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Abstract. We propose a new iterative algorithm for the generation of a
codebook in vector quantization. The algorithm starts with an initial code-
book that is improved by a combination of merge and split operations. By
merging small neighboring clusters, additional resources (codevectors)
are released. These extra codevectors can be reallocated by splitting
large clusters. This process can be iterated until no further improvement
is achieved in the distortion of the codebook. Experimental results show
that the proposed method performs well in comparison to other tested
methods, including the generalized Lloyd algorithm (GLA) and two hier-
archical methods. © 1998 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(98)01110-6]
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1 Introduction

We consider the codebook generation problem involved
the design of avector quantizer.1 The aim is to findM
codevectors (codebook)for a given set ofN training vec-
tors (training set)by minimizing the average pairwise dis
tance between the training vectors and their representa
codevectors. The vectors are assumed to belong t
K-dimensional Euclidean space. The question of the pro
choice for the training set is not addressed here; the m
vation is simply to select the best possible codebook fo
given training set.

There are several established methods for generati
codebook.1 The most cited and widely used is thegeneral-
ized Lloyd algorithm2 ~GLA!. It starts with an initial solu-
tion, which can be chosen arbitrarily. The existing soluti
is then improved iteratively using two optimality criteria
turn until a local minimum is reached. The algorithm
relatively easy to implement and it gives reasonable res
in most cases. Unfortunately the algorithm makes only
cal changes to the original codebook and it thus gets s
at the first local minimum. The quality of the final cod
book is therefore highly dependent on the initialization.

A different approach is to build the codebook hierarc
cally. An iterative splitting algorithm3,4 starts with a code-
book of size 1, where the only codevector is the centroid
the entire training set. The codebook is then iteratively
larged by a splitting procedure until it reaches the desi
size. This top-down process gives results similar to or e
better than the GLA, with a faster algorithm.4 A drawback
of this method is that it is optimized only locally. The ea
lier splitting stages may harm the later choices of the al
2726 Opt. Eng. 37(10) 2726–2732 (October 1998) 0091-3286/98/$1
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rithm, and there is therefore no guarantee that the fi
codebook will be globally optimal.

Another hierarchical algorithm, thepairwise nearest
neighbor5 ~PNN!, uses an opposite, bottom-up approach
codebook generation. It starts by initializing a codebo
where each training vector is considered as its own co
vector. Two codevectors are merged at each step of
algorithm, and the process is repeated until the desired
of the codebook is reached. The method outperforms b
the GLA and the iterative splitting method, but it is ve
slow, especially if the training set is much larger than t
codebook (N@M ). There is also a faster variant, thefast
PNN, but it weakens the results.5

Here we propose a new iterative algorithm for codebo
generation, which combines the ideas of the two hierarc
cal methods and the GLA. The algorithm starts with
initial codebook, which is improved by a sequence
merge and split operations. Each iteration consists of
steps: The merge phase combines two nearby clus
~codevectors! similarly as in the PNN. The splitting phas
divides a large cluster~codevector! into two subclusters
using the split operation of Ref. 4. This two-step proces
iterated until the codebook shows no further improveme

The codevectors are considered as resources, releas
the merge operation and reallocated by the split operat
The algorithm resembles the GLA inasmuch as it iterativ
improves an existing codebook. The difference lies in
way the codebook is modified. The effect of the GLA
local, whereas the split-and-merge algorithm genera
nonlocal changes to the codebook. By a local change
mean an operation that makes only minor modifications
the codevectors. The GLA, for example, does not cha
0.00 © 1998 Society of Photo-Optical Instrumentation Engineers
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the general configuration of the codevectors during the
eration, and therefore the quality of the final codebo
strongly depends on the initial codebook. The split-an
merge algorithm, on the other hand, performs glo
changes, which break the previous settlement of the co
book.

The proposed algorithm combines the benefits of b
the iterative and the hierarchical approaches. We ach
the effectiveness of the PNN, but with a faster algorith
the merge operations are not performed for large codebo
of sizeO(N), but the algorithm starts directly from a cod
book of the final sizeM . Therefore each merge operatio
can be performed inO(M2) time instead of theO(N2) time
of the PNN. Because of the iterative approach, the res
can be even better than for the PNN. Our experiments s
that the new method outperforms the GLA, the PNN a
the iterative splitting algorithm for all tested training set

The rest of the paper is organized as follows. The co
book generation problem is formally defined in Section
The split-and-merge algorithm is introduced in Section
The split-and-merge phases, and other details of the im
mentation, are discussed in the same section. Test re
are presented in Section 4, and conclusions are draw
Section 5.

2 Background

Let us consider a setT5$X( i )u1< i<N% of training vectors
in a K-dimensional Euclidean space. The aim is to findM
codevectorsY( j ) (1< j <M ) by minimizing the average
pairwise distance between the training vectors and t
representative codevectors. The distance between two
torsX andY is defined by their squared Euclidean distan

d~X,Y!5 (
k51

K

~Xk2Yk!
2, ~1!

whereXk and Yk are thek’th components of the vectors
Let C5$Y( j )u1< j <M % be a codebook, andQ:T→C be a
mapping of the training vectors to their representative co
vectors inC. The mapping thus gives us the partitionS
5$S( j )u1< j <M % of T. HereS( j )5$XPTuQ(X)5 j % is the
set of training vectors~cluster! that are mapped to codeve
tor j . The distortion of the codebookC is then defined by:

distortion~C!5
1

N (
i 51

N

d$X~ i !,Q@X~ i !#%. ~2!

A solution for the codebook construction problem can th
be defined by the pair (C,Q). These two depend on eac
other in such a manner that if one of them is given,

Fig. 1 Structure of the GLA algorithm.
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other one can be optimally constructed according to
~2!. This is formalized in the following two optimality cri-
teria.

Partition optimality. For a given codebookC, partition
S is optimal if each training vectorX( i ) is mapped to its
nearest codevector inC according to Eq.~1!:

S~ j !5$X~ i !ud@X~ i !,Y~ j !#<d@X~ i !,Y~h!#;

1< i<N,1<h<M %. ~3!

Codebook optimality. For a given partitionS, the code-
book C is optimal if the codevectorsY( j ) (1< j <M ) are
selected as the centroids of the clustersS( j )PS:

Yk
~ j !5

(XPS~ j !Xk

uS~ j !u
, 1<k<K, ~4!

whereuS( j )u is the cardinality ofS( j ). The codevector of a
cluster is thus the mean~centroid! of the training vectors in
the cluster. Codebook generation usually concentrates
finding a proper codebookC and the mapping functionQ is
assumed to be optimally defined according to Eq.~3!.

The descriptions of the GLA, the iterative splittin
method and the PNN are given in Figures 1–3. The GLA
a variant of theK-meansclustering methods.6 It is probably
the most widely used method, due to its simple implem
tation; the method is a straightforward application of t
two optimality criteria of Eqs.~3! and ~4!. If a particular
cluster becomes empty, we replace the orphan codeve
by a training vector that has the maximal distance to
nearest codevector. The time complexity of the GLA
O(NMG), whereG is the number of iterations.

The idea of iterative splitting is also very simple, but th
implementation details are more complicated. The qua
of the codebook is closely dependent on the way the s
operation is designed. Several alternatives were discu
in a recent publication.4 The time complexity of the fastes
variant isO(N• log N•log M), or O(NM) if an additional
refinement phase is added. The method is highly appro

Fig. 2 Structure of the iterative splitting algorithm.

Fig. 3 Structure of the PNN algorithm.
2727Optical Engineering, Vol. 37 No. 10, October 1998
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ate for the construction of atree structured vector quan
tizer, since it produces a search tree for the codebook
side-product.

The PNN is a variant of theagglomerative clustering
methods.7 A straightforward implementation uses local o
timization for finding the clusters to be combined. The
gorithm takesO(N3) time.8 Fortunately, the time complex
ity can be reduced toO(N2) with rather simple
modifications,9 although the method is still significantl
slower than the GLA and the iterative splitting method.

3 Iterative Split-and-Merge Algorithm

The general structure of the iterative split-and-merge~SM!
algorithm is shown in Figure 4. In the merge phase, t
nearby clusters are merged and thus one codevector i
leased from the codebook. In the split phase, a new co
vector is inserted in the codebook. The order of these
phases can be freely chosen. Improvement is achieve
the split phase decreases the distortion more than the m
phase increases it. The size of the codebook remains
same before and after each iteration step. The metho
iterated until no further improvement is achieved.

3.1 Size and Order of the Iteration Step

There are several alternative variants for the basic struc
of the SM algorithm:

• One-split-one-merge:Perform a single split operatio
followed by a single merge operation~the algorithm in
Figure 4!.

• h-split-h-merge:Performh split operations followed
by h merge operations. The original size (M ) of the
codebook is preserved. Parameterh is called thestep
size.

• Adaptive split-and-merge:Perform a variable numbe
of split and merge operations so that the size of
codebook converges finally toM .

The second approach makes more radical changes to
codebook during a single iteration step than the first
proach. This gives a greater freedom in the design of
SM phases. For example, a faster algorithm is obtained
selectingh5M and splitting all clusters at the same tim
However, usually there are clusters whose split is eit
nonbeneficial or even impossible. It is therefore proba
better to repeat the basic split operationM times. Another
faster technique could be implemented by selecting
merged cluster pairs using a faster heuristic than theO(N2)
PNN method.

The adaptive approach does not make any restrict
for the codebook size between the iterations, except tha

Fig. 4 Structure of the basic SM algorithm.
2728 Optical Engineering, Vol. 37 No. 10, October 1998
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final codebook must converge to the predefined sizeM . It
is not obvious how the size of the codebook should
controlled. We therefore do not study this approach furt
in this paper.

Another question is the order of the SM phases,
Figure 5. Both of these operations are preceded by a se
tion step. For the merge operation, we select two clus
for which the merging is nonexpensive, and for the sp
step we chose a cluster that can beneficially be divided
two subclusters. It is therefore easy to see that in any p
tical situation, merge has no effect on the following sp
operation; if the cluster to be split were the same as
merged one, the iteration would have already come t
point where no further improvement can be achieved.
the other hand, it is possible that after split either of t
new cluster halves may be merged with a third clust
Therefore, if the algorithm starts by a series of splits it h
more degrees of freedom in the merge operation. A mi
drawback of this approach is that it is more tim
consuming to perform split before merge than in the op
site order. Nevertheless, we treat theh-split-h-merge order
as fixed. In the case of a one-split-one-merge approach
preceding reasoning is of minor significance; in practi
both orders work similarly.

3.2 Stopping Criterion

A natural stopping criterion is to stop the iteration when
further improvement is observed. LetD(t) be the distortion
of Eq. ~2! of the codebook after iteration roundt. On one
iteration round, the merge operation increases the total
tortion by DDM and the split operation decreases it
DDS . Thus, the iteration improves theD-value if DDS

.DDM .
Unlike in the GLA, there is no guarantee that th

h-split-h-merge method will converge, but it may occu
thatDDS,DDM . It is also possible that even if the disto
tion of the current codebook increases, the following ite
tions can lead to a better solution. An alternative stopp
criterion is therefore to use a fixed number of iterations a
return the best codebook generated. Nevertheless, we
the greedy stopping criterion in the rest of the paper a
stop at the first local minimum.

3.3 Splitting Phase

The aim of the splitting phase is to divide the training ve
tors of a large cluster into two subclusters and replace
original codevector by the centroids of the two subcluste
The operation involves two design questions:the selection
of the cluster to be splitand the algorithm performing the
division. For the selection, we apply here a local optimiz
tion strategy where each cluster is tentatively split and
one decreasing the distortion most is chosen.

Fig. 5 Effect of the SM operations on the codebook size.
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Fig. 6 Sources of the training sets.
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The splitting is performed using an approximate varia
of principal component analysis~PCA!, as proposed in Ref
4. The main idea of the PCA~Ref. 10, p. 8! is to calculate
the principal axis of the training vectors in the cluster. T
training vectors are classified by a (K-1)-dimensional hy-
perplane perpendicular to the principal axis, passing it
point P ~e.g., the cluster centroid!. Instead of calculating
the exact principal axis, we approximate its location
each dimension separately with respect to the dimen
with the largest variance. This is done by solving first t
dimensionk with the largest variance, and then calculati
the linear regression of the other dimensions with respec
the dimensionk. The regression coefficients of these lin
are considered as the direction of the approximate princ
axis. The positionP of the hyperplane is chosen optimal
by considering each training vector as a tentative divid
point through which the hyper plane passes. The one w
the lowest distortion value is selected.

The result of the split operation is fine-tuned by a par
remapping operation, as proposed in Ref. 4. This opera
is based on the fact that some training vectors in the ne
boring clusters may become closer to a new codeve
than the original one. The partition boundaries can thus
improved by checking, for each training vector, wheth
one of the two new codevectors is closer than its curr
codevector. The codevectors are also recalculated afte
remapping operation.

The time complexity of a single splitting phase isO(N
• log N), since there areM clusters to be tested and ea
tentative splitting requiresO@N/M• log(N/M)# time. Fur-
ther splits (h.1) can be performed inO@N/M• log(N/M)
•log h# time in total, because the calculations of the pre
ous splitting step do not need to be repeated. The ove
time complexity of the splitting phase is thereforeO(N
• log N)1O(Nh). The latter term is due to the fine-tunin
For more details of the method and its design alternativ
see Ref. 4.

3.4 Merge Phase

The aim of the merge phase is to combine two nearby c
ters and replace their corresponding codevectors by
centroid of the combined cluster. The merge operation t
releases one codevector from the codebook. We apply
the PNN method.5 In this method the clusters to be merg
are chosen by comparing all cluster pairs and taking
pair that least increases the total distortion. The increas
the distortion when merging clustersS( i ) andS( j ) is calcu-
lated as
l

-
r

e

l

,

-

e

DD5
ninj

ni1nj
d@Y~ i !,Y~ j !#, ~5!

whereni and nj are the number of the training vectors
the clustersi and j . The centroid of the combined cluster
calculated as

Y~new!5
niY

~ i !1njY
~ j !

ni1nj
. ~6!

These calculations do not require any additional inform
tion besides what is already stored from each cluster. T
complexity of a single merge phase isO(M2) due to the
selection. In a recent study,9 however, it was shown that th
calculations of preceding merging steps can be utilized
the next merge step, so that the time complexity of ea
following step is onlyO(M ). The overall time complexity
of the merge phase is thereforeO(M2)1O(Mh).

3.5 Inclusion of the GLA

The proposed SM algorithm and the GLA both improve
existing codebook iteratively. The algorithms have diffe
ent approaches, however, SM performs global chang
whereas the GLA makes only local modifications to t
codevectors. It is therefore sensible to combine the t
approaches. It was proposed in Ref. 11 that a single ste
a SM operation should be augmented as an integral pa
the GLA. Here we take an opposite approach, and apply
GLA as a fine-tuning phase in the SM algorithm.

In principle, the SM algorithm first makes nonloc
changes to the codebook, which is then fine-tuned by
GLA. However, the greatest benefit is obtained from t
GLA during the first few iterations. It is therefore sufficien
to perform only two GLA iterations at the end of eac
iteration step. The inclusion of the GLA iterations has tw
positive effects: it improves the quality of the final cod
book and it reduces the total number of iterations requir
The latter benefit partially compensates for the increas
the running time.

4 Test Results

The following training sets are considered: ‘‘Bridge,’’
‘‘ Camera,’’ ‘‘ Miss America,’’ and ‘‘ House,’’ see Figure 6.
The vectors in the first two sets~‘‘ Bridge’’ and ‘‘ Camera’’ !
are 434 pixel blocks taken from gray-scale images~8 bits/
pixel!. The third set~‘‘ Miss America’’ ! was obtained by
subtracting two subsequent image frames of the orig
2729Optical Engineering, Vol. 37 No. 10, October 1998
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Table 1 Training sets and their statistics.

Training Set Vector Dimensions (K) Number of Training Vectors (N) Number of Codevectors (M)

‘‘Bridge’’ 16 4096 256

‘‘Camera’’ 16 4096 256

‘‘Miss America’’ 16 6480 256

‘‘House’’ 3 65536 256

Table 2 Effect of the step size on the SM and SMG (for ‘‘Bridge’’).

Step Size (h)

MSE Number of Iterations Time per Iteration (s) Time in Total (s)

SM SMG SM SMG SM SMG SM SMG

1 176.49 168.69 122.9 46.9 0.5 4.6 64.7 217.5

2 175.74 168.42 67.1 26.8 0.6 4.8 40.9 127.3

4 175.73 168.50 40.2 17.5 0.7 4.9 30.1 85.7

8 174.77 168.64 28.1 11.7 1.0 5.2 27.9 61.0

16 173.38 167.72 21.8 11.1 1.4 5.6 31.0 61.9

32 171.33 166.79 17.7 12.1 2.2 6.3 39.6 76.4

64 168.99 165.93 16.9 12.4 3.8 7.8 63.4 96.5

128 167.25 164.77 14.9 11.5 6.9 10.9 103.2 125.2

256 166.18 163.81 10.8 8.8 13.5 17.3 145.5 152.2

512 166.23 163.58 8.6 6.5 28.0 31.8 240.7 206.8

1024 167.26 164.19 5.1 5.2 63.0 66.5 321.2 346.0

2048 168.51 165.25 3.7 3.0 158.2 162.6 585.2 487.7
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video image sequence, and then constructing 434 spatial
pixel blocks from the residuals. Only the first two fram
have been used. Applications of this kind of data are fou
in video image compression.12 The fourth data se
~‘‘ House’’ ! consists of the RGB color tuples from the co
responding color image. This data could be applied for p
ette generation in color image quantization.13 The data sets
and their properties are summarized in Table 1. In the
periments made here, we will fix the number of clusters
M5256.

Two variants of the SM algorithm are considered: t
basic algorithm with a fixed step size~SM!, and the same
algorithm augmented by two iterations of the GLA~SMG!.
In all tests, initial codebooks are generated by rando
picking M training vectors~without duplicates!. Results are
averages of 10 test runs, unless otherwise noted.

Fig. 7 MSE and running time of SMG as a function of the step size
(for ‘‘Bridge’’).
2730 Optical Engineering, Vol. 37 No. 10, October 1998
The effect of the step sizeh is studied in Table 2. The
first split and the first merge operations are the most ti
consuming. Additional steps can be performed with mu
less computation. The increase ofh causes a decrease in th
number of iterations. The time-optimal step size is the
fore noth51, but it varies from 8 to 16, depending on th
training set. The lowest mean square error~MSE! values
are obtained with a step size varying from 128 to 512. T
situation for ‘‘Bridge’’ is illustrated in Figure 7. Note that
the upper limit for the step size ish5N2M . In this case
the method reduces back to the standard PNN algorithm
the following we fix the step size toh5256.

Figure 8 illustrates the development of the distortion a
function of the number of iterations. The arrows show t

Fig. 8 Convergence of the SM and SMG algorithm (for ‘‘Bridge’’).
Step size is h5256.
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Fig. 9 Effect of the split, merge and GLA phases on MSE during the
iteration (for ‘‘Bridge’’). Step size is h5256.
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Fig. 10 Speed versus quality trade-off comparison of the main vari-
ants (‘‘Bridge’’). The SM and SMG lines represent the results after
one to eight iterations.
Table 3 Comparison of MSE values for the various codebook generation methods.

Training Set GLA Split SLR SGLA PNN SM SMG

‘‘Bridge’’ 179.68 176.96 170.22 165.86 169.11 166.18 163.81

‘‘Camera’’ 122.61 76.55 72.98 71.05 71.04 70.16 69.40

‘‘Miss America’’ 5.96 5.54 5.40 5.28 5.51 5.26 5.19

‘‘House’’ 7.81 6.46 6.18 6.05 6.37 6.17 5.98

Table 4 Comparison of the running times for the various codebook generation methods.

Training Set GLA Split SLR SGLA PNN SM SMG

‘‘Bridge’’ 33 7 16 651 311 146 152

‘‘Camera’’ 38 6 14 473 284 104 96

‘‘Miss America’’ 67 11 36 1089 829 231 285

‘‘House’’ 254 25 70 2001 5649 173 358
ld
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points where the algorithm terminates if a greedy stopp
criterion is applied. Slightly better results would be o
tained if the iteration were continued further. Figure 9
lustrates the effects of the split, merge and GLA phas
The iteration continues as long as the overall effect of
split and GLA phases exceeds the effect of the me
phase.

We next compare the two SM algorithms~SM and
SMG! with the following algorithms:

• GLA: the standard GLA method2 using random initial-
ization

• Split: iterative splitting algorithm of Ref. 3

• SLR: iterative splitting with an additional refinemen
phase4

• SGLA: the best splitting method of Ref. 4, where tw
GLA iterations are applied after each splitting phas

• PNN: the optimal PNN algorithm of Ref. 5.

The main results are summarized in Table 3 and Tabl
The SM and SMG give better MSE values than any of
preceding methods. A drawback of the SM and SMG, ho
ever, is the running time, which is about three times as lo
as required for the GLA. A faster version can be obtaine
the total number of iterations is reduced~see Figure 10!.
The faster version gives similar or better time-distorti
.

.

result than the GLA. If time is a critical factor, one shou
consider the use of the iterative splitting method~Split,
SLR!.

The effect of random initialization is illustrated in Fig
ure 11. The proposed methods produce a narrow histog
of the MSE values~the standard deviation is 0.40 for SM
and 0.32 for SMG!, whereas the results for the GLA ar
more diverse~the standard deviation is 1.42!. The SM al-
gorithm is therefore less dependent on the initializat
than the GLA.

5 Conclusions

A new algorithm was proposed for the codebook genera
in vector quantization. The method starts with an init
codebook, which is iteratively improved by a sequence
merge and split operations. The proposed algorithm co
bines the benefits of both the iterative and the hierarch
approaches. The effectiveness of the PNN was achieved
with a faster algorithm. Because of the iterative approa
the results are even better than for the PNN.

The proposed SM algorithm outperforms all compa
tive methods. The results are about 10 to 40% better t
that of the GLA. The method is also less sensitive to
random initialization, whereas the results of the GLA ha
much higher variation. The running time of the method
competitive with the GLA and much faster than that of t
2731Optical Engineering, Vol. 37 No. 10, October 1998
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PNN. In comparison to the splitting methods, SM and SM
give much better results, but at the cost of higher runn
times.

The SM approach includes a number of design alter
tives. Because we were aiming at simplicity, we relega
some of these details to a brief discussion. The metho
iteration used here (h-split-h-merge) is not the only pos
sibility. The idea of oscillating between larger and smal
codebooks is worth further investigation. The same ho
for stopping criterion. In our algorithms the SM operatio
are deterministic: the target clusters are selected in a gre
way. By adding more randomness to these operations, l
minima could be evaded more effectively.
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