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ABSTRACT:

Cluster analysis or clustering is one of the most fundamental
and essential data mining tasks with broad applications. It aims
at finding a structure in a set of unlabeled data, producing
clusters so that objects in one cluster are similar in some way
and different from objects in other clusters. Basic elements of
clustering include proximity measure between objects, cost
function, algorithm, and cluster validation. There is a close
relationship between these elements. Although there has been
extensive research on clustering methods and their applications,
less attention has been paid to the relationships between the
basic elements. This thesis first provides an overview of the
basic elements of cluster analysis. It then focuses on cluster
validity as four publications are devoted to this element.

Chapter 1 sketches the clustering procedure and provides
definitions of basic components. Chapter 2 reviews popular
proximity measures for different types of data. A novel
similarity measure for comparing two groups of words is
introduced which is used in the clustering of items characterized
by a set of keywords. Chapter 3 presents basic clustering
algorithms and Chapter 4 analyzes cost functions. A clustering
algorithm is expected to optimize a given cost function.
However, in many cases the cost function is unknown and
hidden with the algorithm, making the evaluation of clustering
results and analysis of the algorithms difficult.

Numerous clustering algorithms have been developed for
different application fields. Different algorithms, or even one
algorithm with different parameters, can give different results
for the same data set. The best clustering can be selected based
on the cost function if the number of clusters is fixed and the
cost function has been defined, otherwise cluster validity
indices, internal and external, are used. Chapter 5 reviews
several popular internal indices. We study the problem of
determining the number of clusters in a data set using these
indices, and we propose a new internal index for finding the
number of clusters in hierarchical clustering of words. External



validity indices are studied in Chapter 6 and two new external
indices, centroid index and pair sets index, are introduced. We
present a novel experimental setup based on generated
partitions to evaluate external indices. We also study whether
external indices are applicable to the problem of determining
the number of clusters. The conclusion is made that external
indices can be used for the problem, but only in theory and in
controlled environments where the type of data is well known
and no surprises appear. In practice, this is rarely the case.

AMS classification: 62H30, 91C20
Universal Decimal Classification: 004.052.42, 303.722.4, 519.237.8
Library of Congress Subject Headings: Data mining; cluster analysis;
algorithms
Yleinen suomalainen asiasanasto: tiedonlouhinta; klusterianalyysi;
validointi; algoritmit
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1 Introduction

Clustering is the division of data objects into groups or clusters
such that objects in the same group are more similar than objects
in different groups. Clustering plays an important role in data
mining applications such as scientific data exploration,
information retrieval and text mining, spatial database
applications, Web analysis, customer relationship management
(CRM), marketing, medical diagnostics, computational biology,
and visualization [1].

Clustering method
Proximity measure  [P5]
Clustering criterion
Clustering algorithm

Data Clusters

Cluster validation
Internal index [P4]
External index [P1][P2]

Results
interpretation

Knowledge

Clustering tendency?
How many clusters?

[P3][P4]

Figure 1.1: Basic components of cluster analysis

Figure 1.1 shows the components of cluster analysis. Data is
represented in terms of features that form d-dimensional feature
vectors. Feature extraction and selection from original entities
must be performed so that the features provide as much
distinction as possible between different entities concerning the
task of interest. This is performed by an expert in the field. For
example, the extraction of features from a speech signal to



distinguish between different people is performed by an expert
in the speech processing field [2]. Moreover, extracted features
may need preprocessing, such as dimensionality reduction and
normalization of the features, so that all features have the same
scale and contribute equally. Next, the assumption is made that
the features have been already extracted and the required
preprocessing has been performed. The basic components of
cluster analysis are the following:

1. Proximity measure
2. Clustering criterion
3. Clustering algorithm
4. Cluster validation
5. Results interpretation

Similarity or dissimilarity (distance) measure between two data
objects is a basic requirement for clustering, and it is chosen
based on the problem at hand. For example, suppose that the
problem concerns a time analysis of travelling in a city. Using
Euclidean distance between two places is not accurate because
one cannot typically travel through buildings. We study several
proximity measures in Chapter 2 including a new similarity
between two groups of words.

Clustering criterion determines the type of clusters that are
expected. The criterion is expressed as a cost (or objective)
function, or some other rules. For example, for the same data set,
one criterion leads to hyperspherical clusters, whereas another
leads to elongated clusters [2]. The cost function is hidden in
many existing clustering approaches, however, the function can
be determined through further analysis. We study several cost
functions in Chapter 4.

Clustering algorithm is the procedure that groups data in order
to optimize the clustering criterion. Numerous clustering
algorithms have been developed for different fields. Good
algorithms find a clustering close to the optimum efficiently. In
Chapter 3, we review basic clustering algorithms.

Different clustering algorithms, and even one algorithm with
different parameters and initial assumptions, can produce
different clusterings for the same data set. For a fixed number of
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clusters, different results can be evaluated based on the
clustering criterion if available. In a general case, cluster
validation techniques are used to evaluate the results of a
clustering algorithm [3], and decide which clustering best fits
the data. Cluster validation is performed using cluster validity
indices which are divided into two groups: internal index and
external index [P2].

Internal indices measure the quality of a clustering solution
using only the underlying data [4], [5]. External indices compare
two clustering solutions of the same dataset. They might
compare a clustering with ground truth to evaluate a clustering
algorithm. Both internal and external indices are used for
determining the number of clusters. We study cluster validity
indices in Chapters 5 and 6.

The goal of clustering is to provide meaningful insights to the
data in order to develop a better understanding of the data.
Therefore, in many cases, the expert in the application field is
encouraged to interpret the resulting partitions and integrate the
results with other experimental evidence and analysis in order
to draw the right conclusions.
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2 Proximity measures

A data object represents an entity and is described by attributes
or  features  with  a  certain  type,  such  as  a  number  or  a  word.
Attributes are often represented by a multidimensional vector
[6]. The type of attributes is one of the factors that determines
how to measure the similarity between two objects. Other
factors are related to the problem at hand. For example, the
similarity of two words for some applications is measured by
considering the letters in the words. However, for other
applications,  this  does  not  provide  good  results,  and  the
semantic similarity between two words is required.

A dissimilarity or similarity measure can be effective without
being a metric [7], but sometimes metric requirements are
desirable. A dissimilarity metric must satisfy the following
conditions [7]:

Non-negativity: D(xi, xj)  0
Symmetry: D(xi, xj) = D(xj, xi)
Reflexivity: D(xi, xj) = 0 if and only if xi=xj.
Triangular inequality: D(xi, xj)+ D(xj, xk  D(xi, xk)

A similarity metric satisfies the following:

Limited range: S(xi, xj)  S0

Symmetry: S(xi, xj) = S(xj, xi)
Reflexivity: S(xi, xj) = S0 if and only if xi=xj.
Triangular inequality:

S(xi, xj)×S(xj, xk) S(xi, xk)×(S(xi, xj)+S(xj, xk))

2.1 ELEMENTARY DATA TYPES

Numeric: Numeric data are classified in two groups: interval
and ratio. The interval between each consecutive point of
measurement is equal to every other for interval data, such as
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time and temperature. They do not have a meaningful zero
point. For example, 00.00 am is not the absence of time. The
difference between 10:15 and 10:30 has exactly the same value as
the difference between 8:00 and 8:15. In ratio data,  such  as  the
number of people in line, a value of zero indicates an absence of
whatever is measured. Another classification for numeric data
includes discrete data and continuous data.
Categorical: Every object belongs to one of a limited number of
possible categories, states, or names. Categorical data are
classified into two groups: nominal and ordinal. Categories in
nominal data such as marriage status (married, widow, single)
are not ordered. Binary data can be considered as nominal data
with only two states: 0 and 1. On the other hand, categories in
ordinal data, such as degree of pain (severe, moderate, mild,
none) are ordered.

2.2 NUMERICAL DISTANCES

Euclidean distance

Euclidean  distance  is  the  most  common  metric  that  is  used  for
numerical vector objects. For two d dimensional objects xi and xj,
Euclidean distance is calculated as follows:

2/12

1

d

l

l
j

l
i xxd (2.1)

Centroid-based clustering algorithms, such as K-means, that
use Euclidean distance tend to provide hyperspherical clusters
[6].

Euclidean  distance  is  a  special  case  (p=2) of a more general
metric called Minkowski distance:
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l

l
j

l
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(2.2)

Another popular and special case of Minkowski distance is
Manhattan or city-block distance where p=1, see Figure 2.1:
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A clustering algorithm that uses Manhattan distance tends to
build hyper-rectangular clusters [6].

2D example
x1 = (2,8)
x2 = (6,3)

Euclidean distance

Manhattan distance

0 5 10

5

10

4

5

X1 = (2,8)

X2 = (6,3)

413862)2,1( 22d

93862)2,1(d

Figure 2.1: Euclidean and Manhattan distances
(http://cs.uef.fi/pages/franti/cluster/notes.html)

Mahalonobis distance

All the objects in a cluster affect on Mahalonobis distance
between two objects by applying within group covariance
matrix S. Clustering algorithms that use this distance tend to
build hyper-ellipsoidal clusters.

)()( 1
ji

T
ji xxSxxd (2.4)

The within group covariance matrix for uncorrelated features
becomes an identity matrix and, therefore, Mahalonobis
distance simplifies to Euclidean distance [6].
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2.3 NON-NUMERICAL DISTANCES

Cosine similarity

Cosine  similarity  is  the  most  popular  metric  used  in  document
clustering and is based on the angle between the vectors of two
objects.

ji

ji

XX
XX

s (2.5)

The more similar two objects are, the more parallel they are
in the feature space, and the greater the cosine value. The Cosine
value does not provide information on the magnitude of the
difference.

Hamming distance

Hamming distance is used for comparing categorical data and
strings of equal length. It counts the number of different
elements in two objects [8]:
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Following are some examples:

Cables, Tablet d=2
10110001, 11100101 d=3
(male, blond, blue, A), (female, blond, brown, A) d=2

Gower similarity is a variant of Hamming distance, which is
normalized by the number of attributes and has been extended
for mixed categorical and numerical data [9]. The simple form of
Gower similarity for categorical data can be written as follows:
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Edit distance

Levenshtein or edit distance measures the dissimilarity of
two strings (e.g., words) by counting the minimum number of
insertions, deletions, and substitutions required to transform
one string to the other. Several variants exist. For example,
longest common subsequence (LCS) allows only insertions and
deletions [10]. We describe the edit distance by an example: the
dissimilarity between kitten and sitting. Transforming kitten into
sitting can be performed in three steps as follows:

Substitute s with k: sitten
Substitute e with i:  sittin
Insert g at the end:  sitting

Therefore, the edit distance between the two words is 3.

2.4 SEMANTIC SIMILARITY BETWEEN WORDS

Semantic similarity between two words is measured according
to their meaning rather than their syntactical representation.
Measures for the semantic similarity of  words  can  be
categorized as corpus-based, search engine-based, knowledge-based
and hybrid. Corpus-based measures such as point-wise mutual
information (PMI)  [11]  and latent semantic analysis (LSA) [11]
define the similarity based on large corpora and term co-
occurrence. The number of occurrences and co-occurrences of
two  words  in  a  large  number  of  documents  is  used  to
approximate their similarity. A high similarity is achieved when
the number of co-occurrences is only slightly lower than the
number of occurrences of each word. Search engine-based
measures such as Google distance are  based  on  web  counts  and
snippets from the results of a search engine [12] [13] [14]. Flickr
distance first searches for two target words separately through
image tags and then uses image content to calculate the distance
between two words [15].



Mohammad Rezaei: Clustering Validation

10 Dissertation in Forestry and Natural Sciences No 225

Knowledge-based measures use lexical databases such as
WordNet [16] or CYC [16]. These databases can be considered
computational formats of large amounts of human knowledge.
The knowledge extraction process is time consuming and the
database depends on human judgment. Moreover, it does not
scale easily to new words, fields, and languages [17] [18].

WordNet is a taxonomy that requires a procedure to derive a
similarity score between words. Despite its limitations, it has
been successively used for clustering [P4]. Figure 2.2 illustrates a
small part of the WordNet hierarchy where mammal is the least
subsummer of  wolf  and  hunting  dog. Depth of  a  word  is  the
number  of  links  between it  and the  root  word  in  WordNet.  As
an example, the Wu and Palmer measure [19] is defined as
follows:

)()(
)),((2),(

21

21
21 wdepthwdepth

wwLCSdepthwwS (2.8)

where LCS is the least common subsummer of the words w1 and
w2.

animal

horse

amphibianreptilemammalfish

dachshund

hunting dogstallionmare

cat

terrier

wolf dog

12

89.0
1413
122

wupS13

14

Figure 2.2: Part of WordNet taxonomy

Jiang-Contrath [16] is a hybrid of corpus-based and
knowledge-based methods in that it extracts the information
content of two words and their least subsumer in a corpus.
Methods based on Wikipedia or similar websites are also hybrid
in the sense that they use organized corpora with links between
documents [20].
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2.5 SEMANTIC SIMILARITY BETWEEN GROUPS OF WORDS

The semantic clustering of objects such as documents, web sites,
and movies based on their keywords requires a similarity
measure between two sets of keywords. Existing measures
include minimum, maximum, and average similarity. Consider
the bipartite graph in Figure 2.3 where the similarity between
every two words is written on their corresponding link.
Minimum and maximum measures are based on the links with
minimum (0.20) and maximum (0.84) values. The average
measure considers all the links and calculates the average value
(0.57). These measures have fundamental limitations in
providing a reasonable similarity value between two sets of
words  [P5]. For example, the minimum and average measures
give a lower value than 1.00 for two sets with the same words.
Maximum measure gives 1.00 for two different sets which have
only one common word.

restaurant

cafeteria holiday

sauna

cafe cottage

0.80

0.70
0.22
0.84
0.67
0.20

0.67
0.21
0.80

max

min

Hyve Sampon lomamökit

Average = 0.57

Figure 2.3: Minimum and maximum similarities between two
location-based services is derived by considering two keywords
with minimum and maximum similarities

In  [P5], we present a new measure based on matching the
words of two groups assuming that a similarity measure
between two individual words is available. The proposed
matching similarity measure is based on a greedy pairing
algorithm which first finds the two most similar words across
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the sets, and then iteratively matches next similar words.
Finally,  the  remaining  non-paired  keywords  (of  the  object  with
more keywords) are just matched with the most similar words
in the other object. Figure 2.4 illustrates the matching process
between two sample objects.

restaurant

gym gym

restaurant

skiing spa

1.00

1.00

0.67

Vesileppis Tahko Spa

dance

spa
1.00

0.30

S = 0.79

Figure 2.4: Matching between the words of two objects.

Consider two objects with N1 and N2 keywords so that N1>N2.
We define normalized similarity between the two objects as
follows:

1

1
)(

1

),(

N

wwS
S

N

i
ipi (2.9)

where S(wi,wj) measures the similarity between two words, and
p(i) provides the matched word for wi in the other object. The
proposed measure eliminates the disadvantages of minimum,
maximum, and average similarity measures.
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3 Clustering algorithms

3.1 K-MEANS

K-means is a partitional clustering algorithm that aims at
minimizing the total squared error (TSE). To cluster N data
objects into K clusters, K centroids are initially selected in some
way, for example, through randomly chosen data objects. Two
steps of the algorithm are then iteratively performed: assignment
and update, for a fixed number of iterations or until convergence.
In the first step, objects are assigned to their nearest centroid. In
the second step, new centroids are calculated by averaging the
objects in each cluster [21]. Time complexity is O(IKN), where I
is the number of iterations [22].

K-means suffers from several drawbacks [6]. The main
drawback  is  that  the  result  is  highly  dependent  on  the  initial
selection of centroids. Different centroids lead to different local
optimums that may be very far away from the global one.
Consequently, many variants of K-means have been proposed to
tackle the obstacles. For example, several techniques such as K-
means++ [23] have been proposed for the better selection of
initial centroids. Iterative methods such as genetic algorithm [24]
and random swap [25] improve results by modifying the
centroids.

3.2 RANDOM SWAP

The randomized local search or random swap algorithm [25] selects
one of the centroids in a given clustering randomly and moves it
to another location. K-means is then applied to fine tune the
clustering result. The process is repeated for a given number of
iterations chosen as an input parameter. In each iteration, the
new resulting clustering is accepted if it improves TSE, and is
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then used for the next iteration. With large number of iterations,
typically 5,000, the method usually provides good results. This
trial-and-error approach is simple to implement and very
effective in practice.

3.3 AGGLOMERATIVE CLUSTERING

Agglomerative clustering is a bottom-up approach in which
each object is initially considered as its own cluster. Two clusters
are then iteratively merged based on a criterion [26]. Several
criteria have been proposed for selecting the next two clusters to
be merged such as single-linkage, average-linkage, complete-linkage,
centroid-linkage, and Ward’s method [27].

Classical agglomerative clustering using any of these criteria
is not appropriate for large-scale data sets due to the quadratic
computational complexities in both execution time and storing
space. The time complexity of the basic agglomerative clustering
is O(N3). The fast algorithm introduced in [28] employs a nearest
neighbor table that only uses O(N)  memory  and  reduces  the
time complexity to O( N2), where <<N. Even this algorithm can
still be too slow for real-time applications. In [26], an algorithm
based on k-nearest neighbor graph is proposed to improve the
speed  close  to  O(NlogN) with a slight decrease in accuracy.
However, graph creation is the bottleneck of the algorithm and
should be solved. Otherwise, this step dominates the time
complexity. Agglomerative clustering is sensitive to noise and
outliers.  It  does  not  consider  an  object  after  it  is  assigned  to  a
cluster, and therefore, previous misclassifications cannot be
corrected afterwards [6].

3.4 DBSCAN

Density Based Spatial Clustering of Applications with Noise
(DBSCAN) is a density-based clustering algorithm which aims
at finding arbitrary shaped clusters and eliminate noise. It
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creates clusters from the points whose neighborhood within a
given radius (eps) contains a minimum number (minPt) of other
points [29]. Using every such a point, the algorithm grows a
cluster by joining other points that are close to the cluster. The
results are independent of the order of processing the objects.

Three types of points are defined, see Figure 3.1. Core points
contain at least minPt (5  in  this  example)  points  in  their eps
neighborhood. Border points  do  not  contain  enough  points  in
their neighborhood but they fall in the neighborhood of some
core points. Other points are considered noise or outliers.

A point xi is directly density reachable from xj if xj is  a  core
point and xi is in its eps neighborhood. A point xi is defined
density reachable from a core point xj if a chain of points from xj

to xi exist so that each point is directly density reachable from
the previous point. The concept of density connectivity is also
defined to describe the relations between the border points that
belong to the same cluster but are not density reachable from
each other. Two points are density connected if they are density
reachable  from a  common core  point.  A  cluster  is  built  from a
core point and its neighboring objects in eps distance, and it
grows using the concepts of density-reachable and density-
connected. Two conditions should be held:
1. If xi is in cluster C, and xj is density reachable from xi, then xj

also belongs to cluster C
2. If xi and xj belongs to cluster C, xi and xj are density connected

The results are highly dependent on the input parameters eps
and minPt. Finding appropriate parameters for a data set is not
trivial, and the problem becomes more complicated when
different parts of data require different parameters [1]. Several
methods such as Ordering Points To Identify the Clustering
Structure (OPTICS) [30] have been proposed to address this
problem. Time complexity of the original DBSCAN is O(N2) but
efforts [31] [32] have been made to reduce it close to O(N).
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eps

Border

Core

Noise

Cluster 1

Cluster 2

Outlier

Figure  3.1:  Three  types  of  points  are  defined  in  the  DBSCAN
algorithm; two clusters are identified in this example, where
eps=1 and minPt=5.
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4 Cost functions

An objective function or cost function measures the error in a
clustering. The optimal clustering is achieved by minimizing the
cost function. However, not all clustering algorithms are based
on minimizing a cost function. Some include the cost function
hidden within the algorithm. This makes the evaluation of
clustering results and analysis of the algorithms difficult. For
example, DBSCAN produces a clustering heuristically with two
given input parameters. Different parameter values result in
different clusterings. No objective function has been reported to
decide  which  clustering  is  the  best.  There  is  however  a  cost
function but it may be hidden. This chapter addresses several
cost functions that are used in existing clustering methods.

4.1 TOTAL SQUARED ERROR (TSE)

Total squared error (TSE) is the objective function for most
centroid-based clustering algorithms such as k-means, which is
the sum of variances in individual clusters. Given data inputs xi,
i=1..N, centroids cj, j=1..k, and labels of data li, i=1..N, li=1..k, TSE
is defined as [6]:

N

i
li i

cxTSE
1

2
(4.1)

Mean squared error (MSE) equals normalized TSE by the
total number of objects. There is no difference between
minimizing MSE and TSE.

N

i
li i

cx
N

MSE
1

21
(4.2)

For a fixed number of clusters k, the best clustering is the one
that provides minimum TSE. However, when the number of
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clusters varies, the clustering that best fits the data cannot be
concluded merely based on TSE because increasing k will
always provide a smaller TSE. This would lead all points into
their own clusters.

The TSE in equation (4.1) can be used only for the data that
the centroid of a cluster can be calculated by averaging the
objects in the cluster.

4.2 ALL PAIRWISE DISTANCES (APD)

This cost function considers all pairwise distances (APD)
between the objects in a cluster. The centroid is not needed.
Therefore, APD can be used for any type of data if the distance
between every two objects is available. The criterion is defined
as:

lji Cxx
ji xxAPD

,

2

(4.3)

It can be shown for Euclidean distance that [33]:

kk

k

TSEnTSEnTSEn
APDAPDAPDAPD

...
...

2211

21 (4.4)

where APDi, ni,  and  TSEi are the sum of all pairwise distances,
the number of objects, and the total squared error in cluster i,
respectively.  It  is  shown  in  [34]  that  applying  all  pairwise
distances as the clustering criterion leads to more balanced
clusters than TSE.

TSE can be calculated for non-numeric data without having
centroids  as  follows.  The  sum  of  all  pairwise  distances  is
calculated for each cluster i,  and  the  result  is  divided  by  the
number of objects in the cluster giving the total squared error
TSEi. Summing up the total squared errors of all clusters results
in TSE.
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4.3 SPANNING TREE (ST)

The cost function is the sum of the costs of spanning trees (ST) of
the individual clusters. The optimal solution for the cost
function is achieved from the minimum spanning tree (MST) of
the data objects. Given the MST in Figure 4.1 (left), we can get
three clusters by cutting the two largest links. This cost function
is suitable for detecting well separated arbitrary shaped clusters.
However, it fails in real life data sets with noise, see Figure 4.1
(right).

Noise

Figure 4.1: Spanning trees of clusters are used to derive the cost
function.

4.4 K-NEAREST NEIGHBOR CONNECTIVITY

This cost function measures connectedness by counting the
number of k nearest neighbors of each object that are placed in
different cluster than the object [35].  It is calculated as:

otherwise

Pxif
jxxCONNK lj

jx
Px xnnx

jx i

li ij

i

,0

,1
)()(

)(
(4.5)

where xj is the jth nearest neighbor of xi, and Pl represents the
cluster that xi belongs to. The number of neighbors k is an input
parameter. The cost function should be minimized. The optimal
case  is  when  all k nearest neighbors of an object locate in the
same cluster of the object. The impact of the first neighbor on the
cost function is the highest, and it decreases for the next
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neighbors by the factor 1/j, j=1..k. The 5 nearest neighbors of one
object  is  depicted in Figure 4.2,  from which the fourth and fifth
neighbors are from the other cluster. The error is calculated as
1/4+1/5=0.45. Summing up the errors for all the points gives the
value of cost function.

Figure 4.2: Five nearest neighbors are considered to calculate the
cost function. For the selected point, two neighbors are located
in the other cluster.

4.5 LINKAGE CRITERIA

In agglomerative clustering, a global cost function has not been
defined in the literature. Instead, a merge cost is defined which
aims at optimizing the clustering locally. Several criteria such as
single-link and complete-link are used for merging two clusters,
see Figure 4.3. We reveal the global cost function through
analyzing the local ones.

Single-link criterion is the distance between the two most
similar objects in two clusters. The goal of single-link is to find
clusters with the highest connectivity. Two objects in a cluster
can be far away but connected through other points in the
cluster. The cost function is the sum of the costs of spanning
trees of individual clusters. Single-link can be related to
Kruskal’s  algorithm  which  is  known  to  be  optimal  for  MST.  It
can be shown that k clusters correspond to the MST forest of k
trees.

Complete-link criterion is the distance between the two most
dissimilar objects in two clusters. Complete-link aims at finding
homogenous clusters so that the maximum distance between the
objects in each cluster is minimized. Once two new clusters are
merged, the resulting distance is the maximum distance over all
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clusters which indicates the worst cluster. Given a clustering,
the largest pairwise distance in each cluster is determined. The
overall cost function is the maximum of the largest distances
from all clusters. We call the cost function MAX-MAX.
Agglomerative clustering using the complete-link criterion does
not guarantee the optimal solution for the MAX-MAX cost, see
Figure 4.4.

Average-link criterion selects the two clusters that the
average distance between all pairs of objects in them is
minimum. The corresponding cost function is therefore all
pairwise distances.

Centroid-link criterion is the distance between the centroids
of two clusters. It can be used only for data in which the
centroids of clusters can be derived.

Ward’s criterion selects the clusters to be merged that result
in a minimum increase in TSE [36]. The increase of TSE resulted
from merging two clusters i and j is calculated as:

2

ji
ji

ji cc
nn

nn
TSE (4.6)

where ci and cj are the centroids, and ni and nj are the number of
objects in the two clusters.

Single-link Complete-link

Average-link

Figure 4.3: Distance between two clusters
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Complete link Random swap

1

2

3

4

5

6

78 910

Figure 4.4: Complete link agglomerative clustering (left) results
in a higher value of  the cost  function MAX-MAX comparing to
the random swap algorithm (right). The numbers show the
order of merges.
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5 Internal validity indices

Clustering is defined as an optimization problem in which the
quality is evaluated directly from the optimization criterion.
Straightforward criterion works with a fixed number of clusters
k. Internal validity indices extend this to variable k.

5.1 INTERNAL INDICES

Internal indices use a clustering and the underlying data set to
assess the quality of the clustering [37]. They are designed based
on the goal of clustering, placing similar objects in the same
cluster and dissimilar objects in different clusters. Accordingly,
two concepts are defined: intra-cluster similarity and inter-
cluster similarity. Intra-cluster similarity (e.g. compactness,
connectedness, and homogeneity) measures the similarity of the
objects within a cluster, and inter-cluster similarity or separation
measures how distant individual clusters (or their objects) are.

Compactness is suitable for the clustering algorithms that
tend to provide spherical clusters. Examples include centroid-
based clustering algorithms such as K-means, and average-link
agglomerative clustering. Connectedness is suitable for density-
based algorithms such as DBSCAN [37]. Several variants of
compactness and connectedness exist. The average of pairwise
intra-cluster distances and the average of centroid-based
similarities are representatives of compactness. A popular
measure of connectedness is k-nearest neighbor connectivity
which counts violations of nearest neighbor relationships [37].

A good clustering of a data set is expected to provide well
separated clusters [38]. Separation is defined in different ways.
Three common methods are the distance between the closest
objects, the most distant objects, and the centers of two clusters
[39].



Mohammad Rezaei: Clustering Validation

24 Dissertation in Forestry and Natural Sciences No 225

Several internal indices have been proposed that combine
compactness and separation [3] [37] [39] [40] [41] [42]. Popular
indices are listed in Table 5.1. Most of the indices have been
invented for determining the number of clusters that fits the
data.

Table 5.1: Selection of popular internal validity indices
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5.2 SUM OF SQUARES WITHIN CLUSTERS (SSW)

Sum of squares within clusters (SSW) [43] or within cluster
variance is equal to the TSE, see Figure 5.1.

The index can only be used for numerical data because it
requires centroids of clusters. SSW measures the compactness of
clusters, and is suitable for centroid-based clustering, where
hyperspherical clusters are desired. The value of SSW always
decreases as the number of clusters increases.

Figure 5.1: Illustration of the sum of squares within clusters
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5.3 SUM OF SQUARES BETWEEN CLUSTERS (SSB)

The sum of squares between clusters (SSB) [43] measures the degree
of separation between clusters by calculating between cluster
variance.

The separation between clusters is determined according to
the distances of centroids to the mean vector of all objects, see
Figure 5.2. The factor ni in the formula presented in Table 5.1
indicates that a cluster with a bigger size has more impact on the
index. This criterion requires the centroids or prototypes of
clusters and all data. Increasing the number of clusters usually
results in a larger SSB value.

x

Figure 5.2: Illustration of the sum of squares between clusters.

5.4 CALINSKI-HARABASZ INDEX (CH)

The Calinski-Harabasz (CH) [44] index uses the ratio of
separation and compactness to provide the best possible
separation and compactness simultaneously. A maximum of the
index value indicates the best clustering with a high separation
and low error in compactness. A higher number of clusters for a
data set provides higher SSB and lower SSW. However, the
decrease in SSW is more than that of SSB. Therefore, the penalty
factor  (K-1) prevents the conclusion of a higher number of
clusters than the correct one. The term N-K is considered to
support cases in which the number of clusters is comparable to
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the total number of objects. However, usually N is much higher
than K, and the term can be shortened to N.

This index, similar to SSB and SSW, is limited to numerical
data with hyperspherical clusters.

5.5 SILHOUETTE COEFFICIENT (SC)

Silhouette coefficient (SC) [49] measures how well each object is
placed in its cluster, and separated from the objects in other
clusters. The average dissimilarity of each object xi with all
objects in the same cluster is calculated as a(xi), which indicates
how well xi is assigned to its cluster. Lowest average
dissimilarity of xi to other clusters is calculated as b(xi).

SC=
N

p ii

ii

xbxa
xaxb

N 1 ))(),(max(
)()(1 (5.1)

The dissimilarity between two objects is sufficient for
calculating the index. Therefore, SC can be used for any type of
data, and any clustering structure.

5.6 DUNN FAMILY OF INDICES

Dunn index [47] is defined as follows:
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where d(ci,cj) is the dissimilarity between two clusters and
diam(ck)=max d(xi, xj) is the diameter of cluster ck, where xi, xj ck.
The numerator of the equation is a measure of separation, the
distance between the two closest clusters. The diameter of a
cluster shows the dispersion (opposite to compactness) of the
cluster. The cluster with the maximum diameter is considered.
A larger value of the index indicates a better clustering of a data
set with more compact and well separated clusters.



Mohammad Rezaei: Clustering Validation

28 Dissertation in Forestry and Natural Sciences No 225

Dunn index is sensitive to noise, and has a high time
complexity [52]. Three related indices have been introduced in
[52] based on Dunn index to alleviate these limitations. They are
called Dunn-like indices.

5.7 SOLVING NUMBER OF CLUSTERS

To determine the number of clusters, clustering is applied to the
data set for a range of k [Kmin, Kmax], and the validity index values
are calculated. The best number of clusters k* is selected
according to the extremum of the validity index.

Figure 5.3 shows data set S1 with 15 clusters and the
normalized values of SSW and SSB. Random swap clustering
algorithm [25] is applied when the number of clusters is varied
in the range [2, 25].

Figure 5.3: Data set S1 (left), and the measured values of SSW
and SSB (right)

The error in compactness measured by SSW decreases, and
the separation measured by SSB increases, as the number of
clusters increases. However, the decreasing and increasing rates
significantly reduce after k=15, a knee point that indicates the
correct number of clusters. Although several methods for
detecting the knee point have been summarized in [43] but none
of  them  work  in  all  cases.  It  would  be  easier  to  use  a  validity
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index that provides a clear minimum or maximum value at the
correct number of clusters. For example, CH [44] provides a
maximum by considering both SSW and SSB, and also a penalty
factor on the number of clusters k, see Figure 5.4.

Figure 5.4: Determining the number of clusters for the data set S1

using CH index

Most of the existing internal indices require the prototypes of
the clusters but these are not always easy to calculate, such as in
a clustering of words based on their semantic similarity. In [P4],
we introduce a new internal index to be used for determining
the number of clusters in a hierarchical clustering of words.

To find out which level of the hierarchy provides the best
categorization of the data, an internal index needs to evaluate
the compactness within clusters and separation between clusters
at each level. We define the proposed index as the ratio of
compactness and separation:
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where wi is the ith keyword, ct is the cluster t at the level of
hierarchy where the number of clusters is k, JC is the Jiang &
Conrath function that measures the distance of two words, I1 is
the number of clusters with only one word, and N is the total
number of words.

Compactness measures the maximum pairwise distance in
each cluster, and takes the maximum value among all clusters.
Compactness for clusters with a single object cannot be
considered zero because the clustering in which each object is in
its own cluster would then result in the best compactness. To
avoid this, we add the factor I1/N to the compactness equation.
In the beginning of clustering, when each object belongs to its
own cluster, the compactness equals 1 because I1=N.

Separation measures the minimum distance between the
words of every two clusters and sums up the values.
Normalization by k(k-1)  provides  a  value  in  the  same  scale  as
compactness. A good clustering provides a small distance value
for compactness and a large distance value for separation.
Therefore, the level of the hierarchy with k clusters that results
in the minimum SC is selected as the best level.
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6 External validity indices

External validity indices measure how well the results of a
clustering match the ground truth (if available) or another
clustering [53] [P1]. They are the criteria for testing and
evaluating clustering results and for the analysis of clustering
tendency in a data set. Some authors define an external index for
comparing a clustering with ground truth [4] [37] and define
relative index for comparing two clusterings of a data set [3] [5].
However, many others classify both as external index. External
indices have been used in ensemble clustering [40] [54] [55] [56],
genetic algorithms [57], and evaluating the stability of k-means
[55].

In this section, we first introduce several properties for a
validity index based on which its performance can be evaluated.
We then provide a review of the external indices in three
categories: pair-counting, information theoretic, and set-matching,
see Table 6.1, [P2]. Finally, we describe our new setup of
experiments for evaluating the external indices.

Given two partitions P={P1, P2,…,PK} of K clusters and G={G1,
G2,…,GK’} of K’ clusters, an external validity index measures the
similarity between P and G. Most external indices are derived
using the values in the contingency table of P and G, see Table 6.2.
The table is a matrix where nij is the number of objects that are
both in clusters Pi and Gj: nij=|Pi Gj|, ni and mj are the size of
clusters Pi and Gj respectively.

Table 6.1: External validity indices

Pair-counting measures
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Table 6.2: Contingency table for two partitions P and G
G1 G2 … Gj … GK’

P1 n11 n12 … n1j … n1K’ n1

P2 n21 n22 … n2j … n2K’ n2

… … … … … … … …
Pi ni1 ni2 … nij … niK’ ni

… … … … … … … …
PK nK1 nK2 … nKj … nKK’ nK

m1 m2 … mj … mK’ N

6.1 DESIRED PROPERTIES

An external validity index needs to satisfy several properties to
be consistent and comparable for different data sets and
clustering structures.

Normalization transforms the index within a fixed range, for
example [0, 1], which makes comparison easier for data sets of a
different size and structure. Normalization is the most
commonly agreed property in the clustering community [66],
and is usually performed as:

)min()max(
)min(),(

dd

ddn

II
IIGPI

d (6.1)

where min(Id) and max(Id) are the minimum and maximum
values of Id.

Index values are expected to be constant when different
random clusterings are compared with a ground truth [59]. A
random partition is created by selecting a random number of
clusters of random size. The similarity between the random
partition and the ground truth originates merely by chance.
Take an example of Rand index: the value of the index for two
random partitions is not a constant, and is in a narrower range
of [0.5, 1] instead of [0, 1]. By correction for chance or adjustment,
the expected value of an index E(I) is transformed to zero
(similarity) or one (dissimilarity) [59] [67]. Adjustment and
normalization can be performed jointly as follows:
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where the minimum (similarity) or maximum (dissimilarity) is
replaced by the expected value E(I).

Metric property has  also  been  considered.  Although  a
similarity/dissimilarity measure can be effective without being a
metric [7], it is sometimes preferred. Considering dissimilarity
index I and clusters P1, P2 and P3, metric properties require [2]
[68]:

1. Non-negativity: Id(P1,P2)  0
2. Reflexivity: Id(P1,P2)=0 if and only if P1=P2

3. Symmetry: Id(P1,P2)=Id(P2,P1)
4. Triangular inequality: Id(P1,P2)+Id(P2,P3) Id(P1,P3)

A similarity metric satisfies the following [2]:
1. Limited Range: Is(P1,P2) I0<
2. Reflexivity: Is(P1,P2)= I0 if and only if P1=P2

3. Symmetry: Is(P1,P2)=Is(P2,P1)
4. Triangular inequality:

Is(P1,P2)×Is(P2,P3) Is(P1,P3)×( Is(P1,P2)+Is(P2,P3))

The triangular inequality for a similarity index Is is derived
here according to the corresponding inequality for a
dissimilarity index which is defined as c/Is (c>0). However, other
forms of the inequality are possible by defining other
dissimilarities such as max(Is)-Is. It is trivial to show that if c/Is

(or max(Is)-Is) is a dissimilarity metric, Is is a similarity metric as
well [2]. Hence, metric properties for a similarity index can be
checked for its corresponding dissimilarity [P2].

Cluster size imbalance signifies that a data set can include
clusters with large difference in their sizes. Some researchers
argue that clusters with larger sizes have more importance than
smaller clusters but we assume that each cluster has the same
importance independent of its size. Invariance in the size of
clusters is therefore another desired property of an index. The
size of a data set should not affect the index either [P2].



External Validity Indices

Dissertation in Forestry and Natural Sciences No 225   35

An index should be independent of the number of clusters.
Some indices such as Rand index (RI) [58] give higher similarity
when more clusters [68]. An index should also be applicable for
comparing two clusterings with different number of clusters.

Monotonicity is another required property. This property
states that the similarity of two clusterings monotonically
decreases as their difference increases [P2].

Once these desired properties are met, then index values for
different data sets are on the same scale and comparable. For
instance, if an index gives 90% and 70% similarities, 90% should
represent higher similarity. However, this is true only if the
index is independent of the data set and its clustering structure
[P2].

6.2 PAIR-COUNTING INDICES

Pair-counting measures count the pairs of points on which two
clusterings agree or disagree. For instance, if two objects in one
cluster in the first partition are also placed in the same cluster in
the second partition, then this is considered an agreement. Most
existing external validity indices are classified in this group [P2].
Four values are defined: a represents the number of pairs that
are in the same cluster both in P and G; b represents the number
of pairs that are in the same cluster in P but in different clusters
in G; c represents the number of pairs that are in different
clusters in P but in the same cluster in G; d represents the
number of pairs that are in different clusters both in P and G.
Values a and d count agreements while values b and c count
disagreements. Examples of each case are illustrated in Figure
6.1. The values of a, b, c, and d can be calculated from the
contingency table [59] as follows:
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Rand index [58], a well known pair-counting measure, equals
the number of agreements divided by the total number of pairs
of points:
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 For random partitions, the similarity between two
clusterings is desired to be close to zero. However, the expected
value of Rand index for random partitions is 0.5 and the index is
within  a  narrow  range  of  [0.5,  1]  according  to  a  number  of
studies [40] [55] [59]. Hence, a corrected-for-chance version
called adjusted Rand index (ARI) was introduced in [59] which is
upper bounded by one and lower bounded by zero. The
expected value of the Rand index is estimated using the hyper-
geometric distribution assumption in which the size and
number of clusters are fixed [59].

G P

a

b

c
d

a

b

c
d

Figure 6.1: The principle of pair-counting measures.

6.3 INFORMATION-THEORETIC INDICES

Existing information theoretic measures employ the concept of
entropy [60] to compare two partitions. A systematic study of
this group, including several existing popular measures and
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recently proposed measures, has been performed in [66].
Entropy is measured by the average number of bits needed to
store or communicate data. The entropy of clustering P with K
clusters is defined as:

K

i
ii PpPpPH

1

)(log)()( (6.5)

where p(Pi)=ni./N is the estimated probability of the cluster Pi.
With clustering G and the joint distribution p(P,G), the

average number of bits for P is derived by conditional entropy
[53] as follows:
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where the probability p(Pi,Gj) can be estimated from the
contingency table as nij/N.

Mutual information (MI) [54] [66] is derived from conditional
entropy and represents the similarity between two clusterings
[68]. If we choose a random object in the data set, knowing its
cluster in G, mutual information measures the reduction in
uncertainty of the object’s cluster in P [68] [69]. Mutual
information is defined formally as follows:

),()()()|()(),( GPHGHPHGPHPHGPMI (6.7)

In terms of probabilities, it is:
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Variation of Information (VI) [69] is complementary of the
mutual information, see Figure 6.2, and is calculated by
summing up the conditional entropies H(P|G) and H(G|P):
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Mohammad Rezaei: Clustering Validation

38 Dissertation in Forestry and Natural Sciences No 225

MI

H(G) H(P)

VI

H(P|G)H(G|P)

Figure 6.2: Mutual information  and variation of information

Both MI and VI are metric but are not bounded to a fixed
range [68]. The mutual information of clusterings P and G is
lower bounded by zero. The geometric or arithmetic mean of
entropies as an upper bound can be an option for normalization
[54] [60] [68], see Table 6.1. In [60], min(H(P),  H(G)) and
max(H(P),  H(G)) are also used for normalization. An upper
bound for VI is H(P)+H(G), which means that clusterings P and
G do not share any information [61]. The upper bound can
therefore be used for the normalization of VI. In [P2], we prove
that under the hyper-geometric distribution assumption and by
using H(P)+H(G) for normalization, the adjusted forms of MI
and VI are equal to their normalized forms:

NMIAMINVIAVI ss (6.10)

where NVIs and AVIs denote the similarity form of NVI and AVI
(1-NVI and 1-AVI) respectively.

6.4 SET MATCHING INDICES

Set-matching based indices are based on pairing similar clusters
in two partitions. Taking use of the tight connection between
partitions and centroids, cluster-level similarity indices employ
representatives of clusters instead of point-level partitions.

Point-level indices consider the intersection of paired clusters in
two clusterings. Examples of point-level set-matching measures
are: Purity [5], F-measure (FM) [62], Criterion H (CH) [63], normalized
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Van Dongen (NVD) [64], centroid similarity measure (CSI)  [P1], and
Pair sets index (PSI) [P2].

Cluster-level indices include Centroid Index (CI)  [P1] and
Centroid Ratio (CR) [65]. They only use cluster prototypes in
contrast to point-level indices which employ the labels of all
objects in resulting partitions.

Set-matching measures involve three design questions:
1. How to measure the similarity of two clusters?
2. How to match the clusters?
3. How to calculate overall similarity?

Normalization and correction for chance (if applied) are also
essential parts of overall similarity derivation. We next study all
these questions including the normalization.

1. Similarity of two clusters
Let Pi and Gj be two clusters in P and G respectively. Most set-
matching measures use |Pi Gj| to calculate the similarity of the
two sets. For example, in Figure 6.4, clusters G1 and P1 are more
similar than G2 and P2 since the number of shared objects is 6
and 4 respectively. Many other ways to measure the similarity
of two sets exist in the literature [70] and any of them can be
employed for calculating the similarity of two clusters. Three
popular measures are Jaccard (J) [71], Sorensen-Dice (SD) [72],
and Braun-Banquet (BB) [70].
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Distance forms of J and SD are defined as (1-J) and (1-SD)
where the former is a true metric but the latter does not satisfy
triangular inequality. To make the measure independent of
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cluster size, these measures normalize the number of shared
objects |Pi Gj| in three different ways [P2].

FM [68] uses precision and recall concepts by measuring nij/ni

and nij/nj respectively. The criterion [2×precision×recall/
(precision+recall)] would be equivalent to SD but avoids
normalization by cluster size using ni×SD instead of SD. PSI uses
BB, and other point-level indices use the number of shared
objects [P2]. Cluster-level indices provide a binary result (0 or 1)
indicating whether the clusters have a 1:1 match (CI), or the pair
of clusters is unstable (CR).

2. Matching
For every cluster, the pair to which the similarity is measured
needs to be found. Three cases are considered: optimal pairing,
greedy pairing, and matching. Matching is performed based on
nearest neighbor mapping so that any cluster in P is matched to
a cluster in G with maximal similarity. Several clusters can be
matched with the same cluster in the other clustering. Pairing is
a special case of matching in which clusters are only allowed to
be matched once.

Matching results, in general, are not symmetric when finding
pairs for clusters of P from G and vice versa. To make the index
symmetric, similarity results in both directions are usually
combined, see NVD, CI, and CSI equations in Table 6.1. FM and
Purity assume the comparison of a clustering with ground truth
and therefore consider matching in one direction only. The
matching criterion in NVD and Purity is the number of shared
objects; CI and CSI are based on the similarity of prototypes.

The pairing problem, however, is not trivial to solve and
different algorithms have been proposed to find approximate or
optimal solutions. Pairing can be seen as a matching problem in
a weighted bipartite graph where nodes represent the clusters,
see Figure 6.3. Greedy pairing is mostly used with the time
complexity of O(N2). The two most similar clusters are
iteratively matched and excluded. CH and CR use greedy
pairing whereas PSI uses optimal pairing by Hungarian
algorithm with time complexity O(N3), where N is the maximum
number of clusters in P and G.
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G

P

4 16
10 10

20 15 25

Figure 6.3: Pairing clusters to maximize overall similarity. The
thick lines show the optimal pairing where the overall similarity
according to number of shared objects would be (25+20+16)=61.

Figure 6.4 demonstrates the matching from G to P based on
the number of shared objects where P2 remains unmatched.
Matching from P to G will be different resulting in (P1,G1),
(P2,G2), and (P3, G3).

G P

G1

G2

G3

P1

P3

P2

Figure 6.4: Matching clusters based on maximum shared objects.
Cluster P2 remains unmatched. In the pairing process of CH, G2

is paired with P2 after excluding G1 and P1 as the first pair.

Figure  6.5  shows  matching  in  CI  when  there  is  different
number of clusters. In matching P to G,  one orphan centroid is
found that indicates one difference in the global allocation of the
clusters. In comparing two clusterings with different numbers of
clusters, unpaired clusters indicate a disagreement in the
number of clusters, which is an advantage of pairing.
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G P
G1

G2

G3

P1

P2

orphan

Figure 6.5: Matching centroids from P to G based on nearest
neighbor mapping used in CI and CSI; one orphan centroid
shows one difference in global allocation.

3. Overall similarity
Overall similarity is obtained by summing up the similarities of
all the matched clusters. The upper bound of overall similarity
for  CH  is N (total  number  of  objects)  which  is  used  for
normalization, see Table 6.1. To remove the asymmetric effect of
matching,  NVD and CSI use 2N because of two-way matching,
see  Table  6.1.  In  [P2],  we  show that  CSI,  Purity,  NVD,  and CH
are all equivalent if their matching results are the same.

The overall dissimilarity of CI equals the number of zero
mapped centroids of G.  In  Figure  6.6,  the  blue  prototypes  are
mapped to the red prototypes from another solution according
to minimum Euclidean distance. There is no mapping to two of
the red prototypes, which results in CI=2. Since CI is not
symmetric, CI2 is  defined  as  max(CI(P,G), CI(G,P)) [P1].
Centroid index represents the number of differences in global
allocations and is in the range of [0, K-1], where K is  the
maximum number of clusters in the two clusterings. At least one
non-zero mapped centroid exists, therefore the upper bound
becomes K-1.
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Figure 6.6: Two sets of prototypes and their mappings are
shown. There are two orphans resulting in the index value of
CI=2.

Centroid ratio (CR) defines the concept of (un)stable
centroids. Consider a paired centroid Ci and C’j with distance Dij

from clusterings P and G, respectively. Assume that the
distances of Ci to the nearest centroid in P, and C’j to the nearest
centroid in G, are Di and Dj. Then, if Dij2/(Di×Dj)>1, the pair is
considered unstable. The overall similarity is defined based on
the number of unstable pairs [65], see Table 6.1.

In  [P2], we propose pair sets index that is the only set-
matching based index that applies correction for chance. We
show that the simplified variant of PSI holds all the
requirements to be a metric.

6.5 EXPERIMENTAL SETUP FOR EVALUATION

Partitions from real data sets provide only limited variations,
whereas a variety of partitions with different data sizes, cluster
sizes, and number of clusters should be used to provide a valid
evaluation of the performance of an external index. In [P2], we
introduce a new arrangement for experiments based on
artificially generated partitions to investigate the properties of
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external indices. First, we introduce the process of generating
partitions, and then, we provide two examples that show the
behavior of several external indices in two aspects: random
partitions and monotonicity.

Consider a ground-truth partition G with 3,000 objects and
1,000 objects in each cluster, see Figure 6.7, where light grey,
grey, and black represent the three clusters. In practice, we make
an array of the length 3,000 objects with values 1, 2, and 3
representing cluster labels of data. In this case, the first 1,000
objects (light grey) have value 1. The partition P to be compared
with is varied in different ways. The order of the data objects in
the two partitions remains the same.

1 1000 2000 3000G

1 700 2000 3000P

Figure 6.7: Two partitions with 3,000 objects.

Two partitions can be built in different ways to examine the
properties of an external index with respect to different aspects.

1. Random partitions
Consider a partition P which consists of random labels as shown
in Figure 6.8. Experiments are conducted for different numbers
of clusters from K=1 to 20 in P. The indices NMI, ARI, and PSI
give values close to zero independent of the number of clusters.
The values of the other three indices are not zero because they
are not corrected for chance, see Figure 6.9. Normalized mutual
information gives zero in this case which shows that NMI has
the same performance as the adjusted mutual information. This
result further verifies the claim made in (6.10).

1000 2000 3000G

P

Figure 6.8: Clustering P is a random partition with two clusters.
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Figure 6.9: Random partitioning with different numbers of
clusters in P from K=1 to 20

2. Monotonicity
The first (light grey) cluster in P is enlarged in steps of 50 objects
until only one cluster remains, see Figure 6.10. In Figure 6.11,
NMI, ARI, and NVD have very clear knee points when the light
grey cluster reaches 2,000 objects because, at this point, the
number of clusters decreases by 1. For NMI and ARI, the index
values increase when the cluster size approaches 2,000. In this
situation, there are still three clusters and the results indicate
that NMI and ARI ignore relatively small clusters and weigh
large clusters more. When the size of the light grey cluster is
passing from 2,000, there is a local maximum as the number of
clusters changes from three to two. NVD is constant between
1,500 to 2,000, and 2,500 to 3,000. The asymmetric matching of
clusters in NVD causes the problem. Suppose that the size of the
grey cluster (x) in P is less than 500. The number of shared
objects is 1,000+x+1,000 in matching P to G. In matching G to P,
both light grey and grey clusters in G are matched with the light
grey cluster in P, resulting the number of shared objects
1,000+(1,000-x)+1,000. Summing up, the number of shared
objects in two directions is independent of x and equal to 5,000.
Therefore, when the size of the first cluster is between 1,500 and
2,000, the similarity remains a constant 5,000/6,000=0.83.
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1000 2000 3000G

1250 2000 3000  P1

2000 3000 P2

2500 3000 P3

3000 P4

Figure 6.10: Enlarging the first (light grey) cluster in steps of 50
objects by moving the objects from the other two clusters

Figure 6.11: Increasing the size of the first cluster until it
contains all data objects

6.6 SOLVING THE NUMBER OF CLUSTERS

External indices have been used for determining the number of
clusters [4] [41] [73] [74] [75] [76] [77]. The idea is to generate
randomness in the process by resampling the data, cluster the
subsamples with a varying number of clusters, and then
measure the stability with the presence of the randomness [74].
Stability is measured by comparing clusterings in the resamples
using an external index. All existing methods under different
nomenclature such as cross-validation [78], replication [77] [79],
resampling [4] [74] [80] and prediction [73] [81], evaluate the
stability of clustering results.
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The idea is demonstrated in Figure 6.12. Centroid-based
clustering is applied to the data set with five clusters and its
subset for k=5 and k=8. The clustering results of the data set and
the subset are similar when k=5, whereas there are
disagreements when k=8. There are pairs of objects that are in
the same cluster in the data set but in different clusters in the
subset.

Disagreement

Figure 6.12: Stability-based method for finding the number of
clusters. Stable (left) and unstable (right) results are produced
when the correct and incorrect number of clusters are applied.

Stability, however, can be achieved with fewer clusters if the
positioning of the clusters is not symmetric [82]. Figure 6.13
demonstrates two data sets with three well-separated clusters,
first with a symmetric (left), and second with a non-symmetric
(right) positioning of clusters. Applying clustering for k=2 gives
stable results for the first data set and unstable results for the
second data set. The second data set is also stable for k=3, which
is the correct number of clusters. Therefore, it is better to select
the highest number of clusters that leads to a stable result.

Data set Subset Data set Subset

Figure 6.13: Unstable results for symmetrically and stable results
for non-symmetrically positioned clusters when the incorrect
number of clusters k=2 is applied.
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The stability-based method includes four main design
choices:

1. Adding randomness
2. Cross-validation strategy
3. Selection of the external index
4. Selection of the clustering method

Randomness is typically created by sub-sampling. The size
and number of subsamples are parameters. Another approach is
to use a randomized algorithm [83]. However, an inconsistent
clustering algorithm such as k-means is completely unreliable
and should not be used, but randomizing another more stable
algorithm could be used. Adding noise has also been used to
provide randomness in the data [84], [85]. A noise vector with
random orientation can be generated but its magnitude depends
on data and is not trivial to set. In the case of categorical data,
adding noise can become complicated. Changing just one
attribute randomly may result in an impossible combination of
the attributes.

Most external indices are restricted to compare partitions of
the same data exactly. A straightforward approach [41] [42] [74]
compares clustering results to the result of the full set, but
restricting only to the points that are in the subset. Another
approach predicts the missing partition labels by nearest
neighbor mapping using cluster centroids, or by applying a
more complicated classifier process [73] [78] [80] [86]. We will
also consider comparing the subsets directly by using centroid
index [P1], which does not require the partition of the data.

The third design choice is the selection of an external validity
index. We show by experiments in [P3] that the exact choice of
the measure is not important, but how it is applied matters. All
existing stability-based methods select the number of clusters
that provide maximum stability, but simple counter-examples
show how it will fail. We therefore introduce an alternative
hypothesis that several numbers of clusters can provide stable
results, and choosing the maximum number of clusters among
these is more reliable.
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The last design choice is the selection of a clustering
algorithm. K-means is commonly chosen but it is highly
unstable itself and not useful. Another more robust algorithm,
such as agglomerative clustering [87], random swap [25] or
genetic algorithm [57], should be used instead. However, the
main question is not which algorithm but rather which cluster
model (cost function). If we apply squared error criterion but
the data is not spherical, a clustering may be resulted that does
not fit the data. Nevertheless, we should still be able to find the
number of clusters that best fits to this model.

The baseline variant of cross validation using the sub-
sampling strategy is outlined in Figure 6.14.

Cross validation (CV) Iterating the process

Subsampling

Data set Subset

Clustering Clustering

Cluster
Validity

Validity value
[0, 1]

Subset 1

Subset 2

Subset P

Data set

CV

CV

CV

Analysis Stability value
[0, 1]

...

...

...

Figure 6.14: Cross-validation technique; clustering of a full data
set is compared with the clustering of its subset (left). The
process is repeated for a number of subsets (right).

The cross-validation approach is repeated by applying
clustering with all potential numbers of clusters k [kmin, kmax].
We denote the mean value of the validity index for k clusters as
Ik.  Maximum stability approach uses this mean value as such to
indicate the correct number of clusters:

k
kIK )max(arg (6.14)

The normalized maximum stability approach selects the number
of clusters as the maximum difference in mean stability values
of  the  data  (I)  and  the  corresponding  value  (I0)  of  the  null
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reference, which is a random data set drawn from the original
data [41] [73]:

k
kk IIK )max(arg 0 (6.15)

This approach is referred to as normalization with regard to
the number of clusters [83]. The reason is that the stability value
depends on k regardless of the underlying data structure. For
example, the stability of clustering for a random uniform data
set decreases as the number of clusters increases. This bias
should be removed, and then the same equation (6.14) should be
used.

In  [P3], we consider last local maximum as  a  new  criterion,
which provides better results. For this, a threshold (Ith)  is  set  to
decide how high of an index value is considered stable. The
selection becomes:

k
thk IIkK )max(arg (6.16)

Resampling techniques have been used in supervised
learning to improve prediction accuracy, where the main idea is
that small changes in the training data will yield the same stable
classifier without any significant change in accuracy. The same
idea has been applied for estimating the number of clusters in a
data set [80]. Part of the data is considered for training a
classifier and the rest of the data for test. Two different labeling
are derived for the test data: one from the classifier and the
other by applying clustering. The two resulting partitions are
compared using an external index, see Figure 6.15.

Figure 6.16 shows the results of cross-validation and
classification-based approaches with and without normalization
for the data set in Figure 6.12. The highest stability is found with
k=5, the correct number of clusters.
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Classification-based approach (CB)

Subsampling

Data set

Training subset Test subset

Clustering

Training

Clustering

Classifier Cluster
Validity

Validity value
[0, 1]

Model

Labels Labels

Labels

Iterating the process

Data set

CB

CB

CB

Analysis

Stability value
[0, 1]

...

...

Figure 6.15: Classification-based approach (left), and iterating
the process for several train and test sets (right).

Figure 6.16. Example of stability-based method for the data set
in Figure 6.12. 100 subsets are used in the cross-validation
approach, each 20% of the full data set. The sizes of train and
test sets in the classification-based approach are 80% and 20%.
Random swap algorithm is used for clustering [25] and adjusted
Rand index for validation [59].
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7 Summary of contributions

This chapter summarizes the contributions of the five
publications. Publications [P1]  to  [P4] concerns cluster validity,
and publication [P5] proposes a semantic similarity measure for
comparing groups of words.

In  [P1], we propose a new cluster-level external validity
index, which measures the global allocation of clusters instead
of point-level differences in partitions. The proposed centroid
index (CI) uses the representatives of the clusters to compare
two clusterings, therefore it can be computed fast in O(K2) time.
It is simple to implement, and has clear intuitive interpretations.
Values CI>0 indicate how many clusters are differently allocated.
Point-level extension of CI is also introduced. It belongs to the
class of set matching-based indices. Experiments show that CI is
capable of recognizing structural similarity of clusterings, even
for high dimensional data. The results are also promising for
solving the number of clusters based on measuring the stability
of clusterings.

In  [P2], we provide a systematic study of existing set
matching-based external validity indices by analyzing three
design questions: matching clusters, similarity of two clusters,
and overall similarity. We show that how CSI, NVD, CH and
purity are equivalent if the matching of clusters is the same. We
study correction for chance, and prove that normalized mutual
information and variation of information are intrinsically
corrected for chance. We propose a new set matching based
index called Pair Sets Index (PSI), which outperforms popular
existing external indices. A novel setup for experiments is
introduced based on synthetic data, which allows systematic
evaluation of an external index for clusterings of different data
sizes, cluster sizes, and numbers of clusters.

In  [P3], we analyze the stability-based approach for
determining the number of clusters. The goal is to find out
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whether stability-based method can be used for determining the
number of clusters. The simple answer is that, yes, it is possible,
but we think it is not practical. If it is going to be used, we give
the following recommendations how to construct the method.
The exact choice of the cross-validation strategy and external
index is not critical. Unstable clustering algorithms like k-means
should not be used. Using the last local maximum criterion
provides much better results than the global maximum criterion.
Even if we demonstrated the approach working successfully for
several data sets, we do not recommend it. External indices
simply do not offer anything more that the best internal indices
cannot offer, and they would just add unnecessary
complications into the system.

In  [P4], we propose a validity index for determining the
number  of  clusters  in  a  group  of  English  words.  We  define
compactness and separation between clusters, and the validity
index as the ratio of compactness/separation. The experiments
on a real data set show that the number of clusters calculated
using the proposed index has a 2% error comparing to human
judgment. The index uses only the similarity between two data
objects, and therefore, is suitable for any type data.

In  [P5], we propose a semantic similarity measure for
comparing two groups of words. The measure is used for
keyword-based clustering, where the objects such as documents,
websites, and movies are represented by their keywords. We
use Wu & Palmer index, a WordNet based measure, for
comparing every two words.  The proposed index is based on
matching the words in two groups. A comparative evaluation
with a real data set shows that the index avoids the limitations
of traditional measures such as minimum or average similarity.
The index can be used not only for comparing groups of words
but for groups of any type of data, when the similarity between
every two data objects is available.
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8 Conclusions

The absence of prior information in cluster analysis makes it
more challenging than supervised classification. The goal of
cluster analysis is to reveal the underlying structure of the data
rather than establishing classification rules. Cluster analysis
contains a set of components including proximity measure, cost
function, clustering algorithm, and cluster validity. Every
component is closely related to the other components.
Therefore, to analyze one component, knowledge of the other
components and their effects is necessary. Given the same data
set, different proximity measures, cost functions, and clustering
algorithms usually result in different partitions.

This thesis reviews different components in cluster analysis,
concentrated on cluster validity. Several novelties are presented
such as proposing an internal index for determining the number
of  clusters  in  clustering  of  a  group  of  words,  introducing  a
cluster-level external validity index, proposing a point-level
external validity index, providing an analysis of external indices
and their properties, a novel setup of experiments for evaluating
external indices, proposing a similarity measure for the
comparison of two groups of words, and analysis of stability-
based method for determining the number of clusters.

Though we have already seen many examples of successful
applications of cluster analysis, many open problems still
remain due to the existence of many inherent, uncertain factors.
Our future research will entail:

CI is limited to data for which centroid can be calculated.
We can remove this dependency as long as the cluster
similarity can be measured. This can be done point-wise
but the overall idea of measuring the differences by the
number of mismatch clusters is worth to try.
Keyword clustering can be applied to clustering
documents, for instance, web pages.
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Although we do not recommend the stability-based
method for solving the number of clusters, we can use it
for measuring stability of different algorithms and cost
functions.
Studying the cost functions and their properties should
also be done. Analyzing what the different link and cut-
based clustering methods actually optimize would reveal
further insight.
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In clustering algorithm, one of the main challenges is to solve the global allocation of the clusters instead
of just local tuning of the partition borders. Despite this, all external cluster validity indexes calculate
only point-level differences of two partitions without any direct information about how similar their
cluster-level structures are. In this paper, we introduce a cluster level index called centroid index.
The measure is intuitive, simple to implement, fast to compute and applicable in case of model mismatch
as well. To a certain extent, we expect it to generalize other clustering models beyond the centroid-based
k-means as well.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Quality of centroid-based clustering is usually evaluated by
internal validity indexes, most commonly by measuring intra-
cluster variance. Internal validity indexes use information intrinsic
to the data to assess the quality of a clustering. These include
measures such as Dunn's index [1], Davies–Bouldin index [2] and
Silhouette coefficient [3]. For a recent survey, see [4].

External indexes can be applied to compare the clustering
against another solution or ground truth (if available). The ground
truth can be a small representative training set given by an expert
of the application domain. However, synthetic data is often used to
test different aspects of the clustering methods, where their
ground truth is easier to obtain. The indexes can also be applied
in clustering ensemble [5,6] and used in genetic algorithms [7] to
measure genetic diversity in a population. In [8], external indexes
have been used for comparing the results of multiple runs to study
the stability of the k-means algorithm. In [9], a framework for
evaluating popular internal validity indexes was introduced by
using external indexes on ground-truth labels. To sum up, in all
these cases the main goal is to measure the similarity of two given
clusterings.

Most external indexes are based on counting howmany pairs of
data points are co-located into the same (or different) cluster in
both solutions. Examples of these are Rand index [10], adjusted
Rand index [11], Fowlkes and Mallows index [12] and Jaccard

coefficient [13]. A popular application-dependent approach is to
measure classification error, which is quite often employed in
supervised learning. Another type of external validity indexes is
based on finding matches between the clusters in two solutions.
Normalized van Dongen criterion [14,15] has a simple computation
form and it can measure data with imbalanced class distributions.
Other indexes utilize the entropy in different manners to compare
two solutions. Mutual information [16] is derived from conditional
entropy and variation of information [17] is a complement of the
mutual information. Studies of external indexes can be found in
[15,18].

For comparing clusterings, external indexes have been widely
used by counting how many pairs of data points are partitioned
consistently in the two clustering solutions. In order to be
consistent, a pair of points must be allocated in both solutions
either in the same cluster, or in a different cluster. This provides
estimation of point-level similarity but does not give any direct
information about the similarity at cluster level. For example in
Fig. 1, both examples have large point-level mismatches (marked
by yellow) but only the second example has cluster level mismatches.

In this paper, we propose a cluster level measure to estimate the
similarity of two clustering solutions. First, nearest neighbor mapping
is performed between the two sets of cluster prototypes (centroids),
and the number of zero-mappings is then calculated. Each zero count
means that there is no matching cluster in the other solution. The
total number of zero-mappings gives direct information of howmany
different cluster locations are there in the two clustering solutions in
total. In case of a perfect match, the index provides zero value
indicating that the solutions have the same cluster-level structure.
We denote the measure as centroid index (CI).
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Most similar to our method are set-based measures [14,17].
They perform matching of the clusters and then measure the
proportion of overlap across the matching clusters. Heuristic
matching by a greedy algorithm is often done [14,31] because
the optimal matching by Hungarian algorithm, for example, is not
trivial to implement and takes O(N3) time. Matching problem
assumes that the number of clusters is equal. If this is not the case,
some clusters must be left out and dealt with another manner. The
set-based methods are also restricted to measure point-level
differences.

Fig. 2 demonstrates the difference between a local point-level
index (Adjusted Rand index) and the new centroid index (CI). The
results of agglomerative clustering [19,20] and random swap
algorithms [21,22] have only point level differences but have the
same cluster level structure. The corresponding CI-value is 0. The
result of the k-means, however, has one differently allocated
centroid and the corresponding CI-values are 1. Adjusted Rand
index reflects only to point level differences (values of 0.82, 0.88
and 0.91), which have less clear interpretation in practice. The
proposed index is therefore more informative.

Cluster-level
mismatch

Cluster-level
mismatch

Fig. 1. Two different point-level clustering comparisons. Differences in the partitions are emphasized by yellow coloring. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

K-meansK-meansRandom SwapRandom Swap

Agglomerative Agglomerative 
clusteringclustering

ARI=0.88
CI=1

ARI=0.82
CI=1

ARI=0.91
CI=0

Fig. 2. Three clustering solutions and the corresponding values of Adjusted Rand index and the proposed centroid index (CI). The k-means solution has one incorrectly
allocated cluster at the bottom left corner and one cluster missing at the top right corner. Otherwise the three solutions have only point level differences.
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The main advantage of the centroid index is its clear intuitive
interpretation. Each zero-count indicates exactly one missing
cluster in the solution, either caused by different global allocation
or by different number of clusters. The other benefits are that the
centroid index is simple to implement and fast to compute.
We expect that the main idea can be generalized to other
clustering models beyond the centroid-based model (k-means).

The rest of the paper is organized as follows. We first define the
centroid index in Section 2. We also give extension to measure
point-level differences and discuss generalization to other type
clustering problems. In Section 3, the index is compared against
the existing indexes using artificial and real data. Furthermore, we
apply the index for studying highly optimized clustering solutions
and find out that it can recognize structural differences even
between near-optimal clusterings that have seemingly similar
partition. Another application of the index is to measure the
stability of clustering algorithms. Conclusions are then drawn in
Section 4.

2. Cluster level similarity

K-means clustering problem is defined as follows. Given a set of
N data points x in D-dimensional space, partition the points into K
clusters so that intra cluster variance (mean square error) is
minimized. Centroids ck represents the prototypes in k-means.
The cost function is defined as

f ¼ 1
N

∑
N

i ¼ 1
∑

xi A ck
jjxi�ckjj2 ð1Þ

2.1. Duality of centroids and partition

Partition and the set of centroids are defined as

pi’arg min
1r jrM

jjxi�cjjj2 8 iA ½1;N� ð2Þ

cj’ ∑
pi ¼ j

xi = ∑
pi ¼ j

1 8 jA ½1;K� ð3Þ

For a given partition {pi}, the optimal prototype of a cluster is its
centroid (arithmetic mean). And vice versa, for a given prototypes,
optimal partition can be solved by assigning each point to the
cluster whose prototype cj is nearest. Thus, partition and centroids
can be considered as dual structures (see also Appendix A): if one of
them is given, the other one can always be uniquely determined
using (2) and (3).

The duality is utilized in the k-means algorithm [23], which finds
the nearest local minimum for a given initial solution by repeating
these two properties in turn. The steps are called partition step and
centroid step. However, k-means is limited to make local point-level
changes only. More advanced algorithms, on the other hand,
focus on solving the cluster location globally by operating with
the prototypes, and solve the partition trivially by Eq. (2). Most
common approach is to use k-means for the point-level fine-tuning,
integrated either directly within the algorithm, or applying it as a
separate post processing step.

Incremental algorithms add new clusters step by step by
splitting an existing cluster [24,25], or by adding a new prototype
[26], which attracts points from neighbor clusters. The opposite
approach is to assign every data point into its own cluster,
and then stepwise merge two clusters [27] or remove an existing
one [28]. Fine-tuning can be done by k-means either after each
operation, or after the entire process. Most successful iterative
algorithms swap the prototypes randomly [21,22] or by determi-
nistic manner [29], whereas genetic algorithms combine two

entire clustering solutions by a crossover [30]. The success of all
these algorithms is based on making cluster level changes. It is
therefore reasonable that the similarity of solutions is measured at
cluster level also.

2.2. Centroid index

Centroid Index (CI) measures cluster-level differences of two
solutions. Since most essential cluster-level information is cap-
tured by the prototypes (cluster centroids), the calculations are
based on them. Given two sets of prototypes C¼{c1, c2, c3,…, cK1}
and C0 ¼{c01, c02, c03,…, c0K2}, we construct nearest neighbor map-
pings (C-C0) as follows:

qi’arg min
1r jrK2

Jci�c0j J
2 8 iA ½1;K1� ð4Þ

For each target prototype c0 j, we analyze how many prototypes
ci consider it as the nearest (qi¼ j). In specific, we are interested in
the ones which no prototype is mapped to

orphanðc0jÞ ¼
1 qia j 8 i
0 otherwise

�
ð5Þ

The dissimilarity of C in respect to C0 is the number of orphan
prototypes

CI1ðC;C0Þ ¼ ∑
K2

j ¼ 1
orphanðc0jÞ ð6Þ

We define that two clusterings (with same number of clusters
K1¼K2) have the same cluster-level structure if every prototype is
mapped exactly once (CI1¼0). Otherwise, every orphan indicates
that there is a cluster in C0 that is missing in C. For example, in Fig. 3
there are two sets of prototypes. Two prototypes are orphans,
which is interpreted that there are two differently allocated proto-
types with respect to the reference solution.

Note that the mapping is not symmetric (C-C0aC0-C).
Symmetric version of the index is obtained by making the
mapping in both ways

CI2ðC;C0Þ ¼ max fCI1ðC;C 0Þ;CI1ðC0;CÞg ð7Þ

The index has clear intuitive interpretation: it measures
how many clusters are differently located in the two solutions.
In specific, if there are no orphans (each prototype has been
mapped exactly once in both ways), the two clustering structures
are equal. This kind of bijective 1:1 mapping happens only if the
solutions have the same number of clusters, and the prototypes
have the same global allocation. From algorithm point of view, the
value of the index indicates how many prototype need to be
swapped in order to transform one of the clustering solution to
the other.

2.3. Generalizations

2.3.1. Different number of clusters
With the symmetric variant (CI2), the number of clusters does

not matter because the index is not limited by the pairing as other
set-based measures. Instead, it gives a value that equals to the
difference in the number of clusters (K2�K1), or higher if other
cluster-level mismatches are also detected. Intuitive interpretation
of the value is the same as in Section 2.2. If the one-way variant
(CI1) is used, it should be calculated by mapping from the solution
with fewer clusters to the solution with more clusters. Sample
values are shown in Table 1, where three clusters found by
k-means are compared to the ground truth (GT) with two clusters.
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2.3.2. Point-level differences
One limitation of the index is that it provides only very coarse

(integer) values. This is suitable to measure cluster-level differences
but not to measure more accurate point-level differences. Sample
calculations are shown in Table 1 using the four sample data sets of
Fig. 4. Here CI detects that Clustering 1 has different global allocation
than 2–3–4. Among these three, the result is 0 (2–3, 2–4) or 1 (3–4)
depending on the amount of variation of the topmost two clusters.

The centroid index, however, easily extends to measure point-
level differences by combining it with a set-matching index [15,31]
such as criterion-H [32] or van Dongen index [14]. In set-matching
measures, the clusters are first paired by maximum weighted

matching or by a greedy algorithm. The paired clusters are
analyzed how many points they share relative to the cluster size.
Our approach is simpler than that. We search for the nearest
match without the pairing constraint, and allow 1:N type of
matches. This is useful especially when the solutions have differ-
ent number of clusters. Point-level centroid similarity index (CSI)
can then be calculated as

CSI¼ S12þS21
2

where S12 ¼
∑K1

i ¼ 1Ci \ Cj

N
; S21 ¼

∑K2
j ¼ 1Cj \ Ci

N

The results of CSI as well as the two set-based measures are
shown in Table 1. We conclude that the point-level indexes

Table 1
CI, CSI, Normalized van Dongen index (NVD) and Criterion-H (CH) values between the four different k-means clustering (3 clusters) and ground truth (GT). Perfect match are
indicated by the following values: CI¼0, NVD¼0, CH¼0, CSI¼1.
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Fig. 3. Two sets of prototypes and their mappings are shown for S2 (left) and for Birch3 (right). In both examples, there are two orphans resulting to index value of CI¼2.
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Fig. 4. Four different k-means solutions. Solution 1 has clearly different allocation than the others, whereas solutions 2–4 have mainly local differences.
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provide more accurate measurements than CI but lack the intuitive
interpretation of how many clusters are differently allocated.
For more thorough study of the point-level measurement and
their normalizations we refer to a follow-up paper [33], which is
currently under process.

For better understanding the capability and limitations of the
measure, on-line visualization on 2-D data sets is available for
interactive testing here: http://cs.uef.fi/sipu/clustering/animator/.

2.3.3. Other clustering models
So far we have focused on k-means clustering assuming that

the data is in (Euclidean) vector space. This restriction, however, is
not really necessary. The only requirement for the index is that we
can calculate similarity between any two clusters, and in this
way, find the nearest neighbor clusters in the other solution.
In k-means, the clusters are assumed to be spherical (e.g.
Gaussian) and have uniform variance, in which case the nearest
neighbor is trivially found by calculating the centroid distances.

In Gaussian mixture model (GMM), each cluster (called com-
ponent) is represented by the centroid and covariance matrix
(often just its diagonal) in order to model elliptical clusters. In this
case, it is possible to solve the nearest neighbor by finding the
most similar Gaussian component as in [34]. After this, the
number of orphan models can be calculated in the same way to
measure the similarity of two GMMs. Potential utilization of this
could be done in a swap-based EM algorithm [35].

Extension to density-based clustering is less straightforward
but possible. In [36], clustering is represented by their density
profiles along each attribute. Our index can be generalized using
this or any other definition of the similarity between two clusters,
and then performing the nearest neighbor mapping.

3. Experiments

We compare the centroid index against popular point-level
external validity indexes such as adjusted Rand index (ARI) [5],
normalized van Dongen (NVD) [14] and normalized mutual
information (NMI) [42].

Denote the two clustering partitions by P¼{p1, p2,…, pK1} and
S¼{s1, s2,…, sK2} whose similarity we want to measure. For every
pair of data points (xi, xj), the following counts are calculated:

a¼the number of point pairs in the same cluster in P and in S.
b¼the number of point pairs in the same cluster in P but in
different in S.
c¼the number of point pairs in the same cluster in S but in
different in P.
d¼the number of point pairs in different clusters in P and in S.

A contingency table of P and S is a matrix with nij, which is the
number of objects that are both in clusters Pi and Sj, i.e., nij¼
|Pi\Gj|. The pair counting index ARI is based on counting the pairs
of points on which the two clusterings agree or disagree. The
indexes are defined based on the contingency table as follows:

ARI¼ a�ðaþcÞðaþbÞ=d
ðaþcÞþðaþbÞ=2�ðaþcÞðaþbÞ=d ð8Þ

NVD¼
2N�∑K

i ¼ 1maxK0j ¼ 1nij�∑K0
j ¼ 1maxKi ¼ 1nij

� �
2N

ð9Þ

NMI¼ MIðP;GÞ
ðHðPÞþHðGÞÞ=2 ð10Þ

where H(P) is the entropy of clustering P. The value indicating
complete match is 0 for NVD, and 1 for ARI and NMI.

3.1. Data sets

We consider the data sets summarized in Table 2 consisting of
four generated data sets (Fig. 5), three image data sets (Fig. 6), and
Birch data sets [37] (Fig. 7). The points in the first set (Bridge) are
4�4 non-overlapping vectors taken from a gray-scale image, and
in the second set (Miss America) 4�4 difference blocks of two
subsequent frames in video sequence. The third data set (House)
consists of color values of the RGB image. Europe consists of
differential coordinates from a large vector map. The number of
clusters in these is fixed to M¼256. The data sets S1–S4 are
two-dimensional artificially generated data sets with varying
complexity in terms of spatial data distributions with M¼15
predefined clusters.

3.2. Clustering algorithms

For generating clustering, we consider the following algo-
rithms: k-means (KM), repeated k-means (RKM), k-meansþþ
[38], X-means [25], agglomerative clustering (AC) [39], global
k-means [26], random swap [21], and genetic algorithm [30]. For
more comprehensive quality comparison of different clustering
algorithms, we refer to [28].

K-meansþþ selects the prototypes randomly one by one so
that, at each selection, the data points are weighted according to
their distance to the nearest existing prototype. This simple initi-
alization strategy distributes the prototypes more evenly among the
data points. Both k-meansþþ and RKM are repeated 100 times.

X-means is a heuristic hierarchical method that tentatively
splits every cluster and applies local k-means. Splits that provide
improvement according to Bayesian information criterion are
accepted. Kd-tree structure is used to speed-up k-means.

Agglomerative clustering (AC) and Global k-means (GKM) are
both locally optimal hierarchical methods. AC generates the
clustering using a sequence of merge operations (bottom-up
approach) so that at each step, the pair of clusters is merged that
increases objective function value least.

Global k-means (GKM) uses the opposite top-down approach.
At each step, it considers every data point as a potential location for
a new cluster, applies k-means iterations (here 10 iterations) and
then selects the candidate solution that decreases the objective
function value most. The complexity of the method is very high and
it is not able to process the largest data sets in reasonable time.

Random swap (RS) finds the solution by a sequence of prototype
swaps and by fine-tuning their exact location by k-means. The
prototype and its new location are selected randomly, and the new
trial solution is accepted only if it improves the previous one. This
iterative approach is simple to implement and it finds the correct
solution if iterated long enough.

Genetic algorithm (GA) maintains a set of solutions. It gener-
ates new candidate solutions by AC-based crossover, and fine-
tuned by two iterations of k-means. We use population of 50
candidate solutions, and generate 50 generations. In total, there
are 2500 high quality candidate solutions, and the best clustering
result is produced, which is also visually verified to be the global
optimum (S1–S4, Birch1, Birch2).

3.3. Experiments with artificial data

We made visual comparison of the results of all algorithms
against the known ground truth with all 2-D data sets. Figs. 8
and 9 show selected cross-comparison samples for S1–S4, Birch1
and Birch2. For S1–S4, all algorithms provide correct cluster alloca-
tion except k-means, X-means for S2, and AC for S4. For Birch1 and
Birch2, AC, RS and GA all provide correct results, with CI¼0. In all
cases, it was visually confirmed that CI equals to the number of
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incorrectly located prototypes. Fig. 9 demonstrates the kind of
clustering mistakes that typically appear.

For Birch3, ground truth is not known. A visual comparison
between RS and GA results is therefore provided in Fig. 10 as these
algorithms provide the most similar results. Two clusters are
differently located, and the other clusters have only minor point-
level differences. At the lower part there are few point-level
differences that demonstrate how large differences are tolerated
by the CI-measure to be recognized as having the same cluster
level structure.

3.4. Comparison of clustering algorithms

We next study the numerical results of the centroid index and
the four point-level indexes. First, we report MSE values in Table 3
to give rough understanding about the clustering quality of the
generated solutions. K-means provide clearly weaker results in all
cases but it is difficult to make further conclusions about how good
or bad the results are exactly. With Bridge we get 179.76 (KM),
173.64 (KMþþ), 168.92 (AC), 167.61 (RS) and 161.47 (GA) whereas
the best reported value is 160.73 in [22]. With Birch1, we get 5.47

Spatial vectors: Spatial residual vectors: Color vectors: Differential coordinates:

Bridge (256×256)  Miss America (360×288) House (256×256) Europe (vector map)

Fig. 6. Image data sets and their two-dimensional plots.

Data set S1 Data set S2 Data set S3 Data set S4

Fig. 5. Generated data sets with varying degrees of spatial overlap.

Table 2
Summary of the data sets.

Data set Type of data set Number of data points (N) Number of clusters (M) Dimension of data (D)

Bridge Gray-scale image blocks 4096 256 16
Housea RGB image 34,112 256 3
Miss America Residual image blocks 6480 256 16
Europe Differential coordinates 169,673 256 2
Birch1–Brich3 Synthetically generated 100,000 100 2
S1–S4 Synthetically generated 5000 15 2

a Duplicate data points are combined and their frequency information is stored instead.
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S1: ARI=0.83,  
NVD=0.09, NMI=0.93 

CI2=2 
S2: ARI=0.89, NVD=0.08, 

NMI=0.90, CI2=1 
S3: ARI=0.86, NVD=0.06, 

NMI=0.94, CI2=1 

S4: ARI=0.82, 
NVD=0.10, NMI=0.90, 

CI2=1 

Fig. 8. Values of three indexes when comparing random swap (blue) against k-means (red) for S1, S3, S4, and versus X-means (purple) for S2. The partition borders are drawn
for the k-means and X-means algorithms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3hcriB2hcriB1hcriB

Fig. 7. Birch data sets.

Birch1 Birch2

Two clusters
but only one 

allocated

Three mapped 
into one

11

11

00

11

33

11

Fig. 9. K-means clustering (red points) versus reference solution (blue) – which is random swap clustering (left), and genetic algorithm (right). The values are CI2¼7 for
Birch1 and CI2¼18 for Birch2 (only small fragment of the data shown here). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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(KM), 4.88 (KMþþ), 4.73 (AC), 4.64 (RS) without any clear
evidence whether the AC and KMþþ results can be considered
essentially similar to that of RS.

Table 4 provides the corresponding values for all the point-
level indexes. Known ground truth is used as the reference
solution when available (S1–S4, Birch1, Birch2) and for the remain-
ing data sets the result of GA is used as reference.

Adjusted Rand index provides higher values for all the correct
clustering results with S1–S4, than for any of the incorrect ones.
However, the scale is highly data dependent, and there is no way
to distinct between correct and incorrect clustering based on the
value. The correct clustering results are measured by values 1.00
(S1) 0.98–0.99 (S2), 0.92–0.96 (S3) but 0.93–0.94 (S4). Europe data
set is even more problematic as the measure makes almost no
distinction among the clustering methods.

The other two indexes perform similarly to ARI. The values of
NVD are rather consistent whereas NMI provides higher variation
and have the same problems with Europe and the S1–S4 sets. The
point-level variant of the proposed index (CSI) provides 0.98–1.00
values when the clustering is correct. It somewhat suffers from the
same problem as the other point-level indexes (Birch1 for XM
providing value 0.98 despite clustering is not correct) but overall it
is much more consistent than ARI, NMI and NVD.

The CI-values are collected in Table 5. The results of S1–S4,
Birch1 and Birch2 are consistent with the visual observations: the
values indicate exactly how many clusters are incorrectly allo-
cated. In specific, the index recognizes the failures of X-means (S2)
and AC (S4).

With higher dimensional image sets the results cannot be
visually confirmed, and since the data is not expected to have
clear clusters, the interpretation is less intuitive. Nevertheless, CI
provides good estimation of the clustering quality and is useful for
comparing the algorithms. For example, we can see that agglom-
erative clustering (AC), random swap (RS) and Global k-means
(GKM) provide CI-values varying from 18 to 42, in comparison to
the values 43–75 of k-means. This gives more intuitive under-
standing how much each solution differs to that of the reference
solution.

Among the algorithms, only RS, GKM and GA are capable for
finding the correct cluster allocation (CI¼0) for the data sets for
which ground truth is known. Agglomerative clustering has one
incorrect allocation with S4. The improved k-means variants (RKM,
KMþþ and XM) fail to find the optimal cluster allocation for Birch
sets, whereas the plain k-means fails in all cases.

3.5. Comparison of highly optimized solutions

The results in Table 5 indicate that although the best algorithms
provide quite similar results in terms of minimizing the cost
function (MSE), the clusters have different global allocation. For
example, the results of GA (161.47) and GKM (164.78) have 33
clusters (13%) allocated differently. We therefore study whether
this is an inevitable phenomenon when clustering non-trivial
multi-dimensional image data.

Blue missingBlue missing

Red missingRed missing

Local variationsLocal variations

Fig. 10. Random swap (blue) versus genetic algorithm (red) with CI2¼2. There are
two places (marked by yellow) where the results have different allocation of
prototypes. In few places there are local variations of the prototypes that do not
reflect to CI. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Clustering quality measured by internal index (variance).
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Next we consider only highly optimized (near-optimal) cluster-
ing results produced by three different optimization processes:

� GAIS: Genetic Algorithm with Iterative Shrinking (long variant)
[28].

� RS: Random Swap [21].
� PRS: Perturbation Random Swap (experimental algorithm).

GAIS is a variant of the genetic algorithm (GA) that uses
random initial solutions and iterative shrinking as the crossover
method. The best known algorithms are all based on this variant
one way or another. Random Swap is another powerful optimiza-
tion technique that always finds the global minimum or very close
to it – if iterated long. We consider here 1.000.000 (1 M) and
8.000.000 (8 M) iterations, and an experimental alternative (PRS)
that perturbs the attributes of every centroid by 2-5% after every
10 iterations.

We use three different starting points for the optimization, see
Table 6. First one is a random clustering optimized by RS (RS8M).
The other two are different runs produced by GAIS labeled by the
year when ran (GAIS-2002 and GAIS-2012). These two are further
optimized by various combinations of RS and PRS aiming at the
lowest possible MSE-value.

In Table 7, we compare all these high quality solutions against
each other. Although their MSE-values are very close to each other,
the results indicate that they all have different global allocation. In
specific, the RS-optimized results have 22–25 difference cluster
allocations compared to the GAIS results. However, when we
compare the results within the ‘GAIS-2002 family’, they have
exactly the same global allocation (CI¼0). This indicates that RS
is capable for optimizing the MSE further (from 160.72 to 160.43)
but only via local fine-tuning while keeping the global allocation
unchanged.

The same observation applies to the results of the ‘GAIS 2012
family’: fine-tuning by MSE is observed (from 160.68 to 160.39)
but only minor (one cluster) difference in the global allocations, at
most. Despite similar behavior when optimizing MSE, the two
GAIS families have systematic differences in the global allocation:
13–18 differently allocated clusters, in total.

From the results we conclude that, in case of multi-dimensional
image data, the index reveals existence of multiple clustering
structures providing the same level of MSE-values but with different
global cluster allocation. This indicates the existence of multiple
global optima and that the proposed index can detect this. The point-
level indexes can reveal the differences as well (into a certain extent)
but without knowing the source of the differences originating from
different global structure.

3.6. Stability of clustering

We next apply the index for measuring stability of clustering
[40]. For this purpose, we generate from each data set 10 subsets by
random sub-sampling, each of size 20% (overlap allowed). Each
subset is then clustered by all algorithms. We measure the similarity
of the results across the subsets within the same algorithm. In case
of stable clustering, we expect the global structure to be the same
expect minor changes due to the randomness in the sampling.

The results (Table 8) show that no variation is observed (0%)
when applying a good algorithm (RS, GKM and GA) for the data
sets S1–S4, Birch1 and Birch2. These all correspond to the case when
the algorithm was successful with the full data as well (see
Table 5). Results for NVD can also recognize stability for S1 and
Birch1 only but not for S2–S4 and Birch2. In general, instability can
originate from several different reasons: applying inferior

Table 4
Clustering quality measured by the point-level indexes. The cases when the
clustering was visually confirmed to be correct are emphasized by shading, and
the six incorrect clusterings with S1–S4 are emphasized by boldface.
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algorithm (k-means variants), using too small sub-sample size
relative to the number of clusters, or using wrong number of

clusters (K¼14 or K¼16 for S1–S4), or using inferior validity
measure.

An open question is whether the stability could be used for
detecting the number of clusters. Further tests would be needed as
clustering tend to be stable also when only few (K¼3) clusters are
used. Thus, an external validity index such as CI alone is not
sufficient for this task. This is left as future studies.

4. Conclusions

We have introduced a cluster level similarity measure called
centroid index (CI), which has clear intuitive interpretation by
corresponding to the number of differently allocated clusters.
Value CI¼0 indicates that the two clustering have the same global
structure, and only local point-level differences may appear.
Values CI40 are indications of how many clusters are differently
allocated. In swap-based clustering, this equals to the number of
swaps needed, and an attempt has been made in [41] for
recognizing the potential swaps.

The centroid index is trivial to implement and can be computed
fast in O(K2) time based on the cluster centroids only. Point-level
extension (CSI) was also introduced by calculating the (propor-
tional) number of same points between the matched clusters. This
provides more accurate result at the cost of losing the intuitive
interpretation of the value.

The index was demonstrated to be able to recognize structural
similarity of highly optimized clustering of 16-dimensional image
data. General belief is that nearest neighbor search (and clustering
itself) would become meaningless when dimension increases, yet
the index found out similarity of the clustering structures that was
not previously known. We also used the index to measure stability
of clustering under random sub-sampling. The results are promis-
ing in such extent that we expect the index to be applicable for
solving the number of clusters even though not in trivial manner
as such. This is a point of further studies.

The centroid index is also expected to generalize to other
clustering models such as Gaussian mixture models and density-
based clustering. All what would be needed is to define similarity
of two clusters in order to perform the nearest neighbor mapping.

Table 5
Clustering quality measured by the proposed centroid index (CI2).

Table 7
CI1-values between the highly optimized algorithms for Bridge.

Centroid index (CI1)

Main algorithm: RS8M GAIS 2002 GAIS 2012

þTuning 1 � � RS1M RS8M � RS1M RS8M PRS RS8M
þTuning 2 � � � � � � � � PRS

RS8M – 19 19 19 23 24 24 23 22
GAIS (2002) 23 – 0 0 14 15 15 14 16
þRS1M 23 0 – 0 14 15 15 14 13
þRS8M 23 0 0 – 14 15 15 14 13
GAIS (2012) 25 17 18 18 – 1 1 1 1
þRS1M 25 17 18 18 1 – 0 0 1
þRS8M 25 17 18 18 1 0 – 0 1
þPRS 25 17 18 18 1 0 0 – 1
þRS8MþPRS 24 17 18 18 1 1 1 1 –

Table 6
Highly optimized clustering results for Bridge. First three rows are reference
results from previous experiments. The numbers in the parentheses refer to the
number of random swap iterations applied.
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Appendix A. Duality property

An important property of centroid-based clustering is that the
distortion difference originates from the movement of the centroid
to any other point depends on the size of the cluster and the
distance between the centroid and the point.

Lemma 2.1. Given a subset S of points in Rd with size n, let c be the
centroid of S. Then for any zARd, there is

∑
xi AS

jjxi�zjj2� ∑
xi AS

jjxi�cjj2 ¼ njjc�zjj2 ðA1Þ

Proof. By expanding the left side, we have

∑
xi AS

jjxi�zjj2� ∑
xi AS

jjxi�cjj2

¼ ∑
xi A S

ðjjxijj2�2xizþjjzjj2Þ� ∑
xi A S

ðjjxijj2�2xicþjjcjj2Þ

¼ ∑
xi A S

2xic�2xizþjjzjj2�jjcjj2

¼ 2 ∑
xi A S

xiðc�zÞþ ∑
xi AS

jjzjj2� ∑
xi A S

jjcjj2

¼ 2ncðc�zÞþnz2�nc2 ¼ njjc�zjj2

The fourth equality follows from the fact that c¼ 1=nΣxi A S xi.

For a given partition, the optimal set of prototypes is the
centroid (arithmetic mean) of the clusters. And vice versa, for a
given set of prototypes, optimal partition can always be obtained
by assigning each point to its nearest centroid. Thus, partition and
centroids are dual structures.

Lemma 2.2. For each iteration tZ0 in k-means, we have that

f pðtÞi
n oN

i ¼ 1

� �
Z f pðtþ1Þ

i

n oN

i ¼ 1

� �
ðA2Þ

Proof. Define Sðtþ1Þ
j ¼ fxAfxigpi ¼ j;1r jrMg, x satisfies that

jjx�cðtÞj jj2o jjx�cðtÞh jj2, where 1rhrK ; jah.

According to the definition in Eq. (1),
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The second inequality follows the Lemma 2.1. Intuitively, Lemma 2.2
indicates the duality between the centroids and partitions.
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Set Matching Measures for
External Cluster Validity

Mohammad Rezaei, Pasi Fränti, Senior Member, IEEE

Abstract— Comparing two clustering results of a data set is a challenging task in cluster analysis. Many external validity
measures have been proposed in the literature. A good measure should be invariant to the changes of data size, cluster size
and number of clusters. We give an overview of existing set matching indexes and analyze their properties. Set matching
measures are based on matching clusters from two clusterings. We analyze the measures in three parts: 1. cluster similarity 2.
matching 3. overall measurement. Correction for chance is also investigated and we prove that normalized mutual information
and variation of information are intrinsically corrected. We propose a new scheme of experiments based on synthetic data for
evaluation of an external validity index. Accordingly, popular external indexes are evaluated and compared when applied to
clusterings of different data size, cluster size and number of clusters. The experiments show that set matching measures are
clearly better than the other tested. Based on the analytical comparisons, we introduce a new index called Pair Sets Index
(PSI).

Index Terms— Clustering, External validity index, Cluster validation, Comparing clusterings, Normalization, correction for
chance, adjustment for chance

—————————— ——————————

1  INTRODUCTION
S a  basic  tool, clustering or cluster analysis parti-

tions a set of unlabeled data objects into meaningful
groups. A huge number of clustering techniques

have been developed in different application fields [1].
Different algorithms or even one algorithm with different
parameters can result in different partitions for the same
data set. A question therefore arises that which partition
best fits with the data set. Cluster validity indexes have
been commonly used to address this problem [2], [3], [4],
[5], [6], [7], [8], [9]. They are classified into internal and
external indexes of which the former are based on infor-
mation intrinsic to data while the latter measure the simi-
larity between two clustering results of one data set. We
focus on external validity indexes in this paper.

External validity indexes are used actively in search-
ing for good clustering solutions, for example in ensemble
clustering [10], [11], [12], [13], where the goal is to aggre-
gate a set of clustering partitions. They have been used in
genetic algorithms [14] to measure genetic diversity in a
population. In [11], external indexes are used for compar-
ing the results of multiple runs to study the stability of k-
means. To evaluate internal validity indexes, a framework
is introduced in [15] by using external indexes on ground-
truth partition. Using these indexes we can identify those
algorithms that generate similar partitions irrespective of
data [1]. The indexes can also be used for determining the
number of clusters for a data set [16], [17], [18].

External validity indexes measure how well the results
of a clustering match the ground truth (if available) or
another clustering [19], [20]. Several external validation

measures have been studied in [7], [8], [9], [19], [20], [21],
[22]. They can be categorized into pair-counting, infor-
mation theoretic and set matching measures.

Pair-counting measures include rand index, adjusted
rand index, Jaccard coefficient, Fowlkes-Mallows index and
several others [9], [23]. They are based on counting the
pairs  of  objects  in  the  data  set  on  which  two  different
partitions agree or disagree. For instance, if two objects in
one cluster in the first partition place also in the same
cluster in the second partition, it is considered as an
agreement. Most of the existing external validity indexes
are classified in this group.

Information theoretic indexes such as entropy, Mutual In-
formation and variation of information have also been used
in comparing clusterings [9], [24], [25]. Mutual infor-
mation measures the information that two clusterings
share. Since there is no upper bound for mutual infor-
mation, normalization is needed for easier interpretation
and comparison [10]. A systematic study of this group of
indexes, including several existing popular measures and
recently proposed ones has been performed in [9].

Set matching indexes such as F measure [26], criterion H
[27] and Van Dongen [28] are based on pairing similar
clusters in two partitions. According to [24], existing in-
dexes in this group suffer from the problem that clusters
having no pair are not involved in comparison. The un-
matched part of two paired clusters is also not taken into
account. Taking use of the tight connection between parti-
tions and centroids, cluster-level similarity indexes such
as Centroid Index [20] and Centroid Ratio [29] employ the
representatives of the clusters instead of point-level parti-
tions. However, cluster-level indexes lack point-level
information.
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Comparison of different external validity indexes re-
garding to their properties have been reported in [7], [8],
[9], [21], [24], [26]. Normalization and correction for
chance, as desirable properties, keep the range of an index
fixed in [-1, 1] or [0, 1] and make the index values compa-
rable across different data sets. More specifically, correc-
tion for chance adjusts the index for randomness by trans-
forming its expected value to zero. The importance of
index normalization on data with imbalanced cluster
distribution is discussed in [7], [26]. It is shown that the
values of normalized measures are more spread in [0, 1],
and have a wider range than unnormalized ones. Accord-
ing to [9] and [21], correction for chance is preferable
when the number of data points is relatively small com-
pared with the number of clusters. Other properties in-
clude sensitivity of an index to data size, cluster size im-
balance and number of clusters. The effect of cluster size
imbalance on a range of external validity indexes is ana-
lyzed in [26] and it is shown that normalization should be
applied. Otherwise, an index is mostly affected by big
clusters and does not detect changes in small clusters.
Metric properties have been also discussed for external
validity indexes and several researchers prefer metric
because of the theoretical properties that exist on metric
spaces [9], [21], [22], [24].

In this paper, we study set matching validity indexes
by introducing and analyzing three components of the
indexes: cluster similarity, matching and overall meas-
urement. We also investigate correction for chance and
show that normalized mutual information, variation of
information and their adjusted forms are equivalent. We
propose a new similarity index called Pair Sets Index
(PSI) according to careful analysis and comparisons. Sim-
plified form of PSI is also shown to be metric. Another
contribution of the paper is to propose a new way of ex-
periments for evaluating external indexes. The behavior
of an index in comparison of clusterings with cluster size
imbalance, different data size and number of clusters is
extracted and analyzed systematically. We show by these
experiments that set matching indexes clearly outperform
other popular indexes.

2  PROBLEM DEFINITION
Given a data set X Rd with N objects in a d-dimensional
space, the problem of clustering is to group the data set
into K clusters [14]. Given two sets of partitions P={P1,
P2,…,PK} of K clusters and G={G1, G2,…,GK’} of K’ clusters,
an external validity index measures the similarity be-
tween P and G. A contingency table of P and G is a matrix
where nij is the number of objects that are both in clusters
Pi and Gj: nij=|Pi Gj|, see Table 1. The sizes of clusters Pi

and Gj are ni and mj, respectively.
An external validity index needs to satisfy several

properties  to  be  consistent  and  comparable  for  different
data sets and clusterings structures.
Normalization transforms the index within a fixed range,
for example [0, 1], which makes the comparison easier for
data sets with different size and structure. Normalization
is the most commonly agreed property in the clustering

community [9]. To transform a dissimilarity index Id to
the range of [0, 1], normalization is performed as:

)min()max(
)min(),(

dd

ddn

II
IIGPI

d (1)

where min(Id) and max(Id)  are  the  minimum  and  maxi-
mum values of Id.

The index values are expected to be constant when dif-
ferent random clusterings are compared with a ground
truth [30]. A random partition is created by selecting ran-
dom  number  of  clusters  of  random  size.  The  similarity
between the random partition and the ground truth orig-
inates merely by chance. Take an example of rand index:
the value of the index for two random partitions is not a
constant, and is in a narrow range of [0.5, 1] instead of [0,
1]. By correction for chance or adjustment, the expected val-
ue of a similarity index is transformed to zero [21], [30].
Adjustment and normalization can be performed jointly
as follows:

Dissimilarity:

Similarity:
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where the minimum of a similarity index (maximum of a
dissimilarity index) is estimated by expected value E(Is).

Metric property has been also considered. Although a
similarity/dissimilarity measure can be effective without
being a metric [31], it is sometimes preferred. Considering
dissimilarity index Id and partitions P1, P2 and P3, the
metric properties require [22], [32]:

1. Non-negativity: Id(P1,P2)  0
2. Reflexivity: Id(P1,P2)=0 if and only if P1=P2

3. Symmetry: Id(P1,P2)=Id(P2,P1)
4. Triangular inequality: Id(P1,P2)+Id(P2,P3) Id(P1,P3)
A similarity metric satisfies the following [32]:
1. Limited Range: Is(P1,P2) I0

2. Reflexivity: Is(P1,P2)= I0 if and only if P1=P2

3. Symmetry: Is(P1,P2)=Is(P2,P1)
4. Triangular inequality:

Is(P1,P2)× Is(P2,P3) Is(P1,P3)×( Is(P1,P2)+Is(P2,P3))

The triangular inequality for a similarity index Is is de-
rived according to the corresponding inequality for a
dissimilarity index which is defined as c/Is (c>0). Howev-
er, other forms of the inequality are possible by defining
other dissimilarities such as max(Is)-Is. It is trivial to show

TABLE 1
CONTINGENCY TABLE FOR TWO CLUSTERING P AND G

G1 G2 … Gj … GK’

P1 n11 n12 … n1j … n1K’ n1

P2 n21 n22 … n2j … n2K’ n2

… … … … … … … …
Pi ni1 ni2 … nij … niK’ ni

… … … … … … … …
PK nK1 nK2 … nKj … nKK’ nK

m1 m2 … mj … mK’ N
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that if c/Is (or max(Is)-Is) is a dissimilarity metric, Is is  a
similarity metric as well [32]. Hence, the metric properties
for a similarity index can be checked for its corresponding
dissimilarity.

Cluster size imbalance signifies that a data set can in-
clude clusters with big difference in their sizes. Some
researchers argue that clusters with bigger sizes have
more importance than smaller ones but in this paper we
assume that each cluster has the same importance inde-
pendent of its size. Invariance on the size of clusters is
therefore another desired property of an index. Size of the
data set should not affect on the index either.

An index should be independent on the number of
clusters. Some indexes such as Rand Index give higher
similarity for partitions with more clusters [22]. The index
should also be applicable for comparing two clusterings
with different number of clusters.

Monotonicity is another needed property. It states that
the similarity of two clusterings monotonically decreases
as their difference increases.

Once the above desired properties are met, then it en-
sures that the index values for different data sets are on
the same scale and comparable. For instance, if an index
gives 90% and 70% similarities, 90% should represent
higher similarity. However, this is true only if the index is
independent on data set and its clustering structure.

3  PAIR-COUNTING AND INFORMATION THEORETIC
INDEXES

Pair-counting measures count the pairs of points on
which the two clusterings agree or disagree. Four values
are defined: a represents the number of pairs that are in
the same cluster both in P and G; b represents the number
of pairs  that  are in the same cluster  in P but in different
clusters in G; c represents the number of pairs that are in
different clusters in P but in the same cluster in G; d rep-
resents the number of pairs that are in different clusters
both in P and G. Values a and d count the agreements
while b and c the disagreements. Examples of each case
are illustrated in Fig. 1. The values of a, b, c and d can be
calculated from the contingency table [30] as follows:
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Some of the popular indexes are listed in Table 2. Rand
index (RI) is a well-known pair-counting measure. For
random partitions, the similarity between two clusterings
is desired to be close to zero. However, the expected val-
ue of  rand index for random partitions is  0.5  and the in-
dex is within a narrow range of [0.5, 1] according to [11],

[12], [30]. Hence, a corrected-for-chance version called
adjusted rand index (ARI) was introduced in [30] which is
upper bounded by one and lower bounded by zero. The
expected value of the rand index is estimated using hy-
per-geometric distribution assumption in which the size
and number of clusters are fixed [30].

Existing information theoretic measures employ the
concept of entropy [25] to compare two partitions. Entro-
py is measured by the average number of bits needed to
store or communicate data. The entropy of clustering P
with K clusters is defined as:

K

i
ii PpPpPH

1
)(log)()( (4)

where p(Pi)=ni./N is the estimated probability of the clus-
ter Pi.

Having clustering G and the joint distribution p(P,G),
the average number of bits for P is derived by conditional
entropy [19] as follows:
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where the probability p(Pi,Gj) can be estimated from the
contingency table as nij/N.
Mutual information (MI) [9], [10] is derived from condi-
tional entropy and represents the similarity of two clus-
terings [22]. If we choose a random object in the data set,
knowing its cluster in G, mutual information measures
the reduction in uncertainty of the object’s cluster in P
[22], [24]. Mutual information is defined formally as fol-
lows:

),()()()|()(),( GPHGHPHGPHPHGPMI  (6)
In terms of probabilities, it is:
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Variation of Information (VI) [24] is complement of the
mutual information, see Fig. 2, and is calculated by sum-
ming up the conditional entropies H(P|G) and H(G|P),
see (8). Normalization of MI and VI is discussed in section
5.
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Fig. 1. The principle of pair-counting measures.
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4  SET MATCHING INDEXES
Set matching indexes are based on matching entire clus-
ters. Similar clusters are first found either by pairing or
matching, and their similarity is then measured using set
matching methods. We classify the set matching indexes
into two types: point-level and cluster-level.

Point-level indexes consider the intersection of paired
clusters in two clusterings. Purity is an example of this
group and it assumes one of the clusterings as ground truth
[33]. Accuracy defined in [34] is equivalent (exactly the
same) to Purity. Some authors use terms such as classifica-
tion accuracy [35] or classification error [9] with refereeing to
accuracy in [34] but this is not correct because they have
other definitions in classification problem. F measure (FM)
[26], Criterion H (CH) [27] and normalized Van Dongen
(NVD) [28] are other set matching measures.

Cluster-level indexes include Centroid Index (CI) [20]
and Centroid Ratio (CR) [29]. They use only cluster proto-
types in contrast to point-level indexes which employ the
labels of all objects in resulting partitions. Cluster level
indexes are fast to calculate [20], and they provide clear
interpretation about the differences in cluster-level struc-
ture. For example, CI=1, demonstrates one difference in
the global allocation of the two clusterings. However,
they do not measure partial cluster differences. Centroid
Similarity Index (CSI) was introduced in [20] to extend CI
to a point-level measure.
Set matching measures involve three design questions:

1. How to match the clusters
2. How to measure the similarity of two clusters
3. How to calculate overall similarity
Normalization and correction for chance (if applied)

are also essential parts of the overall similarity derivation.
We next give a detailed analysis of all these questions
including the normalization.

1. Similarity of two clusters
Let Pi and Gj be  two  clusters  in P and G respectively.

Most of the set matching measures use |Pi Gj| to calcu-
late the similarity of the two sets. For example, in Fig. 5,
clusters G1 and P1 are more similar than G2 and P2 since
the number of shared objects is 6 and 4 respectively. CH,
NVD, CSI and Purity use this measure. Many other ways
to measure similarity of two sets exist in literature and
any of them can be employed for calculating the similari-
ty of two clusters. Among the 76 methods listed in [36],
we mention three popular ones: Jaccard [37], Sorensen-
Dice [38] and Braun-Banquet [36].

TABLE 2
EXTERNAL VALIDITY INDEXES

Pair-counting measures
Rand index
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Fig. 2. Mutual information (MI) and variation of information(VI).
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These measures are in the range of [0, 1]. Distance
forms of J and SD are defined as (1-J) and (1-SD) where
the former is a true metric but the latter does not satisfy
triangular inequality. In order to make the measure inde-
pendent on cluster size, these measures normalize the
number of  shared objects  |Pi Gj| according to the size
of clusters in three different ways.

For example, consider the three clusters in Fig. 3 where
we want to find out the more similar cluster to P1 from P2

or P3. Similarity of P1 and P2 should be much higher than
the similarity of P1 and P3 even though P1 and P3 share
more objects. J, SD and BB give more intuitive similarity
values than intersection. When comparing P1 and P3, the
similarity 0.25 of J and BB is better than the 0.4 of SD. It is
trivial to show that J BB SD for any two sets.

FM [22] uses precision and recall concepts by measuring
nij/ni and nij/mj respectively. The criterion
2×precision×recall/(precision+recall) would be equiva-
lent to SD but it avoids the normalization by cluster size
using ni.×SD instead of SD.

Cluster-level indexes provide binary result (0 or 1), in-
dicating whether the clusters have 1:1 match (CI), or the
pair of clusters is unstable (CR). Table 3 lists the criteria
for set matching indexes.

2. Matching
For  every  cluster,  we  need  to  find  the  pair  to  which  the
similarity is measured. Three cases are considered: 1.
optimal pairing 2. greedy pairing 3. matching. Matching
is performed based on nearest neighbor mapping so that
any cluster in P is matched to a cluster in G with maximal
similarity. Several clusters can be matched with the same
cluster in the other clustering. Pairing is a special case of
matching  in  which  clusters  are  only  allowed  to  be
matched once. FM, NVD, Purity, CI and CSI employ
matching whereas CH and CR use greedy pairing. We
will use optimal pairing.

Matching results, in general, is not symmetric when
finding pairs for clusters of P from G and vice versa. To
make the index symmetric, the similarity results in both
directions are usually combined, see NVD, CI and CSI
equations in Table 2. FM and Purity assume that we com-
pare a clustering against ground truth and they therefore
consider matching in one direction only. Matching crite-
rion in NVD and Purity is the number of shared objects;
CI and CSI are based on similarity of prototypes.

Pairing problem, however, is not trivial to solve and
different algorithms have been proposed to find approx-
imate or optimal solution. The pairing can be seen as a
matching problem in weighted bipartite graph where the
nodes represent the clusters, see Fig. 4. Greedy pairing is
mostly used with time complexity of O(N2). Two most
similar clusters are iteratively matched and excluded.
Instead of greedy pairing, we apply here Hungarian algo-
rithm which finds the optimal solution with time com-
plexity O(N3) where N is the maximum number of clus-
ters in P and G.

Fig. 5 demonstrates the matching from G to P based on
the number of shared objects where P2 remains un-
matched. The matching from P to G will be different and
the same as greedy pairing based on number of shared
objects, resulting to (P1,G1), (P2,G2) and (P3, G3).

Fig.  6  shows  matching  in  CI  when  there  is  different
number of clusters. We assume that the objects are in 2-D
Euclidean space; the centroids have been shown with
crosses signs. In matching P to G,  one orphan centroid is
produced that indicates one difference in global alloca-
tion. NVD results the same matching as CI in this exam-
ple. In general, if a cluster Pi has more shared objects with
Gj than Gk, the probability that its centroid is also closer to

TABLE 3
CRITERIA FOR SIMILARITY OF TWO CLUSTERS

Similarity criteria
FM |Pi|×SD
H |Pi Gj|

NVD |Pi Gj|
Purity |Pi Gj|

PSI BB
CI 0/1 (mapped or unmapped)

CSI |Pi Gj|
CR 0/1 (stable or unstable)

Fig. 3. The effect of cluster size on cluster comparison

Fig. 4. Pairing clusters to maximize overall similarity. The thick lines
show the optimal pairing where overall similarity according to number
of shared objects would be (25+20+16) = 61.

P1, P2 P1, P3

J 0.80 0.25
SD 0.89 0.40
BB 0.80 0.25

P3
n3=1000

P1
n1=250P2

n2=200
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4 16
10 10

20 15 25
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Gj is higher. Although, this is not always true as it de-
pends on the distribution of data among clusters. It any-
way implies that the matching using intersection criterion
and centroid distance are expected to produce the same
result.

Fig. 7 demonstrates the results with too few (above)
and too many clusters (below) compared to another with
the same clustering problem or to the correct clustering.
In this example, both matching and pairing are performed

based on number of shared objects. Matching results
always higher values than pairing because in pairing
some centroids remain unpaired. Pairing is more sensitive
to differences in clustering structure. The result is also
lower with 3-vs-3 than when comparing to the correct
number of clusters (3-vs-4 and 3-vs-2). In comparing two
clustering with different number of clusters, unpaired
clusters indicate a disagreement on the number of clus-
ters, which is an advantage of pairing. Table 4 summariz-
es the matching methods for several indexes.

3. Overall similarity
Overall similarity is obtained by summing up the simi-

larities of all the matched clusters. The upper bound of
overall similarity for CH is N (total number of objects)
which is used for normalization, see Table 2. To remove
the asymmetry effect of matching, NVD and CSI use 2N
because of two-way matching, see Table 2. If we define
the distance form of CSI and Purity as (1-CSI) and (1-
Purity), NVD, CH, Purity and CSI are all equivalent if
their matching results are the same. In fact, if matching in
NVD and CSI is symmetric (K=K’), they would equal to
CH and we can write:

CSIPurityCH
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The  overall  dissimilarity  of  CI  equals  the  number  of
zero mapped centroids of G. Since CI is not symmetric,
CI2 is  defined  as  max(CI(P,G), CI(G,P)) [20]. Centroid
index represents the number of differences in global allo-
cations and it is in the range of [0, K-1] where K is the
maximum number of clusters in the two clusterings. At
least one non-zero mapped centroid exists and the upper
bound therefore becomes K-1.

Centroid ratio (CR) defines the concept of (un)stable
centroids. Consider a paired centroid Ci and C’j with dis-
tance Dij from clusterings P and G, respectively. Assume
that the distances of Ci to the nearest centroid in P and C’j

to the nearest centroid in G are Di and Dj. Then, if
Dij2/(Di×Dj)>1, the pair is considered unstable. The over-
all similarity is defined based on the number of unstable

Fig. 5. Matching clusters based on maximum shared objects. Cluster
P2 remains unmatched. In pairing process of CH, G2 is paired with P2

after excluding G1 and P1 as the first pair.

TABLE 4
SUMMARIZATION OF MATCHING METHODS OF INDEXES

Pairing/
Matching

Matching criterion
Algorithm

FM Matching SD One-way
CH Pairing |Pi Gj| Greedy

NVD Matching |Pi Gj| Two-way
Purity Matching |Pi Gj| One-way

PSI Pairing BB Optimal
CI Matching Centroid distance Two-way

CSI Matching Centroid distance Two-way
CR Pairing Centroid distance Greedy

Fig. 6. Matching centroids from P to G based on nearest neighbor
mapping used in CI and CSI; One orphan centroids shows one differ-
ence in global allocation.

3-vs-3 clusters 3-vs-4 clusters

Matching=75%, Pairing=50% Matching=87%, Pairing=75%

3-vs-3 clusters 3-vs-2 clusters

Matching=75%, Pairing=50% Matching=87%, Pairing=75%
Fig. 7. Matching and pairing when too few (above) and too many
(below) clusters exist. Arrows show matching from red to blue cen-
troids. Pairing would use only part of those arrows because each
cluster can be matched only once.

G P
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pairs [29], see Table 2. Table 5 summarizes the overall
similarity derivation for the above mentioned indexes.

5  CORRECTION FOR CHANCE
Normalization makes comparisons easier for different
data sets. Correction for chance removes the similarity of
two clusterings which merely originates by chance [21].

An index is normalized using its lower and upper
bounds as in (1). Correction for chance can be jointly per-
formed with normalization according to (2). Some index-
es do not have fixed lower or upper bounds. For example,
several upper bounds have been proposed to normalize
MI [9], [25].

In comparison of two clusterings P and G, the number
and size of clusters are known. To consider the effect of
random partitioning, the objects of clustering P are dis-
tributed randomly in clusters of G and the expected simi-
larity value is calculated. This is called hyper-geometric
distribution assumption and was first used for deriving
ARI [30].

The measures in the pair-counting class as listed in [23]
are in the ranges of [0,1], [-1, 1], [0.5, 1] or [-0.25, 0.25] that
further clarifies the necessity of normalization. Since all
the indexes are defined based on values a, b, c, and d in
(3),  the  upper  and  lower  bounds  are  simple  to  derive.
Many  of  them  become  equivalent  after  applying  correc-
tion for chance [21]. ARI is the most well-known and
widely used index of this group [9].

In set matching measures, the overall similarity is de-
rived either by summing up the number of shared objects
or the similarities of the matched clusters. For example,
NVD, CH, Purity and CSI sum up the number of shared
objects and use the total number of objects for normaliza-
tion. The similarity index proposed by Larsen and Aone
[39] is calculated by summing up the normalized similari-
ties (in the range of [0, 1]) of the matched clusters. In this
case, the overall similarity is normalized for each cluster
individually.

Both MI and VI are metric but they are not bounded to
a fixed range [22]. Mutual information of clusterings P

and G is lower bounded by zero. Geometric or arithmetic
mean of entropies as an upper bound can be an option for
normalization (type 1 and 2 in Table 2) [22], [25], [10]. In
[25] min(H(P),  H(G)) and max(H(P),  H(G)) are also used
for normalization.  An upper bound for VI is H(P)+H(G),
which means that clusterings P and G do not share any
information [7]. The upper bound can therefore be used
for normalization of VI. To derive adjusted mutual infor-
mation according to (2), obtaining the expected value
E(MI) is the key issue. An analytical formula for the ex-
pected value of mutual information is derived in [21]
under the assumptions of hyper-geometric model of ran-
domness. In [9], upper bounds for the expected value are
given, and shown that, under certain assumptions, the
adjusted MI measures derived based on different upper
bounds become equivalent to the normalized MI
measures.

We prove next that the adjusted forms of mutual in-
formation (AMI) and variation of information (AVIs) are
equivalent to their normalized forms (NMI, NVIs) when
the summation of the entropies H(P)+H(G)  is  used  for
normalization.
Theorem 1. Under hyper-geometric distribution assumption:

NMIAMINVIAVI ss (13)
where NVIs and  AVIs denote  the  similarity  form of  NVI
and AVI (1-NVI and 1-AVI) respectively.
Proof. See Appendix A.

6  PAIR SETS INDEX
In this section, we present a new set matching based
measure called Pair Sets Index (PSI), which is designed so
that the properties discussed in section 2 are all satisfied.
The components of the proposed index are known but
some  of  them  are  new  in  this  context,  and  the  overall
combination is novel. In specific, PSI contains optimal
pairing of the clusters (new), set matching measure using
BB (new), the overall similarity measure in (14) (used also
by CR), and the correction for chance (used by pair-
counting and information theoretic methods only).

6.1 Similarity Measure
Given clusterings P and G, the first step is to find the
pairs of clusters in two partitions. Pairing clusters in P
and G is done by maximizing total similarity which is
defined as:

i
ijSGPS ),( (14)

where Sij denotes the similarity between clusters Pi and Gj

and is calculated as from Braun-Banquet formula [36] as
follows:

|)||,max(| ji

ij
ij GP

n
S (15)

Here nij is the number of shared objects in the two clus-
ters and |Pi| and |Gj| denote their sizes.

The corresponding distance variant is defined as Dij=1-
Sij. Pairing clusters is solved as an assignment problem in a

TABLE 5
OVERALL SIMILARITY DERIVATION

Total summation Range Normalization

FM similarity of
matched clusters [0, 1] N

CH Shared objects [0, 1] N

NVD Shared objects in
both directions [0, 1] 2N

Purity Shared objects in
one direction [0, 1] N

PSI
Normalized

similarity of paired
clusters

[0, 1] K

CI Orphan clusters [0, K-1] -

CSI Shared objects in
both directions [0, 1] 2N

CR Unstable clusters [0, 1] K
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bipartite graph, see Fig. 4, by minimizing the total dis-
tance. We use Hungarian algorithm to find the perfect
matching in this assignment problem [40].

6.2 Correction for Chance
In this section, we describe the process of correction for
chance for the proposed similarity measure in (14) and
derivation of the final formula for the Pair Sets Index
(PSI).

Obtaining the expected value is the key point to derive
the adjusted version of the index. To derive the expected
value, consider a random shuffling of P as P’ under  hy-
per-geometric distribution assumption where the number
and size of the clusters in P’ and P are the same. The ob-
jects of cluster Gj are distributed randomly in the clusters
in P’. A larger cluster in P’ gets more objects from Gj.
Therefore, the number of shared objects of clusters Gj and
P’i is proportional to the size of P’i. The number of objects
of Gj (mj) that places in P’i (ni) is mj×(ni./N), which is the
number of shared objects between these two clusters
when random partition P’ is assumed.
Theorem 2. The maximum total similarity in (14) is
achieved when the largest cluster in P’ is paired with the
largest one in G, and recursively the same applies to the
rest of the clusters. Applying this greedy pairing, the
expected value is:

)',min(

1 ),max(
)/(KK

í ii

ii

nm
NnmE (16)

where the size of clusters in P’ is n1>n2>…>nK and in G is
m1>m2>…>mK’.
Proof. See Appendix B.

Next, we show that E 1. Assuming mi = ni, i , the
summation in (16) is (n1+n2+…+nKmin)/N  1. Suppose that
ni mi, i , the summation then becomes:
E=(n1+n2+…+mi+...+nKmin)/N

 (n1+n2+…+nKmin)/N  1 (17)
Therefore, it is always true that E  1. Applying the re-

sults to (2), the adjusted index becomes:

1'1
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where S is the total similarity from (14). In random parti-
tioning S=E, PSI=0 and in a perfect match S=K, PSI=1. If
there is a disagreement on the number of clusters, K K’,
max(K, K’) is taken in (18) to achieve a lower similarity
that reflects the disagreement. The expected value is not
necessarily the minimum value of the similarity. If S<E,
we consider PSI=0 because this case corresponds to a very
low agreement of the two partitions.

Distance variant of PSI is defined as 1-PSI:

1'0
1

1)',max(,
)',max(
)',max(

KK
ES

KKES
EKK
SKK

PSI d (19)

Value of E depends on the similarity between the
structures of two clusterings in terms of number and size
of clusters. If the structures are close to each other, E 1.
Accordingly, simplified variant of PSI is defined by as-
suming E=1:

1'1
10

1)',max(,1
1)',max(

1

*

KK
S

KKS
KK

S

PSI (20)

6.3 Metric Properties of PSI
The proposed index is normalized in the range of [0, 1]
and corrected for chance. In this section, we prove metric
property of the distance form of PSI in (19).

Nonnegative: In (19), where S 1, max(K, K’) > 1, since E
1, max(K, K’)-E is always larger than or equal to 1. The

total similarity S equals  to max(K, K’) only in a perfect
match. In all other situations it is less than max(K, K’),
hence max(K, K’)-S  0 holds. Therefore, it is true that:

0dPSI (21)
Symmetric: The similarity of two clusters according to

(15) is symmetric. The pairs of clusters are found accord-
ing to the maximum matching which does not depend on
whether we compare P to G or vice versa. Therefore, the
total similarity in (14) is symmetric. To derive the ex-
pected value of the similarity in (16), we take two largest
clusters in P and G as the best match. This action is also
independent on the direction of the comparison. Accord-
ing to (18), when the similarity S and its expected value E
are symmetric, the whole index is also symmetric:

),(),( PGPSIGPPSI dd (22)
Reflexivity: If P=G, the total similarity according to (14)

and (15) is max(K,K’)=K, and therefore PSId=0. On the
other hand, if PSId=0, it follows that S=max(K, K’). This
may happen only if the number of clusters is the same
and the similarity of every two paired clusters according
to (15) is 1. The similarity of two clusters is 1 if and only if
they are exactly the same. Therefore, all clusters in P and
G must be equal, and accordingly, P=G:

GPifonlyandifGPPSId 0),( (23)
Triangular inequality:  In Appendix C,  we prove the tri-

angular inequality for the simplified form of PSI in (20).
The simplified form is therefore proven to be metric. Ex-
periments for clustering with different structures indicate
that the triangular inequality in most cases holds for the
original form of PSI as well. However, the term E in the
denumerator in (18) makes it difficult to prove in general.

6.4 Other Properties
a) Normalized to the number of clusters

The proposed validity index has low dependency on
the number of clusters and this dependency decreases as
the number of clusters increases. In (18), the similarity is
normalized by max(K, K’)-E. Because of E, the index is not
independent on the number of clusters. However, since
E 1 and when max(K, K’) increases, the impact of E de-
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creases.
b) Imbalanced clusters

One important advantage of the proposed index is its
independency on the size of clusters because each cluster,
either small or large, has equal impact on the similarity
value. For example, suppose that in two clusterings, there
are two perfect pairs where in one pair the clusters are
large and in the other one they are small. Both of them
increase the total similarity by the same amount.

7  EXPERIMENTS
We next evaluate the external validity indexes based on
their performance on partitions. To investigate different
properties of an index, a variety of partitions should be
considered. We provide comparisons with artificially
generated partitions to demonstrate whether an index
meets the required properties. We also study the effect of
dimensionality and cluster overlap.

7.1 Selected Indexes and Artificial Partitions
We compare the proposed index to the state-of-art ex-

ternal indexes. Since all adjusted indexes in the pair-
counting group behave similar [23], we use only ARI as
the most popular one. Variation of information and mu-
tual information are two representing measures in the
information theoretic group. Since
NVIs=AVIs=NMI=AMI, only NMI is used in the experi-
ments. The performance of arithmetic and geometric
mean for normalization of NMI is the same, we therefore
employ arithmetic mean only. The normalized Van
Dongen criterion, Criterion H and Purity are chosen in
the set matching group. The matching in Centroid simi-
larity index depends on the centroids, and therefore, we
need real datasets to calculate centroids. However, as we
discussed in section 4.2, the results of matching is most
likely similar to NVD. We therefore use this assumption
in the following, and in these experiments NVD=CSI.

In the test setup, we consider a ground-truth partition
G, for example with 3000 objects, 1000 objects in each
cluster, see Fig. 8, where light grey, grey and black repre-
sent the three clusters. In practice, we make an array of
the length 3000 with values 1, 2 and 3 representing cluster
labels of data. In this case, the first 1000 objects (light
grey) have value 1. The partition P to be compared with is
varied in different ways. The order of the data objects in
the two partitions remains the same.

The partitions in the experiment are considered in sev-
eral aspects: random partitions, the impact of cluster size
imbalance, number of clusters and consistency when the
error increases in the partitions.

7.2 Random Partitions
Consider partition P which consists of random labels as
shown in Fig. 9. We conduct experiments for different
number of clusters from K=1 to 20 in P. The indexes NMI,
ARI and PSI give values close to zero independent on the
number of clusters. The values of the other three indexes
are not zero because they are not corrected for chance, see
Fig. 10. Normalized mutual information gives zero in this
case which shows that NMI has the same performance as
adjusted mutual information. This result further verifies
our claim in (13).

7.3 Monotonicity
We change the partition P linearly in three ways and
study the response of the indexes.

First we enlarge the first (light grey) cluster in P in
steps of 50 objects until only one cluster remains, see Fig.
11. Second, we enlarge the grey cluster in the same way,
see Fig. 13, and third, we change part of the labels in all
clusters of P and  keep  the  cluster  sizes  unchanged,  see
Fig. 15. In Fig.12, NMI, ARI and NVD have very clear
knee points when the light grey cluster reaches 2000 ob-
jects because at this point the number of clusters decreas-
es by 1. For NMI and ARI, the index values increase when
the cluster size approaches to 2000. In this situation, there
are still three clusters and the results indicate that NMI
and ARI ignore relatively small clusters and put more
weights on large clusters. When the light grey cluster size
is  2000,  there  is  a  local  maximum  when  the  number  of
clusters changes from three to two. NVD is constant be-
tween 1500 to 2000, and 2500 to 3000. The asymmetric
matching of clusters in NVD causes the problem. Suppose
that the size of the grey cluster (x) in P is less than 500.
After matching P to G, the number of shared objects is
1000+x+1000 and G to P where both light grey and grey
clusters in G are matched with the light grey one in P, the

Fig. 10. Random partitioning with different number of clusters in P
from K=1 to 20.

Fig. 8. Two partitions with 3000 objects.

Fig. 9. Clustering P represents a random partition with two clusters.

1 1000 2000 3000G

1 700 2000 3000P

1000 2000 3000G

P
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number of shared objects is 1000+(1000-x)+1000. Sum-
ming up, the number of shared objects in two directions is
5000 which is independent of x. Therefore, when the size
of the first cluster is between 1500 and 2000, the similarity
remains a constant 5000/6000=0.83.

The proposed PSI has near linear dependency on the
size of the light grey cluster. The indexes CH and Purity
have good linear behavior but including an offset by 33%
because they are not corrected for chance. If we made
them corrected, the same issues as with the other indexes
would appear. Note that Purity does not compare two
clusterings in both directions. If we compare G to P in-
stead of P to G, the results is different and without linear
behavior.

We repeat the experiment by enlarging the size of the
second cluster. The difference to the previous case is that
the number of clusters remains 3 until the second cluster
contains all the objects. The results in Fig. 14 show better
performance for NMI and ARI compared to the previous
case. The reason is that this time there is no change in the
number of clusters in P. The same arguments for NVD,
CH and  CA are  valid  as  for  the  previous  case.  The  knee
point for NVD is where the size of the biggest cluster
becomes more than 2000 (compare P2 and G in Fig. 13)
and all three clusters of G are matched to the grey cluster
of P. Interesting observation is that PSI results the same
curves in both of the cases, which indicates that it de-
pends less on the number and size of clusters than the
other indexes.

Next, we change part of the labels in all clusters of P.
At each step, 50 more objects will be wrongly labeled in

each cluster until all objects in G are equally distributed
among the three clusters in P, see Fig. 15.

Fig. 14. Increasing the size of the second cluster until it contains all
data objects.

Fig. 13. Enlarging the second (grey) cluster in steps of 50 objects as
in Fig. 11.

Fig. 11. Enlarging the first (light grey) cluster in steps of 50 objects by
moving the objects from the other two clusters.

Fig. 15. Increasing the number of incorrectly labeled objects.

Fig. 12. Increasing the size of the first cluster.

Fig. 16. Increasing the error of each cluster in P.
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The similarity values of PSI and NVD, CH and Purity
decrease linearly but NVD has higher similarity values
than PSI, see Fig. 16. Since NVD, CH and Purity are not
corrected for chance and are biased to random partitions,
they  have  a  higher  lower  bound.  If  we  made  them  cor-
rected, they would lose the linearity. The results of NVD,
CH and Purity are exactly the same because the matching
for all cases in this experiment is the same, which further
verifies  our  claim  in  (12).  Both  NMI  and  ARI  have  de-
creasing curves and their values are always lower than
those of the set matching indexes. One reason is that NMI
and ARI consider also the unmatched parts of clusters.

7.4 Cluster Size Imbalance
In this experiment, we study the impact of cluster size. In
Fig. 17, we consider sets of partitions where P1 and P2

have 200 objects (20%) wrongly labeled in the first two
clusters. The size of the third cluster is decreased from
2000 to 50 in steps of 50.

Since the labels of the first two clusters remain exactly
the same, the only difference originates from the size of
the third cluster. We assumed that the clusters with dif-
ferent sizes have the same importance, and therefore, the
results should be independent of the size of the third
cluster. As shown in Fig. 18, all indexes except PSI are
affected by the cluster size imbalance. For example, the
similarity value of ARI is much lower (66%) when the size
becomes 50 than when it is 2000 (91%). The results indi-
cate that most indexes are affected more by the larger
clusters. NVD, CSI, CH and Purity values are higher and
in a narrower range, which indicates better performance

of set matching indexes. Since matching results for NVD,
CH and Purity are the same, their results are also the
same, see (12). The proposed PSI is the one that copes best
with the cluster size imbalance.

7.5 Number of Clusters
We study the effect of the number of clusters by wrongly
labeling 200 objects in each cluster and then varying the
number of  clusters as shown in Fig.  19.  The size of  clus-
ters is fixed.

The indexes have similar trend on increasing the num-
ber of clusters except non-adjusted set matching indexes
(NVD, CSI, CH and Purity), see Fig. 20. When increasing
the number of clusters, the similarity values rise from as
low as 25% up to 80%. However, the impact is much more
significant for the small number of clusters from two to
four. PSI has better performance than NMI and ARI, but
only NVD, CSI, CH and Purity are completely independ-
ent on the number of clusters. Considering NVD equation
in Table 2 and the same percentage of error across clus-
ters in this experiment, it is trivial to show that NVD is
independent on the number of clusters. Since matching
results for NVD, CSI, CH and Purity are the same, their
results are also the same, see (12). In this experiment, we
see that correction for chance has bad effect as it makes
the index dependent on the number of clusters. Overall,
set matching indexes show better performance than the
representatives from pair-counting and information theo-
retic indexes.

Fig. 17. The effect of cluster size imbalance; same error in the first
two clusters and no error in the third clusters.

Fig. 18. The effect of cluster size imbalance on the indexes; the
partitions contain two clusters with the fixed size and error and the
size of the third cluster decreases in steps of 50.

Fig. 20. The effect of number of clusters (K=2 to 20), while the size
and error of each cluster are fixed.

Fig. 19. There are 200 objects wrongly labeled in each cluster and
the number of clusters varies.
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7.6 Overlap of clusters
We use a series of data sets (called M2), all containing two
clusters (1000 points each) in 8-dimensional space but
with varying cluster overlap. The points were generated
by Gaussian distribution with the same (constant) vari-
ance. The overlap was created by moving one of the clus-
ters closer to the other step by step. The amount of over-
lap is measured by how many points in a cluster are clos-
er to the centroid of the other cluster than to the centroid
of its own cluster.

We cluster these datasets by random swap algorithm
[41] and compare the result against ground truth parti-
tions. Fig. 21 shows that all NVD, CSI, CH, Purity, and
PSI react as expected. NVD approximately equals to the
amount  of  the  overlap,  but  is  lower  limited  by  0.50.  For
example,  with  15% overlap  we  expect  to  have  0.85  simi-
larity.  On  the  other  hand,  PSI  applies  correction  for
chance. Expected similarity of random partition into two
clusters is 0.50, and corrected similarity 1-(overlap/0.50),
accordingly. With 15% overlap, the expected similarity
would be 0.70. The results of PSI are near optimal re-
sponse (dashed black line).

7.7 Dimensionality of data
We used  the  same  M2 data  sets  but  this  time  we  fix  the
overlap to 15% and vary the dimensionality from 1 to 512.
The results in Fig. 22 show that all the methods are invar-
iant  to  the  dimensionality  up  to  a  limit  (about  256).  De-
crease of the index values is caused by over-optimization
of the clustering algorithm: with high-dimensional data, it
can optimize MSE better than would be with the ground
truth partition. Otherwise, NVD, CSI, CH, Purity, and PSI
again perform as expected with this  overlap:  NVD gives
0.85 (without) and PSI gives 0.70 (with correction for
chance).

7.8 Applications
We study next  how the four indexes (ARI,  NMI,  1-NVD,
PSI) perform with applications. We perform three exper-
iments with the following hypotheses.

In  the  first  experiment,  we  cluster  the  dataset  Unbal-
ance, see Fig. 23, to k=8  clusters  by  the  following  algo-
rithms: random swap (RS) with 5,000 iterations [41], ag-
glomerative clustering with ward criterion (AC), k-means

(KM), and single link (SL). All these methods aim at min-
imizing total squared error except the single link.

The clusterings are then compared with the known
ground  truth  in  Table  6.  The  result  of  PSI  corresponds
best to the expectations: RS and AC are both good at op-
timizing  the  structure  of  the  data  whereas  AC  tends  to
make more point-wise errors at the partition borders. KM
detects the dense cluster (2000 points) on the top, but it
breaks the two other dense clusters into six smaller sub-
clusters, and merges the five smaller ones (each 100

TABLE 6
CLUSTERING OF UNBALANCE BY FOUR ALGORITHMS

Algorithms
External indexes

ARI NMI NVD PSI

RS 1.00 1.00 1.00 1.00

AC 1.00 1.00 1.00 1.00

SL 1.00 0.99 0.99 0.78

KM 0.66 0.77 0.78 0.18

Fig. 22. Effect of dimensionality on the similarity measures.

Fig. 23. Clustering results of the data set Unbalance using k-means
(above), and single link (below).

Fig. 21. Effect of the overlap on the similarity measures.
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points) into one cluster, see Fig. 23 (top). All indexes react
to these errors but only PSI recognizes that this clustering
is  off  very  low quality.  SL  finds  all  clusters  correctly  ex-
cept that it merges two small ones leaving one orphan
point as its tiny cluster, see Fig. 23 (below). Only PSI re-
acts strongly enough to this situation.

In the second experiment, we take ground truth clus-
ters of the well-known Yeast data set (UCI), and then
remove the smallest clusters one by one, see Fig. 24. The
results in Table 7 show that only PSI provides significant
differences due to the cluster removal, mainly because it
treats all clusters of equal importance independent of
their size.

In the third experiment, we study how well the index-
es apply for the task of detecting the number of clusters
for Unbalance data set that contains eight clusters. We use
the stability-based approach in [42] as follows. Ten sub-
sets are generated by random sampling (with the sam-
pling rate 0.2) from the data set. Each subset is then clus-
tered by random swap algorithm with different number
of clusters in range k [2, 20]. The similarity between the
clustering of each subset and the clustering of the fullest
is calculated by an external index. The stability is then
measured as the average index values for all the subsets.
The hypothesis is that the correct number of clusters is the
one with highest stability (highest index value).

The results in Fig. 25 show that all indexes are applica-
ble to this task, and the bigger problems originate from
other factors than the choice of the index. All the indexes
show maximum stability with k=8, but the clustering
results are also stable with k=2 and k=4. Overall, PSI per-
forms most consistent especially for values k 5. In the
range of k=5..7, all the indexes except PSI fail to detect
high instability in the 5 small-sized clusters.

8  CONCLUSION
We have conducted a systematic study on existing set
matching indexes by analyzing them in three different
aspects: similarity measure of two clusters, matching the
clusters, and the overall summation. We have shown that
the difference between NVD, CH, Purity and CSI is only
about their matching. If their matching result were
the same, all these indexes would provide equivalent
result. We have also pointed out that Purity and the
measures cited as classification error or classification
accuracy are equivalent.

We defined concrete requirements that an external in-
dex should meet, and introduced new arrangement of
experiments based on synthetic data that can be used for
systematic evaluation of any index according to these
criteria. According to our experiments, set matching in-
dexes perform better than the selected indexes of pair-
counting and information theoretic indexes in many as-
pects such as cluster size imbalance, number of clusters
and linear changes.

None of the existing set matching measures use correc-
tion for chance, and they also normalize the index across
all data points. Based on these observations, we propose a
new index called PSI that applies correction for chance,
and performs normalization for each cluster separately.
We show that the simplified form of PSI is a metric.

For the information theoretic measures, we have also
shown that NMI=AMI=NVIs=AVIs under  hyper-
geometric distribution assumption, which was also veri-
fied by our experiments.
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APPENDIX A
Proof of Theorem 1
First, we introduce a new way to derive the expected
value of mutual information in case of random partitions
and under hyper-geometric distribution assumption and
then we use the expected value to prove (13). Consider a
pair of clusters Pi and Gj. The probability that an object in
Pi exists in Gj is mj / N. Accordingly, the number of objects
in both Pi and Gj is simplified as: nij=ni × (mj/N). Then, the
expected value can be calculated according to (7) as:
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According to (2), AMI=NMI which confirms the result
from [9]. Applying max(MI)=(H(P) + H(G))/2 as an option
for normalization [22], [17], we can write:
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Since E(H(P)) = H(P) and E(H(G)) = H(G) under hyper-
geometric distribution assumption, the expected value of
VI (8) is derived as:

)()()( GHPHVIE (26)
VI is a dissimilarity measure and min(VI) = 0 when the

two partitions are equal. Therefore, the adjusted variation
of information according to (2) is:
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An upper bound for VI is H(P)  + H(G) and therefore
(27) also represents the normalized variation of infor-
mation. We simplify AVIs and NVIs using (8) as follows:
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From (25) and (28), we see that the adjusted mutual in-
formation and adjusted variation of information are equal
to their normalized forms, and thus, theorem 1 is proven.

APPENDIX B
Proof of Theorem 2
Suppose that in a matching, m1 is paired to ni < n1 and n1

is paired to mj < m1 (case a). We show that if we change
the matching so that m1 is paired to n1 and mj is paired to
ni (case b), higher similarity is achieved. The total similari-
ties for these two cases (a and b) are:
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where Sa is the original pairing and Sb is the new pairing
after changing the pairs for m1 and mj. Six different situa-
tions may happen:

1. m1 > mj > n1 > ni

)(1)(1
11 ibia nn

N
Snn

N
S

2. m1 > n1 > mj > ni

)(1)(1
1 ibjia nn

N
Smn

N
S

3. m1 > n1 > ni > mj

)(1)(1
1 jbjia mn

N
Smn

N
S

4. n1 > m1 > ni > mj

)(1)(1
1 jbjia mm

N
Smn

N
S

5. n1 > ni > m1 > mj

)(1)(1
11 jbja mm

N
Smm

N
S

6. n1 > m1 > mj > ni

)(1)(1
1 ibija nm

N
Snm

N
S

(30)
Considering all the above situations, pairings (m1, ni)

and  (n1, mj)  must  be  changed  to  (n1, m1) and (mj, ni) to
achieve higher similarity. We can apply this proof recur-
sively to all the smaller clusters as well. Hence, the two
largest clusters must be always paired and then the next
two largest and so on in order to achieve maximum total
similarity with a random partition. This proves the theo-
rem 2.

APPENDIX C
Triangular Inequality Proof for the Simplified form of
PSI

Let P1, P2 and P3 be three partitions with K1, K2 and K3

clusters, and K12=max(K1,K2), K23=max(K2,K3),
K13=max(K1,K3). Let ni, nj and nk be the number of objects
in clusters i, j and k in P1, P2 and P3 respectively. We de-
note the number of shared objects between clusters by nij,
njk and nik. The simplified distance form of PSI, for P1 and
P2, according to (20) is:

112

1212
12 K

SKD

Lemma. D12+D23 D13 (31)

Proof. We define D’12 = K12 - S12, D’23 = K23 - S23 and D’13 =
K13 - S13 and prove first that: D’12+D’23 D’13 which is
equivalent to

131323231212 SKSKSK (32)
We consider three possible situations and simplify (32):

(1) K1  K23: S12 + S23 K23 + S13

(2) K3  K12: S12 + S23 K12 + S13

(3) K2  K13: S12 + S23 K2 + (K2 - K13) + S13

In the case (3), since K2 K13, it is sufficient to prove S12

+ S23 K2 + S13. Since K23 K2 and K12 K2, for all cases it is
sufficient to prove:
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1322312 SKSS (33)
According to the definitions (14) and (15), we divide

the inequality (33) into K2 sub-inequalities by considering
each cluster j in P2 on the left. Each sub-inequality is of the
form:
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nn
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(34)
Clusters i and k from P1 and P3 which are the pairs for

cluster j are not necessarily a pair in comparing P1 and P3.
Since S13 is derived according to perfect matching, we can
consider another matching of P1 and P3 in which i and k
are paired. If (33) holds in this case, it will also be true for
S13 which is the maximum possible similarity.

If the cluster j has a pair cluster only in P1 or P3,  it  is
trivial to prove (34). If it has pair clusters both in P1 and
P3, and nij + njk nj, proving (34) is trivial as well since the
left side of the inequality is smaller than one. Note that if
the clusters i and k do not have any shared objects, nij + njk

nj. So we prove (34) when nij + njk > nj. Considering a
minimum value for nik as nij + njk - nj, we rewrite (34) as
follows:
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(35)
Three possible cases are:

(1) nj max(ni, nk): By replacing max(ni, nj) and max(nj, nk)
by nj and after simplifications, we have:

(nij+njk-nj)(nj-max(ni,nk)) 0

which is always true in this case.
(2) ni max(nj, nk): We replace max(ni, nj) and max(ni, nk) by

ni. Since max(nj, nk) nj, it is sufficient to prove (35) by
replacing max(nj, nk) by nj. The equivalent inequality
derived after  simplification:

(ni- nj)(nj- njk)  0

is always true.
(3) nk max(ni, nj):  The  same  proof  in  the  case  (2)  can  be

applied.

The lemma (31) can now be represented as:
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(36)
We consider three possible cases:

(1) K1 K23: It is sufficient to prove (36) if K23 in denumer-
ator is replaced by K1. So we simplify (36) as follows:
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Since K1 2, The denumerators can be canceled and
the inequality is true according to (32).

(2) K3 K12: The same inference as the case (1) can be per-
formed by replacing K12 with K3.

(3) K2 K13: By simplifying (36), the following equivalent
inequality is resulted:

1
)1)((2

13

21313
22312 K

KSKKSS
(37)

Using (32), it is sufficient to prove:

1
)1)((2

13

21313
2132 K

KSKKSK

After simplification we have:
)()( 13213213 KKKKS

According to (14), S13  0, and therefore the above ine-
quality is true.

According to the cases (1), (2) and (3), the inequalities
(36) and consequently (31) hold, thus, the lemma is prov-
en.
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Abstract: External indices have been used in the literature for solving the number of 

clusters but with contradicting results. The idea is to measure stability of the clustering 

by external validity index when adding randomness to the process. The hypothesis is that 

the clustering is more stable with the correct number of clusters. In this paper, we study 

the main components of the stability-based approach. We will discuss how to create the 

randomness to the process, how to perform the cross-validation, which clustering 

algorithm, and which external index to apply. We will show that the number of clusters 

can be solved reliably only when the type of data is known, and all components of the 

approach are chosen accordingly. We conclude that the stability-based approach is not 

reliable in practice, and therefore, do not recommend it to be used. 

Keywords: Clustering, cluster validation, stability, number of clusters, external index, 

resampling. 

 

1. Introduction 

The number of clusters can be solved by comparing cluster validity of different number 

of clusters using internal indices. They are usually based on two measures: compactness 

and separation. Compactness measures how similar the objects within the same cluster 

are, and separation measures how dissimilar the clusters are. For example, several sum-

of-square error indices calculate the ratio of within cluster variance and between cluster 

variance [1]. The main characteristic of the indices is that they use no priori information 

of the data. A number of indices have been compared in [2], [3], [4], [5] but none has 

reached a clear state-of-the-art status that would work for a wide range of datasets. 

External indices compare the clustering solution to a ground truth data [6], [7], [8], [2], 

which can be used to study the performance of clustering methods with artificial data. 

External indices are also suitable to compare two clustering solutions of the same 

dataset to evaluate difference of the algorithms [9], [10], or utilized in ensemble 

clustering [11], [10], [12]. Some authors consider two types of the indices: relative 

index for comparing two clusterings, and external index for comparing a clustering with 

the ground truth. We consider here both of them as external index.  

External indices have also been used for solving the number of clusters [9], [13], [14], 

[6], [15], [16], [17]. The idea is to generate randomness in the process by resampling the 

data, cluster the subsamples with a varying number of clusters, and then measure the 

stability with the presence of the randomness [14]. The stability is measured by 

calculating the similarity of the clustered subsamples using an external index. The 

hypothesis is that the clustering is more stable (higher similarity) when having the 

correct number of clusters. This approach includes the following design choices: 

1. Adding randomness 

2. Cross-validation strategy 

3. Selection of the external index 

4. Selection of the clustering method 

mailto:rezaei@cs.joensuu.fi
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Randomness is typically created through sub-sampling. The size and number of 

subsamples are parameters but they are quite straightforward to set except when the size 

of data is very small. Alternative approaches are to use a randomized algorithm such as 

k-means with random initialization [18], or by adding noise to the data [19], [20]. 

However, we will show that k-means itself is unstable and therefore not reliable for this 

purpose. Adding noise, on the other hand, would require additional noise parameters 

that are not trivial to set. It might therefore create unexpected artifacts if not properly 

designed. 

Most external indices are restricted to compare partitions of exactly the same data. 

A straightforward approach [13], [14], [21] is to compare the clustering of a subset to 

that of its full set but restricting only to the points that are in the subset. Another 

approach predicts the partition labels of the rest of the points by nearest neighbor 

mapping using cluster centroids, or by applying a more complicated classifier process 

[9], [22], [23], [24]. We will also consider comparing the subsets directly by using 

centroid index [25], which does not require the partition of the data.  

The third design choice is to select an external validity index. Rand index [26] gives 

poor results according to our tests so we consider several other alternatives. Adjusted 

Rand index [27], information theoretic measures [28], [29] and selected set-matching 

methods [30], [25], [31] are all suitable for the task. We will show by experiments that 

the exact choice of the measure is less important, but how it is applied matters much 

more. All existing methods simply select the number of clusters that provide maximum 

stability (global maximum), but we will show by counter-examples and experiments 

that it is better to choose the last local maximum. 

The last design choice is the selection of the clustering algorithm. K-means is 

commonly used but it is highly unstable and not useful in this task. Another more robust 

algorithm, such as agglomerative clustering [32], random swap [33] or genetic 

algorithm [34] should be chosen. Another question is which cost function (cluster 

model) the algorithm should optimize. If we apply squared error criterion but the data is 

not spherical, we can get clustering that does not fit the data. In principle, we should 

still find the number of clusters that best fits to this model. However, the stability 

assumption does not always hold in this mismatch case. 

In this paper, we review the literature and provide a systematic study on stability-based 

methods for solving the number of clusters by external indices. We first introduce the 

stability-based approach. We then study the design choices for every component and 

show their limitations. We study how the choice of the clustering algorithm affects the 

result, and compare the performance of several external indices. We also compare the 

cross-validation and classification-based approaches. We will show by counter-

examples that the maximum stability is not always at the correct number of clusters. We 

propose a more robust criterion called last local maximum.  

To sum up, we will answer whether external stability is applicable for solving the 

number of clusters, and how it should be done exactly. 

 

2. Stability-Based Method 

Given a dataset X with N objects in d dimensions, an external index I, and a clustering 

algorithm A, the goal is to find the number of clusters K that best fits the structure in the 

dataset. Clustering is defined stable if it remains the same when applied for several 

datasets generated with the same process or from the same underlying model [18]. The 
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similarity between every two clusterings is measured by an external validity index. It is 

expected that the most stable result would be achieved when the correct number of 

clusters is applied [22]. 

The idea is demonstrated in Figure 1. Centroid-based clustering is applied to the dataset 

with five clusters, and to its subset with parameters k=5 and k=8. The clustering results 

of the full set and the subset are similar when k=5, whereas there are disagreements 

when k=8. In the full set, the top leftmost cluster is divided whereas in the subset it 

remains as one; and vice versa, in the top rightmost cluster it is divided in the subset 

clustering.  

 

Figure 1. Stability-based method for finding number of clusters; Stable (left) and 

unstable (right) results are produced if correct and incorrect number of clusters are 

applied.  

Stability, however, can also be achieved with fewer clusters when their positioning is 

not symmetric [35]. Figure 2 shows two datasets with three well-separated clusters, first 

with a symmetric (left) and second with a non-symmetric (right) positioning of the 

clusters. Applying clustering with k=2 gives unstable result for the first dataset but 

stable results for the second dataset. The second dataset is also stable for k=3, which is 

the correct number of clusters. Therefore, it is better to select the highest number of 

clusters that leads to a stable result. 

Data set Subset

 

Data set Subset

 

Figure 2. Unstable results for symmetrically positioned clusters (left), and stable results 

for non-symmetrically positioned clusters (right) when the incorrect number of clusters 

k=2 is applied. 

2.1. Adding randomness 

Randomness can be created by one of the following ways: 

1. Random sub-sampling [14], [16], [24] 

2. Adding random noise [19], [20] 
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3. Randomizing the algorithm [18] 

Most common approach is to create a number of subsets by Monte Carlo sub-sampling 

[36], where the size and number of the subsets are parameters. The size of subsets 

should be high but not too close to 100% in order to create significant variation between 

the subsets. Otherwise, the clustering algorithm may produce always the same result and 

being always stable [18]. Too low sampling rate, on the other hand, can break the 

structure in the data as shown in Figure 3. Unless otherwise noted, we use 20% 

throughout this paper. 

The second approach is to add noise to the data by perturbing each individual data 

object [19], [20]. A noise vector with random orientation is generated but its magnitude 

depends on the data and is not trivial to set. In [19], the magnitude of noise is derived 

based on k-nearest neighbors. In [20], a random Gaussian noise with zero mean and 

fixed standard deviation 0.15 is added to the data. The standard deviation was estimated 

according to the median standard deviation of the log-ratios for single genes. In the case 

of categorical data, noising can become complicated. Changing just one attribute 

randomly might result in an impossible combination of the attributes. We do not 

consider this approach further. 

The third approach is to randomize the algorithm. Randomness of k-means initialization 

was studied extensively in [18]. It was observed that the clustering result tend to be 

unstable when too many clusters, and stable with high probability when the correct 

number of clusters is applied. In the case of too few clusters, both stable and unstable 

situations were reported, similarly as in Figure 2. However, these analyses were 

conducted using a better algorithm than the standard random initialization of k-means. 

This was reasoned that an inconsistent clustering algorithm is completely unreliable and 

should not be used. We fully agree with this and our observations support it; k-means is 

not suitable for the randomization but another more stable algorithm could be used. 

 

Figure 3. Dataset spirals and its subsets with 60% (middle) and 20% (right) 

subsampling 

2.2. Cross-validation strategy 

Depending on the randomization strategy, there are several alternatives how to compare 

the clustering results. If we use the noising or randomized algorithm approaches, we can 

compare the full sets directly using any external index value. If the sub-sampling 

approach is selected, there are some limitations on what to compare. 

Sub-sampling produces subsets with different sets of points. Most external indices are 

based on point-level operations and cannot therefore be applied directly because they 

require having exactly the same set of points. It is possible to limit the comparison to 
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the points that are in the both subsets. However, the danger is that a too small size of the 

intersection may not reflect the real similarity of the subsets. With an 80% sub-sampling 

rate, we have 0.8 × 0.8 = 64% shared points, but with a 20% rate only 4%.  

The second solution is to apply a cluster-level index such as centroid index [25], which 

is independent of the data used to produce the clustering. It analyzes how many 

centroids are differently allocated in the two solutions. It produces clear CI=0 value 

when the clustering structures are identical. It is directly applicable with any model-

based clustering, and is applied to all of the randomization strategies discussed. 

The third solution is to predict the missing partition labels in the full set by nearest 

neighbor mapping based on the cluster centroids [15]. After that, the clustering of any 

subset can be compared against any another. Even simpler variant is to compare the 

clustering result of a subset to that of the full set by limiting the comparison to the 

points that are in the subset [21], [13], [14]. This approach is the most popular in the 

literature, and we use it as our baseline in the rest of the paper. We refer to these 

approaches as cross-validation strategy. The baseline variant using the sub-sampling 

strategy is outlined in Figure 4.  

Cross-validation (CV) Iterating the process 

Subsampling

Data set Subset

Clustering Clustering

Cluster

Validity

Validity value

[0, 1]
 

Subset 1

Subset 2

Subset P

Data set

CV

CV

CV

Analysis Stability value

[0, 1]
.
.
.

.

.

.

...

 

Figure 4. Cross-validation technique; clustering of a full dataset is compared with the 

clustering of its subset (left). The process is repeated for a number of subsets (right). 

2.3. Selecting the number of clusters 

Most external indices return a similarity value between the range [0, 1]. We study next 

how we can conclude from these values that two clustering results are the same, and that 

the clustering for the given value k is therefore stable. In the following, we consider 

three approaches (two global, one local) how to select the best k: 

1. Maximum stability (global) 

2. Normalized maximum stability (global) 

3. Last local maximum 

The cross-validation approach is repeated by applying clustering with all potential 

number of clusters k[kmin, kmax]. We denote the mean value of the validity index for k 

clusters as Ik. Maximum stability approach uses this mean value as such to indicate the 

correct number of clusters: 

k
kIK )max(arg  (1) 
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Normalized maximum stability approach (see Figure 5) selects the number of clusters as 

the maximum difference in mean stability values of the data (I) and the corresponding 

value (I0) of the null reference, which is a random dataset drawn from the original data 

(this is discussed in more detail in section 2.4) [9], [13]: 

k
kk IIK )max(arg 0  (2) 

This approach is referred to as normalization with regard to the number of clusters [18]. 

The reason is that the stability value depends on k regardless of the underlying data 

structure. For example, the stability of clustering for a random uniform dataset 

decreases as the number of clusters increases. This bias should be removed, and then the 

same equation (1) should be used. The same approach is also used in the gap statistics 

[37].  

In [18], it was observed that clustering can also be stable when having too few clusters 

but rarely when too many clusters. It is therefore possible to find several maxima of the 

index, and taking the global maximum might provide wrong result. We therefore 

consider last local maximum as a new criterion in this paper. For this, a threshold (Ith) is 

set to decide how high an index value is considered stable. The selection now becomes: 

k

thk IIkK )max(arg   (3) 

In the case of centroid index [25], we can interpret CI=0 for stable and CI>0 for 

unstable clustering. For all other indices, we set threshold value 0.9 throughout this 

paper. This selection seems robust for the datasets used in this paper, but the downside 

is that it adds one more control parameter to the process. 

Data set Null reference

Cross

validation

Cross

validation

Validity value

[0, 1]

+ -

 

Figure 5. Finding the strongest evidence against null hypothesis by evaluating the 

difference between mean index values for a dataset and its null reference 
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2.4. Null hypothesis 

We study next the theoretical background of the normalization to better understand why 

it has been considered. Originally Null hypothesis H0 assumes that the data is random 

and there are no clusters: K=1 [8], [9], [36]. Acceptance or rejection of this hypothesis 

is based on statistical inference. The alternative hypothesis H1 assumes a specific 

structure in the dataset, for example, K=3. 

In the stability-based method, H1 corresponds to X, and H0 corresponds to a null 

reference X0, which is a uniform random dataset having the same parameters and 

dimension as X [9], see Figure 6. The null reference is generated by randomly sampling 

points in the range of the attributes of the original dataset. Sometimes, only the 

relationships between data objects are available by a similarity matrix. In this case, the 

null reference is produced by randomly generating the matrix with the values in the 

range of minimum and maximum similarity values between the objects in the original 

dataset [38]. 

   

Figure 6. Dataset S1 (left), the corresponding null references (right). 

Cross-validation is performed both for X and its null reference X0 separately using a 

large number of repeats. This results in two probability density functions (PDF) of the 

index I, corresponding to H0 and H1. These are considered as random variables, see 

Figure 7 for a theoretical example. The goal is to analyze whether there is statistically 

significant evidence that the two distributions are different. 

0.95

I1 I2

P(I|H0) p(I|H1)

Power0.9

 

Figure 7. Hypothesis testing; PDF of H0 corresponds to X0 and PDF of H1 corresponds 

to X. 

Practical example is shown in Figure 8. We generated a uniform null reference for the 

dataset in Figure 1, and produced 100 subsets with the sampling rate of 20%. The 

histograms are the cross-validation values I both for the data (black) and its null 

reference (gray). In the case of k=5 (left), there is a clear distinction between the two 

histograms, whereas with k=8 there is no significant differences between the 

histograms. 
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Statistical analysis can now be performed to figure out in which k, the PDF of H1 

provides the strongest significant evidence against H0 [9]. The basic approach is as 

follows. A significance level is set and I1 and I2 are determined based on the PDF of H0. 

The number of datasets X for which I>I2 are counted as p1, where the total number of 

them is P. H1 is accepted if p1/P is larger than a threshold, for example 0.9. 
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Figure 8. Null hypothesis testing for the dataset in Figure 1 for k=5 and k=8 

 

2.5. Classification-based approach 

The ideas from supervised learning have also been used to evaluate the stability of 

clustering results in terms of their reproducibility [9]. The data, in P independent 

iterations, is randomly divided into two disjoint sets, a training set Xi
tr
 and a test set Xi

te
 

where i=1..P. Clustering is applied to both Xi
tr
 and Xi

te 
to produce partitions Yi

tr
 and Yi

te
. 

Another partition Y’i
te
 is then predicted for Xi

te
 using a classifier trained on (Xi

tr
, Yi

tr
) [9], 

[17]. The two partitions for the test set are compared using an external index, see Figure 

9. The P index values corresponding to P test sets are then averaged. The process is 

repeated for the potential number of clusters in the range k[kmin, kmax]. The hypothesis 

is that the highest stability (the average similarity between the two partitions of the test 

set) is achieved for the correct number of clusters. 

To derive the labels for the test dataset from the clustering of training dataset, a 

classifier such as linear discriminant analysis or K-nearest-neighbor is used for training 

[9], [15]. Selecting a good classifier is a challenging problem. In theory, the classifier is 

never optimal. A classifier can be derived based on the clustering process that has been 

used, which leads to a smaller error than that of a general classifier. For example, the 

nearest-neighbor classifier is suitable for single-link clustering, and the nearest centroid 

classifier is suitable for centroid-based clustering algorithms such as K-means [15]. In 

the case of model-based clustering, the labels can be directly determined from the model 

obtained in the training process without any a classifier [17]. 

The size of training and test sets should be selected carefully. In classification, usually a 

larger portion of data is considered for training. However, in the current problem, 

considering more data for training might be problematic. For example, in density-based 

clustering, different sizes of test and training sets result in different densities, which 

might lead to different clusterings. In this case, training and test sets should have the 

same size [6]. 

The normalization based on null reference as in (2) can also be used for the 

classification-based approach. Figure 10 shows the results of cross-validation and 

classification-based approaches with and without normalization for the dataset in Figure 
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1. The number of subsets is 100, each of the size 20% of the full dataset in the cross-

validation approach. The percentages for the training and test sets in the classification-

based approach are 80% and 20%, respectively. Random swap clustering algorithm [33] 

and adjusted rand index (ARI) [27] are used. The highest stability is found with k=5, the 

correct number of clusters.  

Classification-based approach (CB)   

Subsampling

Data set

Training subset Test subset

Clustering

Training

Clustering

Classifier
Cluster

Validity

Validity value

[0, 1]

Model

Labels Labels

Labels

 

Iterating the process 

Data set

CB

CB

CB

Analysis

Stability value

[0, 1]

.

.

.

...

 

Figure 9. One iteration of the classification-based approach (left). The process is 

repeated by randomly generating several training and test sets (right). 

 

Figure 10. Example of the stability-based method for the dataset in Figure 1. The size of 

subsets in the cross-validation approach and test sets in the classification-based 

approach is 20%. Random swap algorithm is used for clustering [33] and adjusted rand 

index (ARI) for validation [27]. 
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3. Clustering and validation 

3.1. Clustering algorithm 

A clustering algorithm should have two basic requirements to be suitable for the 

stability-based method. First, the algorithm itself should be stable so that it provides the 

same result when applied several times to the same data, or to several datasets drawn 

from the same source [15]. Otherwise, one cannot conclude whether the instability is 

caused by artifacts of the clustering algorithm, or by the structure of the data. Second, 

the algorithm must be suitable for the dataset so that it would be able to find a good 

solution for the correct number of clusters. 

Existing clustering methods consider one of the following structures for the clusters: 

1. Spherical  

2. Gaussian 

3. Density-based 

4. Connectivity-based 

K-means is the best known algorithm that aims at minimizing total squared error (TSE) 

[39]. It is suitable for spherical clusters but the result highly depends on the initial 

selection of centroids, and terminates in a local minimum. K-means is therefore unstable 

and not suitable for stability-based method. Random swap (RS) [33] is a more stable 

algorithm that iteratively changes the centroid locations through a trial-and-error 

manner. Due to its ease of implementation and stable performance, we use it as our 

baseline in the rest of this paper. 

Another possible algorithm for spherical data is Agglomerative clustering (AC). 

Efficient implementation in [40] also minimizes TSE and it usually finds the correct 

clustering structure with minor inaccuracies near the cluster borders. It would be 

another suitable compromise of simplicity and stability. Best reported results for 

minimizing TSE has been obtained by Genetic algorithm (GA). The variant in [34] uses 

agglomerative clustering as genetic operations and k-means for fine-tuning the results. 

Other works in the stability-based literature for spherical clusters have used partitioning 

around medoids (PAM) [9], repeated k-means [4], [24], competitive learning [4], 

bisecting k-means [7], and average-link agglomerative clustering [16]. 

Gaussian data can be modeled by Gaussian mixture model. Most popular algorithm is 

expectation maximization (EM) [41], which is analogous to K-means. It iteratively 

improves the solution by a two-step process. It has been used in the stability-based 

method in [23]. The problem of EM is that it also depends on the initial configuration. 

Better algorithms include Split and merge EM (SMEM) [42], genetic algorithm EM 

[43], and random swap EM (RSEM) [44], which all aim at overcoming the problem of 

local optimum of EM. We expect them to provide more stable results than EM, and 

applicable to the stability-based methods. 

Density-based clustering considers the clusters as areas of different densities, or higher 

density than the rest of data. Sparse points are usually considered as noise. DBSCAN 

[45] is the most popular density-based algorithm. Its basic idea is to create clusters from 

points whose neighborhood within a given radius (eps) contains a minimum number 

(minPt) of other points. The algorithm grows clusters from these points by joining 

neighboring points within the eps distance. The algorithm is simple but the result highly 

depends on the parameters eps and minPt. The number of clusters is also automatically 

selected based on these parameters, and is not applicable when there are clusters with 
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different densities in the data. OPTICS [46] generalizes DBSCAN so that the 

parameter eps is derived automatically. There are two main problems of these 

algorithms. First, they select the number of clusters k indirectly via the input parameters. 

Second, re-sampling the subsets will produce different densities than the original data, 

and therefore would need different parameters eps and minPt. These make it difficult to 

use the density-based algorithms in stability-based methods. 

Connectivity-based clustering aims at forming arbitrary-shaped clusters by connecting 

nearby objects based on their distance. Agglomerative clustering with single-link and 

complete-link are two examples of connectivity-based clustering. Single-link would 

work only if the clusters are well-separated but provides poor results otherwise. 

Numerous algorithms appear in the literature but it is unclear which one of them would 

really work in practice. 

In clustering, the main problem is that we usually do not know what kind of clusters is 

expected. However, we can still apply squared error criterion even when the clusters are 

not spherical, and find the clustering that fits for the assumed spherical clusters. It is 

therefore expected that we can still find the number of clusters that best fits the model 

for this data. 

Figure 11 shows an example where the mismatch between the data and the clustering 

method can result in stability for an unstructured data. For example, an algorithm based 

on squared error criterion (k-means) is suitable for data with spherical clusters. When 

applying with k=2 to the spherical data without clusters, it provides unstable result 

(left), but when applying to skewed Gaussian data, it can provide stable result (right). 

Suppose that we have a data set with k clusters, k-1 spherical and one skewed as in 

Figure 11 (right). Applying the stability-based method with a centroid-based clustering 

to this data set provides stable result not only for k clusters but k+1 and k+2. 

 

Data set Subset

 

Data set Subset

 

Figure 11. Datasets without structure; unstable clustering for a spherical 2-D dataset 

(left), and stable clustering for a skewed dataset (right) for k=2. 

3.2. External validity index 

External indices are categorized into pair-counting, information theoretic and set-

matching measures [30]. Normalization and correction for chance are desirable 

properties. Normalization keeps the range of the index either in [-1, 1] or [0, 1], which 

makes the values comparable across different datasets. Correction for chance adjusts the 

expected value to zero [30]. 

Pair-counting measures include rand index, adjusted rand index, Jaccard coefficient, 

Fowlkes-Mallows index and several others [47], [48]. They count the pairs of objects in 

the dataset on which two different partitions agree or disagree. For instance, if two 

objects place in the same cluster, or in different clusters in the two clustering solutions, 
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it is an agreement. Rand index is defined as the number of agreements divided by the 

total number of pairs of objects. Adjusted rand index is the corrected form of Rand 

index for chance [27]:  
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where E(RI) is the expected value of Rand index. Adjusted rand index is the most 

popular index in this group. 

Information theoretic indices include entropy, mutual information and variation of 

information [47], [29], [28]. Mutual information (MI) measures the information that two 

clusterings share by summing up the shared information between every two clusters: 
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where the probabilities p(Pi), p(Gj), and p(Pi,Gj) are estimated as ni/N, nj/N, and nij/N, 

respectively. N is the size of dataset, ni and nj are the sizes of clusters Pi and Gj, and nij  is 

the number of shared objects between the two clusters. Variation of information (VI) 

represents the distance between two clusterings, and it is the complement of mutual 

information. Since there is no upper bound for mutual information and variation of 

information, normalization is needed [11]. Suppose that NVIs=1- NVI  and AVIs=1-AVI 

denote the similarity form of normalized variation of information (NVI) and adjusted 

variation of information (AVI). It is shown in [30] that: 

NMIAMINVIAVI ss   (6) 

where NMI and AMI denote normalized mutual information and adjusted mutual 

information. 

Set-matching indices are based on matching the clusters in two clustering solutions, 

where the similarity between every two clusters is calculated according to a given 

measure. We classify set-matching indices into two types: point-level such as Van 

Dongen [31] and pair set index [30], and cluster-level such as Centroid Index [25]. 

Cluster-level indices use only cluster prototypes in contrast to point-level indices, which 

employ the labels of all objects in resulting partitions. PSI and CI are defined as follows: 
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where i, j are the indices of paired clusters. 
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where orphan(Gi)=1 if no centroid from clustering P is mapped to the i
th

 centroid in 

clustering G, and zero otherwise. Since the mapping from P to G is not symmetric, CI2 

is defined by calculating the CI1 measure in both ways. 
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Existing stability-based methods either define their own index or employ a well-known 

external index such as Fowlkes and Mallows (FM) [9], [24] and ARI [13] to measure 

the stability. However, the indices that they define are all similar to the existing external 

indices. For example, the index in [6] and [15] is a set matching-based index, which is 

corrected for chance. Optimal pairing for two partitions is derived and then the number 

of misclassified objects is calculated. The figure of merit [14] is a pair-counting external 

index, which counts the number of pairs of objects located in the same cluster in both 

clusterings. Prediction strength [49] is similar to the figure of merit, but the stability is 

measured only according to the cluster in the test set that has the minimum proportion 

of the pairs of objects. 

4. Experiments 

We examine the stability-based method for determining the number of clusters using 

several datasets. We arrange a set of experiments to answer the following questions:  

 Which external index, and how to select k? 

 Effect of sampling rate? 

 Which Cross-validation strategy? 

 Null reference or not?  

 Which algorithm? 

4.1. Experimental setup 

External indices: We consider representative indices from every three categories of 

external indices: RI, ARI, NMI, CI, CSI, NVD and PSI. All the indices are traditional 

point-level normalized in the range [0, k] except CI that is a cluster level index in the 

range [0, k]. For visualization purpose, we normalize CI and convert it to a similarity 

measure in the range [0, 1] using CI*=1-CI/k. NVD is also a distance measure. We 

consider 1-NVD as a similarity measure in all the experiments. 

Clustering algorithm: We use random swap (RS) [33] by-default in all tests unless 

otherwise noted. We set the number of its iterations to 5000 to make sure that the best 

possible clustering is achieved. K-means (KM) and genetic algorithm (GA) are used in 

one test to evaluate the impact of clustering algorithms. 

Datasets: We consider 14 datasets summarized in Table 1. The datasets S1, S2, S3 and 

S4, each contains 15 clusters. The complexity and overlap between clusters increase 

from S1 to S4. Iris is a small dataset with three well-separated clusters. Unbalance is a 

dataset with three big clusters, each of size 1000 and five small clusters, each of size 

100, see Figure 12. The points in the Bridge dataset are 44 non-overlapping vectors 

taken from a 256x256 gray-scale image. The dataset does not have any clustering 

structure. Birch1 and Birch2 are big datasets, each includes 100 well-separated spherical 

clusters. G2 is a series of datasets, all containing two clusters (1024 points each) but 

with varying dimension including 2-d, 4-d, 8-d, 16-d, and 32-d. 

Subsampling: We generate 100 subsets from each dataset by random independent sub-

sampling. The same subsets are used both in the cross-validation and as test sets in the 

classification-based approach in all experiments. The rest of the data (the complement 

of each subset) is used as training set in the classification-based approach. We generate 

100 subsets similarly for the uniform null reference of each dataset. We consider 

sampling rates of 5%, 10%, 20%, 40% and 80%. By default, we use 20%.  
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Table 1. Summary of the datasets 

Dataset Number of data 

points (N) 

Number of 

clusters (K) 

Dimension  

of data (d) 

S1- S4 5000 15 2 

Iris 150 3 4 

Unbalance 3500 8 2 

Bridge 4096 - 16 

Birch1 100,000 100 2 

Birch2 100,000 100 2 

G2 2048 2 2-4-8-16-32 

 

    
S1 S2 S3 S4 

 

 
Unbalance 

 

G2 (2-d) 

Figure 12. Example datasets  

4.2. Comparison of external indices 

We compare the performance of external indices using the subsampling-based cross-

validation approach. We consider both the global maximum and the last local maximum 

approaches (with threshold 0.90). 

Figure 13 shows the average index values for each dataset, and Table 2 records the 

number of clusters detected. First observation is that the choice of index is not 

important. Almost all the methods manage to find the correct result for most datasets. 
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Only exception is RI, which fail 43% times. The scale of CI is much rougher than the 

other indices. It always finds maximum stability for the correct number of clusters, but 

also several others when having too few clusters. 

The second observation is that the global maximum criterion sometimes fails. It either 

detects multiple global maxima (especially with CI), or detects a solution with too few 

clusters. The last local maximum criterion works better in this sense. The following 

indices find the correct result in all cases except Iris: ARI, NMI, PSI, NVD, and CSI. CI 

measures only cluster level differences, and in some cases, it finds stability also when 

having too many clusters. 
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Figure 13. Stability results of cross-validation approach using various indices. 

Table 2. Comparison of external indices when considering global maximum and last 

local maximum  

 

Datasets 
Birch1 Birch2 G2-2d G2-4d G2-8d G2-16d G2-32d 

100 100 2 2 2 2 2 

Global maximum 

RI 99..105 100 2 2 2 2 2 

ARI 100 100 2 2 2 2 2 

NMI 100 100 2 2 2 2 2 

PSI 100 100 2 2 2 2 2 

NVD 100 100 2 2 2 2 2 

CSI 100 100 2 2 2 2 2 

CI 100 92, 100 2,4,5 2,3,4 2 2 2 

 Last local maximum 

RI 100 100 9 2 2 2 2 

ARI 100 100 2 2 2 2 2 

NMI 100 100 2 2 2 2 2 

PSI 100 100 2 2 2 2 2 

NVD 100 100 2 2 2 2 2 

CSI 100 100 2 2 2 2 2 

CI 100 100 5 4 2 2 2 
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Datasets 

S1 S2 S3 S4 Iris Unbalance Bridge 

15 15 15 15 3 8 1 

 Global maximum 

RI 15 2, 15 15 15 2 2, 8 2 

ARI 15 2 4 2 2 2, 8 2 

NMI 15 2 15 15 2 2, 8 2 

PSI 15 2 4 2 2 2, 8 2 

NVD 15 2 3, 4 2 2 2, 8 2 

CSI 15 2 3, 4 2 2 2, 8 2 

CI 2..9,14,15 2..15 
2..10, 14, 

15 

2..10, 

12..1

5 

2,3,4 2, 3, 4,5,7,8 2..6 

 Last local maximum 

RI 15 15 23 19 2 17 27 

ARI 15 15 15 15 2 8 2 

NMI 15 15 15 15 2 8 2 

PSI 15 15 15 15 2 8 2 

NVD 15 15 15 15 2 8 5 

CSI 15 15 15 15 2 8 5 

CI 15 15 15 15 4 8 6 

 

4.3. Cross-validation strategy 

We compare next two cross-validation strategies with the classification-based approach 

using nearest centroid classifier. The results for two selected datasets are plotted in 

Figure 14. They show the same trend for both cross-validation (subset-fullset) and 

classification-based approaches with only slight differences.  

To compare the clusterings of two subsets, we predict the labels of their full dataset 

using nearest centroid mapping. We then compare the resulting clusterings of the full 

dataset. Table 3 shows that there is no difference in the performance of the two cross-

validation strategies and the classification-based approach when using last local 

maximum criterion. Global maximum criterion results in the same errors as in the 

previous experiment for all the approaches in this experiment. 

We also tested randomization of the algorithm. Instead of k-means, we use more robust 

algorithm, random swap. We study the level of randomness by using 1, 10, 100, 1000 

and 5000 iterations. Depending on the data, correct clustering is found by 10 (G2), 100 

(S1-S4) or 5000 (Birch) iterations. Iterating less would cause more randomness 

potentially to allow detecting the number of clusters via stability. The results for the 

data sets S1 and  Unbalance (100 iterations) in Figure 14 shows the low performance of 

this approach. Both global maximum and last local maximum result in an incorrect 

number of clusters. 

The results of the randomized algorithm in Table 3 show that it rarely works. Correct 

results are found only for the higher dimensional G2 datasets and with Birch, but only if 

the number of iterations is set properly: slightly less than what would be required to find 
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the optimum solution. Too few iterations would cause too much randomness, and 

stability will not be achieved even with the correct number of clusters. Too many 

iterations, on the other hand, allows the algorithm to find the same well-optimized 

clustering regardless of the initialization. Even with too many clusters, there is usually a 

unique global minimum that the algorithm finds. The fundamental problem of this 

approach is that the randomization cannot be controlled as easily as with the sub-

sampling approach. 

 

Figure 14. Comparison of cross-validation and classification-based approaches. 

Table 3. Comparison of two cross-validation strategies vs. classification-based 

approach vs. randomized algorithm (R.A.) with different number of iterations 

 

Datasets 

Birch1 Birch2 G2-2d G2-4d G2-8d G2-16d G2-32d 

100 100 2 2 2 2 2 

Cross-valid. (FULL) 100 100 2 2 2 2 2 

Cross-valid. (SUB) 100 100 2 2 2 2 2 

Classification-based 100 100 2 2 2 2 2 

R.A. (1) 1 1 2 2 2 2 2 

R.A. (10) 1 1 4 2 2 2 2 

R.A. (100) 98 1 8 2 2 2 2 

R.A. (1000) 100 100 9 4 2 2 2 

R.A. (5000) 100 109 9 3 2 2 2 

 

 

Datasets 

S1 S2 S3 S4 Iris Unbalance Bridge 

15 15 15 15 3 8 1 
Cross-valid. (FULL) 15 15 15 15 2 8 2 
Cross-valid. (SUB) 15 15 15 15 2 8 2 

Classification-based 15 15 15 15 2 8 2 

R.A. (1) 1 4 4 2 3 2 5 

R.A. (10) 5 16 10 2 3 4 10 

R.A. (100) 16 16 15 19 5 17 9 

R.A. (1000) 19 16 22 22 6 17 10 

R.A. (5000) 19 16 24 24 6 17 8 



 19 

 

4.4. Null reference 

We next test the normalization based on the null reference as used in (2). We report the 

results both using last local maximum and global maximum criteria with threshold 0.2. 

The results in Figure 15 reveals that the null reference is not monotonically decreasing 

as expected, but it fluctuates; only the magnitude of the fluctuation decreases with the 

number of clusters. The overall results (the difference) is affected badly by the 

fluctuation and leads to more confusion about the optimal number of clusters for most 

of the datasets, as shown in Table 4. 

 

Figure 15. Comparing cross-validation approach without and with normalization using 

null reference  

Table 4. Cross-validation approach without and with null reference: Global = global 

maximum, Local = last local maximum. 

 
Datasets 

Birch1 Birch2 G2-2d G2-4d G2-8d G2-16d G2-32d 

Without 100 100 2 2 2 2 2 

Local 

Global 

100 108 2 2 2 2 2 

100 100 2 2 2 2 2 

 

 
Datasets 

S1 S2 S3 S4 Iris Unbalance Bridge 

Without 15 15 15 15 2 8 2 

Local 

Global 

14 14 7 14 3 8 28 

6 7 3 14 3 8 3 

4.5. Clustering algorithm 

In this experiment, we compare the performance of three algorithms: random swap 

(RS), genetic algorithm (GA) and k-means (KM). The results for the datasets S1 and 

Birch1 in Figure 16 show that k-means results in lower stability values, which 

originates from the instability of the algorithm. This shows that the problem of 

evaluating the stability related to the structure of the data is mixed with the instability of 

the clustering algorithm. Therefore, wrong conclusions may be derived due to the 

choice of bad algorithm. 
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To determine the number of clusters, we use the last local maximum criterion with the 

thresholds 0.9, 0.9, and 0.7 for RS, GA, and k-means, respectively. The results in Table 

5 confirm that k-means perform poorly for most datasets and is clearly unsuitable. The 

difference between RS and GA is so small that we expect some other algorithm like 

agglomerative might be suitable as well. We conclude that the choice of the algorithm is 

critical but several choices exist. 

 

Figure 16. Comparison of k-means with two good algorithms: random swap and genetic 

algorithm 

Table 5. Comparison of clustering algorithms by using PSI  

Clustering 

algorithm 

Datasets 

Birch1 Birch2 G2-2d G2-4d G2-8d G2-16d G2-32d 

RS 100 100 2 2 2 2 2 

GA 100 100 2 2 2 2 2 

KM 109 1 2 2 2 2 2 

 

Clustering 

algorithm 

Datasets 

S1 S2 S3 S4 Iris Unbalance Bridge 

RS 15 15 15 15 2 8 2 

GA 15 15 15 15 2 8 2 

KM 16 18 15 16 2 4 2 

4.6. Impact of sampling rate 

We test the impact of sampling rate on the performance of the cross-validation approach 

by generating subsets with several sampling rate including 5%, 10%, 20%, 40%, and 

80%. Low sampling rate may cause too many changes in the structure of the data, 

whereas high sampling rate may result in too few changes. The results in Table 6 show 

that the subsampling rates 10%, 20% and 40% provide similarly good results. The low 

subsampling rate 5% causes error for S3 and S4, and the high sampling rate causes 

errors for S2, S4, and G2 (2-d).  
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Table 6. Impact of sampling rate on the cross-validation approach  

Sampling 

rate 

Datasets 

Birch1 Birch2 G2-2d G2-4d G2-8d G2-16d G2-32d 

5% 100 100 2 2 2 2 2 

10% 100 100 2 2 2 2 2 

20% 100 100 2 2 2 2 2 

40% 100 100 2 2 2 2 2 

80% 100 100 8 2 2 2 2 

 

Sampling 

rate 

Datasets 

S1 S2 S3 S4 Iris Unbalance Bridge 

5% 15 15 1 1 1 8 2 

10% 15 15 15 15 2 8 2 

20% 15 15 15 15 2 8 2 

40% 15 15 15 15 2 8 5 

80% 15 13 15 17 2 8 8 

 

5. Conclusions 

We have performed a systematic study to find out whether stability-based method can 

be used for determining the number of clusters. The simple answer is that, yes, it is 

possible but we think it is not practical. If it is going to be used, we give the following 

recommendations how to construct the method. 

1. The exact choice of the cross-validation strategy is not critical. Most indices cannot 

compare the subsets directly, but comparing a subset to the full set works just fine. 

Random sub-sampling is suitable and no need to consider other approaches. The 

size of the subset is not a critical if between 10-40%. We recommend sub-sample 

size of 20%.  

Among the other cross-validation strategies: subset-subset and classification-based 

approach also work but they add an extra design question, predicting the labels for 

the missing points or the choice of classifier. These complicate the method 

unnecessarily. Randomizing algorithm is not recommended because it gives poor 

results even when using a stable algorithm. 

2. To select the number of clusters, maximum stability criterion has been mostly used 

in the literature. However, we showed that it is not reliable. Instead, we recommend 

using the last local maximum criterion.  

Normalization based on the Null reference was also studied but it works poorly in 

most cases we tested. It does not bring enough extra insight into the process but 

adds more randomness that is harmful.  

3. The choice of external index is not critical. Our results showed that any good 

external index (PSI, ARI, NMI, NVD, CSI) works and there is no significant 

difference between them. Only simple index like Rand Index had negative impact 

on the result and should not be used. Cluster level index (CI) was also considered 

because it works for the subset-subset comparison directly. It worked well but with 

two datasets it falsely recognized stability with too many clusters. 
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4. The choice of the clustering algorithm has significant effect on the result. The 

stability-based method fails using an unstable algorithm like k-means because it is 

simply not stable even with the correct number of clusters. We tested random swap 

(RS) and genetic algorithm (GA) but expect that other good algorithms such as 

agglomerative clustering (AC) would work well. We leave it as future research to 

study the stability of the algorithms more extensively. 

Using the above guidelines, stability-based method can work with reasonable efforts. 

Despite the positive results, we encountered several challenges that might cause 

problems when applying the method in different contexts than what we studied here. 

We briefly discuss them next. 

The method has two parameters to set: the sampling rate (20%) and the threshold of the 

last local maximum criterion (0.90). Too low (5%) or too high (80%) sampling rate 

makes the method fail for some data, and 40% was already a borderline case. The 

suitable range and recommended value 20% seems a safe choice but they are still 

parameters, and it is an open question how well they generalize to other types of data.  

Another difficulty is that the clustering result does not depend only on the algorithm but 

the clustering model it uses. If we know that the data is spherical, then minimizing 

squared error by random swap clustering algorithm is OK. If we have Gaussian clusters, 

then we should use a good algorithm to optimize Gaussian mixture model. Random 

swap variant of EM [44] might work but it was not tested. For more complex data types 

such as density clustering, we do not even know which clustering model would work 

well enough. We expect that algorithms such as DBSCAN and single-link are likely to 

work poorly in general. 

A bigger problem is that we do not usually know anything about the data, or it is a mix 

of different cluster types. However, the goal of clustering is simply to provide the best 

clustering for whatever model is chosen, including the number of clusters. In this 

scenario, the stability method can fail due to detecting stability with wrong number of 

clusters regarding both the model and the data. 

To sum up, we conclude that external indices can be used for the problem but only in 

theory, and in very controlled environment when the type of data is well known and no 

surprises appear. In practice, this is rarely the case. Even if we demonstrated the method 

is working successfully for several datasets, we do not recommend it. External indices 

simply do not offer anything more that the best internal indices cannot offer, and they 

would just add unnecessary complications into the system. 
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School of Computing, University of Eastern Finland

qinpei.zhao@uef.fi

Abstract

Processing short texts is becoming a trend in infor-

mation retrieval. Since the text has rarely external in-

formation, it is more challenging than document. In this

paper, keyword clustering is studied for automatic cat-

egorization. To obtain semantic similarity of the key-

words, a broad-coverage lexical resource WordNet is

employed. We introduce a semantic hierarchical clus-

tering. For automatic keyword categorization, a valid-

ity index for determining the number of clusters is pro-

posed. The minimum value of the index indicates the po-

tentially appropriate categorization. We show the result

in experiments, which indicates the index is effective.

1. Introduction

With the development on Internet, web-based and in-

formation retrieval (IR) applications, such as search en-

gines, social networks, multi-media sharing, customer

reviews are exploded. Short texts such as search query,

comments, photo description and tags are the modern

means in the applications. Although text classification

and clustering are well studied, the techniques are not

successful in dealing with short texts. The short text

is typically lack of context information, free form and

highly unstructured. Thus processing short texts is chal-

lenging. To enrich the representations of short texts,

external resources such as WordNet 1, Wikipedia 2 and

Google search results [1, 2, 4, 6, 7, 12] get involved.

Search engine queries are mostly short texts. The

average length of them is about 2.3 terms and 30% have

a single term [9]. A method grouping search results

based on different meanings of the query is proposed

in [4] for efficiently identifying relevant results. To get

a better semantic similarity, search engine results are

1http://wordnet.princeton.edu
2http://www.wikipedia.org

employed [12, 1, 2]. For each pair of short texts, they

do statistics on the results returned by a search engine

(e.g., Google) in order to get the similarity score.

New inspired clustering algorithms have been pro-

posed to deal with short texts. In [5], a framework

of comments-driven clustering for organizing web re-

sources is explored. The clustering approach is studied

over the popular video sharing site YouTube 3. A prob-

abilistic framework, which includes a knowledgebase

(Probase) and certain inferencing techniques on top of

the knowledgebase is proposed in [11]. The framework

is to enable machines to perform human-like concep-

tualization. Experiments are conducted on conceptual-

izing textual terms and clustering short pieces of text

such as Twitter 4 messages. Also novel uses of valid-

ity indexes have been presented in [3, 8]. An evalua-

tion of different internal clustering validity indexes is

presented to determine the possible correlation between

the indexes and F-measure [8].

Hierarchical clustering commonly employed in text

clustering, is a method of cluster analysis which seeks

to build a hierarchy of clusters. It provides dendro-

gram as clustering results. Non-hierarchical procedures

usually require the user to specify the number of clus-

ters before any clustering and hierarchical methods rou-

tinely produce a series of solutions ranging from one

cluster to n clusters (assume n objects in the data set).

Numerous methods for determining the number of clus-

ters have been proposed for numerical data [10]. How-

ever, there is little research on validity index for key-

word clustering.

In this paper, a new validity index, which determines

the number of clusters for semantic hierarchical cluster-

ing is proposed. The method is applied for automatic

categorization. Our focus is on strings in a single word,

based on which processing on strings in multiple words

is also applicable. Since single words lack of content

for statistical conclusion, we employ WordNet to get se-

3www.youtube.com
4https://twitter.com
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mantic similarity directly. The main contribution of this

paper is to introduce a new validity index in keyword

clustering.

2. Semantic Hierarchical Clustering

Given a list of keywords S = {s1, s2, ..., sn}, key-

word categorization is to cluster them into groups,

where the keywords in each group are semantically sim-

ilar. The clusters are defined as C = {c1, c2, ..., ck}.

Hierarchical clustering can provide categorization with

one to n clusters, i.e., 1 ≤ k ≤ n.

A semantic hierarchical clustering requires a mea-

sure of semantic similarity between data. The similar-

ity measure can be obtained from external resources and

we use WordNet thesaurus in this paper. Information-

content based similarity measures such as Resnik, Lin

and Jiang & Conrath are considered. Take an example

of Jiang & Conrath in distance metric, which is defined

as:

P (s) =

∑
w∈Set(s,s′) count(w)

N
IC(s) = − logP (s)

LCS(s, s′) = max
c∈Set(s,s′)

IC(c)

JC(s, s′) = (IC(s) + IC(s′))− 2LCS(s, s′)

(1)

where Set(s, s′) is a set of words subsumed by s and s′.
P (s) is the probability that a random word (w) in the

corpus is an instance of s. N is the number of words

in the corpus. LCS(s, s′) (Least Common subsumer)

is the lowest common ancestor node of s and s′ in the

hierarchy of WordNet.

An example of semantic hierarchical clustering re-

sult by Jiang & Conrath is shown in Fig. 1.

3. Automatic Categorization

In most real life clustering situations, an applied re-

searcher is faced with the dilemma of selecting the num-

ber of clusters in the final result. Thus, a validity index

for determining the number of clusters is necessary. The

index is based on the dendrogram with cluster size one

to n obtained from hierarchical clustering (see Fig. 1).

It is used to decide at which level of the hierarchy the

categorization is the best.

For getting a proper number of clusters, a fixed range

of [kmin, kmax] is usually pre-defined. It is meaningless

to set kmin = 1 because uniform test (deficiency of

randomness) is enough. Also clustering algorithm has

no effect on one cluster. Thus, usually one sets kmin =
2 and kmax ≤ n.

The index is defined based on the Compactness and

Separation of clusters, which are defined as:

C(k) = max
t

{max
i,j

JC(si, sj)si 6=sj∈ct}+ I1/n

S(k) =

k∑

t=1

k∑

s>t

mini,j JC(si, sj)si∈ct,sj∈cs

k(k − 1)/2

(2)

Where, C(k) represents compactness within clusters

and S(k) is separation between clusters. In C(k), si
and sj are the ith and jth string in tth cluster ct and

I1 is the number of clusters with one item. Similarly,

si and sj are the ith and jth string in tth cluster ct and

sth cluster cs respectively, k is the number of clusters at

that hierarchical level.

Figure 1. An example of dendrogram from
semantic hierarchical clustering on data

mopsi.

There exists a special case that cluster size is one,

which means there is only one item in a cluster. For

clustering, the special case is not preferred. And it is

not possible to calculate the pairwise distance with only

one item. Thus, we constraint the C(k) by adding I1/n.

The categorization is assumed that items within a clus-

ter are as similar as possible and items between clusters
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Figure 2. The stopping criterion on artificial data. Four is the minimum value for both cases.

are as different as possible. For the clustering result

with k clusters, the validity index is defined as:

SC(k) =
C(k)

S(k)
(3)

The index is calculated for each k among [kmin, kmax].
The k with minimum value in the range is selected as

the best fitting number of clusters.

4. Experiments

The experiment is conducted on artificial data (see

Fig. 2) and data mopsi obtained from MOPSI5 project.

The MOPSI project implements different location-

based services and applications such as mobile search

engines, photos, user tracking and route recording. The

project has its applications integrated both on the web

and mobile phones with the aim to integrate user loca-

tion as a search option. The words in data mopsi (see

Fig. 1), which contains 36 nouns, are picked up from

services, search query keywords and photo descriptions.

Since there are many unstructured words in Finnish lan-

guage, we select a small sample and translate them into

English by Google Translate API. We use Java to ac-

cess the semantic similarity measures from WordNet

3.0. The user interface is programmed in JSP (Java

Server Pages).

The validity index on artificial data is shown in

Fig. 2. The x-axis is the number of clusters k and y-axis

is the value of SC(k). The categorizations are also dis-

played. The numbers of clusters detected by the stop-

ping criterion are both four, where the categorization is

reasonable from human judgment.

5http://cs.joensuu.fi/mopsi

For the real data mopsi, a ground truth categorization

is obtained by 20 people. There are two persons who di-

vide the data into 11 clusters, five persons into 10 clus-

ters and 13 persons into 8 clusters. The dendrogram by

the semantic hierarchical clustering is shown in Fig. 1.

The number of clusters detected by the proposed valid-

ity index is nine (see Fig. 3), where the values of seven,

eight and ten clusters are quite close. The categoriza-

tion of nine groups is shown in Fig. 4. The maximum

distances (JC(s, s′)) within clusters and the minimum

distances between clusters are displayed.

5 10 15 20 25 30 35
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20
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30
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40

number of clusters

5 7 9
1

1.05

minimum value

Figure 3. The validity index on data mopsi.
Nine is the minimum value.

Although a number of clusters can be determined by

an algorithm based on a certain criterion, human judg-

ment often differs from each other on the categoriza-

tions and the number of clusters. However, the pro-

posed criterion can suggest a potentially appropriate
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categorization.

The study is simply performed on nouns. It can be

extended to verbs also. For strings with multiple words,

the processing can be based on processing for strings

in single words. However, it is more complicated to

analyze strings in multiple words by WordNet.

Figure 4. Categorization of nine groups on

data mopsi with the minimum distances
within clusters and maximum distances
between clusters.

The semantic similarity obtained from WordNet

sometimes has difference with human’s judgment,

which leads to the undesired clustering result. For ex-

ample, the similarity between words lion and tomcat is

0, however, the similarity between lion and cancer is

0.05. The hierarchical clustering merges lion and can-

cer as a group firstly, which does not match with hu-

man’s judgment. Therefore, automatic categorization

on the undesired clustering result is not reliable.

5. Conclusion

We introduced a keyword clustering for automatic

categorization. For getting a semantic similarity, we

employed the similarity measure from WordNet. A

validity index in semantic hierarchical clustering was

proposed for automatic categorization. The index is

based on the compactness and separation of clusters,

where the minimum value indicates a good categoriza-

tion. The experiment performed in a real project indi-

cates the method is working. Finding a better way to

calculate semantic similarity for strings in either single

word or multiple words is our future work. It is also

interesting to study on other clustering algorithms, such

as spectral clustering on this problem.
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Abstract. Semantic clustering of objects such as documents, web sites and 
movies based on their keywords is a challenging problem. This requires a simi-
larity measure between two sets of keywords. We present a new measure based 
on matching the words of two groups assuming that a similarity measure be-
tween two individual words is available. The proposed matching similarity 
measure avoids the problems of traditional measures including minimum, max-
imum and average similarities. We demonstrate that it provides better clustering 
than other measures in a location-based service application. 

Keywords: clustering, keyword, semantic, hierarchical. 

1 Introduction 

Clustering has been extensively studied for text mining. Applications include custom-
er segmentation, classification, collaborative filtering, visualization, document  
organization and indexing. Traditional clustering methods consider numerical and 
categorical data [1], but recent approaches consider also different text objects such as 
documents, short texts (e.g. topics and queries), phrases and terms.  

Keyword-based clustering aims at grouping objects that are described by a set of 
keywords or tags. These include movies, services, web sites and text documents in 
general. We assume here that the only information available about each data object is 
its keywords. The keywords can be assigned manually or extracted automatically. 
Fig. 1 shows an example of services in a location-based application where the objects 
are defined by a set of keywords. For presenting an overview of available services to 
a user in a given area, clustering is needed.  

Several methods have been proposed for the problem [2, 3, 4, 5] mostly by agglo-
merative clustering based on single, compete or average links. The problem is closely 
related to word clustering [6, 7, 8] but instead of single words, we have a set of words 
to be clustered. Both problems are based on measuring similarity between words as 
the basic component.  

To solve clustering, we need to define a similarity (or distance) between the ob-
jects. In agglomerative methods such as single link and complete link, similarity be-
tween individual objects is sufficient, but in partitional clustering such as k-means and 
k-medoids cluster representative is also required to measure object-to-cluster similari-
ty. Using semantic content, however, defining the representative of a cluster is not 
trivial. Fortunately, it is still possible to apply partitional clustering even without the 
representatives. For example, an object can be assigned to such cluster that minimizes  
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Fig. 1. Five examples of location-based services in Mopsi (http://www.uef.fi/mopsi): name of 
the service, representative image, and the keywords describing the service 

(or maximizes) the cost function where only the similarities between objects are needed.  
In this paper, we present a novel similarity measure between two sets of words, called 

matching similarity. We apply it to keyword-based clustering of services in a location-
based application. Assuming that we have a measure for comparing semantic similarity 
between two words, the problem is to find a good measure to compare the sets of words. 
The proposed matching similarity solves the problem as follows. It iteratively pairs two 
most similar words between the objects and then repeats the process for the rest of the 
objects until one of the objects runs out of words. The remaining words are then matched 
just to their most similar counterpart in the other object.  

The rest of the paper is organized as follows. In Section 2, we review existing me-
thods for comparing the similarity of two words, and select the most suitable for our 
need. The new similarity measure is then introduced in Section 2. It is applied to ag-
glomerative clustering in Section 3 with real data and compared against existing simi-
larity measures in this context. 

2 Semantic Similarity between Word Groups 

In this section, we first review the existing methods for measuring semantic similarity 
between individual words, because it is the basic requirement for comparing two sets 
of words. We then study how they can be used for comparing two set of words, 
present the new measure called matching similarity, and demonstrate how it is applied 
in clustering of services in a location based application. 

2.1 Similarity of Words 

Measures for semantic similarity of words can be categorized to corpus-based, search 
engine-based, knowledge-based and hybrid. Corpus-based measures such as point-
wise mutual information (PMI) [9] and latent semantic analysis (LSA) [9] define the 
similarity based on large corpora and term co-occurrence. Search engine-based meas-
ures such as Google distance are based on web counts and snippets from results of a 
search engine [8], [10, 11]. Flickr distance first searches two target words separately 
through the image tags and then uses image contents to calculate the distance between 
the two words [12].  
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Fig. 3. Minimum and maximum similarities between two location-based services is derived by 
considering two keywords with minimum and maximum similarities 

Now consider two objects with exactly the same keywords (100% similar) as follows: 

(a) Café, lunch 
(b) Café, lunch 

The word similarity between Café and lunch is 0.32. The corresponding minimum, 
average and maximum similarity measures would result in 0.32, 0.66 and 1.00. It is 
therefore likely that minimum and average measures would cluster these in different 
groups and only maximum similarity would cluster them correctly in the same group.  

Now consider the following two objects that have a common word: 

(a) Book, store 
(b) Cloth, store 

The maximum similarity measure gives 1.00 and therefore as soon as the agglomera-
tive algorithm processes to these objects, it clusters them in one group. However, if 
data contains lots of stores, they might have to be clustered differently.  

The following example reveals another disadvantage of minimum similarity. These 
two objects should have a high similarity as their only difference is the drive-in possi-
bility of the first service. 

(a) Restaurant, lunch, pizza, kebab, café, drive-in 
(b) Restaurant, lunch, pizza, kebab, café 

Minimum similarity would result to S(drive-in, pizza)=0.03, and therefore, place the 
two services in different clusters. 

2.3 Matching Similarity 

The proposed matching similarity measure is based on a greedy pairing algorithm, 
which first finds two most similar words across the sets, and then iteratively matches 
next similar words. Finally, the remaining non-paired keywords (of the object with 
more keywords) are just matched with the most similar words in the other object. 
Fig. 4 illustrates the matching process between two sample objects. 
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Fig. 4. Matching between the words of two objects 

Consider two objects with N1 and N2 keywords so that N1>N2. We define the nor-
malized similarity between the two objects as follows: 
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where SW measures the similarity between two words, and p(i) provides the index of 
the matched word for wi in the other object. 

The proposed measure provides more intuitive results than existing measures, and 
eliminates some of their disadvantages. As a straightforward property it gives the 
similarity 1.00 for the case of objects with same set of keywords. 

3 Experiments 

We study the method with Mopsi data (http://www.uef.fi/mopsi), which includes 
various location-tagged data such as services, photos and routes. Each service in-
cludes a set of keywords to describe what it has to offer. Both English and Finnish 
languages keywords have been casually used. For simplicity, we translated all Finnish 
words into English by Microsoft Bing translator for these experiments. Some issues 
raised in translation such as stop words, Finnish word converting to multiple English 
words, and some strange translations due to using automatic translator. We manually 
refined the data to remove the problematic words and the stop words. 

In total, 378 services were used for evaluating the proposed measure and compare 
it against the following existing measures: minimum, maximum and average similari-
ty. We apply complete and average link clustering algorithms as they have been wide-
ly used in different applications. Each of the clustering algorithms is performed based 
on three similarity measures. Here we fixed the number of clusters to 5 since our goal 
of clustering is to present user the main categories of services, with easy navigation to 
find the desired target without going through a long list. We find the natural number 
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of clusters using SC criteria introduced in [16] by finding minimum SC value among 
clusterings with different number of clusters. We then display four largest clusters and 
put all the rest in the fifth cluster. The data and the corresponding clustering results 
can be found here (http://cs.uef.fi/paikka/rezaei/keywords/). 

The three similarity measures of five selected services in Table 1 are demonstrated 
in Table 2. The first three and the last two services should be in two different clusters 
according to their similarities. However, both minimum and average similarities show 
small differences when they compare Parturi-kampaamo Nona with Parturi-
kampaamo Koivunoro and Kahvila Pikantti, whereas the proposed matching similari-
ty can differentiate them much better. Despite that Parturi-kampaamo Nona and  
Parturi-kampaamo Koivunoro have exactly the same keywords, only the matching 
similarity provides value 1.00 indicating perfect match. 

Table 1. Similarities between five services for the measures: minimum, average and matching 

Mopsi 
service: 

A1-Parturi-
kampaamo 
Nona 

A2-Parturi-
kampaamo 
Platina 

A3-Parturi-
kampaamo 
Koivunoro 

B1-Kielo 
B2-Kahvila 
Pikantti 

Keywords; 
barber 

hair 
salon 

barber 
hair 

salon 

barber 
hair 

salon 
shop 

cafe 
cafeteria 

coffe 
lunch 

lunch 
restaurant 

Table 2. Similarity between services described in Table 1  

Services A1 A2 A3 B1 B2 

 Minimum similarity 

A1 - 0.42 0.42 0.30 0.30 
A2 0.42 - 0.42 0.30 0.30 
A3 0.42 0.42 - 0.30 0.30 
B1 0.30 0.30 0.30 - 0.32 
B2 0.30 0.30 0.30 0.32 - 

 Average similarity 

A1 - 0.67 0.67 0.47 0.51 
A2 0.67 - 0.67 0.47 0.51 
A3 0.67 0.67 - 0.48 0.51 
B1 0.47 0.47 0.48 - 0.63 
B2 0.51 0.51 0.51 0.63 - 

 Matching similarity 

A1 - 1.00 0.99 0.57 0.56 
A2 1.00 - 0.99 0.57 0.56 
A3 0.99 0.99 - 0.55 0.56 
B1 0.57 0.57 0.55 - 0.90 
B2 0.56 0.56 0.56 0.90 - 
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In general, the problems of minimum and average similarities are observable in the 
clustering results both for complete and average link. Several services with the same 
set of keywords (barber, hair, salon) are clustered together, and a service with the 
same keywords has its own cluster when complete link clustering is applied with  
minimum similarity measure. Average link method clusters the services with these 
keywords correctly but for services with other keywords (sauna, holiday, cottage), it 
clusters them in different groups even when using average similarity. This problem 
does not happen with matching similarity.  

Another observation of minimum similarity with complete link clustering is that 
there appear many clusters with only one object, and a very large cluster that contains 
most of the other objects. Matching similarity leads to more balanced clusters with 
both algorithms. Interestingly, it also produces almost the same clusters with the two 
different clustering methods.  

For more extensive objective testing, we should have a ground truth for the wanted 
clustering but this is not currently available as it is non-trivial to construct. We there-
fore make indirect comparison by using the SC criterion from [16]. The assumption 
here is that the smaller the value, the better is the clustering. Fig. 5 summarizes the 
SC-values for different number of clusters. The overall minima for complete link and 
average link are 131, 86, 146 (minimum, average and matching similarities) and 279, 
96 and 140, respectively. Our method provides always the minimum SC value. The 
sizes of 4 biggest clusters in each case are listed in Table 3. 

Table 3. The sizes of the four largest clusters for complete and average link clustering 

Complete link  

Similarity: Sizes of 4 biggest clusters 

Minimum 106 88 18 18 
Average 44 22 20 19 
Matching 27 23 19 17 

Average link 

Similarity: Sizes of 4 biggest clusters 

Minimum 22 12 10 8 
Average 128 41 34 17 
Matching 27 23 17 17 

The effectiveness of the proposed method for displaying data with limited number 
of clusters still exists. The number of clusters is too large for practical use and we 
need to improve the clustering validity index to find larger clusters but without  
creating meaningless clusters. We also observed some issues in clustering that origi-
nate from the similarity measure of two words, which implies that better similarity 
measure would also be useful. 
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Fig. 5. Complete link and average link clustering using three similarity measures 

4 Conclusion 

A new measure called matching similarity was proposed for comparing two groups of 
words. It has simple intuitive logic and it avoids the problems of the considered min-
imum, maximum and average similarity measures, which fail to give proper results 
with rather simple cases. Comparative evaluation on a real data with SC criterion 
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demonstrates that the method outperforms the existing methods in all cases, and by a 
clear marginal. A limitation of the method is that it depends on the semantic similarity 
measure between two words. As future work, we plan to generalize the matching 
similarity to other clustering algorithms such as k-means and k-medoids. 
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