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1 Introduction rithm, and there is therefore no guarantee that the final
codebook will be globally optimal.
Another hierarchical algorithm, th@airwise nearest

. L neighborP (PNN), uses an opposite, bottom-up approach to
codevectors (codebooRr a given set oiN training vec- codebook generation. It starts by initializing a codebook

tors (training set)by minimizing the average pairwise dis- \\here each training vector is considered as its own code-
tance between the training vectors and their representative,qctor. Two codevectors are merged at each step of the
codevectors. The vectors are assumed to belong {0 &;gorithm, and the process is repeated until the desired size
K-dimensional Euclidean space. The question of the properof the codebook is reached. The method outperforms both
choice for the training set is not addressed here; the moti-the GLA and the iterative splitting method, but it is very
vation is simply to select the best possible codebook for a sjow, especially if the training set is much larger than the

We consider the codebook generation problem involved in
the design of avector quantizet The aim is to findM

given training set. . ~ codebook >M). There is also a faster variant, tfest
There are several established methods for generating apNN but it weakens the results.
codebook: The most cited and widely used is tgeneral- Here we propose a new iterative algorithm for codebook

ized Lloyd algorithrfi (GLA). It starts with an initial solu-  generation, which combines the ideas of the two hierarchi-
tion, which can be chosen arbitrarily. The existing solution ¢a] methods and the GLA. The algorithm starts with an
is then improved iteratively using two optimality criteria in  injtial codebook, which is improved by a sequence of
turn until a local minimum is reached. The algorithm is merge and split operations. Each iteration consists of two
relatively easy to implement and it gives reasonable resultssteps: The merge phase combines two nearby clusters
in most cases. Unfortunately the algorithm makes only lo- (codevectorssimilarly as in the PNN. The splitting phase
cal changes to the original codebook and it thus gets stuckdivides a large clustefcodevector into two subclusters
at the first local minimum. The quality of the final code- using the split operation of Ref. 4. This two-step process is
book is therefore highly dependent on the initialization. iterated until the codebook shows no further improvement.
A different approach is to build the codebook hierarchi-  The codevectors are considered as resources, released by
cally. An iterative splitting algorithm* starts with a code-  the merge operation and reallocated by the split operation.
book of size 1, where the only codevector is the centroid of The algorithm resembles the GLA inasmuch as it iteratively
the entire training set. The codebook is then iteratively en- improves an existing codebook. The difference lies in the
larged by a splitting procedure until it reaches the desired way the codebook is modified. The effect of the GLA is
size. This top-down process gives results similar to or even local, whereas the split-and-merge algorithm generates
better than the GLA, with a faster algoritfh#\ drawback nonlocal changes to the codebook. By a local change we
of this method is that it is optimized only locally. The ear- mean an operation that makes only minor modifications to
lier splitting stages may harm the later choices of the algo- the codevectors. The GLA, for example, does not change
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the general configuration of the codevectors during the it- Set m=1 and calculate the centroid of the training set.
eration, and therefore the quality of the final codebook Repeat
strongly depends on the initial codebook. The split-and- Select cluster SV 1o be split.
merge algorithm, on the other hand, performs global Split the cluster S9; mem+1.
changes, which break the previous settlement of the code- Update partition S and codebook C.
book. Until m=M.
The proposed algorithm combines the benefits of both
the iterative and the hierarchical approaches. We achieve Fig. 2 Structure of the iterative splitting algorithm.

the effectiveness of the PNN, but with a faster algorithm;
the merge operations are not performed for large codebooks
of sizeO(N), but the algorithm starts directly from a code-

book of the final sizeM. Therefore each merge operation I . : . S .
can be performed iD(M?) time instead of th©(N?) time (gi.aThls is formalized in the following two optimality cri-
of the PNN. Because of the iterative approach, the results '

can be even better than for the PNN. Our experiments show paytition optimality.  For a given codebook, partition
Eﬂat_tthetnew ”;.?,}hOd :)utpﬁ:for?s tlrllet GtLﬁ,tthe PNN ;and S is optimal if each training vectoX() is mapped to its

e iterative splitting algorithm for all tested training sets. : : )

The rest of the paper is organized as follows. The code- hearest codevector i@ according to Eq(1):
book generation problem is formally defined in Section 2.
The split-and-merge algorithm is introduced in Section 3.
The split-and-merge phases, and other details of the imple-

other one can be optimally constructed according to Eq.

S(j)={X(i)|d[X(i),Y(j)]$d[X(i),Y(h)];

mentation, are discussed in the same section. Test results Isi=N,1=h=M}. 3

are presented in Section 4, and conclusions are drawn in L . o

Sect?on 5 Codebook optimality. ~ For a given partitiors, the code-
book C is optimal if the codevector¥ ) (1<j<M) are

2 Background selected as the centroids of the clustgfde S:

Let us consider a s@t={X"|1<i<N} of training vectors ) SxesiX

in a K-dimensional Euclidean space. The aim is to fvid Yk EREUEE 1=k=K, 4

codevectorsyYW (1<j<M) by minimizing the average

pairwise distance between the training vectors and their\yhere|SU)| is the cardinality ofS%. The codevector of a
representative COQevectors. _The distance b_etween_ tWo VeCy|yster is thus the meaentroid of the training vectors in
torsX andY is defined by their squared Euclidean distance: e clyster. Codebook generation usually concentrates on

K finding a proper codebodR and the mapping functio® is
— —v.\2 assumed to be optimally defined according to ).
dx.Y) g‘l (K= Y% @ The descriptions of the GLA, the iterative splitting

method and the PNN are given in Figures 1-3. The GLA is
where X, and Y, are thek'th components of the vectors. a variant of theK-meansclustering methodSlt is probably
Let C={YW|1<j<M} be a codebook, an@:T—C be a the most widely used method, due to its simple implemen-
mapping of the training vectors to their representative code- tation; the method is a straightforward application of the
vectors inC. The mapping thus gives us the partitien ~ tWo optimality criteria of Eqs(3) and (4). If a particular
={s|1=<j<M} of T. HereS¥={X e T|Q(X) =]} is the cluster be_comes empty, we replace th_e orph_an codeveg:tor
set of training vectorcluste that are mapped to codevec- by a training vector that has the maximal distance to its

. . . . ' . nearest codevector. The time complexity of the GLA is
tor j. The distortion of the codebodR is then defined by: O(NMG). whereG is the number of iterations.
1 N The idea of iterative splitting is also very simple, but the
distortion(C) = — E drX®, Q[ XMy ) implementation d_etalls are more complicated. The quallty
N =1 of the codebook is closely dependent on the way the split
operation is designed. Several alternatives were discussed
A solution for the codebook construction problem can thus in a recent publicatiofi.The time complexity of the fastest
be defined by the pairG,Q). These two depend on each variant isO(N-log N-log M), or O(NM) if an additional
other in such a manner that if one of them is given, the refinement phase is added. The method is highly appropri-

Generate a codebook C, by any algorithm.

Repeat
Generate optimal partition S,,, for a given codebook C..
Generate optimal codebook C,,, for a given partition S,.,

Set each training vector as a codevector (generating a codebook of size m=N).
Repeat

Select two clusters §*) and S® to be merged.

Merge the selected clusters; m<m-1.

Fill empty clusters. Update partition S and codebook C.
Until no improvement achieved. Until m=M.
Fig. 1 Structure of the GLA algorithm. Fig. 3 Structure of the PNN algorithm.
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Generate an initial codebook by any algorithm.
Repeat

Select a cluster to be split.

Split the selected cluster.

Select two clusters to be merged

Merge the selected clusters
Until no improvement achieved.

Fig. 4 Structure of the basic SM algorithm.

ate for the construction of &ee structured vector quan-

0 M-h
: : e

Split-Merge

Merge-Split

Fig. 5 Effect of the SM operations on the codebook size.

final codebook must converge to the predefined zelt
is not obvious how the size of the codebook should be

side-product.

The PNN is a variant of thagglomerative clustering
methods A straightforward implementation uses local op-
timization for finding the clusters to be combined. The al-
gorithm takesO(N?®) time8 Fortunately, the time complex-
ity can be reduced toO(N?) with rather simple
modifications’ although the method is still significantly
slower than the GLA and the iterative splitting method.

3 lterative Split-and-Merge Algorithm

The general structure of the iterative split-and-me(ge!)
algorithm is shown in Figure 4. In the merge phase, two

nearby clusters are merged and thus one codevector is re
leased from the codebook. In the split phase, a new code-
vector is inserted in the codebook. The order of these two
phases can be freely chosen. Improvement is achieved if
the split phase decreases the distortion more than the merg

phase increases it. The size of the codebook remains th

iterated until no further improvement is achieved.

3.1 Size and Order of the Iteration Step

There are several alternative variants for the basic structure

of the SM algorithm:

« One-split-one-mergePerform a single split operation
followed by a single merge operatidte algorithm in
Figure 4.

* h-split-h-merge: Performh split operations followed
by h merge operations. The original siz®l} of the
codebook is preserved. Parameteis called thestep
size

» Adaptive split-and-mergePerform a variable number
of split and merge operations so that the size of the
codebook converges finally td.

in this paper.

Another question is the order of the SM phases, see
Figure 5. Both of these operations are preceded by a selec-
tion step. For the merge operation, we select two clusters
for which the merging is nonexpensive, and for the split
step we chose a cluster that can beneficially be divided into
two subclusters. It is therefore easy to see that in any prac-
tical situation, merge has no effect on the following split
operation; if the cluster to be split were the same as the
merged one, the iteration would have already come to a
point where no further improvement can be achieved. On
the other hand, it is possible that after split either of the
new cluster halves may be merged with a third cluster.
Therefore, if the algorithm starts by a series of splits it has
more degrees of freedom in the merge operation. A minor
drawback of this approach is that it is more time-
consuming to perform split before merge than in the oppo-

e%ite order. Nevertheless, we treat thesplit-h-merge order
same before and after each iteration step. The method iso fixed. In the case of a one-split-one-merge approach, the

preceding reasoning is of minor significance; in practice,
both orders work similarly.

3.2 Stopping Criterion

A natural stopping criterion is to stop the iteration when no
further improvement is observed. LB(t) be the distortion

of Eqg. (2) of the codebook after iteration rourid On one
iteration round, the merge operation increases the total dis-
tortion by ADy, and the split operation decreases it by
ADg. Thus, the iteration improves thB-value if ADg
>ADy .

Unlike in the GLA, there is no guarantee that the
h-split-h-merge method will converge, but it may occur
thatADg<AD), . It is also possible that even if the distor-
tion of the current codebook increases, the following itera-
tions can lead to a better solution. An alternative stopping
criterion is therefore to use a fixed number of iterations and

The second approach makes more radical changes to théeturn the best codebook generated. Nevertheless, we use

codebook during a single iteration step than the first ap- the greedy stopping criterion in the rest of the paper and

proach. This gives a greater freedom in the design of the stop at the first local minimum.

SM phases. For example, a faster algorithm is obtained by

selectingh=M and splitting all clusters at the same time. 3.3 Splitting Phase

However, usually there are clusters whose split is either The aim of the splitting phase is to divide the training vec-

nonbeneficial or even impossible. It is therefore probably tors of a large cluster into two subclusters and replace the

better to repeat the basic split operatidntimes. Another  original codevector by the centroids of the two subclusters.

faster technique could be implemented by selecting the The operation involves two design questiotie selection

merged cluster pairs using a faster heuristic tharCiti?) of the cluster to be spliandthe algorithm performing the

PNN method. division For the selection, we apply here a local optimiza-
The adaptive approach does not make any restrictionstion strategy where each cluster is tentatively split and the

for the codebook size between the iterations, except that theone decreasing the distortion most is chosen.
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Bridge (256X256) Camera (256X256) Miss America (360X288) House (256X256)

Fig. 6 Sources of the training sets.

The splitting is performed using an approximate variant nin; o
of principal component analysi®CA), as proposed in Ref. AD= o dy®,yoy, 5
4. The main idea of the PC/Ref. 10, p. 8 is to calculate el
the principal axis of the training vectors in the cluster. The
training vectors are classified by &{1)-dimensional hy-
perplane perpendicular to the principal axis, passing it at a
point P (e.g., the cluster centroidinstead of calculating

wheren; andn; are the number of the training vectors in
the clusters andj. The centroid of the combined cluster is
calculated as

the exact pri_ncipal axis, we a_lpproximate its Ioca_tion f(_)r nY @4,y
each dimension separately with respect to the dimensiony (new —_" J (6)
with the largest variance. This is done by solving first the ni+n;

dimensionk with the largest variance, and then calculating
the linear regression of the other dimensions with respect to
the dimensiork. The regression coefficients of these lines
are considered as the direction of the approximate principal
axis. The positiorP of the hyperplane is chosen optimally
by considering each training vector as a tentative dividing

These calculations do not require any additional informa-
tion besides what is already stored from each cluster. Time
Icomplexity of a single merge phase®M?) due to the
selection. In a recent studyhowever, it was shown that the
calculations of preceding merging steps can be utilized in

. ; .2 the next merge step, so that the time complexity of each
Fhoénli)wézftj%?sgaligz T;uk;y?se;glleagtzdpasses. The one with following step is onlyO(M). The overall time complexity
. ; 2
The result of the split operation is fine-tuned by a partial ©f the merge phase is therefa® M) + O(Mh).
remapping operation, as proposed in Ref. 4. This operation
is based on the fact that some training vectors in the neigh-3.5 Inclusion of the GLA

boring clusters may become closer to a new codevectortpg hronosed SM algorithm and the GLA both improve an
than the original one. The partition boundaries can thus be gyisting codebook iteratively. The algorithms have differ-
improved by checking, for each training vector, whether .. approaches, however, SM performs global changes,
one of the two new codevectors is closer than its current,nareas the GLA makes only local modifications to the
codevector. The codevectors are also recalculated after thg,qgevectors. It is therefore sensible to combine the two
remapping operation. _ » approaches. It was proposed in Ref. 11 that a single step of
The time complexity of a single splitting phaseQgN a SM operation should be augmented as an integral part of
-logN), since there aré/ clusters to be tested and each the GLA. Here we take an opposite approach, and apply the
tentative splitting require©O[N/M -log(N/M)] time. Fur- GLA as a fine-tuning phase in the SM algorithm.
ther splits f>1) can be performed iI®[ N/M - log(N/M) In principle, the SM algorithm first makes nonlocal
-log h] time in total, because the calculations of the previ- changes to the codebook, which is then fine-tuned by the
ous splitting step do not need to be repeated. The overallGLA. However, the greatest benefit is obtained from the
time Comp|exity of the Sp||tt|ng phase is therefﬂN GLA dUrlng the first few Iter_atlon_s. It is therefore sufficient
-log N)+O(Nh). The latter term is due to the fine-tuning. 0 Perform only two GLA iterations at the end of each

For more details of the method and its design alternatives, Itération step. The inclusion of the GLA iterations has two
see Ref. 4. positive effects: it improves the quality of the final code-

book and it reduces the total number of iterations required.
The latter benefit partially compensates for the increase in

3.4 Merge Phase the running time.

The aim of the merge phase is to combine two nearby clus-

ters and replace their corresponding codevectors by the

centroid of the combined cluster. The merge operation thus4 T€st Results

releases one codevector from the codebook. We apply hereThe following training sets are consideredBtidge”

the PNN method.In this method the clusters to be merged “ Camerg” “ Miss America’ and “ House” see Figure 6.
are chosen by comparing all cluster pairs and taking the The vectors in the first two set$ Bridge’ and “ Camerd’)
pair that least increases the total distortion. The increase inare 4x 4 pixel blocks taken from gray-scale imag@sbits/

the distortion when merging clustess’ and S0 is calcu- pixel). The third set(* Miss Americd) was obtained by
lated as subtracting two subsequent image frames of the original
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Table 1 Training sets and their statistics.

Training Set Vector Dimensions (K) Number of Training Vectors (N) Number of Codevectors (M)

“Bridge” 16 4096 256
“Camera”’ 16 4096 256
“Miss America” 16 6480 256
“House” 3 65536 256

Table 2 Effect of the step size on the SM and SMG (for “Bridge”).

MSE Number of Iterations Time per Iteration (s) Time in Total (s)

Step Size (h) SM SMG SM SMG SM SMG SM SMG

1 176.49 168.69 122.9 46.9 0.5 4.6 64.7 217.5

2 175.74 168.42 67.1 26.8 0.6 4.8 40.9 127.3

4 175.73 168.50 40.2 175 0.7 4.9 30.1 85.7

8 174.77 168.64 28.1 11.7 1.0 5.2 27.9 61.0

16 173.38 167.72 21.8 111 1.4 5.6 31.0 61.9

32 171.33 166.79 17.7 121 22 6.3 39.6 76.4

64 168.99 165.93 16.9 12.4 3.8 7.8 63.4 96.5

128 167.25 164.77 14.9 115 6.9 10.9 103.2 125.2

256 166.18 163.81 10.8 8.8 135 17.3 145.5 152.2

512 166.23 163.58 8.6 6.5 28.0 31.8 240.7 206.8

1024 167.26 164.19 5.1 5.2 63.0 66.5 321.2 346.0

2048 168.51 165.25 3.7 3.0 158.2 162.6 585.2 487.7
video image sequence, and then constructingd4spatial The effect of the step size is studied in Table 2. The

pixel blocks from the residuals. Only the first two frames first split and the first merge operations are the most time
have been used. Applications of this kind of data are found consuming. Additional steps can be performed with much
in video image compressidA. The fourth data set less computation. The increasetotauses a decrease in the
(" House') consists of the RGB color tuples from the cor- number of iterations. The time-optimal step size is there-
responding color image. This data could be applied for pal- fore noth=1, but it varies from 8 to 16, depending on the
ette generation in color image quantizatidithe data sets training set. The lowest mean square erfiSE) values
and their properties are summarized in Table 1. In the ex- gre obtained with a step size varying from 128 to 512. The
periments made here, we will fix the number of clusters to sjtuation for “Bridge” is illustrated in Figure 7. Note that
M=256. the upper limit for the step size s=N—M. In this case
Two variants of the SM algorithm are considered: the the method reduces back to the standard PNN algorithm. In
basic algorithm with a fixed step siZ8M), and the same  ipe following we fix the step size th=256.
algorithm augmented by two iterations of the GKLAMG). Figure 8 illustrates the development of the distortion as a
In all tests, initial codebooks are generated by randomly fynction of the number of iterations. The arrows show the
picking M training vectorgwithout duplicates Results are
averages of 10 test runs, unless otherwise noted.

MSE
MSE

1 2 4 8 16 32 64 128 256 512 1024 2048

Step size h Iterations

Fig. 7 MSE and running time of SMG as a function of the step size Fig. 8 Convergence of the SM and SMG algorithm (for “Bridge™).
(for “Bridge™). Step size is h=256.
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Fig. 9 Effect of the split, merge and GLA phases on MSE during the

iteration (for “Bridge”). Step size is h=256. Fig. 10 Speed versus quality trade-off comparison of the main vari-

ants (“Bridge”). The SM and SMG lines represent the results after
one to eight iterations.

Table 3 Comparison of MSE values for the various codebook generation methods.

Training Set GLA Split SLR SGLA PNN SM SMG
“Bridge” 179.68 176.96 170.22 165.86 169.11 166.18 163.81
“Camera’ 122.61 76.55 72.98 71.05 71.04 70.16 69.40
“Miss America’ 5.96 5.54 5.40 5.28 5.51 5.26 5.19
“House” 7.81 6.46 6.18 6.05 6.37 6.17 5.98

Table 4 Comparison of the running times for the various codebook generation methods.

Training Set GLA Split SLR SGLA PNN SM SMG
“Bridge” 33 7 16 651 311 146 152
“Camera’ 38 6 14 473 284 104 96
“Miss America’ 67 11 36 1089 829 231 285
“House” 254 25 70 2001 5649 173 358

points where the algorithm terminates if a greedy stopping resuit than the GLA. If time is a critical factor, one should
criterion is applied. Slightly better results would be ob- consider the use of the iterative spliting meth¢gblit
tained if the iteration were continued further. Figure 9 il- g R

lustrates the effects of the split, merge and GLA phases.  The effect of random initialization is illustrated in Fig-
The iteration continues as long as the overall effect of the yre 11. The proposed methods produce a narrow histogram
split and GLA phases exceeds the effect of the merge of the MSE valuegthe standard deviation is 0.40 for SM

phase. ) and 0.32 for SM@, whereas the results for the GLA are
We next compare the two SM algorithm§M and  ore diversethe standard deviation is 1.42The SM al-
SMG) with the following algorithms: gorithm is therefore less dependent on the initialization
) . . than the GLA.
+ GLA: the standard GLA methddising random initial-

ization .
5 Conclusions

 Split: iterative splitting algorithm of Ref. 3 . .
. . . ] . _ A new algorithm was proposed for the codebook generation
* SLR:iterative splitting with an additional refinement i, yector quantization. The method starts with an initial
phasé codebook, which is iteratively improved by a sequence of
* SGLA:the best splitting method of Ref. 4, where two merge and split operations. The proposed algorithm com-
GLA iterations are applied after each splitting phase bines the benefits of both the iterative and the hierarchical
« PNN: the optimal PNN algorithm of Ref. 5. approaches. The effectiveness of the PNN was achieved but
with a faster algorithm. Because of the iterative approach,
The main results are summarized in Table 3 and Table 4.the results are even better than for the PNN.
The SM and SMG give better MSE values than any of the  The proposed SM algorithm outperforms all compara-
preceding methods. A drawback of the SM and SMG, how- tive methods. The results are about 10 to 40% better than
ever, is the running time, which is about three times as long that of the GLA. The method is also less sensitive to the
as required for the GLA. A faster version can be obtained if random initialization, whereas the results of the GLA have
the total number of iterations is reducésee Figure 10 much higher variation. The running time of the method is
The faster version gives similar or better time-distortion competitive with the GLA and much faster than that of the
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