial data (100 repeats):

Method S1 S2 S3 S4 | A1 A2 A3 (Unb| B1 B2 [D32]| Av.
Random 00 00 00 00|03 18 29 (29|28 11 | 11| 20
Furthest point 00 00 00 00|00 05 060028 39|00/ 0.7
Proj-Rand 00 00 00 00]00 09 20 /(39|19 00] 00|08
Proj-FP 00 00 00 00|00 08 19|40 ] 1.8 00| 0.0 ] 08

Image data (100 repeats):
Method Bridge House Mis's Europe
America
Random 176.71 6.43 5.83 3.66
Furthest point 172.09 6.93 5.68 3.56
Proj-Rand 176.66  6.44 5.83 3.65
Proj-FP 176.83  6.46 5.83 3.65

However, when the k-means is repeated 100 times, the results are significantly better.
The projection-based heuristics solve now 7 of the 11 artificial datasets, having CI =0.8
centroids incorrectly located, on average. We also observe that the different heuristics
work better with different datasets. In specific, Maxmin heuristic works best when the
clusters have different densities and the projection-based better with data having high
projective values (Birch2).

None of the image sets have high projective values, and therefore, the projection
heuristic works basically as the random heuristic. There is also no significant difference
between the two projection-techniques. The furthest point projection works slightly
better but when repeated, the minor difference disappear. Figure 6 demonstrates what
kinds of projections are generated with the A2 dataset.
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Random projection Furthest points projection

6. Examples of the random projections axes (left), and the furthest point projection axes

(right).

4

Conclusions

Both the random projection and furthest points heuristics outperform random initiali-
zation, and provide competitive performance to the Maxmin heuristic. The performance
of the heuristics can be predicted by the projective indicator, which helps to recognize
when the data is suitable to be projected. This could also be useful in split-based algo-
rithms where the data is hierarchically split into smaller clusters.
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