Inferring **Road Networks** from **GPS Trajectories**

Radu Mariescu Istodor

19.12.2018
GPS Trajectory

Latitude: 62.2351
Longitude: 29.4123
Timestamp: 10.10.2018 19:05
Satellite Images ➔ GPS Trajectories

Chicago

Joensuu

MOPSI
Proposed Method

Mariescu-Istodor, Radu, and Pasi Fränti.
"Cellnet: Inferring road networks from gps trajectories."

Step 1
Detecting Intersections

Step 2
Creating Road segments

In the next slides I will:
1. Teach the background
2. Show how we did it*
3. Give you a challenge 😊

*most important steps only
Detecting Intersections

Detecting Intersections

Detecting Intersections

Turning patterns
Detecting Intersections

PROPOSED
Mariescu-Istodor, Radu, and Pasi Fränti.
"Cellnet: Inferring road networks from gps trajectories."
Detecting Intersections

PROPOSED

Mariescu-Istodor, Radu, and Pasi Fränti.
"Cellnet: Inferring road networks from gps trajectories."

Still works...

Random Swap

Fränti, Pasi, and Juha Kivijärvi.
"Randomised local search algorithm for the clustering problem."
Pattern Analysis & Applications (2000).
Sum of squared errors

Validity Index

SSE

No. Clusters

5 10 15 20

Validity Indices

WB
Rate
Silhouette
Dav
Bayesian
Minimum

S2 (synthetic) dataset

cs.uef.fi/sipu/datasets
Creating Road segments
Creating Road segments

Creating Road segments

Cao, Lili, and John Krumm.
"From GPS traces to a routable road map."
Advances in geographic information systems (2009).

Merging
Creating Road segments

Edelkamp, Stefan, and Stefan Schrödl.
"Route planning and map inference with global positioning traces."
Computer Science in Perspective (2003).
Creating Road segments

PROPOSED
Mariescu-Istodor, Radu, and Pasi Fränti.
"Cellnet: Inferring road networks from gps trajectories."
ACM TSAS (2018).

Hautamäki, Ville, Pekka Nykänen, and Pasi Fränti.
"Time-series clustering by approximate prototypes."
ICPR pp. 1-4. (2008).
Accepted connections

\[\text{length} (\alpha) \approx \text{length} (\alpha) \]
Accepted connections

Mariescu-Istodor, Radu, and Pasi Fränti.
"Grid-based method for GPS route analysis for retrieval."
ACM TSAS (2017).

\[\text{length} (\alpha) \approx \text{length} (\alpha) \]
Evaluation

<table>
<thead>
<tr>
<th>City</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago</td>
<td>42%</td>
<td>28%</td>
<td>10%</td>
</tr>
<tr>
<td>Joensuu</td>
<td>46%</td>
<td>58%</td>
<td>87%</td>
</tr>
</tbody>
</table>

Precision

\[
\text{precision} = \frac{\text{correct}}{\text{correct} + \text{false detected}}
\]

Recall

\[
\text{recall} = \frac{\text{correct}}{\text{correct} + \text{missed}}
\]

F-Score

\[
f - \text{score} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]
Challenge:

Average GPS segments

http://cs.uef.fi/sipu/segments

Other useful links:

http://cs.uef.fi/mopsi/routes/network
http://cs.uef.fi/mopsi/routes/dataset

Thank You.

Radu Mariescu-Istodor

radum@cs.uef.fi
Choosing the test locations
Choosing the test locations

Mean shifting
Too many detections!
Non-intersections

Roundabout
Silhouette Coefficient:
Silhouette coefficient
[Kaufman & Rousseeuw, 1990]

- Cohesion: measures how closely related are objects in a cluster
- Separation: measure how distinct or well-separated a cluster is from other clusters
Silhouette coefficient

- **Cohesion** $a(x)$: average distance of x to all other vectors in the same cluster.
- **Separation** $b(x)$: average distance of x to the vectors in other clusters. Find the minimum among the clusters.
- **silhouette** $s(x)$:

 $$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

- $s(x) = [-1, +1]$: -1=bad, 0=indifferent, 1=good
- **Silhouette coefficient (SC)**:

 $$SC = \frac{1}{N} \sum_{i=1}^{N} s(x)$$
Silhouette coefficient

\[a(x): \text{average distance in the cluster} \]

\[b(x): \text{average distances to others clusters, find minimal} \]
Detecting Intersections
- no intersection case -