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Abstract

Clustering is a hard combinatorial problem which has many applications in science and practice. Genetic algorithms
(GAs) have turned out to be very effective in solving the clustering problem. However, GAs have many parameters,
the optimal selection of which depends on the problem instance. We introduce a new self-adaptive GA that finds
the parameter setup on-line during the execution of the algorithm. In this way, the algorithm is able to find the
most suitable combination of the available components. The method is robust and achieves results comparable to
or better than a carefully fine-tuned non-adaptive GA.
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1. Introduction

Clustering is a combinatorial optimization problem where the aim is to partition a set of data
objects into a predefined number of clusters in such a way that similar objects are grouped
together and dissimilar objects in separate groups (Everitt, 1992; Kaufman and Rousseeuw,
1990). Clustering has many applications in social sciences, numerical taxonomy, computer
science, data compression and image analysis. The size and dimensionality of the data are
often very high in these applications, which makes manual processing practically impossi-
ble. High quality computer based clustering is therefore desired.

The general clustering problem includes three subproblems: (1) selection of the evaluation
function, (2) decision of the number of groups, and (3) selection of the clustering algorithm.
Here we consider the last subproblem and assume that the number of clusters has been fixed
a priori. The evaluation function depends on the application and the type of data objects.
Minimization of intra-cluster diversity is widely used and it is therefore applied here as
well.

There are several established methods for generating a clustering algorithmically (Everitt,
1992; Kaufman and Rousseeuw, 1990; Gersho and Gray, 1992). The most cited and widely
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used method is the k-means algorithm (McQueen, 1967). It begins with an initial solution,
which is iteratively improved using two different optimality criteria in turn until a local
minimum has been reached. The algorithm is easy to implement and it gives reasonable
results in most cases.

Clusterings of very good quality have been obtained by genetic algorithms (GA) (Fränti
et al., 1997). However, there are many parameters in genetic algorithms that should be
tuned. Since the running times are typically high, the tuning of the parameters is time-
consuming. The situation becomes even more complicated because the optimal parameter
values depend on each other and on the problem instance in question. For example, in Fränti
et al. (1997) it was observed that the optimal selection method depends on the crossing
method used. Furthermore, the optimal parameter values may change during the execution
of the algorithm.

In this paper we propose a self-adaptive genetic algorithm (SAGA) for the clustering
problem. The aim is to give an effective and straight-forward algorithm which obtains
good solutions for the optimization problem without explicit parameter tuning. The self-
adaptation takes place at individual level (Hinterding, Michalewicz, and Eiben, 1997). This
means that each individual of the GA population contains a set of parameter values. These
parameters are used in the reproduction process.

The idea of SAGA is that in addition to the solutions, also the parameter values go
through genetic optimization. In particular, we adapt the crossover method, the mutation
probability and the noise range. We consider six crossing methods of which the best one
is supposed to become dominative. The algorithm controls also the amount of stochastic
disturbance (which is divided into mutations and noise) applied to a solution. It is ex-
pected that these parameters may have different values at different stages of the solution
process.

We will see that the results of SAGA are fully comparative with those of a carefully
refined non-adaptive genetic algorithm. The major benefit of SAGA is that the refining
phase can be omitted completely. The algorithm finds the best or at least a satisfying
parameter combination and thus is able to obtain a good solution practically always.

The rest of the paper is organized as follows. We begin in Section 2 by giving a formal
definition of the clustering problem. The basic genetic algorithm is described in Section 3.
In Section 4 we show how to modify the genetic algorithm in order to make it self-adaptive.
The performance of the algorithm is studied experimentally in Section 5. Conclusions are
drawn in Section 6.

2. Clustering problem

2.1. Definition of the problem

The clustering problem is defined as follows. Given a set of N data objects xi , partition the
data set into M clusters in such a way that similar objects are grouped together and objects
with dissimilar features belong to different groups. Partition (P) defines a clustering by
giving for each object the index (pi ) of the cluster where it is assigned to. Each cluster j is
described by its representative data object (c j ).
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2.2. Object dissimilarity

Each object xi has K attributes xk
i (k = 1, 2, . . . , K ), which together form a feature vector.

For simplicity, we assume that the attributes are numerical and have the same scale. If this
is not the case, the attributes must first be normalized. We suppose that the dissimilarity
(distance) between two objects x1 and x2 is measured by the Euclidean distance of the
two feature vectors. Euclidean distance is a widely used distance function in the clustering
context, and it is calculated as

d(x1, x2) =
√√√√ K∑

k=1

(
xk

1 − xk
2

)2
. (1)

Note that our method is not limited to Euclidean distance.

2.3. Evaluation of clustering

The most important choice in the clustering method is the objective function for evaluating
the quality of a clustering. The choice of the function depends on the particular application
in question and there is no universal solution which could be applied. A commonly used
objective criterion is to minimize the sum of squared distances of the data objects to their
cluster representatives. Given a partition P = (p1, p2, . . . , pN ) and the cluster representa-
tives C = (c1, c2, . . . , cM ), the mean squared error (MSE) e(P, C) is calculated as

e(P, C) = 1

NK

N∑
i=1

d
(
xi , cpi

)2
. (2)

Given a partition P , the optimal choice for the cluster representatives C minimizing (2) are
the cluster centroids, calculated as

c j =
∑

Pi = j xi∑
Pi = j 1

, 1 ≤ j ≤ M, 1 ≤ i ≤ N . (3)

2.4. Generating clustering

Once the objective function has been selected, the clustering problem can be formulated
as a combinatorial optimization problem. The problem of finding an optimal partition P
equals to the problem of finding the set of optimal cluster centroids C . This is due to the
fact that if one of these is given, an optimal choice for the other one can be constructed.
This is formalized in the following two optimality conditions (Gersho and Gray, 1992):

– Nearest neighbour condition: For a given set of cluster centroids, any data object can be
optimally classified by assigning it to the cluster whose centroid is closest to the data
object in respect to the distance function.
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– Centroid condition: For a given partition, the optimal set of cluster representatives (i.e.,
the one minimizing the distortion) is the set of cluster centroids.

These optimality conditions are used for example in the k-means algorithm, where they
are applied in turn. Thus, k-means never moves to a worse solution. When used as a stand-
alone method, k-means tends to end up at a possibly weak local optimum. However, the
method is highly useful as a fine-tuning operation in more sophisticated methods (Fränti
et al., 1997; Fränti, Kivijärvi, and Nevalainen, 1998; Fränti and Kivijärvi, 2000; Kaukoranta,
Fränti, and Nevalainen, 1998)

2.5. Number of clusters

In applications such as vector quantization (Gersho and Gray, 1992), the number of clusters
(M) is merely a question of resource allocation. It is therefore a parameter of the clustering
algorithm. In some other applications the number of clusters must also be solved. The
choice of the correct number of clusters is an independent problem and should be considered
separately. The decision is typically made by a researcher of the application area but analytic
methods also exist (Gyllenberg, Koski, and Verlaan, 1997; Dubes and Jain, 1987) for helping
in doing this. A common approach is to generate several clusterings for various values of
M and compare them against some evaluation criteria. In the rest of this paper we assume
that the number of cluster is fixed a priori.

3. Genetic algorithm

In this section we describe the traditional genetic algorithm on which we base the self-
adaptive genetic algorithm. This genetic algorithm produces solutions of very high quality.
The initial setup has only a minor effect on the results of GA. The method is therefore robust
and, unlike the k-means algorithm, it does not get stuck at a local optimum but examines
the solution space on a wider range.

An individual ι in the traditional genetic algorithm codes a solution ωι of the clustering
problem. In this case the solution is everything an individual contains. The reason for this
conceptual distinction between individual and solution is that an individual in SAGA will
also include additional parameter information, as we will see.

Solution ωι consists of partition Pωι
and cluster centroids Cωι

. The general structure of
the traditional genetic algorithm is following (Fränti et al., 1997):

1. Generate S random individuals to form the initial generation.
2. Iterate the following T times.

(a) Select SB surviving individuals for the new generation.
(b) Select S − SB pairs of individuals as the set of parents.
(c) For each pair of parents (ιa, ιb) do the following:

(i) Create the solution ωιn of the offspring ιn by crossing the solutions of the parents.
(ii) Mutate ωιn with probability ψ .



SELF-ADAPTIVE GENETIC ALGORITHM FOR CLUSTERING 117

(iii) Apply k-means to ωιn .
(iv) Add ιn to the new generation.

(d) Replace the current generation by the new generation.

3. Output the best solution of the final generation.

Note that the overall best solution is preserved in the final generation because SB > 0
(step 2a).

3.1. Selection method

A selection method defines a way a new generation of S individuals is constructed from the
current one. Selection method consists of the following three steps:

– determining SB survivors
– selecting a crossing set of SC individuals
– selecting pairs for crossover from the crossing set

We utilize two selection methods: roulette wheel selection and elitist selection. In the
roulette wheel selection method only the best individual survives (SB = 1) and the crossing
set consists of all the individuals (SC = S). For the crossover, S − 1 pairs of individuals are
randomly chosen. The probability for the individual ιi to be selected in the crossover is

p(ιi ) =
1

1+e(ωιi )∑S
j=1

1
1+e(ωι j )

(4)

where ι j stand for the individuals in the current population and ωι j the corresponding
solutions.

In the elitist selection method, the crossover set consists of the surviving SB individuals
(SC = SB). All the individuals in the crossover set are crossed with each other so that
the crossover phase produces SC (SC −1)

2 new individuals. This results in population size
S = SC (SC +1)

2 . Other population sizes could be implemented simply by discarding a suitable
number of individuals. Here we use SC = 9, giving S = 45.

3.2. Crossover operations

The crossover operation produces a new solution ωn from two parent solutions ωa and ωb.
We have implemented six crossover methods in this study. A brief description of these
methods follows.

Method 1: Random multipoint crossover (Delport and Koschorreck, 1995) is performed
by picking M

2 randomly chosen cluster centroids from each of the two parents in turn.
Duplicate centroids are rejected and replaced by repeated picks.
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Method 2: In the centroid distance crossover (Pan, McInnes, and Jack, 1995) the clusters
are sorted according to their distances from the centroid of the entire data set. The new
solution is created by taking the central clusters from ωa and the remote clusters from
ωb.

Method 3: The largest partitions crossover (Fränti et al., 1997) aims to assign the cluster
centroids to areas with many data objects. This is done by selecting the centroids of the
largest clusters, i.e. the clusters with the greatest number of data objects. The data objects
that belong to the clusters already selected are not considered in further calculations.

Method 4: In the multipoint pairwise crossover (Fränti et al., 1997) the clusters of solutions
ωa and ωb are first paired in a greedy manner in such a way that each cluster of ωa has
a pair in ωb so that the centroids of these clusters are close to each other. One cluster
centroid is then randomly picked from each pair.

Method 5: One-point pairwise crossover (Fränti et al., 1997) differs from the multipoint
pairwise crossover in the selection of the cluster centroids. Instead of selecting one random
cluster centroid from each pair, the first M

2 cluster centroids are taken from ωa and the
rest cluster centroids from ωb. The latter are selected in such a way that the clusters do
not form a pair with the already selected cluster centroids.

Method 6: In the pairwise nearest neighbour crossover (Fränti et al., 1997) the parents are
merged into one solution of 2M clusters. The solution is then reduced to size M using
the pairwise nearest neighbour algorithm (PNN) (Equitz, 1989) for clustering. This can
be implemented effectively so that we avoid the full scale recalculation of the partition
after the crossover phase (Fränti, 2000).

The largest partitions crossover, one-point pairwise crossover and pairwise nearest neigh-
bour crossover are deterministic in the sense that for two fixed parent solutions ωa and ωb

they always end up with the same solution. Thus, with these methods the genetic variation
can be lost if sufficient randomization, such as mutation, is not applied in the other steps of
the algorithm.

3.3. Mutations

Each cluster centroid is replaced by a randomly chosen data object with probability ψ .
This operation is performed after the crossover. Formally, a mutation makes the change
Ci = (c1, . . . , cM ) → C∗

i = (c∗
1, . . . , c∗

M ), where c∗
j = c j with probability 1 − ψ and

c∗
j = xr j with probability ψ . In the previous formula, r j is randomly chosen from [1, N ]

and thus xr j is randomly selected from the set of all data objects. In essence, mutations
implement a single randomized step of local search.

3.4. Noise

After the mutation, noise is added to the centroids. This is done by adding a random vector
to each centroid. The component values of this vector are in the range [−ν, ν]. Typically
one forces ν to decrease during the execution of the algorithm. Noise adding implements
stochastic relaxation (Zeger and Gersho, 1989), if the amount of noise decreases as a function
of time.
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Note that the concepts of noise and mutation are rather close to each other. It is quite
common to use only one of them. In this paper we describe and use both operations to give
the algorithm more freedom of operation.

3.5. Fine-tuning by the k-means algorithm

Finally, G iterations of the k-means algorithm are applied for fine-tuning the new solutions.
This compensates the fact that the crossover, mutation and noise operations are not very
likely to produce better solutions as such. We will discuss later the effect of the value of G
to the quality of the result.

4. SAGA—Self-adaptive genetic algorithm

The selection of optimal parameter values for the genetic algorithm is tedious. Thus an
adaptive system, where the parameter values are automatically adapted on the basis of the
problem instance, would be highly desired. We use the individual level self-adaptation
(Hinterding, Michalewicz, and Eiben, 1997), where each individual has a set of parameters
of its own. The parameter values affect this individual only. In the crossover and mutation
steps the parameters are changed in the same manner as the crossover and mutation change
the solution.

We consider three parameters: crossover method γ , mutation probability ψ and noise
range ν. Thus, an individual ι is of the form ι = (ωι, γι, ψι, νι) where ωι = (Pωι

, Cωι
). The

parameters of an individual ι are used for creating the solution ωι. The general structure of
the self-adaptive genetic algorithm is following:

1. Generate S random individuals to form the initial generation.
2. Iterate the following T times.

(a) Select SB surviving individuals for the new generation.
(b) Select S − SB pairs of individuals as the set of parents.
(c) For each pair of parents (ιa, ιb) do the following:

(i) Determine the parameter values (γιn , ψιn , νιn ) for the offspring ιn by crossing
the parameters (γιa , ψιa , νιa ) and (γιb , ψιb , νιb ) of the two parents.

(ii) Mutate the parameter values of ιn with the probability
 (a predefined constant).
(iii) Create the solution ωιn by crossing the solutions of the parents. The crossing

method is determined by γιn .
(iv) Mutate the solution of the offspring with the probability ψιn .
(v) Add noise to ωιn . The maximal noise is νιn .

(vi) Apply k-means iterations to ωιn .
(vii) Add ιn to the new generation.

(d) Replace the current generation by the new generation.

3. Output the best solution of the final generation.
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The next three subsections describe the parameters from the viewpoint of adaptation. The
parameters are divided into three classes: adaptive parameters, adaptation control parameters
and non-adaptive parameters.

4.1. Adaptive parameters

The SAGA adapts three parameters: crossover method γ , mutation probability ψ and noise
range ν. These have a direct effect on the individual. The key questions regarding the
adaptive parameters are the effect of the parameters and the method used for mutating them.
The crossing of the parameters is done simply by selecting the corresponding parameter
value randomly from one of the parents.

The crossover method parameter γ specifies the crossover method used to create the
new solution. The mutation of the crossover method parameter is implemented simply as a
random selection of one of the six crossover methods.

The mutation probability parameter ψ specifies the probability of a mutation. In the mu-
tation, each cluster centroid is replaced by a randomly selected data object with probability
ψ . When the mutation probability parameter is mutated, a random number drawn from a
Gaussian distribution is added to the current value of ψ . The mutation probability parameter
is restricted to the range [ψmin, ψmax ].

The noise range parameter ν specifies the range of the noise to be added to the cluster
centroids. The mutation of the noise range parameter is done in the same way as the
mutation of the mutation probability parameter: a random number is drawn from a Gaussian
distribution and added to the current parameter value. The value is restricted to the range
[νmin, νmax ].

4.2. Adaptation control parameters

The adaptation of the parameters brings along new parameters that control the adaptation.
The actual settings of these adaptation control parameters are, however, not very critical
on the performance of the algorithm. From the viewpoint of a user, the parameters in 4.1
have been replaced by these parameters. They have mostly obvious settings or only a minor
effect on the outcome of the algorithm, as we will show later.

The limits of the mutation probability ψmin and ψmax specify the range for the mutation
probability parameter. We fix the parameters to the most obvious values. We let ψmax = 1,
which means that all the cluster centroids are mutated for this parameter value. The lower
limit is ψmin = 0, which means that no mutations occur.

Similarly the noise range limits νmin and νmax specify the range for the values of the noise
range parameter. The lower limit is set to the obvious νmin = 0 since the inclusion of noise
is a rather radical operation and it is thus not always desired. This is true especially in the
later stages of the algorithm. The upper limit νmax is set to the maximal value of a feature.

The most important new parameter and the only one which has no obvious setting is the
parameter mutation probability 
. It specifies the probability with which a parameter of a
new individual is mutated after its value has been decided in the parameter crossover. The
probability should be large enough to make sure that new parameter combinations occur and
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small enough to enable slow convergence of the parameter values. This parameter should be
of minor importance on the outcome of the algorithm compared to the original parameters.

4.3. Non-adaptive parameters

Several parameters are not adapted. The reasons to this and the selection of these parameter
values are discussed next.

The number of individuals in the population (S) is not adapted. If S is increased, better
results will be obtained at the cost of a higher running time. Our adaptation method does
not adapt the parameters on the basis of the computation time elapsed. Furthermore, the
population size is a population level parameter, not an individual level parameter as the
previous parameters.

A k-means iteration never weakens a solution. Thus, in order to be able to adapt the
number of k-means iterations, we should have a criterion which would allow us to decrease
this number. Time could again be such a criterion. Because we do not consider the running
time in the adaptation, the number of k-means iterations is not adapted but fixed as G = 2,
which was found out to be a good choice in Fränti et al. (1997).

The effect of a selection method can only be seen at the population level, not at the indi-
vidual level. Thus adapting it at the individual level is implausible. We have experimented
on two selection methods, roulette wheel selection and elitist selection, see Section 5.

5. Test results

We use the following default parameter values: parameter mutation probability 
 = 5%,
number of the k-means iterations G = 2, population size S = 45 and the roulette wheel
selection method. Each test run consists of T = 1000 generations and the results are averages
of R = 20 test runs. Each test run has a different randomly selected initial population. Initial
solutions were formed by randomly drawing M distinct data objects from the data set and
using these as cluster representatives.

We have used four test problems, three of which originate from vector quantization.
Bridge consists of 4 × 4 spatial pixel blocks sampled from a gray-scale image with image
depth of 8 bits per pixel. Bridge2 has the blocks of Bridge after a BTC-like quantization into
two values according to the average pixel value of the block. The cluster representatives are
rounded to binary vectors. Lates mariae records 215 data samples from pelagic fishes of
Lake Tanganyika. The data originates from a biological research, in which the occurrence
of 52 different DNA fragments was tested for each fish sample using RAPD analysis and
a binary decision was obtained whether the fragment was present or absent. The cluster
representatives are real vectors. Miss America has been obtained by subtracting two subse-
quent image frames of an video image sequence and constructing 4 × 4 spatial pixel blocks
from the residuals. Table 1 shows the dimensions of these test problems.

Table 2 shows results of several clustering methods for the test problems. The MSE values
for Bridge2 have been multiplied by the number of attributes (16) so that the error can be
interpreted as average number of distorted attributes per data object. Included methods
are k-means (McQueen, 1967), Splitting method with local repartitioning (SLR) (Fränti,
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Table 1. Dimensions of the test problems.

Data set Attributes Objects Clusters

Bridge 16 4096 256

Bridge2 16 4096 256

Lates mariae 52 215 8

Miss America 16 6480 256

Table 2. Comparison of several clustering methods. R = 100 for k-means and SR, R = 1 for SLR and Ward’s
method, R = 20 for others.

Bridge Bridge2 Lates mariae Miss America

Av. MSE St. dev. Av. MSE St. dev. Av. MSE St. dev. Av. MSE St. dev.

k-means 180.073 1.442 1.489 0.015 0.0703 0.0054 5.963 0.056

SLR 170.221 0.000 1.362 0.000 0.0662 0.0000 5.398 0.000

Ward’s method 169.253 0.000 1.429 0.000 0.0627 0.0000 5.507 0.000

SR 162.607 0.275 1.469 0.014 0.0683 0.0045 5.265 0.013

RLS-2 164.220 0.251 1.264 0.004 0.0626 0.0000 5.262 0.019

GA 161.403 0.089 1.263 0.004 0.0626 0.0000 5.108 0.004

SAGA 161.183 0.102 1.252 0.003 0.0626 0.0000 5.100 0.003

Kaukoranta, and Nevalainen, 1997), Ward’s method (Ward, 1963), Stochastic relaxation
(SR) (Zeger and Gersho, 1989), Randomised local search (RLS-2) (Fränti and Kivijärvi,
2000), Genetic algorithm (GA) (Fränti et al., 1997) and SAGA. The results of SLR and
Ward’s method were not repeated since the methods are deterministic. The results of k-means
and Stochastic relaxation were repeated 100 times. We can see that the results of GA and
SAGA are in most cases better than those of the other methods included. The exceptions
are for Bridge2 and Lates mariae. Even though most methods are especially unable to find
a good solution for Bridge2 since only binary vectors are allowed to represent clusters,
RLS-2 is able to find as good results as GA. In the case of Lates mariae, GA, SAGA and
RLS-2 reach the same solution every time. Since the problem is a relatively easy one, this
solution is likely to be the global optimum.

Table 3 shows a more detailed comparison between SAGA and the ordinary GA for
Bridge. In GA we use the best parameter setup found in Fränti et al. (1997): the probability
of the mutations is 1%, PNN serves as the crossover method, and no noise is added to the
solutions. We have also included the results of GA using random crossover and the results
of SAGA using only PNN crossover. The results show that SAGA achieves consistently
better clustering results that GA, which indicates that the adaptation gives extra benefit
besides finding the best parameter combination. Even though the differences are rather
small, the deviation of the results is very small and thus the difference in results is statistically
very significant when tested with Student’s t-test (p < 10−7). The differences on Bridge2
(p < 10−10) and Miss America (p < 10−7) sets have a similar significance, see Table 2.
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Table 3. Comparison between SAGA and the ordinary genetic algorithm for Bridge. R = 20.

Av. MSE Best MSE St. dev. Av. time

SAGA 161.183 161.049 0.102 15:56:50

SAGA (PNN only) 161.404 161.219 0.107 18:06:04

GA (PNN crossover) 161.403 161.289 0.089 11:31:49

GA (random crossover) 174.089 173.602 0.246 10:43:22

Table 4. The effect of parameter mutation probability for Bridge. R = 20.

Av. MSE Best MSE St. dev. Av. time


 = 0% 166.829 161.137 5.860 20:02:22


 = 0.5% 161.177 160.936 0.150 14:13:04


 = 5% 161.183 161.049 0.102 15:56:50


 = 50% 161.871 161.353 0.216 15:18:41

SAGA can also utilize the different crossover techniques, which is verified by the results
of SAGA using only PNN crossover. Even though PNN crossover is the most effective
crossover method for Bridge (Fränti et al., 1997), the results of SAGA using all the avail-
able crossover methods are statistically better (p < 10−7) than the results with only PNN
crossover. The results of GA using random crossover show that a good parameter setup is
indeed vital.

The differences in running times are explained by the optimizations in the k-means
implementation (Kaukoranta, Fränti, and Nevalainen, 2000). Since some noise is added to
solutions in SAGA, practically all the cluster representatives change and the optimizations
do not speed up the calculation of the partition considerably. The usage of faster crossover
methods compensates the time difference somewhat. This is confirmed by considering the
running times of SAGA with only PNN crossover.

Next we study how the non-adaptive parameters (4.3) and adaptation control parameters
(4.2) affect the output of SAGA. Table 4 demonstrates the effect of changing the parameter
mutation probability 
. It turns out that the parameter mutations are necessary as the results
are clearly inferior for 
 = 0%. However, the exact value of 
 is not crucial but all the
tested values (
 > 0) gave good results. We selected 
 = 5% as the default value based on
preliminary testing. The final results show that there is no statistically significant difference
between the results of 
 = 0.5% and 
 = 5%.

Table 5 shows the effect of the population size. In order to make the results comparable,
we have adjusted the number of iterations so that in each case an approximately equal number
of solutions is evaluated. A larger population size results in a more robust algorithm. Sizes
from 15 up seem to work well. If the population size is very small, SAGA is not always
able to find a good parameter setup and thus may end up with a poor result. The increased
deviations demonstrate this very well. Also, a larger population is capable of maintaining
more genetic variation and therefore able to improve the result longer.
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Table 5. The results of different population sizes for Bridge. R = 20.

Iterations Av. MSE Best MSE St. dev. Av. time

S = 3 7000 178.098 161.069 32.372 4:33:33

S = 6 2800 163.701 160.745 8.306 4:05:15

S = 10 1556 165.997 160.750 10.223 4:54:34

S = 15 1000 161.780 160.879 3.319 4:37:55

S = 28 519 161.180 161.008 0.137 5:00:07

S = 45 318 161.342 161.083 0.143 5:12:51

Table 6. The effect of k-means iteration count G for Bridge. R = 20.

Av. MSE Best MSE St. dev. Av. time

G = 0 161.344 161.088 0.148 13:11:00

G = 1 161.253 160.981 0.117 11:23:22

G = 2 161.183 161.049 0.102 15:56:50

G = 4 161.148 160.982 0.108 22:02:47

G = 6 161.130 160.998 0.094 26:21:46

G = 8 161.124 160.843 0.125 28:43:46

G = 10 161.183 161.050 0.094 32:05:22

Table 7. Comparison of the selection methods for Bridge. R = 20.

Iterations Av. MSE Best MSE St. dev. Av. time

Roulette wheel 818 161.205 161.051 0.110 13:05:22

Elitist 1000 161.443 161.223 0.171 5:28:36

Table 6 demonstrates the effect of the number of k-means iterations G. It turns out that G
has a rather small effect on the object function. Even without k-means the results are very
good, which is mainly due to the efficiency of the PNN crossover method. The differences
in the results when G > 1 are quite insignificant, but the running time steadily increases
along the number of k-means iterations. Thus our default choice G = 2 seems to be a good
one.

The roulette wheel selection and elitist selection methods are compared in Table 7.
The elitist selection method gives significantly shorter running times but the premature
convergence weakens the results in comparison to the roulette wheel selection method.
The number of iterations has again been adjusted to balance the difference in the number
of evaluated solutions. The shorter running time of the elitist method is mainly due to
our effective k-means implementation (Kaukoranta, Fränti, and Nevalainen, 2000) which
benefits from the fact that after convergence the changes in the solutions are very small.
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Figures 1–3 demonstrate the power of adaptation by showing the development of active
values of the crossover method parameter for typical test runs. The graphs show the fre-
quency of each crossover technique applied at different generations. These figures clearly
demonstrate the power of the adaptation. For Bridge, PNN is the dominating crossover
method. In figure 1, PNN is the most frequently used method at the beginning and at the
end of the solution process. However, the one-point pairwise method dominates the genera-
tions from 300 to 850. In the second run, see figure 2, the PNN crossover is rather dominative
most of the time and never completely disappears.

In figure 3 the elitist selection method is used for Bridge2. This shows two important
differences to the previous two runs. Firstly, the PNN crossover does not dominate in any
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Figure 1. Frequency of different crossover methods for Bridge, with 
 = 0.5%. MSE = 160.9726.
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Figure 2. Frequency of different crossover methods for Bridge, with 
 = 5%. MSE = 161.0574.

stage. Instead, the centroid distance, one-point pairwise and largest partitions crossover
methods each have their dominative phases. Secondly, the changes in the frequencies are
very sudden. This is due to the elitist selection method which allows a successful crossing
method rapidly become more popular.

In Tables 8–10 we analyze the successfulness of the crossing methods (see Section 3).
The tables show for different generation ranges the number of times the individual crossover
methods produce a new locally best solution. The runs are the same as in figures 1–3. We
see that the PNN crossover is very effective for Bridge in the beginning of the run. In the
later generations the situation may be different. For Bridge2, most of the improvements in



SELF-ADAPTIVE GENETIC ALGORITHM FOR CLUSTERING 127

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

random multipoint crossover

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

centroid distance crossover

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

largest partitions crossover

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

multipoint pairwise crossover

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

one-point pairwise crossover

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

pairwise nearest neighbour crossover

Figure 3. Frequency of different crossover methods for Bridge2. Elitist selection method. MSE = 1.2561.

the later stages are obtained by the random multipoint crossover. However, other methods
have also succeeded.

6. Conclusions

A self-adaptive genetic algorithm was proposed for the clustering problem. The method
automatically adjusts its parameters during the execution of the algorithm. SAGA was able
to give consistently better results than a carefully fine-tuned non-adaptive GA. In addition,
the results on a binary test set demonstrate that the optimal parameter combination may be
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Table 8. Frequencies of the crossing methods improving
the best solution. See figure 1.

Crossover method

Iterations 1 2 3 4 5 6

1–200 0 0 0 0 1 34

201–400 0 0 0 0 12 2

401–600 0 0 0 0 3 0

601–800 0 0 0 0 1 0

801–1000 0 2 0 0 6 4

Table 9. Frequencies of the crossing methods improv-
ing the best solution. See figure 2.

Crossover method

Iterations 1 2 3 4 5 6

1–200 1 1 0 1 0 33

201–400 0 0 0 0 0 8

401–600 0 0 0 0 0 4

601–800 0 0 0 0 0 5

801–1000 0 0 0 0 0 3

Table 10. Frequencies of the crossing methods improving
the best solution. See figure 3.

Crossover method

Iterations 1 2 3 4 5 6

1–200 7 12 1 12 1 17

201–400 4 0 0 0 1 0

401–600 7 0 1 0 1 0

601–800 2 0 0 0 0 0

801–1000 4 0 1 1 0 0

different for different problem instances, and therefore self-adaptation can be highly useful
in such situations.

The experiments show that the parameter settings of SAGA have minor effect on the
results. Parameter mutation is necessary, but the exact amount is non-essential. Small pop-
ulation sizes sometimes lead into a situation where a good parameter combination was
not found and the result was inferior. Population sizes from 15 up worked very well. The
effects of a large population size are increased robustness and better preservation of genetic
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variation. The number of k-means iterations was quite insignificant. Elitist selection method
converges fast and is thus unable to achieve as good results as roulette wheel selection.

To sum up, the new self-adaptive clustering algorithm gives very high quality results for
hard problem instances. On the other hand one must pay for this with a rather large time
consumption of the solution process.

An interesting topic of further research could be the population level adaptation
(Hinterding, Michalewicz, and Eiben, 1997), which allows the consideration of the run-
ning time. Thus, also the parameters in Section 4.3 could be adapted. Another benefit of
the population level adaptation would be the possibility to optimize the time usage of the
algorithm.
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