
On the usefulness of self-organizing maps for
the clustering problem in vector quantization

Pasi Fränti

Department of Computer Science,
University of Joensuu, Box 111

FIN-80101 Joensuu, Finland

Abstract

Neural networks have been applied almost
everywhere in image analysis, processing and
compression. Kohonen’s self-organizing feature
maps (SOM) offers one approach that has also been
applied for the clustering problem. The aim of this
study is to find out the suitability of the SOM
algorithm for the clustering problem. Specifically
we want to find out how the algorithm compare
with other clustering algorithms as measured by
the quality of the clustering results, but also
considering the robustness, reliability and usability
of the algorithm.

1. Introduction

Clustering is an unsupervised classification problem
where the aim is to partition a set of data vectors into
a given number of clusters (classes). The vectors
having similar features should be grouped together
and vectors having different features to different
groups. The vectors can be a training set for a real
classification application, data from an image analysis
application (e.g. medical images), or image to be
quantized or compressed. The correct classification of
the training vectors is either not known, or the aim is
simply to find, for the given training set, the best
possible clustering minimizing a predefined
evaluation function (typically mean square error).

Neural networks have been applied almost
everywhere in image analysis, processing and
compression. Kohonen’s self-organizing feature maps
(SOM) [10] offers one approach that has also been
applied for the clustering problem [1, 13]. It is a
rather standardized package and publicly available
(ftp://cochlea.hut.fi/ pub/som_pak/), therefore leaving
the researcher for solving more important application
specific problems such as to study what are the
important features to be extracted from the image,
how to interpret the result of the classification, or to
implement the classifier in a real application such as
quality control in computed aided manufacturing.

The aim of this study is to find out the suitability of
the SOM algorithm for the clustering problem.
Specifically we want to find out how the algorithm
compare with other clustering algorithms measured
by the quality of the clustering results, but also
considering the robustness, reliability and usability of
the algorithm. The motivation for this study is that,
the SOM algorithm has not been shown to perform
significantly better than other clustering algorithms,
but on the other hand, people keep saying how well it
works on most problems. The most frequently asked
question, besides the universal question “how much
time it requires?”, is probably “have you tried neural
networks?”.

The use of the SOM algorithm is often argued by the
following reasons:

 It performs better than the standard GLA.
 It is less dependent on the initialization.
 It smoothens possible irregularities in the

training set.
 The neural network is directly applicable for

classification after the learning phase.
 The learning may continue (re-adaptation)

when used in the classification.
 The fact that the neighboring vectors in the

neuron structure are similar to each other
can be exploited.

In the present work we test the above presumptions.
The clustering problem is studied as an optimization
problem where the aim is to optimize the clustering
for the input data. We also study the clustering
performance in two cases where the training set is not
equal to the original input data to be clustered. In one
case the training set is distorted by gaussian random
noise, and in another case the vectors are
prequantized (from 8 to 5 bits per pixel) before the
clustering in order to reduce the amount of
calculations. The other potential advantages of SOM
are also discussed on the basis of the experiments, and
on the knowledge of the other clustering methods and
vector quantization.

2. Clustering problem

In vector quantization [8], the aim is to map a set of
input vectors into a smaller subset of code vectors
(codebook). In data compression, reduction in storage
space is achieved by storing the index of the nearest
code vector instead of the original data vector.
Clustering algorithms are used for optimizing the
codebook for a given training set. The training set can
be a set of sample vectors, which hopefully
corresponds to the actual data to be quantized. In
applications such as color image quantization, the
codebook (called color palette) is optimized directly for
the training set [14].

2.1. Problem formulation

The clustering problem is defined as follows. Given a
set of N vectors X={x1, x2,…, xN}, partition the data set
into M classes such that similar vectors are grouped
together and vectors having different features belong
to different groups. Partition P={p1, p2,…, pN} defines
the classification by giving for each input vectors the
partition index (pi) of the class where it is assigned to.
Each class is described by its representative vector
C={c1, c2,…, cM}.

Each vector xi has K features (xik). For simplicity, we
assume that the features are numerical and have the
same scale. If this is not the case they must first be
normalized. The distance between two vectors x1 and
x2 is measured by the Euclidean distance and it is
calculated as:

  

The quality of the clustering is evaluated by
calculating the sum of squared distances between the
input vectors and their cluster centroid:

 d x x1 2, x xi i

i

K

1 2

2

1

 



 f P C d x ci P
i

N

i
(,) ,


 2

1

 (1)

 (2)

The cluster centroid ci is the mean vector of all input
vectors in cluster i, and it is calculated as:

 c

x

j Mj

i
p j

p j

i

i

  





 (3)

1
1,

The set of cluster centroids (C) is used as a codebook
in the vector quantization. In other clustering
applications, the primary goal can be finding the
classification with no regard of the actual cluster
centroids. In this case the output of the clustering is
the set of partition indices (P).

2.2. Test set

We consider the four training sets shown in Fig. 1.
Bridge consists of 4  4 pixel blocks sampled from a
gray-scale image (8 bits per pixel). The data set is very
sparse and no clear cluster boundaries can be found.
Bridge-2 has the blocks of Bridge after a quantization
into two values (0/1) according to the average pixel
value of the block, as in block truncation coding, see
[5]. The vectors in this data set are binary (0/1), which
makes it an important special case for the problem.

The dominant colors are:
TOP: dark red, pink, yellow,

dark green, BOTTOM: grayish
green, red, black, light green

Bridge

(256256)
K=16, N=4096

Bridge-2
(256256)

K=16, N=4096

Blocks
(8040)

K=2, N=3200*

House
(256256)

K=3, N=65536**

Figure 1. Sources for the data sets. *Only red and green component are used. **The pixels were quantized to
5 bits per pixel. The number of unique colors in Blocks is 998, and in House 1837.

The third data set (Block) is an example of a
classification problem. The vectors are from an
artificially prepared RGB image consisting of samples
from 8 different sources. We use only the red and
green color components in order to have a two-
dimensional data set for illustration purposes, see
Fig. 2.

The fourth data set consists of the RGB color vectors
from the color image House. The application of this
data set is to generate a color palette for color image
quantization. The color resolution is prequantized to 5
bits per pixel before the clustering. The number of
unique vectors decreases from 65536 to 1837.

2.3. Generalized Lloyd algorithm

Generalized Lloyd algorithm (GLA), also known as the
LBG (due to [11]), K-means [12], or C-means
algorithm, is probably the most widely known method.
It starts with an initial solution, which is iteratively
improved until a local minimum is reached. In the
first step, the input vectors are partitioned into a set
of M classes by mapping each vector to its nearest
code vector (cluster centroid):

 (4)  d x c
j M

i j 
min ,pi  arg

1

In the second step, the code vectors are replaced by
the centroids of the new clusters, according to (3). The
quality of the new solution is always better than or
equal to the previous one. The algorithm is iterated as
long as improvement is achieved. The number of
iterations depends on the data set, and on the quality
of the initial solution. Ten to fifty iterations are
usually needed when starting from a random
initialization.

Figure 2. Two dimensional plot of the RG-color
vectors from Blocks.

3. SOM algorithm

A self-organizing feature map (SOM) is composed of
a discrete 1-D or 2-D lattice of neurons, each having
its own weight vector wi. During the learning phase,
the SOM adapts to training data by self-adjusting the
weight values of the neurons. The SOM algorithm can
be directly applied to the clustering problem because
of similar data structures: the neurons correspond to
the code vectors (or cluster centroids) in vector
quantization (wi = ci).

A description of the SOM algorithm is given in Fig. 3.
The notations are from the clustering problem. We
initialize the neurons by random values. The way of
initialization is not important. In the learning phase,
training vectors (xi) are input to the network one at a
time. For each training vector, its closest neuron (cj) is
found. The closest neuron and its neighboring neurons
are modified by transferring them towards the input
vector.

The updated neuron is a weighted average of the
original vector (ci) and the input vector (xi):

  c c t d x cj j i j    , (5)

where  defines the learning rate. The learning rate
gradually decreases with the time (t).

SOM-algorithm(X, C):
RandomizeNeurons(C).
D  Dmax.
t  0.
REPEAT

REPEAT T times
LearnVectors(X, C, D, t).
t  t + 1.

END-REPEAT
D  D - 1.

UNTIL D < 0.
END-SOM

LearnVectors(X, C, D, t):

FOR each xi  X DO
j  FindNearestNeuron(xi, C).
FOR d = -D to D DO

p  j+d
cp  cp + (t,d)(xi -cp)

END-FOR
END-FOR

END

Figure 3. Description of the SOM algorithm.

Figure 4. Illustration of the structure of a 2-D SOM.

Figure 5. Illustration of the 2-D SOM after training.

The size of the neighborhood (D) determines how
many of the neighboring neurons are updated. It also
decreases with the time, and in the last iteration only
the matching neuron is updated (D=0). With each
neighborhood size we iterate the training set T times.

The SOM algorithm is similar to the GLA in two ways:
they are both iterative, and they both make similar
updates to the current solution. The difference is the
way the updates are made in practice. The GLA
calculates the new centroids as the exact averages of
all vectors in each cluster after every training vector is
partitioned. The SOM algorithm, on the other hand,
uses a competitive learning technique where each
training vector affects its nearest code vector
immediately when it is processed.

3.1. Network topology

The vectors in SOM are connected with each other,
usually by a symmetric 1-D or 2-D structure. A 2-D
structure is often chosen for illustration purposes. The
data, on the other hand, is usually multi-dimensional
but it does not imply that a multi-dimensional
network structure should be used. On the contrary,
too many connections may restrict the movement of
the neurons. The main effect of the structure is that
neighboring neurons represent similar vectors to each
other.

The main purpose of the network is that the input of
a training vector affects several neighboring code
vectors. The fuzzy GLA [3] has similar approach by
distributing the mapping of a vector to several
neighboring vectors. The difference is that the
neighboring vectors are adaptively found as the
nearest code vectors, whereas SOM uses a fixed

neighborhood structure. See Fig. 4 and 5 for an
illustration of the network structure for the sample
data set.

3.2. Learning rate
The learning rate  depends on the time (iteration
count). It is monotonically decreasing with time and
belongs to the range 0    1. The learning rate
depends also on the distance (d) of the processed
neuron from the matching neuron (see Fig. 6). In a
linear model,  is inversely proportional to the
number of iterations (t) performed:

   t d A
T t

T
e

d
D,  

 (6) 


 

Here A is a constant giving the maximum amount of
change. The last part of the equation weights the
learning rate according to the location of the neuron.
The weight is 1 for the matching neuron and less for
the other neurons, see Fig. 7. In an exponential model,
the learning rate is defined as:

  t d A e e
t
T

d
D,   

 
 (7)

best match

d=0d=1d=2d=3 d=1 d=2 d=3

Figure 6. Illustration of the neighborhood of 1-D SOM.

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Distance

W
ei

g
h

t

0.8 1.0

Figure 7. Weighting of the updates in the neighborhood.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 % 20 % 40 % 60 % 80 %

Iterations

L
ea

rn
in

g
 r

at
e

100 %

Linear

Exp

Figure 8. Behavior of the two learning rate functions.

The behavior of the two learning rate functions is

3.3. Parameter setup

es several parameters to

s (T) is probably the easiest to

ood (Dmax) should be

mum learning rate could be set to A=1

small values (close to 0) so that fine-tuning may

gorithm when the

nds on each other, and on the choice of the

er of iterations

SOM
previous

tion of the neighborhood size (D). Given

illustrated in Fig. 8. In practice, any monotonically
decreasing function is suitable. The performance of
the algorithm is found to be more dependent on the
choice of the constant A than on the choice of the
learning rate function.

The SOM algorithm includ
set up: the size of the initial neighborhood Dmax, the
number of iterations T, and the maximum learning
rate A. There is no easy way to find the optimal set up
because the parameters depend on each other, and
also on the input data.

The number of iteration
set up. It should be as high as computation time can
be spent. The convergence of SOM is rather slow and
therefore a high number of iterations is needed,
approximately about 100-1000 iterations at minimum.
It is noted that the choice of T affects the optimal
choice for the other parameters.

The size of the initial neighborh
somewhere between 1 to M, where M is the number of
clusters. Most likely closer to 1 than to M, because
with a very large neighborhood the freedom of the
neuron movements will be reduced too much. The
selection of D=0, on the other hand, would loose the
effect on the neighborhood completely and the
algorithm would then be a simple competitive
learning.

The maxi
because the learning rate can vary in the full range
from 1.0 to 0.0. However, the learning rate values
close to 1 have practically random effect on the
solution and are therefore meaningless. On the other
hand, the learning rate should be able to have very

happen in the solution. It is therefore better to have a
smaller A than a large one. This is especially true if
the number of iterations is small.

Most significant improvement in the clustering appear
in the later stages of the al
neighborhood size is very small, or shrunk to zero. It
is therefore most critical for the learning that the
parameter setup is correct in the last stages of the
algorithm (when D2). The parameter A should be
high enough so that the learning rate does not become
negligible before the algorithm reaches these critical
stages. This is a potential danger especially if Dmax is
very large.

The optimal choice of the parameters A and Dmax
clearly depe
number of iterations T.

3.4. Adaptive numb

A rather straightforward improvement on the
algorithm can be concluded from the
discussion. Since the later stages of the algorithm are
the most vital, the largest number of iterations, and
the highest variation in the learning rate should
appear then.

We propose the use of a variable number of iterations,
which is a func
a maximum number of iterations Tmax (applied when
D=0), the current number of iterations is:

  T D T
D






 

1
max

 2

(8)

he number of iterat
(doubles) after each time the neighborhood size is
T ions progressively increases

shrunk. In this way, the algorithm iterates less in the
early stages and more in the later stages. This is also

reasoned by the fact that the learning is more
stochastic when the neighborhood size is large and, on
the other hand, it has maximum variations at the
critical stage. The total number of iterations is:

 T T T
DD

total 




    1

2
max

max max

D   20

(9)

stage as in the original algorithm (T =T), we also

is used when applied in the

nts

nce of SOM for the data sets of
Blocks, and 256 for the rest.

ce for Dmax depends on the total number of

Having the same number of iterations in the last
max

achieve a significant saving in running time
(2T < DmaxT) assuming that the size of the initial
neighborhood Dmax>2.

Note that Tmax should be given as a power of 2 if the
approximation of (9)
learning rate (6). It is though possible to use any value
of Tmax. For example, given Dmax=10 and Tmax=100, we
get the values Ti = {1, 1, 1, 1, 2, 3, 6, 13, 25, 50, 100},
where 0  i  10.

4. Experime

We study the performa
Fig. 1 using 8 clusters for
We apply a 1-D network. The program includes all the
options discussed in the previous sections. We use the
default parameter setup as A=0.1, Dmax=10, and
Tmax=1000.

The results for Bridge in Fig. 9 illustrates that the
optimal choi
iterations (DmaxT). The effective number of iterations
(T) is adjusted so that the total number of iterations is
always fixed. We can tentatively say that the use of

a large total number of iterations implies the use of
a small neighborhood size (Dmax), and vice versa.

150

160

170

180

190

200

210

220

230

240

250

1 2 5 10 20 40

Initial neighborhood size

m
se

Dmax=10, T=2Dmax=2, T=10

Dmax=5, T=4

20
40
80

Figure 9. Clustering performance (for Bridge) by
fixing the total number of iterations (DmaxT) to 20, 40

and 80.

The results for the smaller set Blocks, on the other
hand, give contradicting results, see Fig. 10. For this
data set we should always use the maximum
neighborhood size. The experiments also show that
better results are achieved using the adaptive number
of iterations. The optimal choice of the maximum
learning rate (A) for Blocks is also much smaller than
for Bridge.

The results of Fig. 11 demonstrates the importance of
correct parameter setup. It is very easy to set the
parameters to get very bad results but rather difficult
to adjust the parameters to find the optimal setup.
The use of the linear function for the learning rate
was more robust than the exponential function.

0

100

200

300

400

500

600

700

800

m
se

50

75

100

125

150

0 % 1 % 2 % 3 % 4 % 5 %

Maximum learning rate (A)

m
s

e

0 1 2 3 4 5 6 7 8

Initial neighborhood size

fixed

adaptive

Figure 10. Clustering performance (for Blocks) by fixing
the total number of iterations (DmaxT) to 1000.

Figure 11. Optimal choice of A for Blocks.

Table 1. Clustering performance inside training set. Table 2. Clustering performance outside training set.

 Bridge Bridge-2 Block Block House
 distorted original quantized original

Random 251.32 1.51 265.52 Random 211.74 204.57 6.88 10.99
GLA 179.68 1.48 60.46 GLA 94.20 82.33 4.80 9.45
PNN 169.15 1.44 57.82 PNN 95.67 93.13 4.38 8.91
SOM 173.63 1.40 71.80 SOM 94.25 87.10 N / A N / A
GA 162.09 1.28 55.18 GA 94.18 84.27 4.06 8.89

The results for the best parameter combination are
next compared with other clustering algorithms. We
use the following methods as the point of comparison:

 Random
 Generalized Lloyd algorithm (GLA) [11]
 Pairwise Nearest Neighbor (PNN) [4]
 Genetic algorithm (GA) [7]

Random solution is generated by selecting M
randomly chosen training vectors as the code vectors,
and by mapping all other vectors to the nearest code
vector according to (1). For the PNN we use the
implementation introduced in [6].

The results are summarized in Table 1. It is shown
the GA gives best results in all cases, whereas SOM
results are sometimes better than that of the GLA but
for the Blocks it is worse. It is noted that the optimal
set of parameter combination was very difficult to find
out.

The performance of the clustering algorithms outside
the training set is shown in Table 2. In the first case
(Blocks), the training set is distorted by gaussian
random noise, and in the second case the vectors are
prequantized from 8 to 5 bits per pixel before the
clustering process.

The results show that the choice of the clustering
algorithm is less critical when the training set does
not match the input data. No algorithm is clearly
better than another. The results also demonstrate
that the proper choice of the training set is vital. It is
noted that we did not find a proper parameter setup
for SOM in the case of House. The problem seems to
be that after prequantization the frequencies of the
training vectors varies greatly. This is not taken
properly account by SOM, which performs blind
adjustment of the neurons depending only on the
learning rate.

5. Discussion

The first hypothesis that SOM has better learning
performance than the GLA was verified only in two
cases out of three. It is, however, not difficult to
outperform GLA at all but practically every method

gives better result than GLA. Of the tested methods,
the GA was the best in all cases.

The second hypothesis that SOM is less dependent on
the initialization is partly true. Unlike in the GLA,
the initialization has practically no effect on the final
result if the maximum learning rate is setup high
enough. On the other hand, the method is extremely
sensitive to the parameter setup, and therefore we
could say that the dependence on the initialization is
changed to a more severe dependence on the correct
parameter setup.

The third hypothesis was that the network structure
smoothness the result, and might perform better when
applied outside the training set. However, there was
no such evidence that SOM is better in this sense but
the choice of a proper training set itself seems to vital.
This is also verified by the studies in [2, 9], which
have shown that a very small number of samples are
usually sufficient for training purposes.

The fourth hypothesis is that neural network is
directly applicable for the classification process. This
is true but the classification is trivial process anyway
once the distance function is defined, and the learning
phase performed. Neural networks does not offer any
better data structure than the conventional ones.

The fifth hypothesis stated that SOM allows the
learning to continue during the classification. This is
true but there is no reason why another classifier
could not be re-adapted when more training samples
are available. Using a proper history buffer, any
classifier can be re-adapted on the fly. However, the
question of how this is done is usually not issued as it
is implicitly taken account in SOM. In this sense SOM
is better because it has one problem less to be solved.

The final hypothesis was the fact that the similarity of
the neighboring vectors can be exploited, for example
in image compression. This might be true but
predictive techniques are commonly used in data
compression anyway. It is unlikely that the fixed
neighborhood structure offers as good prediction as
the ones used in data compression. For example, the
code vectors could always be sorted according to the
principal axis of the vector space. Therefore SOM does

not offer anything more than could be done by other
means.

6. Conclusions

As an optimizer we conclude that SOM is clearly not
the best choice. The method is only slightly better
than the standard GLA but worse than the best
methods. As a classifier it neither had anything more
to offer than the other clustering methods because the
classifier is either trivial to construct, or it is designed
in the learning algorithm already.

One benefit of SOM is the possibility of re-adaptation
after the training phase, which is implicitly built in
SOM due to the competitive learning approach. The
connectivity of the clusters in SOM might also prevent
single isolated clusters to be created far from the
central areas. This could be a benefit in image
processing applications but it is more likely
a restriction that disallows the best optimization.

Overall, the network structure is a restriction because
many good ideas in other clustering algorithms cannot
be naturally fitted in SOM without external data
structures. The data structure itself is good because it
allows global changes in the clustering structure, but
the competitive learning approach does not support
this capability at all, but all modifications appear via
local changes only.

The SOM algorithm is also very slow, and it requires
a large number of iterations. The dependence on the
initialization is not a problem but instead the method
depends on the parameter setup. The main benefit of
SOM therefore seems to be limited to the fact that it is
more or less a standardized package for the training
phase.

Acknowledgments

The work of Pasi Fränti was financed by a grant from
the Academy of Finland.

References

[1] T.-D. Chiueh, T.-T. Tang, L.-G. Chen, "Vector
quantization using tree-structured self-
organizing feature maps", IEEE Journal on
Selected Areas in Communications, 12 (9), 1594-
1599, December 1994.

[2] D.C. Cohn, E.A. Riskin and R.L. Ladner,
"Theory and practice of vector quantizers
trained on small training sets", IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 16 (1), 54-65, January 1994.

[3] V. Delport and D. Liesch, "Fuzzy-c-mean
algorithm for codebook design in vector
quantisation", Electronics Letters, 30 (13), 1025-
1026, June 1994.

[4] W.H. Equitz, "A new vector quantization
clustering algorithm", IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37
(10), 1568-1575, October 1989.

[5] P. Fränti, T. Kaukoranta and O. Nevalainen,
"On the design of a hierarchical BTC-VQ
compression system", Signal Processing: Image
Communication, 8 (11), 551-562, 1996.

[6] P. Fränti and T. Kaukoranta, "Fast
implementation of the optimal PNN method",
Proc. IEEE Int. Conf. on Image Processing
(ICIP’98), Chicago, Illinois, USA, 1998.

[7] P. Fränti, J. Kivijärvi, T. Kaukoranta and
O. Nevalainen, "Genetic algorithms for large
scale clustering problems", The Computer
Journal, 40 (9), 547-554, 1997.

[8] A. Gersho and R.M. Gray, Vector Quantization
and Signal Compression. Kluwer Academic
Publishers, Dordrecht, 1992.

[9] D.S. Kim T. Kim and S.U. Lee, "On testing
trained vector quantizer codebooks", IEEE
Transactions on Image Processing, 6 (3), 398-
406, March 1997.

[10] T. Kohonen, Self-Organization and Associative
Memory. Springer-Verlag, New York, 1988.

[11] Y. Linde, A. Buzo and R.M. Gray, "An algorithm
for vector quantizer design". IEEE Transactions
on Communications, 28 (1), 84-95, January
1980.

[12] J.B. McQueen, "Some methods of classification
and analysis of multivariate observations",
Proc. 5th Berkeley Symp. Mathemat. Statist.
Probability 1, 281-296. Univ. of California,
Berkeley, USA, 1967.

[13] N.M. Nasrabadi and Y. Feng, "Vector
quantization of images based upon the Kohonen
self-organization feature maps", Neural
Networks, 1 (1), 518, 1988.

[14] M.T. Orchard and C.A. Bouman, "Color
quantization of images". IEEE Transactions on
Signal Processing, 39 (12), 2677-2690,
December 1991.

	1. Introduction
	2. Clustering problem
	2.1. Problem formulation
	2.2. Test set
	2.3. Generalized Lloyd algorithm

	3. SOM algorithm
	3.1. Network topology
	3.2. Learning rate
	3.3. Parameter setup
	3.4. Adaptive number of iterations

	4. Experiments
	5. Discussion
	6. Conclusions
	Acknowledgments
	References

