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Expectation maximization (EM) algorithm is a popular way to estimate the parameters of Gaussian mix-
ture models. Unfortunately, its performance highly depends on the initialization. We propose a random
swap EM for the initialization of EM. Instead of starting from a completely new solution in each repeat as
in repeated EM, we make a random perturbation on the solution before continuing EM iterations. The
removal and addition in random swap are simpler and more natural than split and merge or crossover
and mutation operations. The most important benefit of random swap is its simplicity and efficiency.
RSEM needs only the number of swaps as a parameter in contrast to complicated parameter-setting in
genetic-based EM. We show by experiments that the proposed algorithm is 9–63% faster in computation
time compared to the repeated EM, 20–83% faster than split and merge EM except in one case. RSEM is
much faster but has lower log-likelihood than GAEM for synthetic data with a certain parameter setting.
The proposed algorithm also reaches comparable result in terms of log-likelihood.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction chosen initial parameters (McLachlan and Peel, 2000) and pick the
Maximum likelihood (ML) estimation of the Gaussian mixture
models (GMMs), does not lead to a closed form solution. However,
if the estimation problem is reformulated in terms of so called
latent or hidden variables, a numerical gradient ascent approach
can be used. As the latent variables cannot be observed directly,
expectation maximization (EM) (Bishop, 2006; Dempster et al.,
1977) algorithm iteratively refines the ML estimate by first calcu-
lating the expectation of the posterior of the latent variables, while
keeping the parameters fixed. While keeping the posteriors fixed,
the algorithm then computes the maximum of the parameters.
This iterative process is guaranteed to converge.

EM has two well known deficiencies. First, user needs to know
in advance the number of Gaussian components. Second deficiency
is that the quality depends on the initial parameters. A number of
methods have been proposed to attack both problems simulta-
neously (Figueiredo and Jain, 2002; Zhang et al., 2004). However,
such a solution needs to change the optimization cost. In general,
we assume that the problem of the number of components can
be solved by a validity index, and therefore, we do not consider
the number of components as a parameter to be optimized.

Initial parameters are needed for the first E-step. Unfortunately,
not all initial parameters lead to the same unique solution when
the algorithm converges (McLachlan and Peel, 2000). Especially
for Gaussian mixture models, log-likelihood landscape is multi-
modal (Mclachlan and Krishnan, 1996). A common way to address
this problem is to run EM multiple times with different randomly
ll rights reserved.
best solution as the result. We call this variant repeated EM (REM).
The strategy gives good stability with respect to the log-likelihood
and reduces dependency on the initialization (Biernacki et al.,
2003). However, the solution space is searched inefficiently in
REM, because after each restart it can take a long time to converge
without any guarantee that it leads to an improved solution. Run-
ning time can be improved by computing in each iteration a bound
on the locally optimal log-likelihood and stopping early if the
bound shows no improvement (Zhang et al., 2008).

Assuming that a complete restart is not necessary, search strat-
egy based on changing only a part of the converged model can be
utilized. One such strategy is to split one component into two and
merge two other components (Zhang et al., 2004; Li and Li, 2009;
Udea et al., 2000; Wang et al., 2004; Zhang et al., 2003). A method
utilizing this strategy is called split and merge EM (SMEM) (Udea
et al., 2000), which searches systematically the best choice for
the three components: one for split (OðMNÞ operation, N is the data
size and M is the number of components) and two for merge
(OðM2NÞ operation). The choice is based on how well components
match the local density of the data. Algorithm will terminate when
no split and merge candidate brings improvement. Systematic
approach needs to consider OðM3Þ triplets in total. In practice,
the number of candidates searched is set lower than the number
of all possible triplets.

Genetic-based EM (GAEM) (Udea et al., 2000) improves the re-
peated EM by considering a parallel set of solutions (populations) in-
stead of sequential ones. Operations such as crossover, mutation and
selection are applied to the population iteratively. A single-point
crossover, which exchanges components between two populations
is employed. Mutation selects the components with similar
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parameters and swaps them to random positions. A new generation
of populations is finally obtained by a selection operation. There are
five parameters involved in the algorithm. In general, GAEM can
achieve a good result by a proper set of parameters.

Some other algorithmic strategies employed to escape a local
maximum are: competitive learning (Zhang et al., 2004), incremen-
tal clustering implemented in greedy EM (GEM) (Verbeek et al.,
2003), stochastic variants such as stochastic EM (SEM) (Celeux and
Diebolt, 1985) and Monte Carlo EM (MCEM) (Wei and Tanner, 1990).

In this work, we use randomization instead of systematic search
to select the component. Preliminary results of the proposed meth-
od were published in Zhao et al. (2009, 2011). In the proposed algo-
rithm, random swap EM (RSEM), replaces the split and merge –
operations by more general addition and removal – operations. Pro-
posed operations are simple and efficient. Removing a component,
which is an Oð1Þ time operation, is more straightforward than
merging and only one component is involved. Creation of a new
component is also simpler than splitting a component, where split
is usually ill-posed (i.e., more variables than equations). GAEM has
five parameters, all of which affect the running time and perfor-
mance. Proposed method is thus simpler and easier to adapt to
different datasets and applications.

In RSEM, randomly selected component is swapped to a new
location in the feature space and the weight and covariance matri-
ces are updated. The time complexity is OðNMÞ, which is the same
as one EM iteration. Even though more iterations are needed by
random swap approach due to its trial-and-error nature, the total
number of candidates is significantly less than by systematic search
such as SMEM or repeated EM. After the swap is performed, EM is
iterated until convergence. New solution is accepted only if it im-
proves the previous one. In principle, RSEM algorithm terminates
when none of the possible NM swaps result in an improved solution
(Kanungo et al., 2004). However, a fixed number of swaps is suffi-
cient in practice.

2. EM algorithm and its variants

In this section, we first describe the existing methods that are
compared to the proposed method, which is presented in Section 3.

2.1. EM algorithm

EM algorithm can be used to estimate maximum likelihood (ML)
parameters of many different types of parametric densities. For
GMMs, the goal is to maximize the following log-likelihood:

LðHÞ ¼ log pðXjHÞ ¼
XN

i¼1

log
XM

j¼1

ajNðxijHjÞ; ð1Þ

whereNð�j�Þ is Gaussian distribution, X ¼ ðx1; . . . ;xNÞ is the observed
d-dimensional data-set of N vectors, H is the GMM and Hj ¼ ðlj;RjÞ
are the mean vector and covariance matrix of the jth Gaussian,
respectively. Finally, aj is the mixture weight of the jth component.
The parameters aj must satisfy the following constraints:XM

j¼1

aj ¼ 1; and; aj P 0; j ¼ 1; . . . ;M: ð2Þ

Unfortunately, closed-form solution of the (1) is not possible
(Bishop, 2006), since it contains the log of the sum. Maximization
is then performed on the expectation of the complete-data log-
likelihood, given posterior density of the latent variables (Bishop,
2006). This function is usually called the Q-function, and can be
written in a concrete form for Gaussian mixtures as:

QðH;Ht�1Þ ¼
XN

i¼1

XM

j¼1

sij log aj þ logNðxijHjÞ
� �

: ð3Þ
Ht�1 are parameters estimated in the previous iteration. Maximiza-
tion of Eq. (3), in terms of H can be performed easily, by keeping the
posterior probabilities sij fixed. Then, given estimated parameters,
posterior probability of xi from component j; sij can be calculated
as follows:

sij ¼
NðxijHjÞajXM

l¼1
NðxijHlÞal

: ð4Þ

To find an initial set of parameters in EM algorithm, one possibility
is to randomly select mean vectors and set equal weights and whole
data covariance matrix for all components (Figueiredo and Jain,
2002). A more common practice is to first run k-means on the data-
set to get hard partitioning. The initial mean vectors are directly the
cluster centroids, partition covariance is the component covariance
matrix and proportion of vectors in each partition is the component
weight. Several short runs of k-means starting with random initial
solutions each followed by a long run of EM is recommended in
Biernacki et al. (2003).

EM suffers from the local maximum problem (Mclachlan and
Krishnan, 1996). A standard solution for the initialization problem
(REM) is to repeat random initializations with k-means followed by
EM (Biernacki et al., 2003). The best performing solution, in terms
of log-likelihood, is retained. This introduces a new parameter, the
number of repeats. From the linearity of expectation, it is expected
that the number of EM iterations in REM is multiplied by the num-
ber of repetitions. It means that the model quality can be improved
by increasing the number of repetitions, but at the cost of linearly
increasing the processing time.

2.2. Split-and-merge EM

One strategy to overcome the sensitivity to initialization of EM
algorithm is to identify parts of the solution that do not fit well to
the data, and revise the solution by making local changes. When
working in the component domain, we can change the solution
by splitting a component into two and by merging two compo-
nents into one. Split and merge EM (SMEM) (Udea et al., 2000)
makes a systematic search through all possibilities for split and
merge after which the algorithm selects the best candidates and
performs the operations.

SMEM algorithm searches among the candidates composed of
combinations of all components i; j and k until the likelihood value
improves. The candidates are sorted by the merge and split criteria.
Merge criterion is based on the correlation of posterior probabilities
of components i and j. The split criterion is based on the Kullback–
Leibler divergence between component k and the local data density.

JMergeði; jÞ ¼ siðHÞTsjðHÞ
ksiðHÞkksjðHÞk

;

JSplitðkÞ ¼
Z

fkðX; hkÞ log
fkðX; hkÞ
pkðX; hkÞ

dx;

ð5Þ

where, siðHÞ ¼ ðs1iðHÞ; . . . ; sNiðHÞÞ is an N-dimensional vector con-
sisting of the posterior probabilities for the ith component. T denotes
the transpose operation and 1 < k – i – j < M. The fkðX; hkÞ is the lo-
cal data density around the component k and the pkðX; hkÞ is the
empirical distribution. The merged components are combined line-
arly and the split component is split by adding constant movements
on the original parameters. Then a partial EM step is performed on the
merge and split candidate.

The original acceptance rule, line 7 in Algorithm 1, used the
Q-function, instead of LðHÞ Udea et al., 2000. However, it was
found in Minagawa et al. (2002) that by doing so the global maxi-
mum might be accidentally rejected. In our experiments, we there-
fore use improvement of the log-likelihood as the acceptance rule.
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A practical problem of split and merge approach is that the split
and merge operations are not straightforward to design. The
assumption behind split-and-merge approach is that only the com-
ponents of the triplet ði; j; kÞ are affected and the rest of the model
is unchanged. Merge operation has a closed-form solution when
we assume that the distributions are Gaussian. However, it is not
possible to find a unique solution to the problem of splitting one
component into two. One alternative was proposed in Zhang et
al. (2003), where one randomly selected singular value decomposi-
tion basis vector of the covariance matrix is used to compute two
new covariance matrices. It is also used in combination with the
original mean vector to generate two new mean vectors.

Algorithm 1. SMEM algorithm
Input: Data set X ¼ fx1;x2; . . . ;xNg
Output: Parameters H ¼ fa;l;Rg and log-likelihood

LðHÞ
1 [H0; LðH0Þ]  EM (X);

2 While candidates left to process do
3 Sort candidates ði; j; kÞCmax

by JMerge and JSplit (Eq. 5);

4 for c ¼ 1 to Cmax do
5 [H0; LðH0Þ]  partialEM (ði; j; kÞc);
6 [H�; LðH�Þ]  EM (X;H0);
7 if (LðH�Þ > LðHÞ) then
8 H ¼ H�; LðHÞ ¼ LðH�Þ;
9 end
10 end
11 end
12 return H; LðHÞ
Furthermore, due to the split and merge operations, Cmax ¼
MðM � 1ÞðM � 2Þ=2 candidate triplets are generated. A systematic
search through all possible triplets leads to OðM4NIEMÞ time com-
plexity, where IEM is the number of EM iterations needed to reach
convergence after perturbation. Final processing time can be
reduced by considering only top Cmax candidates. In Udea et al.
(2000), Cmax was set to five. We first experimentally find suitable
Cmax before comparing SMEM to other methods.

Algorithm 2. GAEM algorithm
Input:Data Set X ¼ fx1;x2; . . . ;xNg; IEM; Ig ; Ip; pc; tcorr

Output:Parameters H ¼ fa;l;Rg and log-likelihood

LðHÞ
1 [Hp½Ip�; L½Ip�]  Initialization (X);

2 for GAEM-iteration = 1 to Ig do
3 [Hp½Ip�; L1½Ip�]  EM (Hp½Ip�; IEM);

4 Hc½H�  crossover (Hp½Ip�; pc); H ¼ Ip � pc;

5 [Hc½H�; L2½H�]  EM (Hc½H�; IEM);

6 [Hs½Ip�; L1ðHs½Ip�Þ]  Select (Hp½Ip�;Hc½H�; L1½Ip�; L2½H�);
7 Hs½Ip�  mutation (Hs½Ip�; tcorr);

8 Hp½Ip�  Hs½Ip�
9 end
10 execute lines 3 to 6 once;

11 [H; L]  EM (Hs½best�; IEM);

12 return H; L
2.3. Genetic-based EM
Genetic-based EM (GAEM) for learning Gaussian mixture
models is proposed in Pernkopf and Bouchaffra (2005). Original
design of GAEM includes the model selection. However, number
of components M is left as a user defined parameter in our task
definition. So, we have modified the algorithm by keeping M
fixed and removing the part where decision regarding M is
made. Also, instead of MDL criterion we use log-likelihood dur-
ing the selection in Algorithm 2.

In GAEM, the single point crossover operator selects a component
index. First child gets components before the index from first parent
and from the index onwards from the second parent, and vice versa
for the second child. Mutation operator selects components that
model the data points similarly by using posterior probabilities
(i.e., JMergeði; jÞ). If there is a correlation above a given parameter
limit, the components are moved to random positions. New gener-
ation is selected from parent and child populations.

There are two deficiencies in GAEM. One is that the algorithm
involves multiple solutions (population). When the population size
(Ip) is large enough, a good result is achieved but it increases the
running time linearly. The other one is the parameters. For cross-
over, mutation and selection steps, parameters are involved. In
crossover, a probability pc determines the number of offsprings
after crossover. A threshold for correlation coefficient tcorr between
components is set for mutation. There are also parameters for
GAEM iterations Ig and EM iterations IEM .

3. Random swap EM

The idea of the random swap EM (RSEM) algorithm is to alter-
nate between simple perturbation to the solution by random swap
and convergence towards nearest optimum by the EM algorithm.
A random swap consists of removal and addition operations.

RSEM is presented in Algorithm 3. The initialization is per-
formed as in the EM algorithm, described in Section 2.1. After the
solution has been initialized, we perform t random swap iterations
(called RS-iterations). During each iteration, a component is
removed, a new one is added and the resulting solution is con-
verged towards nearest optimum using EM algorithm. The best
solution, in terms of log-likelihood, is maintained as the starting
point for the subsequent RS-iteration.

Algorithm 3. RSEM algorithm

Letters 33 (2012) 2120–2126
Input: Data Set X ¼ fx1;x2; . . . ;xNg
Output: Parameters H ¼ fa;l;Rg and log-likelihood

LðHÞ
1 [H0; LðH0Þ]  Initialization (X);

2 for RS-iteration = 1 to t do
3 r ¼ Uð1;MÞ, remove rth component;

4 p ¼ Uð1;NÞ, add at pth position (see Eq. 7);

5 normalize weights a to sum to 1;

6 new parameters Hs ¼ fas;ls;Rsg;
7 [Hst; LðHstÞ]  EM (X;Hs);

8 if LðHstÞ > LðHÞ then
9 H ¼ Hst;

10 LðHÞ ¼ LðHstÞ;
11 end
12 end
13 return H; LðHÞ
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The removal operation is done by selecting a component r ran-

domly among M components from uniform distribution, r ¼
Uð1;MÞ. This is a constant-time operation.

The location of the new component is decided by selecting one
data point, xp; p ¼ Uð1;NÞ and setting it as the mean vector of the
new component. The new component is therefore more likely to
be placed in areas of high point density, such as cluster centers,
than areas of low point density.

The best solution found so far, in terms of log-likelihood, is
always used as the starting point for the next iteration. If a swap
and EM iterations fail to produce a better solution than the starting
point, the new solution is discarded. Swap will decrease the log-
likelihood of the solution but it can also change the solution so that
iterating EM will move it towards different optimum.

The technique has been successfully applied to clustering with
centroid model (Fränti and Kivijärvi, 2000; Fränti et al., 2008;
Merz, 2003). We observed that the effect of a bad initialization is
diminished when random swap is used. We therefore expect ran-
dom swap to yield good results with Gaussian mixture models, too.

The solution is fine-tuned with EM algorithm, so reasonable val-
ues for the weight and covariance matrix are sufficient. Suppose the
current likelihood function LðHtÞ at RS-iteration t is obtained by EM.
Let r be the component selected for removal, and keep the rest of
the components unchanged. The posterior probability is updated
as follows:

ss
ij ¼

at
jNðxijHt

j ÞPM
l¼1;l–rat

lNðxijHt
l Þ
: ð6Þ

The equations for the new parameters of the rth component are:
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Fig. 1. Result by RSEM for a two-dimensional Gaussian mixture density estimation problem
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ð7Þ
In order to retain a valid Gaussian mixture model after the swap
operation, weights ai;1 6 i 6 M are normalized so that they sum
up to 1. The time complexity of the addition operation is linear with
respect to the model size M. After each swap, the new parameters Hs

are set as initial solutions for EM. After EM has converged, we get a
new likelihood value LðHstÞ and we compute DL ¼ LðHstÞ � LðHtÞ, If
the difference is positive, the new parameter estimate replaces the
previous best solution. Otherwise the new parameter estimate is
discarded. This process is repeated until all possible swap pairs are
tried out and none is left to improve the solution. However, as a
practical matter we restrict the total number of swaps to a user
selectable number of RS iterations t. An example of RSEM algorithm
operating on data is illustrated in Fig. 1.

To ensure a good solution, the number of iterations t for random
swap should be set large enough so that there are enough successful
swaps. Given the number of components M, the probability of select-
ing a component to be removed is 1=M. The probability of selecting a
point to be added is also 1=M. Only if the point is inside one cluster, it
will be a successful addition because EM can fine-tune the location
even after then. Therefore it is not necessary to find near-optimal
location during creation of a component. For a good swap to occur,
a badly-placed component must be chosen and a location from the
component

Add

(c) Add a component

component

Add

(f) Add a component

ions of RSEM (i) Ground truth Gaussians

. (a) An initial solution by 10 runs of k-means, (b)–(c) removal and addition operation
(h) The final result by RSEM with 10 iterations, (i) ground-truth Gaussians.



Table 1
Time complexity analysis on the methods.

Total
REM EM OðI1MNÞ OðSI1MNÞ

SMEM Merge OðMN þM2NÞ OðSðM2N þ CI3MNÞÞ
Split OðMN þ N log NÞ
EM Oð3NÞ

GAEM Mutation OðM2Þ OðIg I2
pIEMMNÞ

Crossover OðIpMÞ
EM OðI2

pMNIEMÞ

RSEM Removal Oð1Þ OðSI2MNÞ
Addition OðMNÞ
EM OðI2MNÞ

able 2
ttributes of the data sets used in our experiments.

Data sets Name Dimension Data
size

No. of
clusters

Synthetic S1–S4 (Fränti, 2009) 2 5000 15
R15 (Veenman et al.,
2002)

2 600 15

Real CM (Ortega et al., 1998) 9 68040 15
CT (Ortega et al., 1998) 16 68040 20
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area where the component needs to move must also be chosen.
Hence the probability of a single good swap is at least 1=M2, and
t > M2.

4. Summary of iterative methods

4.1. Comparing REM and RSEM

RSEM is faster than REM if it converges with fewer iterations
after a swap. We prove in Zhao et al. (2011) that the increment
of Q-function value by randomly swapping a component in
RSEM is greater than that by a random restart on all compo-
nents in REM, which leads to the fact that processing time of
RSEM is less than REM for reaching the optimal result. We will
approximate log-likelihood by the Q-function as in Zhang et al.
(2008).

Theorem 4.1. A random swap limits QðHs;Ht�1Þ � QðHt;Ht�1Þ into

the lower and upper bounds of � Nat
r

2 d; Nat
r

2 d
h i

, where d is the Mahalan-

obis distance between the swapped centroids lt
r and ls

r .
Theorem 4.2. For REM and RSEM, if d < 1
3, the probability of

QðHs;Ht�1Þ � QðHt ;Ht�1Þ > QðH;Ht�1Þ � QðHt ;Ht�1Þ is 1. If d P 1
3,

the probability is 1
2þ 1

6d.
We see that the farther the new component is from the original,

the closer to P ¼ 1=2 we approach. However, REM will not have a
higher probability than RSEM to reach a high Q-function value.

4.2. Comparison of time complexities

The time complexities of the algorithms are shown in Table 1. M
and N are the number of clusters and data vectors, respectively. S
represents the number of REM repetitions, the number of RSEM
swaps and the number of SMEM iterations with improvement.
Parameters I1; I2 and I3 are the iteration counts of EM convergence
in the algorithms and C in SMEM indicates the number of candi-
dates, which is set C ¼ 20 in our experiments. Parameter Ig is the
number of generations, IEM is the number of EM iteration used in
GAEM and Ip is the population size.

REM and RSEM have similar strategies. The difference is in the
number of EM iterations to converge in both methods. Since not
every run of EM contributes to the final result in REM, the proposed
RSEM algorithm, which changes only a part of the solution,
achieves better or same result faster than REM. This is shown the-
oretically in Zhao et al. (2011) and experimentally in Section 5. For
SMEM, the number of SMEM iterations with improvement S takes a
1 http://cs.joensuu.fi/sipu/soft/.
T
A

major role in the time complexity of SMEM. It highly depends on
the size of search space caused by the number of candidates C.
RSEM is faster than SMEM when I2 6 M þ CI3. The merge operation
in SMEM takes much more time than removal in RSEM. Thus, RSEM
is faster than SMEM in most cases. In GAEM, number of generation
Ig plays a similar role as S, then RSEM is faster than GAEM if an
average EM iterations are less than I2

pIEM . On the other hand, we
can also restrict EM iterations in RSEM to IEM , then extra computa-
tions caused by GAEM is quadratic to population size.
5. Experimental results

We tested the algorithms1 using both synthetic and real data sets
from various sources summarized in Table 2. We divide the sets into
two categories. The first category is synthetic data sets. These are
fairly small and contain a known number of clusters. In the tests,
we match the number of components with the number of clusters
whenever the number of clusters is known. The second category is
large data sets obtained from UCI machine learning repository
(Asuncion and Newman, 2007). We set the number of components
to 15 for CM and 20 for CT.

In all experiments Gaussian mixture models are restricted to
diagonal covariance matrices. The baseline algorithm is the REM
algorithm. Initialization of the GMM for each repetition is de-
scribed in Section 2.1. RSEM is given one random initial solution
and the same number of RS-iterations is performed as the number
of random solutions given to REM. The EM algorithm or partial EM
algorithm is allowed to iterate until convergence (threshold =
1:53e� 05), except in GAEM, IEM ¼ 3.

The number of candidates Cmax considered in each SMEM round
is fixed to 20 as it seems to provide the best accuracy and process-
ing time trade-off (see supplementary.2) Increasing the number of
candidates closer to maximum OðM3Þ does not improve the accuracy
at all. SMEM algorithm immediately accepts a candidate that results
in a better solution. When none of the Cmax candidates result in
improvement, the algorithm stops.

For GAEM, both Ip and Ig affect the running time. However, the
result in terms of log-likelihood depends more on Ip. An experi-
ment on different combinations of Ip and Ig on data S2 is conducted
(see the supplementary file). The number of generations helps little
to improve the log-likelihood, which however brings high running
time. Thus, we select Ig ¼ 10. The population size Ip affects the
result clearly. It seems the log-likelihood is stable when Ip > 20
for S2. However, since the running time of GAEM (proportional
to I2

p) depends highly on Ip, we choose Ip ¼ 15 to reduce the running
time. The crossover probability pc ¼ 0:8 and tcorr ¼ 0:95 following
the setting in McLachlan and Peel (2000).

We demonstrate the Gaussian models estimated from REM,
SMEM, GAEM and RSEM on data set S2 in Fig. 2. The experiment
is conducted by 20 repetitions. The average among them in terms
of log-likelihood is shown. The models are displayed as ellipses.
REM and SMEM are clearly worse in parameter estimation than
2 http://cs.joensuu.fi/zhao/Software/supplementary1.pdf.

http://cs.joensuu.fi/sipu/soft/
http://dx.doi.org/10.1016/j.patrec.2012.06.017
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Fig. 2. Gaussian models on data S2 estimated from EM variants.

0 2 4 6 8 10
−26.25

−26.2

−26.15

−26.1

Euclidean distance

lo
g−

lik
el

ih
oo

d

S1

GAEM

RSEM

SMEM

REM

1 2 3 4
−26.55

−26.5

−26.45

−26.4

Euclidean distance

lo
g−

lik
el

ih
oo

d

S2

GAEM

SMEM

REM

RSEM

0 2 4 6 8 10
−26.63

−26.62

−26.61

−26.6

−26.59

−26.58

−26.57

Euclidean distance

lo
g−

lik
el

ih
oo

d

S3

RSEM

REM

GAEM

SMEM

0 2 4 6
−26.38

−26.36

−26.34

−26.32

Euclidean distance

lo
g−

lik
el

ih
oo

d

S4

SMEM

GAEM

REM

RSEM

Fig. 3. Squared Euclidean distance between ground-truth GMM and estimated solutions vs. log-likelihood values.

Table 3
Summary of the mean log-likelihood values.

S1 S2 S3 S4 R15 CM15 CT20

REM �26.20 �26.51 �26.63 �26.37 �6.48 �10.34 �3.64
SMEM �26.25 �26.53 �26.61 �26.38 �6.57 �10.35 �3.65
GAEM �26.11 �26.43 �26.59 �26.34 �6.35 �10.35 �3.65
RSEM �26.15 �26.45 �26.60 �26.34 �6.43 �10.33 �3.63

The best log-likelihood value among EM variants is shown in boldface.

Table 4
Summary of the mean processing times (seconds).

S1 S2 S3 S4 R15 CM15 CT20

REM 3.18⁄ 3.94⁄ 4.59⁄ 4.07⁄ 0.32⁄ 794⁄ 2551⁄
SMEM 2.29⁄ 2.80⁄ 3.34⁄ 4.38⁄ 0.29⁄ 2267⁄ 961
GAEM 7.09⁄ 6.82⁄ 6.45⁄ 6.59⁄ 1.13⁄ 157 315
RSEM 1.27 1.66 1.71 1.70 0.21 355 1568

The best log-likelihood value among EM variants is shown in boldface. We use
asterisk (⁄) to indicate the statistical significance of difference between RSEM and
other EM variants at significance level 0.05.
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GAEM and RSEM.
For S1 to S4, ground-truth distributions are available. For com-

paring the GMMs obtained from different EM variants, we calcu-
late the squared Euclidean distance between estimated and
ground-truth GMMs using the closed-form solution in Helen and
Virtanen (2007). The distance values in Fig. 3 are the average of
50 results. There are two out of four cases that RSEM is closer to
ground-truth than competing methods even though log-likelihood
is the best in all cases (Fig. 3). It implies that in terms of parameter
estimation by likelihood is not always a good proxy. The goal met-
ric, however in the present work is log-likelihood.
To obtain robust estimates of average log-likelihood and CPU
time values, each algorithm is repeated 50 times. A summary on
the mean log-likelihood values is presented in Table 3 and process-
ing time in Table 4. Statistical tests run on the distributions of log-
likelihood values and processing times showed that the processing
time follows Gaussian distribution while log-likelihoods do not.
Furthermore, the shapes of the log-likelihood distributions differ
from each other. Hence statistical significance tests such as t-test
or normal rank-sum test can not be used for log-likelihoods. Thus,
we performed t-test only on the processing time of RSEM and other
three methods (REM, SMEM and GAEM) respectively to emphasize
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that RSEM is significantly faster than the EM variants with compa-
rable or better log-likelihood. We use an asterisk (⁄,p < 0:05) to
indicate the significant difference between RSEM and other EM
variants in Table 4.

In processing time SMEM can vary greatly. The variance mainly
comes from the Cmax candidates. The algorithm stops if there is no
improvement among the candidates, which decreases the running
time in some cases. This is also reflected in log-likelihoods for CT
data set. SMEM is capable of improving the initial solutions accord-
ing to log-likelihood, but the effort needed varies greatly, resulting
in large variation in running times. The other algorithms are not
affected much by the data set. Difference in running time between
REM and RSEM is explained by the need to improve the entire
model in REM versus the smaller changes in RSEM.

GAEM has good performance in terms of log-likelihood, how-
ever, it is much slower than RSEM for synthetic data. For real data,
the running time is faster than RSEM, however the log-likelihood is
worse. This is a major difficulty in using GAEM in practical applica-
tions. How to set parameters for a new dataset in such way that
quality of the solution is maintained while processing time is kept
in control. In contrast, RSEM offers simplicity to users. If processing
time is not an issue, RSEM can be run until convergence, and then
no parameter is required.
6. Conclusions

We proposed a random swap EM algorithm in order to get rid of
the tendency of the standard EM algorithm to get stuck in a local
maximum. The proposed RSEM indicates that it is not necessary
to start from the beginning in each restart as it does in the repeated
EM. The RSEM is also shown to be simpler and more efficient than
other EM variants. The removal and addition operations in RSEM
are more general and simpler than split and merge operations in
SMEM. They use less parameters than crossover and mutation in
GAEM, where crossover involves two populations at a time and a
criterion is needed in mutation. Comparing the proposed algorithm
to the REM, we found that RSEM reached higher or comparable
level of log-likelihood 9–63% faster, which was proved by a bound
derived from formulas. RSEM is also easier to implement and more
efficient than the split-and-merge EM (20–83% faster). Genetic EM
has good performance, however, the complicated parameter set-
ting makes it less useful in practice.

The number of swaps is a key parameter in the proposed meth-
od, which decides the performance of RSEM. As a future work, we
plan to investigate ways to automatically select the number of
swaps, as well as theoretical support for random swap strategy
in Gaussian mixture models.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.patrec.2012.06.
017.
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