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Abstract 

Coronary heart disease patients must reach a hospital within 90 minutes from the start of myocardial infarction to avoid the risk 

of death. Current hospital locations are optimized for the overall health care system and may not be the best possible for these 

patients. For this reason, we have constructed a web tool for optimizing the facility locations to study how well they serve for the 

coronary heart disease patients. In this paper, we explain how the system has been constructed, how it can be used, and show the 

results using patient data in Finland. Results show that the number of patients at risk could theoretically be reduced to 1% with 

optimized locations but at the cost of increasing the average travel time. 
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1. Introduction 

Myocardial infarction patients need to be treated within a given time limit or they face potentially fatal 

consequences  [1–2]. Patients living closer to a health center have higher change of survival than those who live far 
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away [3]. Current health care system is under pressure to cut costs and optimize the health care services better. This 

may lead to reducing the number of health centers providing treatment for myocardial infarction patients.  

In this paper, we present web-tool (Fig. 1) to analyze how well the current health station locations serve for the 

people using computer simulation. The method involves facility location optimization with real patient data and 

their location with the accuracy of postal code. We explain the components of the system, what data is needed, how 

it is used, and how the optimization is done. We demonstrate its performance by studying the results on Nationwide 

health care data collected during 2015-2018. 

The optimization tool repositioning the health centers with one of the four alternative optimization criteria: (1) 

Euclidean distance, (2) travel distance, (3) travel time, (4) the number of patients at risk by. The optimization is 

based on clustering with travel time constraint. We demonstrate how the different parameters affect the proportion 

of patients within safe distance to the hospital versus the patients at risk. Experiments show that 5% of the patients 

are at risk with the current locations while it could theoretically be reduced to 1% with optimized locations.  

 

 

Fig. 1. Web-tool facility location optimizer for myocardial infarction patients in Finland. 

2. Web tool 

The system consists of the following main components: 

• Patient database 

• Patient locations 

• Travel time estimation 

• Clustering component 

• Web-interface 

2.1. Patient database 

The dataset represents the location of 17,563 adult patients who suffered acute myocardial infarction during the 

years 2015-2018. The data was extracted from the national electronic patient database which contains information 

on 4,280,985 patients (78% of Finnish population) collected during years 2015-2018. The patients were selected to 

include those that had some ICD10 [4] diagnosis in the range of I21.0-I21.3. This includes all types of myocardial 

infarction except those of unspecified type and those with Non-ST elevation (NSTEMI) which are not as critical. 
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2.2. Patient locations 

The location of patients is known as postal codes which we converted to GPS locations. We used a 1km  1km 

population density grid information from the National Land Survey of Finland. The GPS coordinate was calculated 

as the weighted average of the centre points of all blocks that are located within the postal code area. There are 3038 

different postal codes in Finland which are larger in sparsely populated areas. 

For privacy reasons the exact location of patients would be difficult to obtain, but the postal code precision is 

good enough in this scenario as the errors from the estimation are minor compared to the 90-minute hospital 

reachability threshold. 

2.3. Travel time estimation 

Sometimes it is enough to use just geographical (Euclidean) distance and then estimate the travel time using some 

default speed. This is reasonable especially when the landscape is flat and road network relatively straightforward 

[5]. However, the quality of such estimation can degrade a lot in areas with natural borders like rivers, lakes, forest 

and canyons. In large part of Finland, there are lots of lakes that affect the road network. Other affecting factors 

include speed limitations, traffic congestions and lack of roads in rural areas.  

Ideally, one would calculate the shortest path between two locations using a road-network and path-finding 

algorithms such as Floyd, Dijkstra or A* [6]. However, the optimization involves huge number of calculations, and 

these becomes simply too slow. In our case, the optimization would take hours or even days while the system is 

designed to be, if not real-time, at least interactive with small waiting times.  

Another solution would be to use some open-source routing engines like Open-Source Routing Machine (OSRM) 

which provides API for computing the fastest path, and also a batch functionality with their so-called table service 

or distance matrix APIs. However, the facility locations change dynamically during the optimization process so 

single call of such engine would not be enough.  

In this paper, we use the overhead graph [7], see Fig. 2. It creates a complete graph where a subset of locations 

are the nodes. We then calculate the distance between all nodes using both Euclidean and road network distance. 

The ratio between these two distances is called overhead, and it estimates the error if Euclidean distance is used 

between two locations close to the nodes. During the optimization, the distance between a patient and health centre 

are calculated based on their Euclidean distance multiplied the weight between the nodes in the graph closest to the 

patient and health centre locations. This gives significantly more accurate estimation (on average) than simple 

Euclidean distance and takes only fraction of time what shortest path calculation would require. 

 

  

Fig. 2. Use of the overhead graph for the trave time calculations (left). A sample graph in North Karelian region (right). The intensity of red 

indicates the weight of the edges. Larger weights typically appear near lake where distance via road network is higher than Euclidean distance. 
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2.4. Clustering component 

Optimization is based on k-means clustering with few differences. First, k-means works reasonably well when 

the clusters overlap, and the algorithm is repeated several times [8]. However, to make sure the optimization is not 

degraded by inferior clustering result, we used random swap algorithm which is slight extension of k-means by two 

additional components: centroid swap and selection [9].  

The second difference is that we do not want to minimize Euclidean distance but the real travel distance between 

patients and the nearest hospital. Four optimization goals are implemented in the clustering algorithm: (1) Euclidean 

distance, (2) travel distance, (3) travel time, and (4) the number of patients at risk. The algorithm is the same in all 

these three cases, but the selection of the nearest hospital depends on this choice, see Fig. 3. In case of travel 

distance and travel time, we use the result provided by the overhead graph either as such, or by converting it to the 

estimated travel time.  

In case of minimizing patients at risk, we need different function in the partition step. Obvious solution would be 

to implement simple binary function giving penalty 0 for patients within the critical 90 minutes travel time, and 

penalty 1 for others. However, such discrete (binary) objective function can lead to unwanted effects in the 

optimization process, and for this reason, we use Sigmoid function (Fig. 4) which optimizes for the same goal but is 

smoothed version of its binary counterpart. 

Fig. 3. The choice of optimization goal affects only the distance function d in the partition step of k-means (left).  

However, its effect on the partition can be huge significant in the areas where road network is not straightforward (right). 

 

 

Fig. 4. The difference of optimizing travel time (left) and optimizing patients at risk (right).  

2.5. Web interface 

The system is wrapped up by sophisticated web interface as was shown in Fig. 1. It allows to change various 

parameters such as objective function, risk threshold, method for optimization goal, and the number of health 

stations. It is also possible to lock certain health stations and optimize the location of the others, see Fig. 5. The 

number of stations can also be manually tuned. Optimization of most common combinations are pre-calculated and 

stored in the system. 

For the optimization goal, we consider the travel distance, travel time and the patients at risk. For the risk 

criterion, five different thresholds are considered: 30, 45, 60, 75 and 90 mins. Optimization is always started from 
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the original locations of the health centres, but it is also possible to use a subset of the five university hospitals 

(Helsinki, Turku, Tampere, Kuopio, Oulu), or remove two stations (Suupohja and Savonlinna) with the least number 

of patients and therefore speculated to be at risk for removal.  

The optimization results for all these combinations have been pre-calculated and can be examined in the system 

real-time. Other combinations can also be tested but the optimization may take few minutes, so it is not real-time 

and not necessarily interactive (<10s). The result of the optimization is shown at map, and by giving a brief 

statistical summary of the average travel time and distance, and the number of patients at risk. The choices of user-

selected parameters are summarized in Fig. 6. 

 

 

Fig. 5. Possibility to lock certain locations while optimizing the others. 

 

 

Fig. 6. User-selected parameters for the distance function, visualization and for the optimization goal. 
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3. Experiments 

Optimization results are summarized in Table 1 using the four different optimization goals. Results are reported 

using the same attributes as used as the optimization goals. Results for the current locations are also provided for 

reference purpose. From the results we make the following observations. First, the best result for each attribute is 

always achieved by using the same attribute as the optimization goal. The choice of this goal is therefore the most 

important choice when using the tool in real life.  

The second observation is that the number of patients at risk can be improved most. With 90 minutes risk 

threshold, the number patients at risk is 5% with the original locations. The optimized locations can reduce it from 

832 (5%) to 135 (1%). The difference is big. Results when optimization for the patients at risk are further 

demonstrated in Fig. 7 with three risk thresholds (30 min, 60 min and 90 min). Reducing the risk threshold from 90 

to 60 minutes would reach the same level (5%) as the current location with 90 minutes threshold. This means that 

the same number of people can reach the hospital in 1 hour time with optimized locations compared to 1 h 30 min. 

The results also show that optimizing for the patients at risk would move many of the optimized centers to the 

sparsely population especially in North Finland and especially when the higher 90 min threshold is used. This 

significantly reduces the number of patients at risk but has the side-effect of increasing the average travel time for 

all patients. In other words, the optimization does not care if people need to travel 49 minutes (on average) instead 

of 35 minutes, as long as the time remains below 90 minutes, see Table 1. 

Using travel distance or travel time as the optimization goal can also provide better locations and reduce those 

attributes, but  the difference is not as significant. Optimizing travel distance would reduce by 5% from 36.6 km to 

34.7 km, whereas optimizing travel time would reduce it by 3.7% from  35.3 min to 34.0 min. This would also 

reduce the number of patients at risk to 519 (distance) and 488 (time), respectively.  

 

Table 1. Average travel time, distances, and the number of people at risk with the current and optimized locations.  

Boldfaces shows the cases when the particular attribute was directly optimized for.  

Optimization 

goal: 

Euclidean 

distance 

Travel 

distance 

Travel 

time 

Patients 

at risk 

Original locations 29.0 km 36.6 km 35.3 min 832 (5%) 

Euclidean distance 27.9 km 36.1 km 36.2 min 792 (5%) 

Travel distance 28.4 km 34.7 km 34.1 min 519 (3%) 

Travel time (linear) 29.8 km 36.8 km 34.0 min 488 (3%) 

Travel time (Sigmoid) 44.3 km 54.9 km 48.6 min 135 (1%) 

 

4. Conclusions 

We have presented a web-tool for optimizing health center locations using clustering algorithm and by minimizing 

the patients at risk. The tool can be very useful to simulate the effect of various decision like complete re-

optimization of the locations or removing selected health stations. The results also showed that optimization based 

on a single factor like patients at risk can increase the average burden of others. A proper optimization criterion 

should therefore take consider more factors. It is also important to notice that the health centers do not serve only the 

myocardial infarction patients but have many other operations. Optimizing the locations merely for these is not 

feasible. However, considering the needs of the whole health care system would make the optimization goal very 

complex to define [10]. Nevertheless, that should be the future goal. Our study has demonstrated the power of a 

good web-tool for finding important insight that can help decision makers.  
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Fig. 7. Results of the optimization with three different thresholds. The colors of the locations are red for the patients at risk  

when using 30 min (left), 60 min (middle) and 90 min (right) thresholds. Otherwise, the color of the location is blue. 
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