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Abstract 

Neural networks have been applied almost 
everywhere in image analysis, processing and 
compression. Kohonen’s self-organizing feature 
maps (SOM) offers one approach that has also been 
applied for the clustering problem. The aim of this 
study is to find out the suitability of the SOM 
algorithm for the clustering problem. Specifically 
we want to find out how the algorithm compare 
with other clustering algorithms as measured by 
the quality of the clustering results, but also 
considering the robustness, reliability and usability 
of the algorithm. 

1.  Introduction 

Clustering is an unsupervised classification problem 
where the aim is to partition a set of data vectors into 
a given number of clusters (classes). The vectors 
having similar features should be grouped together 
and vectors having different features to different 
groups. The vectors can be a training set for a real 
classification application, data from an image analysis 
application (e.g. medical images), or image to be 
quantized or compressed. The correct classification of 
the training vectors is either not known, or the aim is 
simply to find, for the given training set, the best 
possible clustering minimizing a predefined 
evaluation function (typically mean square error). 

Neural networks have been applied almost 
everywhere in image analysis, processing and 
compression. Kohonen’s self-organizing feature maps 
(SOM) [10] offers one approach that has also been 
applied for the clustering problem [1, 13]. It is a 
rather standardized package and  publicly available 
(ftp://cochlea.hut.fi/ pub/som_pak/), therefore leaving 
the researcher for solving more important application 
specific problems such as to study what are the 
important features to be extracted from the image, 
how to interpret the result of the classification, or to 
implement the classifier in a real application such as 
quality control in computed aided manufacturing. 

The aim of this study is to find out the suitability of 
the SOM algorithm for the clustering problem. 
Specifically we want to find out how the algorithm 
compare with other clustering algorithms measured 
by the quality of the clustering results, but also 
considering the robustness, reliability and usability of 
the algorithm. The motivation for this study is that, 
the SOM algorithm has not been shown to perform 
significantly better than other clustering algorithms, 
but on the other hand, people keep saying how well it 
works on most problems. The most frequently asked 
question, besides the universal question “how much 
time it requires?”, is probably “have you tried neural 
networks?”. 

The use of the SOM algorithm is often argued by the 
following reasons: 

 It performs better than the standard GLA. 
 It is less dependent on the initialization. 
 It smoothens possible irregularities in the 

training set. 
 The neural network is directly applicable for 

classification after the learning phase. 
 The learning may continue (re-adaptation) 

when used in the classification. 
 The fact that the neighboring vectors in the 

neuron structure are similar to each other 
can be exploited. 

In the present work we test the above presumptions. 
The clustering problem is studied as an optimization 
problem where the aim is to optimize the clustering 
for the input data. We also study the clustering 
performance in two cases where the training set is not 
equal to the original input data to be clustered. In one 
case the training set is distorted by gaussian random 
noise, and in another case the vectors are 
prequantized (from 8 to 5 bits per pixel) before the 
clustering in order to reduce the amount of 
calculations. The other potential advantages of SOM 
are also discussed on the basis of the experiments, and 
on the knowledge of the other clustering methods and 
vector quantization. 



2.  Clustering problem 

In vector quantization [8], the aim is to map a set of 
input vectors into a smaller subset of code vectors 
(codebook). In data compression, reduction in storage 
space is achieved by storing the index of the nearest 
code vector instead of the original data vector. 
Clustering algorithms are used for optimizing the 
codebook for a given training set. The training set can 
be a set of sample vectors, which hopefully 
corresponds to the actual data to be quantized. In 
applications such as color image quantization, the 
codebook (called color palette) is optimized directly for 
the training set [14]. 

2.1. Problem formulation 

The clustering problem is defined as follows. Given a 
set of N vectors X={x1, x2,…, xN}, partition the data set 
into M classes such that similar vectors are grouped 
together and vectors having different features belong 
to different groups. Partition P={p1, p2,…, pN} defines 
the classification by giving for each input vectors the 
partition index (pi) of the class where it is assigned to. 
Each class is described by its representative vector 
C={c1, c2,…, cM}. 

Each vector xi has K features (xik). For simplicity, we 
assume that the features are numerical and have the 
same scale. If this is not the case they must first be 
normalized. The distance between two vectors x1 and 
x2 is measured by the Euclidean distance and it is 
calculated as: 
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The quality of the clustering is evaluated by 
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The cluster centroid ci is the mean vector of all input 
vectors in cluster i, and it is calculated as: 
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The set of cluster centroids (C) is used as a codebook 
in the vector quantization. In other clustering 
applications, the primary goal can be finding the 
classification with no regard of the actual cluster 
centroids. In this case the output of the clustering is 
the set of partition indices (P). 

2.2. Test set 

We consider the four training sets shown in Fig. 1. 
Bridge consists of 4  4 pixel blocks sampled from a  
gray-scale image (8 bits per pixel). The data set is very 
sparse and no clear cluster boundaries can be found. 
Bridge-2 has the blocks of Bridge after a quantization 
into two values (0/1) according to the average pixel 
value of the block, as in block truncation coding, see 
[5]. The vectors in this data set are binary (0/1), which 
makes it an important special case for the problem. 

 

 

  

 

The dominant colors are: 
TOP: dark red, pink, yellow, 

dark green, BOTTOM: grayish 
green, red, black, light green 

 
Bridge 

(256256) 
K=16, N=4096 

Bridge-2 
(256256) 

K=16, N=4096 

Blocks 
(8040) 

K=2, N=3200* 

House 
(256256) 

K=3, N=65536** 

 

Figure 1. Sources for the data sets. *Only red and green component are used. **The pixels were quantized to  
5 bits per pixel. The number of unique colors in Blocks is 998, and in House 1837. 

 



The third data set (Block) is an example of a 
classification problem. The vectors are from an 
artificially prepared RGB image consisting of samples 
from 8 different sources. We use only the red and 
green color components in order to have a two-
dimensional data set for illustration purposes, see 
Fig. 2. 

The fourth data set consists of the RGB color vectors 
from the color image House. The application of this 
data set is to generate a color palette for color image 
quantization. The color resolution is prequantized to 5 
bits per pixel before the clustering. The number of 
unique vectors decreases from 65536 to 1837. 

2.3. Generalized Lloyd algorithm 

Generalized Lloyd algorithm (GLA), also known as the 
LBG (due to [11]), K-means [12], or C-means 
algorithm, is probably the most widely known method. 
It starts with an initial solution, which is iteratively 
improved until a local minimum is reached. In the 
first step, the input vectors are partitioned into a set 
of M classes by mapping each vector to its nearest 
code vector (cluster centroid): 
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In the second step, the code vectors are replaced by 
the centroids of the new clusters, according to (3). The 
quality of the new solution is always better than or 
equal to the previous one. The algorithm is iterated as 
long as improvement is achieved. The number of 
iterations depends on the data set, and on the quality 
of the initial solution. Ten to fifty iterations are 
usually needed when starting from a random 
initialization. 

 

 

Figure 2. Two dimensional plot of the RG-color  
vectors from Blocks. 

3.  SOM algorithm 

A self-organizing feature map (SOM) is composed of 
a discrete 1-D or 2-D lattice of neurons, each having 
its own weight vector wi. During the learning phase, 
the SOM adapts to training data by self-adjusting the 
weight values of the neurons. The SOM algorithm can 
be directly applied to the clustering problem because 
of similar data structures: the neurons correspond to 
the code vectors (or cluster centroids) in vector 
quantization (wi = ci). 

A description of the SOM algorithm is given in Fig. 3. 
The notations are from the clustering problem. We 
initialize the neurons by random values. The way of 
initialization is not important. In the learning phase, 
training vectors (xi) are input to the network one at a 
time. For each training vector, its closest neuron (cj) is 
found. The closest neuron and its neighboring neurons 
are modified by transferring them towards the input 
vector.  

The updated neuron is a weighted average of the 
original vector (ci) and the input vector (xi): 

  c c t d x cj j i j    ,    (5)  

where  defines the learning rate. The learning rate 
gradually decreases with the time (t). 

 

 

SOM-algorithm( X, C ): 
RandomizeNeurons(C). 
D  Dmax. 
t  0. 
REPEAT 

REPEAT T times 
LearnVectors(X, C, D, t). 
t  t + 1. 

END-REPEAT 
D  D - 1. 

UNTIL D < 0. 
END-SOM 
 
LearnVectors( X, C, D, t ): 

FOR each xi  X  DO 
j  FindNearestNeuron(xi, C). 
FOR d = -D to D DO 

p  j+d 
cp  cp + (t,d)(xi -cp) 

END-FOR 
END-FOR 

END 

Figure 3. Description of the SOM algorithm. 



 

Figure 4. Illustration of the structure of a 2-D SOM. 

 

Figure 5. Illustration of the 2-D SOM after training. 

 

 

The size of the neighborhood (D) determines how 
many of the neighboring neurons are updated. It also 
decreases with the time, and in the last iteration only 
the matching neuron is updated (D=0). With each 
neighborhood size we iterate the training set T times. 

The SOM algorithm is similar to the GLA in two ways: 
they are both iterative, and they both make similar 
updates to the current solution. The difference is the 
way the updates are made in practice. The GLA 
calculates the new centroids as the exact averages of 
all vectors in each cluster after every training vector is 
partitioned. The SOM algorithm, on the other hand, 
uses a competitive learning technique where each 
training vector affects its nearest code vector 
immediately when it is processed. 

3.1. Network topology 

The vectors in SOM are connected with each other, 
usually by a symmetric 1-D or 2-D structure. A 2-D 
structure is often chosen for illustration purposes. The 
data, on the other hand, is usually multi-dimensional 
but it does not imply that a multi-dimensional 
network structure should be used. On the contrary, 
too many connections may restrict the movement of 
the neurons. The main effect of the structure is that 
neighboring neurons represent similar vectors to each 
other. 

The main purpose of the network is that the input of 
a training vector affects several neighboring code 
vectors. The fuzzy GLA [3] has similar approach by 
distributing the mapping of a vector to several 
neighboring vectors. The difference is that the 
neighboring vectors are adaptively found as the 
nearest code vectors, whereas SOM uses a fixed 

neighborhood structure. See Fig. 4 and 5 for an 
illustration of the network structure for the sample 
data set. 

3.2. Learning rate 
The learning rate  depends on the time (iteration 
count). It is monotonically decreasing with time and 
belongs to the range 0    1. The learning rate 
depends also on the distance (d) of the processed 
neuron from the matching neuron (see Fig. 6). In a 
linear model,  is inversely proportional to the 
number of iterations (t) performed: 
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Here A is a constant giving the maximum amount of 
change. The last part of the equation weights the 
learning rate according to the location of the neuron. 
The weight is 1 for the matching neuron and less for 
the other neurons, see Fig. 7. In an exponential model, 
the learning rate is defined as: 

  t d A e e
t
T

d
D,   

 
   (7) 

 

best match

d=0d=1d=2d=3 d=1 d=2 d=3

 

Figure 6. Illustration of the neighborhood of 1-D SOM. 



0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Distance

W
ei

g
h

t

0.8 1.0

 

Figure 7. Weighting of the updates in the neighborhood. 
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Figure 8. Behavior of the two learning rate functions. 

 

 

The behavior of the two learning rate functions is 

3.3. Parameter setup 

es several parameters to 

s (T) is probably the easiest to 

ood (Dmax) should be 

mum learning rate could be set to A=1 

small values (close to 0) so that fine-tuning may 

gorithm when the 

nds on each other, and on the choice of the 

er of iterations 

SOM 
previous 

tion of the neighborhood size (D). Given 

illustrated in Fig. 8. In practice, any monotonically 
decreasing function is suitable. The performance of 
the algorithm is found to be more dependent on the 
choice of the constant A than on the choice of the 
learning rate function. 

The SOM algorithm includ
set up: the size of the initial neighborhood Dmax, the 
number of iterations T, and the maximum learning 
rate A. There is no easy way to find the optimal set up 
because the parameters depend on each other, and 
also on the input data. 

The number of iteration
set up. It should be as high as computation time can 
be spent. The convergence of SOM is rather slow and 
therefore a high number of iterations is needed, 
approximately about 100-1000 iterations at minimum. 
It is noted that the choice of T affects the optimal 
choice for the other parameters. 

The size of the initial neighborh
somewhere between 1 to M, where M is the number of 
clusters. Most likely closer to 1 than to M, because 
with a very large neighborhood the freedom of the 
neuron movements will be reduced too much. The 
selection of D=0, on the other hand, would loose the 
effect on the neighborhood completely and the 
algorithm would then be a simple competitive 
learning. 

The maxi
because the learning rate can vary in the full range 
from 1.0 to 0.0. However, the learning rate values 
close to 1 have practically random effect on the 
solution and are therefore meaningless. On the other 
hand, the learning rate should be able to have very 

happen in the solution. It is therefore better to have a 
smaller A than a large one. This is especially true if 
the number of iterations is small. 

Most significant improvement in the clustering appear 
in the later stages of the al
neighborhood size is very small, or shrunk to zero. It 
is therefore most critical for the learning that the 
parameter setup is correct in the last stages of the 
algorithm (when D2). The parameter A should be 
high enough so that the learning rate does not become 
negligible before the algorithm reaches these critical 
stages. This is a potential danger especially if Dmax is 
very large. 

The optimal choice of the parameters A and Dmax 
clearly depe
number of iterations T. 

3.4. Adaptive numb

A rather straightforward improvement on the 
algorithm can be concluded from the 
discussion. Since the later stages of the algorithm are 
the most vital, the largest number of iterations, and 
the highest variation in the learning rate should 
appear then.  

We propose the use of a variable number of iterations, 
which is a func
a maximum number of iterations Tmax (applied when 
D=0), the current number of iterations is: 
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he number of iterat
(doubles) after each time the neighborhood size is 
T ions progressively increases 

shrunk. In this way, the algorithm iterates less in the 
early stages and more in the later stages. This is also 



reasoned by the fact that the learning is more 
stochastic when the neighborhood size is large and, on 
the other hand, it has maximum variations at the 
critical stage. The total number of iterations is: 

 T T T
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stage as in the original algorithm (T =T), we also 

is used when applied in the 

nts 

nce of SOM for the data sets of 
Blocks, and 256 for the rest. 

ce for Dmax depends on the total number of 

Having the same number of iterations in the last 
max

achieve a significant saving in running time 
(2T < DmaxT) assuming that the size of the initial 
neighborhood Dmax>2. 

Note that Tmax should be given as a power of 2 if the 
approximation of (9) 
learning rate (6). It is though possible to use any value 
of Tmax. For example, given Dmax=10 and Tmax=100, we 
get the values Ti = {1, 1, 1, 1, 2, 3, 6, 13, 25, 50, 100}, 
where 0  i  10. 

4.  Experime

We study the performa
Fig. 1 using 8 clusters for 
We apply a 1-D network. The program includes all the 
options discussed in the previous sections. We use the 
default parameter setup as A=0.1, Dmax=10, and 
Tmax=1000. 

The results for Bridge in Fig. 9 illustrates that the 
optimal choi
iterations (DmaxT). The effective number of iterations 
(T) is adjusted so that the total number of iterations is 
always fixed. We can tentatively say that the use of 

a large total number of iterations implies the use of 
a small neighborhood size (Dmax), and vice versa. 
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Figure 9. Clustering performance (for Bridge) by 
fixing the total number of iterations (DmaxT) to 20, 40 

and 80. 

 

The results for the smaller set Blocks, on the other 
hand, give contradicting results, see Fig. 10. For this 
data set we should always use the maximum 
neighborhood size. The experiments also show that 
better results are achieved using the adaptive number 
of iterations. The optimal choice of the maximum 
learning rate (A) for Blocks is also much smaller than 
for Bridge.  

The results of Fig. 11 demonstrates the importance of 
correct parameter setup. It is very easy to set the 
parameters to get very bad results but rather difficult 
to adjust the parameters to find the optimal setup. 
The use of the linear function for the learning rate 
was more robust than the exponential function. 
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Figure 10. Clustering performance (for Blocks) by fixing 
the total number of iterations (DmaxT) to 1000. 

 

Figure 11. Optimal choice of A for Blocks. 



 

Table 1. Clustering performance inside training set. Table 2. Clustering performance outside training set. 

 Bridge Bridge-2 Block   Block House 
      distorted original quantized original 

Random 251.32 1.51 265.52  Random 211.74 204.57 6.88 10.99 
GLA 179.68 1.48 60.46  GLA 94.20 82.33 4.80 9.45 
PNN 169.15 1.44 57.82  PNN 95.67 93.13 4.38 8.91 
SOM 173.63 1.40 71.80  SOM 94.25 87.10 N / A N / A 
GA 162.09 1.28 55.18  GA 94.18 84.27 4.06 8.89 

 

The results for the best parameter combination are 
next compared with other clustering algorithms. We 
use the following methods as the point of comparison:  

 Random 
 Generalized Lloyd algorithm (GLA) [11] 
 Pairwise Nearest Neighbor (PNN) [4] 
 Genetic algorithm (GA) [7] 

Random solution is generated by selecting M 
randomly chosen training vectors as the code vectors, 
and by mapping all other vectors to the nearest code 
vector according to (1). For the PNN we use the 
implementation introduced in [6]. 

The results are summarized in Table 1. It is shown 
the GA gives best results in all cases, whereas SOM 
results are sometimes better than that of the GLA but 
for the Blocks it is worse. It is noted that the optimal 
set of parameter combination was very difficult to find 
out.  

The performance of the clustering algorithms outside 
the training set is shown in Table 2. In the first case 
(Blocks), the training set is distorted by gaussian 
random noise, and in the second case the vectors are 
prequantized from 8 to 5 bits per pixel before the 
clustering process.  

The results show that the choice of the clustering 
algorithm is less critical when the training set does 
not match the input data. No algorithm is clearly 
better than another. The results also demonstrate 
that the proper choice of the training set is vital. It is 
noted that we did not find a proper parameter setup 
for SOM in the case of House. The problem seems to 
be that after prequantization the frequencies of the 
training vectors varies greatly. This is not taken 
properly account by SOM, which performs blind 
adjustment of the neurons depending only on the 
learning rate. 

5.  Discussion 

The first hypothesis that SOM has better learning 
performance than the GLA was verified only in two 
cases out of three. It is, however, not difficult to 
outperform GLA at all but practically every method 

gives better result than GLA. Of the tested methods, 
the GA was the best in all cases. 

The second hypothesis that SOM is less dependent on 
the initialization is partly true. Unlike in the GLA, 
the initialization has practically no effect on the final 
result if the maximum learning rate is setup high 
enough. On the other hand, the method is extremely 
sensitive to the parameter setup, and therefore we 
could say that the dependence on the initialization is 
changed to a more severe dependence on the correct 
parameter setup. 

The third hypothesis was that the network structure 
smoothness the result, and might perform better when 
applied outside the training set. However, there was 
no such evidence that SOM is better in this sense but 
the choice of a proper training set itself seems to vital. 
This is also verified by the studies in [2, 9], which 
have shown that a very small number of samples are 
usually sufficient for training purposes. 

The fourth hypothesis is that neural network is 
directly applicable for the classification process. This 
is true but the classification is trivial process anyway 
once the distance function is defined, and the learning 
phase performed. Neural networks does not offer any 
better data structure than the conventional ones. 

The fifth hypothesis stated that SOM allows the 
learning to continue during the classification. This is 
true but there is no reason why another classifier 
could not be re-adapted when more training samples 
are available. Using a proper history buffer, any 
classifier can be re-adapted on the fly.  However, the 
question of how this is done is usually not issued as it 
is implicitly taken account in SOM. In this sense SOM 
is better because it has one problem less to be solved. 

The final hypothesis was the fact that the similarity of 
the neighboring vectors can be exploited, for example 
in image compression. This might be true but 
predictive techniques are commonly used in data 
compression anyway. It is unlikely that the fixed 
neighborhood structure offers as good prediction as 
the ones used in data compression. For example, the 
code vectors could always be sorted according to the 
principal axis of the vector space. Therefore SOM does 



not offer anything more than could be done by other 
means. 

6.  Conclusions 

As an optimizer we conclude that SOM is clearly not 
the best choice. The method is only slightly better 
than the standard GLA but worse than the best 
methods. As a classifier it neither had anything more 
to offer than the other clustering methods because the 
classifier is either trivial to construct, or it is designed 
in the learning algorithm already.  

One benefit of SOM is the possibility of re-adaptation 
after the training phase, which is implicitly built in 
SOM due to the competitive learning approach. The 
connectivity of the clusters in SOM might also prevent 
single isolated clusters to be created far from the 
central areas. This could be a benefit in image 
processing applications but it is more likely 
a restriction that disallows the best optimization. 

Overall, the network structure is a restriction because 
many good ideas in other clustering algorithms cannot 
be naturally fitted in SOM without external data 
structures. The data structure itself is good because it 
allows global changes in the clustering structure, but 
the competitive learning approach does not support 
this capability at all, but all modifications appear via 
local changes only. 

The SOM algorithm is also very slow, and it requires 
a large number of iterations. The dependence on the 
initialization is not a problem but instead the method 
depends on the parameter setup. The main benefit of 
SOM therefore seems to be limited to the fact that it is 
more or less a standardized package for the training 
phase. 
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