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Abstract: Clustering is one of the most widely used applications in machine learning. It finds 
use in applications like recommendation systems and fraud detection systems. Similar objects 
are grouped together to form a cluster. There are situations where there is a need to find a nested 
cluster, which means finding cluster contained inside another cluster. Results of a density-
based algorithm, capable of detecting nested clusters are studied in this thesis. This is a centroid 
based algorithm. It is built on top of k-means algorithm. The concept of weighted centroid is 
introduced. The centroid of each cluster is weighted between 0 and 1. Centroid weights are 
calculated from the density of their clusters. Weight of a centroid is directly proportional to the 
density of its cluster. Centroids with higher weights have denser clusters. They attract points 
from a lesser circumference and centroids with lesser weights attract points from a higher 
circumference. In this way, smaller cluster inside a bigger cluster can be detected. Once the 
clusters are formed, their densities are calculated again and from the density, weight of every 
centroid is calculated. Since the higher weight centroids attract only nearby points, it can 
extract nested clusters present inside a bigger cluster. In k-means, the number of clusters must 
be given as input and the algorithm returns centroids and partitions. Similarly, this density-
based algorithm requires the number of clusters in advance and the clustering solution is 
returned in the form of centroid weights, centroid locations, and partitions. 
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CI  Centroid index, a cluster-level measure of clustering quality 
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K-means k-means, a clustering algorithm 
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1. Introduction 
 
 

Clustering is one of the most natural and intuitive qualities of a human brain which helps us to 
distinguish between different objects at various levels. It is difficult for humans to process and 
categorize everything into a separate category. Thus, humans tend to categorize similar objects 
into clusters where each cluster is characterized by common features of the objects it has. 
According to [1], clustering is an unsupervised machine learning algorithm which aims at 
grouping similar objects together. Each object is represented as a data vector in clustering. A 
data vector has all the attributes of the object represented by it. Attributes are the adjectives 
that describe the object. It is a piece of information that is useful in clustering data. Attributes 
can be numeric or non-numeric. For example, in a dataset of movies, a movie is an object 
represented by a data vector and attributes of the movie like title, actor, genre and the release 
date are its features. Number of dimensions of a data vector is the number of its features.  
The group of similar objects is called a cluster and all objects in one cluster are represented by 
a prototype. The entire cluster is represented by its prototype. The definition of a prototype 
depends on the nature of the data. Centroid and medoid are used as prototypes commonly and 
we are using centroid as a prototype in this thesis. These prototypes are calculated using 
distance measures like Euclidean distance. The Euclidean distance is easily extended to 
multidimensional data. 
Classic textbook algorithm called k-means is used for clustering the data, but it does not cluster 
data vectors based on their densities. K-means also cannot detect nested clusters. We propose 
a unique density-based clustering approach to solve this shortcoming of k-means. This 
algorithm is based on random swap algorithm [2], which is a modified version of k-means. 
More information about random swap and k-means is found in the later part of the thesis. 
 
1.1 Related work 
 
This is the continued work of Jarkko Piiroinen’s thesis [3] related to density-based clustering 
using weighted centroids. In his version, he has made some conclusions which are mentioned 
in this thesis too and the experiments have been continued assuming those conclusions to be 
true. Since this algorithm is based on top of k-means and random swap, it comes with all the 
pros and cons of k-means and random swap. DBSCAN [4] is a popular density-based clustering 
algorithm. There have been many attempts to modify DBSCAN to enable it to detect embedded 
and nested clusters. One of the variants is called Entropy based DBSCAN (EnDBSCAN) [10], 
which divides data into blocks and divides them into different computer nodes, to make full 
use of the data nodes. There is another variant of DBSCAN as described in [5] which tries to 
detect nested adjacent clusters to get rid of problems in DBSCAN and its variants. 

 

1.2 Objectives of thesis and problem definition 
 

This thesis proposes a unique density-based algorithm which can detect nested clusters. It is a 
centroid based algorithm like k-means. It finds densities and has a prototype associated with 



 
 

 2 

every cluster. Like any clustering algorithm, it is assumed that the data is spread across several 
clusters and interesting patterns are to be found. The problem of clustering using weighted 
centroids is given as: 

 
 Given a set of data X, number of clusters K and centroid weights W, find locations of 
the centroids, and partitioning P such that an objective function is minimized.  
 

1.3 Thesis structure 
 

In Chapter 2, the background and details about clustering and concepts used in clustering are 
explained in simple language. Different methods of clustering, distances used in clustering and 
other technicalities related to clustering are explained. In Chapter 3, prerequisite algorithms 
and concepts are explained. K-means and random swap are the basics to understand the work 
in this thesis. Chapter 4 explains three different density-based algorithms which already exist 
to start the process of understanding newly proposed density-based algorithm. Chapter 5 has 
explanation about the concept of weighted centroids and weighted distances. These concepts 
are used in the main algorithm proposed in this thesis. Chapter 6 presents the algorithm step by 
step followed by an example to show how the algorithm works. The experiments conducted 
and their results are drafted in Chapter 7. There are cluster validation measures which are worth 
understanding and are explained in this chapter. Detailed analysis about the results, comparison 
with other existing algorithms is also given. Chapter 8 has conclusion and the potential future 
work.  



 
 

 3 

2. Clustering 
 
 

2.1 Basic concepts 
 

Clustering algorithms are used to group similar objects together based on their distance 
functions. In each dataset, we may have many objects, some being like each other and some 
being different. This similarity or difference is determined by studying features of the objects 
in the dataset. Features are the properties which uniquely find an object in a dataset. For 
example, let us consider the dataset represented in Figure 1. 
 

 
Figure 1: Sample dataset to understand clustering 

In Figure 1, we have sample data vectors spread along the attributes shown as x-axis and y-
axis. Hence x-axis and y-axis are the features of these data vectors as each data vector can be 
uniquely found with the combination of its features that is, x and y co-ordinates. In real-life, 
these features can be any tangible property of an object. If the spread of data vectors is 
observed, it can be seen that there are a few data vectors concentrated in the left part of the 
figure, few data vectors concentrated in the right part of the figure and few in the middle top. 
Four points are picked from the dataset to study their similarities and differences from each 
other. 

 

 
Figure 2: Select two sample points from each region 
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It can be visually seen that red points are more like each other than with blue points. Similarly, 
blue points are more like each other than with red points. This similarity is shown because the 
Euclidean distance between the features of red points is lesser than the Euclidean distance 
between features of red and blue points. Here the features are x and y coordinates and the 
difference between the features is the Euclidean distance between the data points. The features 
vary according to the nature of the dataset.  

 
An example which everyone experiences in daily life is that of online shopping. When one 
buys a phone, one gets recommendations from the online shopping portal with the message of 
a form, “People who bought this phone also bought this mobile cover and these headphones.” 
Here, the similar objects are grouped together by detecting similar features and are then 
recommended by the online shopping portal using the underlying clustering algorithm. In the 
same way, if the data set in the Figure 2 is clustered, we will get to see clear distinctions as 
shown in Figure 3. 

 

 
Figure 3: Clustered data set 

These distinctions are called clusters and the dataset is said to be clustered. Since all the data 
vectors in each cluster are like each other, they are represented by a single vector called 
prototype. Centroid is the most commonly used prototype in clustering. Centroid is used as a 
prototype in centroid based clustering algorithms. Centroid is a vector which has all attributes 
of the vectors in the dataset. The value of centroid attributes is the mean value of the attributes 
of all the other vectors in that cluster. Prototyping can make it easier to visualize large datasets 
with millions of data vectors and thousands of clusters. It reduces the data vectors just to the 
number of clusters present in the given dataset. Other prototypes like medoid also exist. 
Medoids represent cluster with a vector whose average dissimilarity to all vectors in the cluster 
is minimal. Unlike centroids, medoids always belong to the dataset. Centroids for the dataset 
in Figure 3 are shown in Figure 4. 



 
 

1 https://way.fi/haku?category=ravintola&map=y 
2 http://cs.uef.fi/sipu/pub/aece_2018_4_8.pdf 
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Figure 4: Clusters with centroids 

The main advantage of using centroids (or any prototype) is reduction in the number of vectors 
to study. Figure 5 has a real-life example which shows the importance of having clustered data. 
Crude observations, statistical analysis and other scientific inferences can be easily and 
efficiently studied. In many cases, it also improves the visual representation.  
 

a. Map with cluster1             b. Map without cluster2 
Figure 5: Maps with and without clustering 

 
Figure 5a is a map with lots of places, represented by a cluster. Here, the places near each other 
are shown as one single object (represented by a cluster). On the contrary, Figure 5b is a map 
without clustering. Clustering places helps the visuals to remain clean and clearly visible 
without taking up much space. It is visually difficult and cumbersome to find places of interest 
in the Figure 5b. It also has other disadvantages like cluttering other pointers (overlapping) and 
increased time to load all the data points on the map

Figure  SEQ Figure \* ARABIC 6: Maps 
with clusters 

Figure  SEQ Figure \* ARABIC 5: Map 
without clusters 
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2.2 Distances 
 

There are many types of distances used in clustering. Some of the common distances are 
Euclidean, Manhattan and Cosine distances. Clustering algorithms are based on distance 
between two vectors and hence it is necessary to select a distance measure while implementing 
any algorithm. 

 

2.2.1 Euclidean distance 
Euclidean distance is the normal straight-line distance between the given vectors which is 
calculated using following formula: 
 
 𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) = 	=(𝑞* − 𝑝*), +	(𝑞, − 𝑝,),		 + ⋯+	(𝑞A − 𝑝A), (1) 

 

Euclidean distance is symmetric. Variables p and q in the equation refer to data vectors and 
subscripts 1, 2…, n refer to the dimensions in an n-dimensional dataset.  
 

2.2.2 Squared Euclidean distance 
Squared Euclidean distance is like Euclidean distance with the only exception that square root 
of the sum of differences of features is not taken. In other words, square of Euclidean distance 
is called squared Euclidean distance. The formula for squared Euclidean distance is given as 
follows: 
 
 𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) = 	 (𝑞* − 𝑝*), +	(𝑞, − 𝑝,),		 + ⋯+	(𝑞A − 𝑝A), (2) 

 
 
2.2.3 Manhattan distance 
It is defined as the distance between two vectors when travelled along the axes. Manhattan 
distance is preferred in using medoid based algorithms because it uses absolute values which 
are robust and can be easily generalized to higher dimensional datasets [6]. 
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Figure 6: Manhattan distance 

Manhattan distance between points A and B is along the axes as shown with blue lines. 
Manhattan distances are always the same irrespective of the direction of the path taken. Figure 
6 has two options of using Manhattan distance between points A and B. Manhattan distance 
between two vectors is greater than Euclidean distance between the same two vectors. It is the 
sum of the lengths of projections of the segment between two vectors into co-ordinate axes. In 
simpler terms, it is the sum of horizontal and vertical components in a plane between given two 
vectors. The mathematical formula to calculate Manhattan distance is given as follows: 
 

𝑑(𝑝, 𝑞) = 	B |	𝑝DE	𝑞D|
A

DF*

 
(3) 

 
Where p and q are the points and k refer to the features of the given points. 
 
2.2.4 Edit distance 
Edit distance is used to find distance between two strings. It is the minimum number of 
modifications required to convert one string to other. The modification operations are insertion, 
deletion, and replacement. It is used in applications like automated spell checks. This distance 
measure, however, is very application specific. Text clustering is a favorable application to use 
edit distance as the distance measure. Example of edit distance calculation is as follows: 

String 1: Sit 
String 2: Sat 

Edit distance between string 1 and string 2 is equal to one in this example because only one 
operation is needed convert string 1 to string 2. We get string 2 by replacing i in string 1 with 
a.  
 
Other types of distances like Cosine, Jaccard, Mahanolobis are also used in some applications 
but the distances explained in this section are used most commonly. Since there are many 
different distance measures available, selecting the best distance measure is a bit confusing. 
The factors that need to be studied before choosing the best distance measure are application 
of the algorithm and the type of input data [7].  
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2.3 Clustering methods 
 
Various clustering methods exist which use different implementation, strategies to detect 
clusters and objective functions. When clustering methods are changed, there is a change in 
cluster configuration and input parameters, which can change results too. The method of 
clustering is chosen based on the application and the type of input data. Every clustering 
method has its own advantages and disadvantages. Based on these constraints, a suitable 
clustering method is chosen. Different clustering methods are given in the following sub-
sections.  
 
2.3.1 Hierarchical clustering 
Hierarchical clustering focuses on forming clusters by joining vectors together and forming 
one single cluster. Joining of vectors depends on the strategy used and there are many strategies 
to join vectors together in hierarchical clustering. Agglomerative and divisive clustering are 
the types of hierarchical clustering in which, agglomerative clustering uses bottom up approach 
to merge clusters while divisive method uses top down approach. The basic idea lies in the fact 
that close vectors should form a single cluster and well separated vectors should be classified 
into different clusters. In agglomerative approach, multiple small clusters are joined together 
to form a large cluster which again is joined with some other cluster to form even larger cluster. 
It forms hierarchy in clustering which is represented as a dendrogram. Dendrograms are a 
classic way to represent hierarchical clusters but they are not used much in modern data 
analysis or clustering. However, they clarify the concept of hierarchical clustering. The main 
advantage of hierarchical clustering is that it produces a nested tree of partitions and therefore 
is more informative than non-hierarchical clustering. Hierarchical clustering has a high 
computational cost [8]. 
 

 
Figure 7: Dendrogram in hierarchical clustering 
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2.3.2 Centroid based clustering 
Centroid based clustering revolves around the idea of having a centroid to represent every 
cluster. In crude terms, centroid is a vector having mean features of all the data vectors 
belonging to that cluster. In this method, the data is partitioned in such a way that every 
partition should have at least one data vector. K-means is a classic textbook algorithm which 
is centroid based. Centroid based method is a popular method in academics and research [9]. 
 
2.3.3 Distribution based clustering 
Distribution based clustering is based on the idea of clustering data using the distribution 
models like Gaussian distribution. Data is viewed to be spread across, following a certain 
distribution model and clusters are found by trying to fit the given dataset to given distribution 
model. The downside of using distribution-based clustering is its problem of over fitting. They 
can capture other statistical properties like correlation and dependency. 
 
2.3.4 Density based clustering 
This thesis focuses on density-based clustering approach. Clusters are regions where many data 
vectors are accumulated, that is, there is a dense region of data vectors forming a cluster. 
Between the two clusters, there is a region of no or very few data vectors. In density-based 
clustering, high density regions are separated from each other by low density regions. 
DBSCAN is one of the most popular density-based clustering algorithms. There are many 
variants of DBSCAN like Fast DBSCAN [4], EnDBSCAN [10], adaptive density based spatial 
clustering [11]. Algorithm in this thesis is a density-based algorithm, and centroid based at the 
same time 
 
2.3.5 Grid based clustering 
It is a clustering approach in which the dataset is divided into finite space of grid and every 
grid is treated as a separate cluster in the beginning. The grids are later merged into a single 
clustering by testing grid data vectors for certain criteria. Grid growing algorithm [12] is an 
example of grid-based clustering in which two neighboring grids are merged into a single 
cluster if number of data vectors in the adjacent grids is comparable. 
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3. K-means and random swap 
 

 

The thesis in this algorithm is based on random swap algorithm. Random swap algorithm is 
built on top of k-means algorithm. Hence k-means and random swap algorithm are the pre-
requisites to understand density-based clustering algorithm studied in this thesis. 

 
3.1 K-means algorithm 
 

K-means is a classic textbook centroid based algorithm which is used to detect clusters in each 
dataset. Forming clusters by assigning a vector to the nearest centroid and calculating the 
centroids is the general idea in k-means. This is iterated until a good cluster is formed. Good 
cluster is formed when objective function reaches a certain value. Objective function acts as 
the stopping criteria in k-means. Details about objective functions appear in sub Section 3.1.4. 

 

3.1.1 Cluster initialization 
K-means requires us to select the value of k in advance. It is an input parameter to the k-means 
algorithm. Once the value of k is selected, k number of centroids are randomly placed across 
the dataset. This is called centroid initialization. There are many methods of centroid 
initialization [13] in clustering. Placing centroids randomly is one of them. This is also referred 
to as placing seeds. There is another cluster initialization technique called RUNFP [14] (it is 
referred to as Maxmin in [13]), in which k points are selected in such a way that they are farthest 
from each other. This is used in an algorithm called k-means++ [17]. Another initialization 
technique called GREP (group representative points) [15] exists in which first centroid is taken 
to be the center of general data present and other centroids are placed by examining how the 
new center is closer to a data vector than existing centers in terms of Euclidean distance.  

From [13] one main result is that no matter which initialization, k-means can improve it only 
if there is cluster overlap. Therefore, no matter which initialization technique is chosen, k-
means may not work with data even if it is having clearly separated clusters. In case of nested 
k-means, overlap is expected but not guaranteed.  Some methods are sensitive to dataset and 
may result in different results, or slower or quicker results. Their sensitivity to outliers and 
local optima also has an effect with the change in centroid initialization techniques [16]. In this 
thesis, centroids are initialized as random points across dataset. More advantages and scientific 
evidences of careful centroid initialization are found in [17].  
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Figure 8: Randomly initialized centroids 

A sample dataset is shown in the Figure 8 and red markers show randomly spread seeds. 
Visually, three clusters in the data set can be easily distinguished, but for the algorithm to go 
ahead, three centroids are randomly initialized. 

 

3.1.2 Partitioning 
Once the centroids are placed randomly, distance of every data vector is calculated from every 
centroid in the cluster. A data vector is taken at a time, its distance from all the centroids is 
calculated and the vector is placed in the cluster of the centroid which is nearest to that vector. 
This is the step where distance between vectors is calculated. In this thesis, squared Euclidean 
distance is used as the distance measure to calculate distance between any two vectors. Once 
all the data vectors are associated to some cluster, algorithm proceeds to the next step of 
centroid calculation. The algorithm for calculating nearest centroid is given in Figure 9. 

 
Figure 9: Partitioning algorithm in k-means 

 
From notations in Figure 9, xi is a data vector and C has all the k centroids. This function is 
called for all the data points in a loop. At the end of this function, every data vector is assigned 
to a cluster. We say that the data is partitioned at the end of this function. 
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3.1.3 Calculating centroids 
Once all the data vectors are associated with a cluster, the centroids are re-calculated. Initially, 
a centroid is randomly placed hence it is not necessarily the centroid of all data vectors it is 
closest to. After the data is partitioned, centroid is re-calculated by taking mean of all features 
of all data vectors belonging to that cluster. This process is repeated for every cluster and all 
the centroids are re-calculated. Calculating centroid in k-means involves the same process as 
required to calculate centroid for any other application. Following function is looped k times 
to calculate new centroid for every cluster. 

 
Figure 10: Algorithm to calculate centroids in k-means 

 
Partition has all vectors in each partition as calculated by algorithm to get nearest centroids. 
Centroids are calculated by taking mean of all k features of all vectors in a partition. The vector 
centroids are returned by this algorithm. 

 

3.1.4 Objective function 
Grouping similar data helps in generalizing information about vectors or objects. Process of 
clustering groups similar data vectors into one cluster and separates those from the data vectors 
which are not similar. If this is achieved, good clustering solutions are achieved. K-means 
algorithm runs in iterations and every iteration produces a clustering solution. The solution 
produced in the current iteration is compared to the solution produced in the earlier iteration. 
New solution is accepted if it is better than earlier solution. This comparison of solutions in the 
current and earlier iterations is done by objective function. There are many objective functions 
available to evaluate clustering solutions, but the objective function used in this thesis is the 
Sum of Squared Errors (SSE). The formula for SSE is given as below: 
 

𝑆𝑆𝐸 = 	B B 𝑑𝑖𝑠𝑡,(𝐶#	, 𝑥)
K	L	MN#LD

 
(4) 

 
where, Ci is the centroid of cluster i, x is a data vector in that cluster and k is the total number 
of clusters. For better understanding, SSE can be broken down into three steps viz. errors, 
square and sum. Centroid of all the vectors in a cluster is calculated and the entire cluster is 
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denoted with that single centroid. Distance between centroid and any data vector in its cluster 
is called as error. Centroid is the mean of all vectors and hence every vector in the cluster has 
some distance (or error) from the vector. The error is measured as Euclidean distance. This 
distance or error when squared is squared error and the sum of squared errors of all data vectors 
is defined as SSE.  
The distance between centroids of two clusters is the inter-cluster distance. Intra-cluster 
distance is measured in variety of ways like maximal distance between any two vectors in a 
cluster k. We try to achieve clusters such that inter cluster distances are maximized and intra 
cluster distances are minimized. There is a correlation between SSE and the number of clusters. 
SSE decreases if the number of clusters is increased. An objective function helps us in 
understanding the quality of a cluster in the k-means iterations and the value of objective 
function helps in estimating cluster compactness. Apart from SSE, there are many other 
objective functions like Dunn index, graph cut-objective functions, ratio cut and WSS [18]. The 
objective functions are maximized or minimized. In the case of SSE, the objective function is 
minimized. Selection of objective function is not a trivial job. It depends on factors like nature 
of the dataset and clustering algorithm used. Complete algorithm for k-means is given in Figure 
11. 
 

 
Figure 11: K-means algorithm 

 

3.1.5 Limitations of k-means 
Though k-means has advantages like simplicity to implement, it has some limitations too. One 
of the limitations is to know the number of clusters in the beginning. The user needs to predict 
and feed the value of k to the algorithm before running it. For example, the dataset in Figure 
12 ideally has 15 clusters. That is, the value of k should be 15 to get correct results. But if the 
value of k is incorrectly supplied, the clusters are not ideal, and it is not the best solution. Figure 
12 and Figure 13 show the difference in output of the same dataset when number of correct and 
incorrect k value is supplied. Figure 14 shows another incorrect clustering solution when 
number of clusters supplied as input value is lesser than optimum number of clusters in the 
dataset. A detailed analysis and explanation of these figures is provided in Section 3.2.  
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Figure 12: Correct clustering when correct k value is supplied 

 

 
Figure 13: Clustering solution when k value is more than ideal k value 

 

 

Figure 14: Clustering solution when k value is lesser than ideal k value 
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Another limitation of k means algorithm is its inability to detect the nested clusters. A smaller 
cluster inside a bigger cluster is a nested cluster. It is a concentration of few data vectors spread 
over a huge set of vectors.  

 
Figure 15: Clustering nested datasets using k-means 

 
Figure 16: Detection of nested cluster 

Figure 15 shows the clustering resulting of normal k-means algorithm. If the dataset is visually 
observed, there is a huge spread of vectors in the central part, separated by a gap with another 
set of data vectors in the right top corner. There is also a small concentration of vectors in the 
upper part of dataset. This dense spread of vectors appears as a nested cluster as visible in 
Figure 16. Visually, solution in Figure 16 is better than the solution in Figure 15. If the dataset 
does not have any nested cluster, density-based algorithm in this thesis will give the non-nested 
normal clustering solution as the output.  
 

3.2 Random swap 
 

Random swap algorithm was introduced by Pasi Fränti and J. Kivijärvi in [19] to improve 
clustering in unsupervised classification. This algorithm is based on k-means. The problem 
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definition of this algorithm is the same as k-means, where it takes N data points which must be 
partitioned into k clusters and use centroid as a prototype. The objective function used is SSE 
which is the same as used in k-means. K-means may not able to go ahead further if local minima 
are reached and it may stop. This leads to incorrect solution. To tackle this problem, random 
swap algorithm was developed.  

Initially, a centroid is randomly chosen and swapped to a random location. K-means algorithm 
is then run after random swap for a pre-decided number of times. These steps are repeated for 
pre-decided number of times. If the new solution after swapping and k-means has lower SSE 
than the earlier iteration, then the new solution is accepted. Else some other centroid is 
randomly chosen and swapped again. The steps involved in random swap algorithm are: 

1. Randomly swap a centroid 
2. Run k-means  

 

Algorithm for randomly swapping a centroid is given as follows: 

 
Figure 17: Algorithm to randomly swap a centroid 

 

The complete random swap algorithm is given in Figure 18. 

 
Figure 18: Random swap algorithm 

 

Number of iterations to be carried out in k-means is a free choice in random swap algorithm. 
It was seen in [19] that mere two iterations of k-means are enough in getting high quality 
clusters. When random swap happens and by luck if a centroid is moved from centroid rich 
area to centroid poor area, then clustering improvement will effectively take place and will 
yield better solution than the earlier iteration. There are three types of swaps in random swap 
namely trial swap, accepted swap and successful swap according to [20]. Accepted swap is the 
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one in which SSE improves, successful swap is the one in a greater number of centroids are in 
correct locations as compared to earlier iteration and if neither improves, it is a trial swap. 

In random swap, centroid initialization does not play a significant role in determining the final 
solution. This is because whenever a solution seems like halting, the swapping of centroids 
helps it go ahead. The process and overall running of random swap algorithm is explained using 
the Figure 19. 

 
Solution after some iteration        Swapping centroid in next iteration 

 

    
Local repartitioning     Final solution 

Figure 19: Random swap at every step.  
Adapted directly from [6]. 
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4. Density-based clustering algorithms 
 
 
There are many density-based algorithms that currently exist. These algorithms follow the idea 
that clusters exist as a group of points having some density. In short, higher density regions are 
classified as clusters and are separated from other clusters by a region of lower density. In this 
section, few density-based algorithms are explained to understand density-based clustering 
before heading to the main algorithm of this thesis.  
 

4.1 DBSCAN  
 
DBSCAN [21] is one of the most commonly used algorithms in clustering. It groups together 
the points which are close to each other. The faraway points are considered as outliers and are 
not included in the current cluster. DBSCAN requires two parameters as input namely 
minimum distance (e) and minimum points (minPts). Every point is classified as a core-point, 
edge-point, or an outlier. Given a point p in the dataset, if p has at least minPts within a distance 
of e, it is called as a core point. This ensures that point p has enough points around it and is not 
an outlier. It also means that point p is in a high-density region. All minPts within e and are 
called directly density reachable points from p. A point q which is reachable by p through a 
link of directly density reachable points is called density reachable.  
 
A point q is called an edge point if it is found within a distance of e from any core point p, but 
q itself is not a core point. Both edge points and core points can be included in the cluster. But 
core points lie in the interior of the cluster while edge points lie on the border of the cluster to 
separate core points from outliers.  
 

 
Figure 20: Density-reachable and directly density reachable adapted from [22]. 

Any random point in the dataset is chosen as a seed, that is, the starting point in algorithm. It 
is determined if the selected point is a core point, edge point or an outlier and is marked so. If 
it is a core point, its adjacent point is tested for the same. In this way a cluster is formed by 
progressively merging all core and edge points in one cluster. Once a single cluster is formed, 
unvisited points are checked to see if they form another cluster or are outliers. DBSCAN has 
an average time complexity of O(NlogN) and worst-case time complexity of O(N2). Every point 
is visited at least once in this algorithm to check for reachability. But a point can be visited 
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even more than once. For example, if point p is detected as an outlier for currently growing 
cluster, it may be detected as a core or edge point for some other cluster. Unlike k-means, 
DBSCAN does not require the number of clusters to be known in advance. It can effectively 
classify points as outliers. So, noise detection and removal of noise is achieved using this 
algorithm. 
 
On the other hand, DBSCAN suffers from the curse of dimensionality in datasets having 
multiple dimensions. Multiple dimensions are hard to think of, impossible to visualize, and, 
due to the exponential growth of the number of values with each dimension, complete 
enumeration of all subspaces becomes intractable with increasing dimensionality. This 
problem is known as the curse of dimensionality [23]. 
  
Input parameters affect the performance of DBSCAN to a great extent. There are some 
guidelines while selecting input parameters minPts and e. The number of dimensions of the 
dataset is known to the user. It has been experimented [24] that minPts = (number of 
dimensions + 1) works well in many cases. Or minPts = (number of dimensions * 2) is also not 
a bad choice. Lesser the minPts, more the number of clusters are detected. Having minPts=1 
will not make any sense as every data point will be classified as an independent cluster.  
 
Large values may help points merge into a single cluster. Thus, large but lesser clusters are 
formed with higher value of e and more clusters are formed with smaller value of e. The 
clustering solutions are directly affected by input parameters minPts and e. Figure 21 explains 
this argument. For the sake of simplicity, e is not normalized to any scale, it is used just as a 
unit distance. 
 

    
e = 1 minPts = 3            e = 1 minPts = 4



 
 

3https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/ 
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e = 1.3 minPts = 3       e = 1.3 minPts = 4 

Figure 21: Clustering solutions of DBSCAN with varying e and minPts3 

The examples in figure 21 show different clustering solutions with varying values of e and 
minPts. It is visually clear that a greater number of smaller clusters are formed with lesser value 
of e and as e increases, bigger clusters are formed. With increasing minPts, there is a probability 
to detect a greater number of outliers. The points without any color are the outliers, that is, 
points not belonging to any cluster. In real life data, outliers are usually random noise or 
unwanted data. In some cases, they have critical information. With increasing minPts, the 
average cluster size reduces and there is a tendency of forming a greater number of clusters. 
 
 

4.2 Grid growing algorithm 
 
Grid growing algorithm is another clustering algorithm which clusters data by separating high 
density regions from low density regions. It was proposed by Zhao et al. (2015) [25]. It is a 
grid-based approach but can also be categorized as density-based clustering. Other alternatives 
like k-means and hierarchical clustering have some disadvantages which are tackled by this 
grid growing algorithm. Unlike k-means, this algorithm does not require the information of 
number of clusters in advance and it is much faster than hierarchical clustering which has a 
time complexity of O(N3). This algorithm in general has three steps which are as follows: 

1. Grid Construction 
2. Initial Clustering 
3. Merging grids 

 
In the grid construction phase, a grid is constructed over the dataset. Grid is a collection of 
horizontal and vertical parallel lines. The size of grid depends on spread of dataset. Figure 22 
shows grid construction.
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Grid Construction       Initial Clustering 

 
Merging Clusters 

Figure 22: Steps in grid growing algorithm 

 
In grid construction phase, every data point is assigned to a single grid. Next step is to get the 
first clustering, in which every grid is considered as one single cluster. Every point in one grid 
is a part of one single cluster. This step is simple enough to perform. Next step is merging the 
clusters into one single cluster based of several factors. This merging can happen by merging 
multiple clusters based on 4-neighbors or 8-neighbors’ choice. Grids with no points are not 
merged. This algorithm has advantages of both k-means and DBSCAN and has time 
complexity of O(NlogN), which makes the algorithm fast.  
 
4.3 Density peak clustering 
 
Density peak clustering algorithm is based on the idea that cluster centers have a higher density 
than their neighbors and there is a region of low density between two regions of high density 
[26]. Clustering algorithms like k-means, k-medoids efficiently detect spherical clusters but are 
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not able to detect non-spherical clusters efficiently [32]. DBSCAN detects arbitrary clusters 
well but has two input parameters and deciding those is a non-trivial task. Density peak 
algorithm works well for arbitrarily spread clusters. This algorithm calculates the local density 
(r) for every point and its distance (d) from a high-density point. Local density ri for a point i 
is calculated as: 
 

r# = 	B c(𝑑#O − 𝑑P)
O

 
(5) 

Where, dij is the distance between point i and point j that satisfies triangular inequality. c(x) = 
1 if x > 0 and c(x) = 0, otherwise and dc is the cut-off distance. In simple terms, ri is the number 
of points that are closer than dc to i. d is the minimum distance between point i and a point with 
higher r. It is calculated as: 
 
 d# = min(𝑑#O) such that j: r# < 	rO (6) 

 

   
Figure 23: Data points with decreasing density and decision graph for those data points, adapted from 

[26] 

Numbered points in Figure 23 are the points with decreasing density, which means, point 1 has 
the highest density and point 28 has the lowest density. Points with high values of both d and 
r become the cluster centers. Points with only high d are the points far away from the region 
of high density. They are formed as separate cluster called outliers. In this algorithm, dc is the 
required input and it was observed in [26] that as a rule of thumb, dc should be chosen such 
that the average number of neighbors is around 1 to 2% of the total data points in the data. In 
Figure 23, other points with blue circles are the points having d closest to point 1. Points with 
red circle are the points having d closest to point 10. Since point 1 is the point with highest r, 
its value of d is taken to be 1 as it will not satisfy Equation 6. From the decision graph, the 
high-density points are seen.  
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5. Density-based weighing of distances 
 

 

5.1 Weighted centroids 
 
A centroid is a prototype which is used to represent the entire cluster. It is a vector whose 
features have a mean value of features of all the data vectors in that cluster. In addition to these 
features, we also introduce weights to every centroid in this thesis. The weights of a centroid 
can take any value from 0 to 1. The range of centroid weight is thus [0,1]. The weights play a 
significant role in attracting points from a distance into its cluster. Process of assigning weights 
to the centroids and the use of having weighted centroids is explained in Section 5.3.1. But it 
cannot be understood without first understanding the concepts of weighted distance. 

 

5.2 Weighted distance 
 
Distance between two vectors, or between a vector and a centroid is usually calculated using 
measures like Euclidean distance, squared Euclidean distance, Manhattan distance and 
Mahalanobis distance. The same distance measures are used in this thesis, but these distance 
measures are weighted by weights of centroids. 
 

 
Figure 24: Nested Cluster 

Figure 25 is a zoomed in view of Figure 24, which will illustrate the use of weighted centroid 
and weighted distance. It is seen that there are two clusters, one nested inside the other. In the 
Figure 24, centroid of the nested cluster is called c1 and centroid of the outer cluster is called 
c2. It is assumed for the sake of simplicity that the weight of c1 = 0.55 and the weight of c2 = 
0.18. Why these weights are assumed in such a way will be clear only in the later sections when 
the entire algorithm is explained. A point p1 from the dataset is taken and its distance to the 
two clusters is studied using Euclidean distance and weighted Euclidean distance. 
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In Figure 25, distance (p1, c1) is 340 and distance (p1, c2) is 700. If k-means algorithm is taken 
into consideration, point p1 will be assigned to cluster with centroid c1 as the distance (p1, c1) 
is shorter. But from Figure 24, we see that a better clustering solution is obtained if p1 is 
assigned to cluster with centroid c2 even if it is closer to the densely compact cluster.  
 

 
Figure 25: Point classification using weighted Euclidean distance 

Weighted distance is calculated as follows: 
 
 𝑊𝐷	 = 𝑤 ∗ 𝑑(𝑥, 𝑐)	

 (7) 

WD is the weighted distance, w is the weight of centroid c and d (x, c) is the distance between 
centroid c and a data vector x. Weighted distance is simply normal distance times the weight 
of the centroid. In Figure 24, weighted distance (c1, p1) is calculated as 0.55*340 = 187 and 
weighted distance (c2, p1) is calculated as 0.18*700 = 126. 
 
Point p1 is closer to centroid c2 than to centroid c1 when weighted distance is considered. In 
this way, it can be assigned to the cluster with centroid c2, which is the outer cluster and that 
is the thing wanted as seen from ground truth solution in Figure 24. Using weighted distance, 
a centroid can attract far away points in its cluster. This is based on a simple mathematical 
principle that multiplying a number with higher number between [0, 1] will give lower value 
as compared to multiplying same number with a lower number in the range [0, 1]. In practice, 
it means that centroids with higher weight can attract points from lesser circumference and 
centroids with lower weight can attract points from higher circumference. 
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5.3 Calculating centroid weights 
 

Weight of a centroid plays a key role in attracting the vectors to its cluster. Weights depend on 
their density. Calculating centroid weights involve three steps which are: 

1. Calculating mean distance 
2. Calculating density 
3. Calculating weights from cluster density 

 
Each of these steps has been explained in detail. 
 
5.3.1 Calculating mean distance 
Given a cluster and its centroid, mean distance of that cluster is the average distance of all 
points from the centroid.  

 
Figure 26: Mean distance is 6.33 

Consider Figure 26 which shows a single cluster. Blue circles are the data points and red circle 
is the centroid. Distance of data points from the centroid are also shown. The mean distance is 
calculated using the formula given in equation 8. 
 
 
 

MD = Total	distance/𝑛	
 (8) 

Where MD is the mean distance, n is the number of vectors in a cluster and total distance is the 
sum of distances of all data points in one cluster to their centroids. In Figure 26, mean distance 
is calculated as: 
 

MD = (4 + 4 + 10 + 9 + 5 + 6)/6 = 6.33 
 

 
5.3.2 Calculating density 
Discussions related to density of clusters come into picture at this stage. Density means the 
degree of compactness of a structure. In computing, it means the amount of information stored 
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by a substance. In clustering, density is the amount of information stored or contained by that 
cluster. Here, density is calculated by number of points in a cluster within mean distance. The 
formula for density is: 
 
 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =

𝑛
MD	

 
(9) 

Where n is the number of data vectors in a cluster. In Figure 26, density of the cluster will be: 
 

Density = 6/6.33 = 0.947 
 
The density of a cluster is directly proportional to the data points it has, and it is inversely 
proportional to the mean distance. Mean distance gives the approximate spread of a cluster in 
all directions. It is easier to estimate cluster size (and not the density) if its mean circumference 
is known. Density is higher in a cluster with lesser spread and high number of points in contrast 
to cluster with higher spread and lesser number of points. 
 
5.3.3 Calculating centroid weights from cluster density 
Updating weights change the power of centroids to attract data points. Centroids with lower 
weights can attract points from larger distances and centroids with higher weights can attract 
points from smaller distances. Centroid weights are calculated using the formula: 
 
 𝑊𝑒𝑖𝑔ℎ𝑡(𝑖) =

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑖)
∑ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑗)D
OF*

	

 
(10) 

Where k is the total number of clusters in the dataset. Weight of a cluster is its density divided 
by the sum of densities of all the clusters in a dataset. Let us assume that there are five clusters 
in total in a dataset and one of those clusters is the cluster as shown in Figure 26. Let the sum 
of densities of all clusters be 5. Therefore, weight of the centroid of the cluster in Figure 26 is 
calculated as: 

 
Weight = 0.947/5 = 0.19 

 
Weight of a centroid is always proportional to the density of its cluster. Weight can also be  
called as normalized density as it is the density that scales down to the range [0,1]. 
 
There can be instances where a cluster has only one point. In such clusters, centroid and the 
only data point are the same. Here, the mean distance becomes zero, which makes its density 
infinite and then eventually leads to the weights having indefinite form. To avoid such 
situations, mean distance and density of such clusters are set to 1. This might not be the best 
choice, but better techniques can be investigated in the further studies. 
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6 Density-weighted random swaps 
 
 
In this section, the algorithm used in this thesis is explained. This is a density-based algorithm 
using centroids. We use k-means and random swap algorithm and a new algorithm is built on 
top of it. 
 

6.1 Algorithm 
 
This section is the heart of this thesis as it the main algorithm worked on and experimented 
with is explained. It is a unique centroid based clustering algorithm which can detect nested 
clusters. It can be used as a replacement to k-means, DBSCAN and other clustering algorithms. 
The given algorithm works well even when there are no nested clusters. The density rich areas 
are detected by the algorithm and it tries to create a cluster out of density rich areas separated 
by the regions of lower density. Figure 27 shows the overview of this algorithm. 
 

 
Figure 27: Steps in density-based clustering algorithm using random swap 

There are five crude steps involved in density-based clustering algorithm using weighted 
random swap. These five steps are explained one by one in the following sub-sections. 
 
6.1.1 Initialization 
As in k-means and random swap, the centroids are initialized randomly. K centroids need to be 
initialized in the same way as in k-means. But along with the centroid features, centroid weights 
also need to be initialized. Centroid weights get updated in the later steps of the algorithm but 
initially, centroids need to assume some weights. In this thesis, weights are assumed in such a 
way that the sum of weights of all the centroids is equal to 1. Every centroid is given an equal 
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weight between 0 and 1 in the beginning. For example, if the dataset has 3 centroids, the weight 
of every centroid initially will be equal to 1/3 = 0.33. Similarly, if there are 100 centroids, 
weight of every centroid initially will be equal to 1/100 = 0.01. The formula for centroid 
weights initially is given as: 
 
 Initial	weights	of	centroids = 1/k	

 
(11) 

 
where, k is the number of clusters in the dataset. 
 
6.1.2 Swapping centroid 
Once the centroids are initialized, random swap algorithm starts executing. All steps after this 
are the steps of random swap algorithm that have been explained in the Section 4. Since this is 
not exactly random swap, but weighted random swap, all steps are explained in detail again in 
this section as well. A centroid is chosen randomly from the set of current centroids and 
swapped to a random position in the dataset. With the swap, the centroid keeps its earlier 
weight. That is, weight of the centroid does not change before and after swapping. Only the 
values of centroid features or dimensions change.  
 

   
Figure 28: Random swapping of centroid 

A centroid is chosen, and it is simply swapped randomly to a new location without any logic. 
The algorithm of this swap is same as in Figure 17.  
 
6.1.3 Local repartitioning 
Once random swap happens, new clusters need to be formed and their centroids need to be 
calculated before going ahead as the centroid swapped does not have any points associated 
with its cluster. Local repartition happens by running k-means algorithm only for a single 
iteration since there is only one active centroid in the current centroid list as compared to earlier 
centroid lists, and then two k-means iterations for fine tuning the solution. Fast k-means is used 
in local repartitioning and hence its time complexity is O(αN) [31]. Local repartitioning 
algorithm is given in Figure 29. 
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Figure 29: Local repartitioning algorithm 

The algorithm for getting nearest centroid, which is used in Figure 29, is given in Figure 30: 
 

 
Figure 30: Algorithm to get nearest centroid 

To find the nearest centroid, weighted distance is used in algorithm given in Figure 30. 
 
6.1.4 K-means 
K-means algorithm works in the same way here as described in the Section 3.1. However, some 
things have been changed to support weighted distances. K-means does not run for unknown 
number of times here because SSE is not calculated and compared after every k-means 
iteration. In k-means used in this algorithm, number of k-means iterations to be run is decided 
by the user. By default, it is 2. It was shown [27] that high quality clustering solutions are 
obtained by keeping the value of number of k-means iterations to 2. Another modification in 
k-means here is that the objective function is not calculated after every iteration. This is because 
the number of iterations is pre-decided, and the algorithm is let run for that number of iterations. 
Objective function is calculated at the end of all k-means iterations before the next random 
swap iteration begins. If the value of objective function in current iteration is lesser than value 
of objective function in earlier iteration, the solution is accepted.  
Another important modification in this k-means is the calculation of centroid weights. The 
centroid weights are updated at the end of every k-means iteration. K-means algorithm for used 
in this density-based algorithm is as follows: 
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Figure 31: Modified k-means for weighted density-based clustering 

Another thing different in this k-means is that centroid initialization is not needed. As centroids 
are initialized randomly at the beginning of main random swap algorithm, initializing them one 
more time does not make any sense. 
 
6.1.5 Calculating centroid weights 
This step determines weights of the centroids. In the initialization section, it was explained that 
every centroid is assigned equal weight in such a way that sum of the weights of all centroids 
is 1. These weights are updated after every k-means iteration along with the centroid attributes. 
The entire algorithm to calculate weights of all the centroids in a dataset is: 
 

 
Figure 32: Algorithm to calculate new weights 

6.1.6 Objective function 
An objective function in random swap ensures that the best solution is accepted, and the errors 
are minimized. There are many choices available to select objective functions, but weighted 
SSE is used as objective function in this thesis. Like SSE, weighted SSE is also an objective 
function which is minimized. In this algorithm, objective function is not calculated at the end 
of every k-means iteration. Rather, it is calculated at the end of every random swap iteration. 
The formula for weighted SSE is as follows: 
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑆𝐸 =B𝑤# ∗ pq𝑥# − 𝑐r#qp
,

.

#F*

	

 

(12) 
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The optimization function is still sum of squared errors. Since the distance measure is weighted 
distance, SSE is also multiplied by the weights of centroids. And the solution is accepted only 
if weighted SSE of current iteration is lesser than weighted SSE of earlier iteration. 
 

 
Figure 33: Calculate weighted SSE 

 
The complete algorithm used in this thesis is as shown in the Figure 34: 
 

 
Figure 34: Density based clustering algorithm using weighted random swap 

 

6.2 Example 
 
Figure 35 shows step by step execution of density based random swap algorithm with weights 
and densities at each step. In the given example, random swap was run 1000 times and k-means 
was run 2 times in every RS iteration. Final solution was accepted after 4th RS iteration.  
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           RS Iteration 1     RS Iteration 2 
 

    
      RS Iteration 3      RS Iteration 4 

Figure 35: Output after every RS Iteration 

Since, equal weight is assigned to all centroids initially, no centroid has more or lesser power 
to attract data points far away from it. Hence first iteration in RS is like first iteration in k-
means. When the weights of centroids are changed for the first time after first RS iteration, the 
algorithm starts detecting nested centroids gradually. It is seen that solution to above dataset is 
also found by using weighted k-means instead of weighted RS. Since the only algorithm used 
in this thesis is weighted random swap, above example is shown using weighted random swap 
itself. Detailed analysis about Figure 35 is made and weights and centroids at the end of every 
iteration are shown. Bigger arrow shows the current centroid will be swapped to new location 
in the next iteration. 
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Figure 36: Centroid weights at the end of RS iteration 1 

 
Figure 37: Centroid weights at the end of RS iteration 2 

 
Figure 38: Centroid weights at the end of RS iteration 3 
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Figure 39: Centroid weights of final solution 

 
In this way, weights are adjusted after every RS iteration and the ability of centroids to attract 
points changes according to their weights. The SSE for all iterations is given in Table 1: 
 

Table 1: Performance with iteration count 
Iteration Number Weighted SSE CI CSI 

1 61.9 * 106 1 0.56 

2 56.4 * 106 1 0.60 

3 52.5 * 106 2 0.76 

4 32.8 * 106 0 0.99 

 
SSE is minimized at iteration 4. It is not necessary that SSE will be minimized after 4th RS 
iteration every time. This also depends on the way swaps take place. But for such trivial 
datasets, few RS iterations are needed. CSI and CI values are also tacked for every iteration. In 
final solution where SSE is the minimum, CI reaches 0 and CSI almost reaches 1. Concepts of 
CI and CSI are explained in section 6.2. For now, we can assume that clustering solutions get 
better as CI approaches 0 and CSI approaches 1. The reason CSI does not reach 1 is explained 
in Section 7.4. 

 
6.3 Problems with calculating weights dynamically 
 
Calculating centroid weights is an overhead of the algorithm described in this section. As per 
Piiroinen, Jarkko 2019, the weights are calculated dynamically at the end of every random 
swap iteration if the solution was accepted. The weight adjusting random swap algorithm 
according to Piiroinen, Jarkko 2019 is given in Figure 40. 
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Figure 40: Pseudo code for random swap algorithm with weight calculation step.  

Adapted from [3], Figure 47. 
 

The weights are calculated once the solution is accepted, that is, after calculating weighted 
SSE. This means, weighted SSE is calculated using stale weights. Therefore, the weighted SSE 
calculated after random swap is not correct. Incorrect weighted SSE leads to accepting of 
incorrect clustering solutions. If incorrect solution is accepted, some centroids simply appear 
to be misplaced. Figure 41 shows an example of incorrect solution accepted from the thesis 
Piiroinen, Jarkko 2019.  
 

 
Figure 41: Incorrect solution accepted.  

Adapted from [3], Figure 49. 
 
No improvement in clustering results were seen even after 10000 random swap iterations. In 
these cases, weight of a randomly swapped centroid becomes extremely low and then it also 
produces lower weighted SSE. Once the centroid weights become extremely low, it is difficult 
to find new locations for them that would result in lower weighted SSE. Even when one of the 
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centroids was moved from centroid rich area to centroid poor area, weighted SSE did not 
improve. 
 
The solution for this problem was correcting the place of calculating centroid weights. The 
correct place of calculating weights is at the end of every k-means iteration. In this thesis, the 
weight of centroids is calculated in every k-means iteration and fresh weights are provided as 
input to the function calculating weighted SSE. The weight calculation step is added in k-means 
as shown in Figure 32. All the results with this improvement are shown in Section 6. 
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7. Experiments 
 

 
7.1 Tools used for experiments  
 
All experiments were run on the server of UEF, machine learning group. Running big datasets 
like birch for 100 times was a very time-consuming process. Hence some automation scripts 
were written to run the algorithm multiple times and generate the evaluation measures CI, CSI, 
and SSE data automatically. The inputs for this automation tool were dataset name, k-means 
iterations, random swap iterations and the number of times this algorithm needed to be run. For 
doing detailed analysis, provisions were made to generate centroid weights and partitions after 
every k-means iteration where necessary. This enabled to get deeper insights on what algorithm 
is exactly doing per iteration. The visuals in this thesis are generated using matlab. A tool in 
matlab was written which took dataset, centroid file and partition file as inputs and generated 
the clustering output. Another tool was written in matlab which could give mean distance, 
density, and weight of every desired cluster in any dataset. The second tool was used for 
detailed analysis of the datasets and algorithm. 
 

7.2 Cluster evaluation measures 
 

For supervised machine learning algorithms, there are several measures like accuracy, 
precision and recall for evaluating quality of the model. For cluster analysis, finding goodness 
of a cluster is challenging as data does not have any labels associated with it. K-means is an 
unsupervised machine learning algorithm as there is no label associated with any cluster. But 
in universities and research centers, different algorithms are developed, tried, and tested. It is 
necessary to compare the algorithm under development to the existing algorithms even though 
the algorithms are unsupervised. Research is performed and results are tested over a set of 
carefully selected sample datasets. The ground truth, which is the best solution of these sample 
datasets, is known in advance so that the results can be compared to evaluate quality of new 
algorithm in research process. Numerical measures that are used to evaluate cluster quality are 
divided into following categories: 

1. Internal Index 
2. External Index  

 
In internal index, the quality of cluster is measured without using any external information. All 
information is derived only from the existing data in the cluster. Example of internal index is 
SSE., which does not require ground truth. 
  
External index is used for searching good clusters by comparing similarity between ground 
truth and the clustering solution. Nearer the solution to the ground truth, better is its quality. 
Using ground truth, similarity of two clusters is derived. External validation measures can be 
classified into pair-counting, information theoretic and set-matching measures [28]. Set 
matching indices are used as evaluation measures in this thesis. 
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Set matching indices are classified as point-level or cluster-level. Point level indices study 
every point in the dataset and consider the intersection of paired clusters in the clustering 
solution and ground truth. In cluster level indices, the general position of clusters and their 
centroids is compared with the ground truth instead of comparing every point. In [33], Fränti 
et al. proposed an external set-matching index measure called centroid index (CI). It is a cluster 
level index with the assumption that most general information about a certain cluster is 
contained in its prototype. Comparing centroids (or other prototypes) will determine the 
goodness of a clustering solution in terms of CI. With CI, solutions are distinguished by 
measuring differences at the cluster level. Calculation of CI is based on pigeonhole principle. 
If prototypes of solution A are considered pigeons, and prototypes of solution B as pigeonholes, 
every prototype in A should have a corresponding one to one mapping in solution B. Given 
two sets of centroids, CI is calculated as follows. 

Let the centroids for two solutions be C = {C1, C2, …, Ck1} and C` = {C`1, C`2, …, C`k2}. Out 
of these sets, nearest neighbor mappings C → C` are shown as follows: 

 qi ← arg min ||ci – c`j||2 Ɐ i ∈	[1, k1] (13) 
 

For each c`j, the number of prototypes mapped to it in ci are calculated. Centroid is an orphan 
centroid when no centroids in the other solution consider it as nearest centroid. The formula to 
find if the target centroid is orphan or not is given as: 

 𝑜𝑟𝑝ℎ𝑎𝑛w𝐶 Òy = z 	1, 𝑞# 	≠ 𝑗	∀	𝑖
		0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(14) 

The dissimilarity between Ci and Cj is the number of orphans in the target clustering solution: 

 
𝐶𝐼*(𝐶, 𝐶`) = 	B𝑜𝑟𝑝ℎ𝑎𝑛(𝐶 Ò)

D�

OF*

	

 

(15) 

The CI is then calculated as the sum of orphans in each solution. 

 𝐶𝐼(𝐶, 𝐶`) = max{𝐶𝐼*(𝐶, 𝐶`), 𝐶𝐼*(𝐶`, 𝐶)}	
 (16) 

One thing however to note here is that, CI is not symmetric. That is, CI (Ci, Cj) ≠ CI (Cj, Ci). 
In this way, it tells how many clusters in one solution are differently found from clusters in 
another solution. Use of CI is to compare clustering solution to ground truth and thus CI=0 
shows correct clustering when measured by the allocation of clusters. Figure 42 shows CI using 
two different solutions of the same dataset. 
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CI = 0            CI = 2 
Figure 42: Two different solutions of same dataset. 

The centroids represented with minus sign (-) are the orphans, that is, they do not have 
corresponding prototypes in the first figure. There are two centroids with a minus sign, hence 
CI for the Figure 42 is 2. Since there are two orphans, it also means that there are two clusters 
with extra child.  
 
CI gives rough integer values about the cluster level similarity of two clusters since it is based 
only on prototypes. But if more detailed values of similarity are needed, point level similarity 
index called centroid similarity index (CSI) is used. CSI is an extension of CI where number of 
points shared by corresponding clusters is found and CSI is calculated as: 
 
 𝐶𝑆𝐼 =

𝑆*, 	+ 𝑆,*
2 	

 
(17) 

 

Where 𝑆*, =
∑ MN	∩M�
��
N��

,
  and 𝑆,* =

∑ M�	∩MN
��
���

,
 

 
CSI gives more precise similarity value than CSI but lacks intuitive judgment about the 
centroids which are placed incorrectly. In this thesis, CI and CSI are extensively used in the 
experiments section. 

 
7.3 Data 
 

This section deals with the input data used for experimentation and deriving conclusions about 
the density-based clustering algorithm. In total, 14 datasets were used in the experimentation 
and the list of datasets is given in Table 2. 
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Table 2: Datasets used in experiments 

Dataset Name Number 
of clusters 

Number of 
data vectors 

n3 3 2250 

n6 6 5500 

s1 15 5000 
s2 15 5000 

s3 15 5000 
s4 15 5000 

a1 20 3000 
a2 35 5250 

a3 50 7500 

b1 100 100000 

b2 100 100000 

b3 100 100000 

dim032 16 1024 

dim064 16 1024 

 

The datasets n3 and n6 are synthetic datasets used for primary testing of the algorithm. They 
are generated by a student of the UEF, machine learning group named Jarkko Piiroinen to test 
results in his master’s thesis [3]. Any change in the algorithm while experimenting was tested 
first on these two datasets and if the results were correct with n3 and n6, experiments with other 
datasets were also carried. Dataset n3 has three clusters with one nested cluster and n6 has six 
clusters with four nested clusters. They are the paragon candidates to test algorithm to detect 
nested clusters.  

Datasets s1, s2, s3 and s4 are synthetic datasets of 2-dimensional data. They are Gaussian 
clusters with different degrees of overlap. Notable nested clusters are not present in these 
datasets. These have 5000 vectors and 15 clusters. Datasets a1, a2 and a3 are synthetic 2-
dimensional datasets with increasing number of clusters. There are 150 vectors per cluster in 
this series of dataset. Birch datasets are the most complicated type of datasets. They have 
100000 vectors divided into 100 clusters in a complex manner. Birch1 has data spread like a 
grid, so it is easier to cluster. Birch2 has data points spread in a sinusoidal wave shape. Birch3 
has no shape. Data points are spread randomly and there are many potential nested clusters too. 
Dim032 and dim064 are 32 dimensional and 64 dimensional datasets, respectively. Both have 
1024 vectors. Clusters are well separated in both the datasets.  

Ground truths for all the datasets are present. All these datasets, except n3, n6 and birch3, are 
from the clustering basic benchmark [29]. Ground truths include the ground truth centroids and 
ground truth partitions. 
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7.4 Results 
 

In the preliminary version of the algorithm [3], it was shown that objective function weighted 
SSE is much better than normal SSE. Also, it was shown that weighted random swap performs 
better than weighted k-means. Weighted k-means can detect nested clusters from trivial 
datasets like n3, but it did not work for complex datasets like n6. So, the basic comparison 
between k-means and random swap was made. Since it was concluded that weighted random 
swap works better than weighted k-means, this version of thesis sticks with the experiments 
with weighted random swap. Also, since it was proved weighted SSE is a better objective 
function than normal SSE, experiments in this thesis are restricted only to weighted SSE as 
objective function, though the results obtained in preliminary version of algorithm are also 
given. In [3], the experiments were carried out only with datasets n3 and n6, while in this 
version, experiments have been carried out with 15 different datasets. The results obtained by 
Jarkko Piiroinen in [3] are shown in Table 3.  

Table 3: Results with k-means and RS when SSE is used as objective function.  
Adapted from [3], Table 4. 

Algorithm Success% CI CSI SSE (* 108) 

Dataset n3 

K-means 100% 0.00 0.80 1.51 

Random Swap 100% 0.00 0.80 1.51 

Dataset n6 

K-means 0% 1.80 0.71 1.72 

Random Swap 0% 1.03 0.58 1.65 
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Table 4: Results with k-means and RS when weighted SSE is used as objective function.  
Adapted from [3], Table 5. 

Algorithm Success% CI CSI Weighted SSE  
(* 108) 

Dataset n3 

K-means 54% 0.47 0.83 1.26 

Random Swap 100% 0.00 0.91 2.73 

Dataset n6 

K-means 5% 1.78 0.70 1.26 

Random Swap 62% 0.38 0.80 1.03 

 

Table 3 and Table 4 show that weighted SSE performs better as an objective function as 
compared to normal SSE in this algorithm. Also, random swap is seen to perform better than 
k-means in most of the cases. Ideally, CI is an integer, but the value of CI in the above tables 
is in decimal points. This is because the algorithm is run for 100 iterations and CI is noted in 
every iteration. The CI in 100 runs is averaged to get a single value. The output of experimental 
results on all the datasets as derived in this version of thesis is given in the following figures. 

 

    
         N3 CI = 0      N6 CI = 0 

Figure 43: N-series dataset clustering solutions 
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   A1 CI =0     A2 CI = 0 

 
A3 CI = 0 

Figure 44: A-series dataset clustering solutions 

    
S1 CI = 0     S2 CI = 0 
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S3 CI = 0     S4 CI = 1 

Figure 45: S-series datasets clustering solutions 

 

    
     Nested cluster zoomed         S4 with 16 clusters CI = 1 

Figure 46: More analysis on S4 dataset 
 

Datasets in S-series and A-series are straight forward, easy to cluster, 2 dimensional datasets. 
From the experiments, density-based clustering algorithm works well for datasets which do not 
have nested clusters too. An interesting observation has been made in dataset S4 in Figure 45. 
In the left bottom cluster, a nested cluster has been detected (showed by ‘+’ sign) and a cluster 
in the middle part is not detected (showed by ‘-’ sign). The nested cluster detected is very tiny, 
hence the convex hull cannot be seen. The convex hull of the nested cluster is shown in Figure 
46. To confirm the algorithm detects the missing cluster, the experiment was carried with k=16 
and then the missing cluster was detected. With 16 clusters, CI values is still 1 because the 
ground truth has only 15 clusters. Though in ground truth, the nested cluster does not exist, the 
density-based algorithm is still capable of finding the nested patterns and giving the clusters 
based on their density values. Datasets n3 and n6 on the other hand have clusters as expected 
and the nested clusters have been perfectly detected. The results of more complicated birch 
datasets are as shown in Figure 47. 
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Figure 47:  Birch 1 dataset clustering solution 

 
Figure 48: Birch 2 dataset solution 
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Figure 49: Birch 3 dataset solution 

 

    
Figure 50: Dim032 dataset clustering results 
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Figure 51: Dim064 dataset clustering results 

Figures 50 and 51 show clustering solutions for 32-dimensional and 64-dimensional dataset. 
The image quality however is not particularly good as there are limitations to show 
multidimensional data on a 2-d surface. Table 5 gives results for the experiments. 
 
 

Table 5: Clustering results on all the datasets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dataset # Clusters CI Success 
Rate 

CSI 

j1 3 0 100% 0.99 

j2 6 0 100% 0.97 

a1 20 0 100% 0.99 

a2 35 0 100% 0.99 
a3 50 0 100% 0.98 

s1 15 0 100% 1.00 
s2 15 0 100% 1.00 

s3 15 0 100% 0.98 
s4 15 1 100% 0.96 

b1 100 0 100% 0.98 
b2 100 0 100% 0.99 

b3 100 7 72% Not available 

dim032 16 0 100% 1 

dim064 16 0 100% 1 
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The algorithm was run on every dataset for 100 number of times. Each time, CSI and CI of the 
clustering solution was noted. The clustering solution having CI equal to zero was marked as 
a successful solution. But for datasets s4 and b3, the number of times CI value reached one and 
seven respectively was counted as a successful solution because one and seven were the lowest 
CI values respectively on these datasets. The percentage of successful solutions in Table 5 is 
the success rate. The success rate of getting CI =0 is 100% for all the datasets except for dataset 
b3 due to its complex structure and overlapping of data and for dataset s4 due to detection of a 
nested cluster. Multidimensional datasets are clustered perfectly as the clusters are well 
separated from each other. The CSI value for s4 is a bit low due to detection of a nested cluster 
in the dataset. The clustering has been successful for all the runs for all datasets except b3. 
Datasets n3 and n6 have CI=0 but CSI is extremely near one. It is not exactly one because of 
the reason explained below. 
 
In dataset n3, both inner and the outer clusters are formed as Gaussian clusters. The area 
covered by nested cluster also has some points from the outer cluster. In ground truth solution, 
those points are assigned to the outer cluster. But once the algorithm runs, the points inside 
nested cluster which belong to outer cluster in ground truth, are assigned to the inner cluster. 
Therefore, even if the clustering solution is not wrong, CSI does not reach exactly to 1 in such 
cases. But CI is always 0. 
 

 
Figure 52: Dataset without data from nested cluster. 

 
Figure 52 makes these arguments clear. It has only the location of nested cluster without actual 
vectors from the nested cluster. The points inside the nested cluster are the points belonging to 
outer cluster in ground truth. So, these points get assigned to the nested cluster after clustering 
algorithm is applied and this is the reason CSI does not reach exactly to 1.0. 
  
Table 6.1 and 6.2 show the CI values of a few other density-based clustering algorithms like 
density peaks, fast density peaks. CI values in Table 6.1 and 6.2 are averaged over 100 
executions. 
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Table 6.1: CI values using various clustering algorithms on benchmark datasets 

Dataset n3 n6 a1 a2 a3 
DBSCAN 0.90 0.60 0.00 0.00 0.00 
Density Peaks 1.20 2.40 0.00 0.00 0.00 
Fast Density Peaks 1.16 2.23 0.00 0.00 0.00 
Jarkko version weighted RS 0.00 0.38 2.37 0.00 0.00 
Weighted RS 0.00 0.00 0.00 0.00 0.00 

 
Table 6.2: CI values using various clustering algorithms on benchmark datasets 

Dataset s1 s2 s3 s4 b1 b2 
DBSCAN 0.00 0.00 0.00 0.00 0.10 0.00 
Density Peaks 0.00 0.00 0.00 0.00 0.00 0.00 
Fast Density Peaks 0.00 0.00 0.00 0.00 0.00 0.00 
Jarkko version weighted RS 0.00 0.00 0.00 0.00 0.40 4.67 
Weighted RS 0.00 0.00 0.00 1.00 0.00 0.00 

 
For DBSCAN, choosing the values of e and minPts is challenging. The ground truths for 
available data have the correct number of clusters, but the number of clusters in DBSCAN 
changes with its input parameters. This increases the difficulty in comparing clustering 
solutions of DBSCAN and with the ground truths. The DBSCAN was run with varying values 
of  e and minPts and the solutions with best CI value were chosen to be compared with the 
ground truths. We got solutions where CI reached 0 but this came at the expense of poor 
partitioning. Many points were labelled as noise. This means extremely poor value of CSI. 
Figure 53 shows the clustering solutions in DBSCAN where CI reached 0 for datasets n3 and 
n6.  
 

 
      e = 0.009, minPts = 50      e = 0.012, minPts = 20 

Figure 53: Clustering solutions for n3 and n6 with carefully chosen values of e and minPts. 
Adapted from [3]. 

 
Datasets of series A, S and birch1, birch2 do not have nested clusters. Most of the clustering 
algorithms work well with them. Main challenge is to get satisfactory results for datasets n3, 
n6 and birch3 where the datasets include complex nested clusters. CI values for density peaks 
and fast density peaks are adapted from [30]. Solutions obtained in density peaks algorithm are 
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shown in Figure 54. Density peak and fast density peak algorithms have almost similar 
performances. They however do not detect nested clusters. 
 

 
Figure 54: Clustering solutions for j1 and j2 using density peaks algorithm. 

Adapted from [3]  
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8. Conclusion 
 
 
This thesis gives a detailed explanation on a unique density-based clustering algorithm. The 
algorithm uses weighted clustering. It is both centroids based as well as density based. It is 
shown that the algorithm works well even in case of non-nested clusters. Detecting nested 
clusters has been a challenging task and this work simplifies the same. Applications of 
density-based clustering can include server load balancing, balancing load on telephone 
networks, finding similarity between objects and applications in recommendation systems. 
For instance, cricket is a sport which is viewed by millions in countries like India. This puts 
tremendous amount of network load on video streaming servers in India. Let a person in 
China want to watch the same cricket match. There are very few cricket fans in China. 
Geographically, the person sitting in China is closer to streaming server in India, but 
through this algorithm, he might get directed to a streaming server in Australia where there 
is a bit lesser load than Indian server. In this case, traffic means the density of the cluster. 
Thus, it is an effective algorithm in simplifying density-based applications in machine 
learning.  
 
One potential drawback of this algorithm is the weight initialization technique. Here, 
weights are initialized first in such a way that every cluster is assigned equal weight. Hence, 
first iteration of the algorithm works like a normal random swap algorithm. A better 
centroid weight initialization technique is a potential future work. Grid based approach is 
worth a try in this case. This would help in estimating the centroid weight as a pre-
processing step and not as a part of actual clustering. Determining the grid size is a 
challenging process.  
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