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The scalability of traveling salesperson problem (TSP) algorithms for handling large-scale
problem instances has been an open problem for a long time. We arranged a so-called
Santa Claus challenge and invited people to submit their algorithms to solve a TSP problem
instance that is larger than 1M nodes given only 1 h of computing time. In this article, we
analyze the results and show which design choices are decisive in providing the best
solution to the problem with the given constraints. There were three valid submissions, all
based on local search, including k-opt up to k � 5. The most important design choice
turned out to be the localization of the operator using a neighborhood graph. The divide-
and-merge strategy suffers a 2% loss of quality. However, via parallelization, the result can
be obtained within less than 2min, which canmake a key difference in real-life applications.
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INTRODUCTION

The traveling salesperson problem (TSP) (Applegate et al., 2011) is a classical optimization problem
that aims to find the shortest path that connects a given number of cities. Even though the name
implies outdoor movement by human beings, there are many other applications of TSP, including
planning, scheduling of calls, manufacturing of microchips, routing of trucks, and parcel delivery.

TSP is not limited to physical distances, but any other optimization function in place of the
distance can be used. In the early days, travel distance or travel time were used (Dantzig and Ramser,
1959), but currently, other objectives also exist, such as minimizing the exposure to sunlight (Li et al.,
2019), maximizing the safety of travel (Krumm and Horvitz, 2017), or minimizing CO2 levels (Kuo
andWang, 2011; Lin et al., 2014). Practical applications include logistics such as vacation planning or
orienteering (Fränti et al., 2017), transportation of goods, providing maintenance, or offering health
services (Golden et al., 2008), among others.

Sometimes there is a need to process larger problem instances, especially in applications such as
waste collection and delivery of goods, where millions of deliveries occur each day. Due to the
COVID-19 pandemic, logistics became the center of attention, causing couriers to struggle to meet
increased demands from hospitals, supermarkets, and those who self-isolate at home and order food
and merchandise online.

TSP is an NP-hard problem. Despite this fact, there are algorithms that can solve impressively
large instances. Some of these are exact solvers that guarantee the optimum solution (Barnhart et al.,
1998; Applegate et al., 1999; Bixby, 2007). However, these methods have exponential time complexity
and become impractical on large-scale problem instances. The current record includes 85,900 targets
that were solved in approximately 136 CPU-years (Applegate et al., 2011). For this reason, heuristic
solvers have been developed, and they currently outnumber the exact solution methods.

Existing heuristics use different strategies, such as local search, tabu search, ant colony
optimization, simulated annealing, and evolutionary methods (Braekers et al., 2016). These
methods can quickly provide suboptimal solutions that are acceptable in practice. For example,

Edited by:
Sheri Marina Markose,

University of Essex, United Kingdom

Reviewed by:
Marco Gavanelli,

University of Ferrara, Italy
Konstantinos Giannakis,

University of Bergen, Norway

*Correspondence:
Pasi Fränti

franti@cs.uef.fi

Specialty section:
This article was submitted to

Computational Intelligence in Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 01 April 2021
Accepted: 17 August 2021

Published: 04 October 2021

Citation:
Mariescu-Istodor R and Fränti P (2021)
Solving the Large-Scale TSP Problem
in 1 h: Santa Claus Challenge 2020.

Front. Robot. AI 8:689908.
doi: 10.3389/frobt.2021.689908

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 6899081

ORIGINAL RESEARCH
published: 04 October 2021

doi: 10.3389/frobt.2021.689908

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.689908&domain=pdf&date_stamp=2021-10-04
https://www.frontiersin.org/articles/10.3389/frobt.2021.689908/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.689908/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.689908/full
http://creativecommons.org/licenses/by/4.0/
mailto:franti@cs.uef.fi
https://doi.org/10.3389/frobt.2021.689908
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.689908


we can solve an instance with 1,904,711 targets within 15% of the
optimum in 30 min and within 0.1% of the optimum in a few
hours (Helsgaun, 2000; Taillard and Helsgaun, 2019). The quality
of the solution increases with the processing time the algorithm
spends.

A generalized variant of TSP is the vehicle routing problem
(VRP) (Dantzig and Ramser, 1959). This problem considers
several real-world elements, such as multiple agents (k-TSP),
limited capacity, working hours, time windows, and depots. VRP
instances are more difficult to solve, and most research considers
instances with only a few hundred targets (Dumas et al., 1991;
Reinelt, 1992; Uchoa et al., 2017). In fact, the first instances with
up to 30,000 targets appeared just last year (Arnold et al., 2019),
even though there is a real demand for even much higher
instances. FedEx, for example, have over six million deliveries
per day.1

When solving large-scale problem instances, the scalability of
the algorithms is still an issue. One issue is that the many
algorithms are not linear in time and therefore not scalable.
Another issue is that many implementations use a complete
distance matrix that cannot fit into memory with large-scale
instances. One solution is to split the problem into subproblems
and use multiple cores. However, NP-hard problems cannot be
naturally divided without compromising the quality. It is not
trivial to create a good split-and-merge strategy that would keep
the loss of quality marginal. All of these issues pose challenges to
applications of TSP to large-scale problem instances.

The concept of large-scale itself has evolved considerably over
the years. In a study by Thibaut and Jaszkiewicz (2010), problem
sizes up to N � 1,000 were considered. Sakurai et al. (2006)
performed experiments with onlyN � 40 targets, and the problem
instances of N � 1,000–10,000 were called very large scale. One
obvious approach to attack the issue is to divide the problem into
smaller subproblems. Different space partitioning methods have
been used, such as Karp, Strip, and Wedging insertion
(Valenzuela and Jones, 1995; Xiang et al., 2015). The affinity
propagation clustering algorithm was used by Jiang et al. (2014)
for problems of size N < 3,000 and hierarchical k-means for
problems of size N > 3,000. Each cluster had 40 targets at the
most. However, the reported results took 3 days to compute
problem sizes over 1 M.

When using clustering, it is also possible that some clusters are
larger than others, which could lose the benefit of clustering. An
attempt to reach balanced cluster sizes was considered by Yang
et al. (2009). Another problem is memory consumption because
many algorithms store an N×N distance matrix. Additional
memory is needed in some cases, such as storing the
pheromone trails in the case of ant colony optimization.
Nevertheless, a version of ant colony optimization by Chitty
(2017) was capable of handling these issues and solving problem
sizes up to 200 k at the cost of a 7% decrease in accuracy. This cost
(decrease) in the performance is quite large to pay for the
scalability.

To address this problem, we created a TSP challenge where
participants were asked to provide an algorithm to optimize Santa
Claus tours to visit all households in Finland. The algorithms
should terminate within 1 h. In this article, we perform an
analytical comparison of the submitted algorithms. We analyze
each design component separately, including the single-solution
TSP solver, clustering method for dividing the problem into
subproblems, merge strategy to combine the subsolutions,
approaches to the open-loop, fixed start point, and k-TSP cases.

Data and Goals
In the spirit of Christmas, Santa Claus needs to deliver presents to
the children in every family on Christmas Eve. He can also use k
helpers by dividing the tour into k parts accordingly. We awaited
solutions to the following problem cases:

1. Closed-loop TSP;
2. Open-loop TSP;
3. Fixed-start TSP (open loop);
4. Multiple tours k-TSP (open loop).

The first case is the classical (closed-loop) TSP problem where
Santa needs to return home to complete the tour. The three other
cases are open-loop variants that create a TSP path where return
to home is not necessary. In the second case, Santa can start from
any location with the logic that he has plenty of time to prepare
and can go to the selected start point well before the actual trip
starts; only the time spent traveling the path counts. In the third
case, he leaves from his home (depot), which in our data is set to
Rovaniemi. The fourth case is motivated by the fact that it would
be impossible for Santa to make the trip on Christmas Eve
without breaking the laws of physics.2 Santa therefore recruits
k assistants; elves or drones in modern times (Poikonen et al.,
2019) and divides the tour into multiple parts that are solved by
each helper independently.

Data
We extracted all building locations in Finland from
OpenStreetMap3 (OSM) to create 1,437,195 targets that
represent the households for Santa to visit. We used our local
installation of the OSM and the Overpass API. We first queried
inside a bounding box that encompasses the entire country and
kept only the buildings that fell within the country borders. The
coordinates were converted into the Finnish National Coordinate
System (KKJ), which projects them in Euclidean space (most
typical for researchers), where the Euclidean distance
corresponds to meters of movement in a straight line. The
data are published as a TSP instance on our website.4

We note that the building locations do not match 1:1 to the
households in Finland, and there is bias. Some regions,
especially in the southeastern part, have denser records of
buildings than the other areas. This arrangement shows

1https://www.statista.com/statistics/878354/fedex-express-total-average-daily-
packages

2https://gizmodo.com/can-santa-claus-exist-a-scientific-debate-1669957032
3https://www.openstreetmap.org
4http://cs.uef.fi/sipu/santa/data.html
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visible artifacts as sharp edges between the dense and sparse
regions (see Figure 1). This appearance is most likely due to
an inconsistent representation in the OSM database of north
vs. south. The data itself appear to be correct, but there is a
lack of data in many regions. However, for the purpose of our
Santa competition, the resulting data set is good enough,
because the size of the data serves the need for a large-scale
test case (n ≈ 1.4 M).

Goals
We set a requirement that a submitted algorithm must optimize
the tour within 1 h. All of the valid submissions were evaluated
after executing for 1 h or less. A program was disqualified if it did
not terminate within 1 h. All of the submissions were evaluated in
terms of quality, speed, and simplicity. We ran all of the
algorithms on the same Dell R920 machine with 4 × E7-4860
(a total of 48 cores), 1 TB, and 4 TB SAS HD.

While Santa has time during the entire year for his
preparations, we set a stricter requirement. We allowed the
computer program to spend only 1 h performing the necessary
calculations. This approach reflects more real-life applications
where the situation is dynamic and constantly changing. The
purpose is to test the scalability of algorithms for real-life
applications.

Challenges
The greatest challenge is the size of the data and the limited
processing time of 1 h. Most TSP solvers have quadratic or higher
time complexity, and even simple greedy heuristics need to
compute the distance to all remaining targets at each of the n
steps (Fränti et al., 2021). Even such algorithms are not fast
enough to complete in 1 h on the specified machine.

Another challenge is the multiple variants. Most existing
methods are tailored for the classical closed-loop case, and
some modifications are needed to adapt them to the open-
loop, fixed-start, and k-TSP cases.

SOLVING LARGE-SCALE PROBLEMS

The general structure of all methods discussed here follows the same
overall structure, which consists of the following components:

• Single-solution TSP solver,
• Divide into smaller subproblems,
• Merge the subsolutions.

Single-Solution TSP Solver
State-of-the-art TSP solvers (excluding the optimal ones) and all
submitted algorithms are based on local search. The idea is to
have an initial solution that is then improved by a sequence of
local operators in a trial-and-error manner. The key component
in the local search is the choice of the operator. It defines how the
current solution is modified to generate new candidate solutions.
The following operators were used:

• Relocate (Gendreau et al., 1992),
• Link swap (Sengupta et al., 2019),
• 2-opt (Croes, 1958),
• k-opt (Shen and Kernighan, 1973).

The most popular of these is 2-opt (Croes, 1958) and its
generalized variant k-opt (Shen and Kernighan, 1973). The 2-opt
operator selects two links and redirects the links between their
nodes. Its generalized variant, k-opt, involves k links, which
allows more complex modifications of the solution. It is also
known as the Lin–Kernighan heuristic. A Link swap relocates any
link by connecting it to one or both end points of the current path.
Link swap works only for the open-loop case but has been found
to contribute most to the search; approximately 50% of the
improvements were due to Link swap as shown by Sengupta
et al. (2019). Relocate removes a node from its current position in
the path and reallocates it elsewhere by creating a new detour via

FIGURE 1 | The Santa Claus TSP challenge was motivated by Santa’s need to deliver presents to the children in every family on Christmas Eve, as is the tradition in
Finland. We used publicly available data from OSM, consisting of 1.4 million building locations. While most of the population is in south Finland, this data set has dense
coverage of certain regions, such as southeast Finland. We note that this database does not cover the entirety of Finland, and there is a bias in the locations.
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this node. The operators are demonstrated in Figure 2. Tilo
Strutz pointed out that both Relocate and Link swap are special
cases of k-opt (Strutz, 2021).

Most local search algorithms apply one of the three strategies:
random, best improvement, and prioritization. Random search
tries out the operators in random order and accepts any solution
that improves the current solution. Best improvement considers all
possible operators for the current solution and selects the best. The
operators and their parameters can also be prioritized based on
criteria such as alpha-nearness in an effective implementation of
the Lin–Kernighan heuristic known as LKH (Helsgaun, 2000).
Here, each link is scored based on sensitivity analysis using
minimum spanning trees (MST). More specifically, it measures
the increase in cost when a tree is forced to contain the specific link.

Localizing the Search Space
One limitation of the above-mentioned operators is that most of
the generated candidates are meaningless. For example, it makes
no sense to try to relocate a node along a path at the opposite part
of the space. In most cases, only the nearby points are meaningful
(see Figure 3). In the case of relocation and 2-opt, only a few out
of the n − 2 choices have a realistic chance of success, and most
others would be just a waste of time. Link swap is somewhat better
because there are only three choices, of which at least the one
where both end points are changed is potentially meaningful.

Two strategies have been applied to restrict the operators to
consider targets only in the local neighborhood: grid and
neighborhood graph. The first strategy is to divide the space into
cells by generating a grid (see Figure 4). The operator is then restricted
to considering only nodes and links within the same cell or targets in
neighboring cells. Because the density of data varies considerably and
the goal is to limit the number of nodes per cell, multiple resolutions
are often necessary, and smaller cells are generated only when needed.

The second strategy is to create a neighborhood graph such as
the Delaunay graph or related graphs such as Gabriel or XNN.
Efficient algorithms exist to compute these data structures for 2D

geographic data; a linear time solution for the Delaunay graph can
be found in the work by Peterson (1998).

The drawback of localization is that successful operations can
be missed due to arbitrary grid divisions or limitations in the
neighborhood graphs. However, it was shown by Fränti et al.
(2016) that 97% of the links in the optimal TSP path are included
in the XNN graph. Localization is an efficient approach to reduce
unnecessary calculations and is expected not to miss many of the
moves that full search would potentially find.

Divide by Clustering
To make the algorithm scalable, we expect that it is necessary to
divide the data into smaller size instances that the TSP solver can
manage. Spatial clustering is applied here. The idea is that each
subproblem is solved separately, and the resulting paths are then
merged to create the overall TSP path.

To select the most appropriate clustering method, we must
consider three questions: 1) which objective function to optimize,
2) which algorithm to perform this optimization, and 3) how
many clusters. Assume that the TSP solver requires quadratic,
O(N2), time complexity. If the data are equally divided into √N
clusters, we would have √N points in each cluster. Solving TSP
for one cluster would require O(N) time and O(N1.5) for all √N
clusters. With our data (≈1.4 M points), we would have
approximately 1,200 clusters. Multithreading with >1,200
processors would make the computation time linear.

However, it is not clear how the clusters should be optimized.
Figure 5 shows several possible methods. K-means minimizes the
sum-of-squared errors and generates spherical clusters. This
approach is a reasonable clustering strategy in general but not
necessarily the optimal strategy for TSP. Grid-based methods are
faster but even worse, in general, because the borders are decided
without considering any properties of the data. On the other
hand, the TSP path is also a spanning tree, and the clusters
correspond to a spanning forest. A single-link clustering
algorithm might therefore make sense because it finds a

FIGURE 2 | Local search operators used in the submitted algorithms.
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minimum spanning forest. However, when the density varies,
large clusters will form in regions with high density (southern
Finland), which are too large to be optimized properly. Attempts
to mitigate this behavior were tried out by Mariescu-Istodor et al.
(2021), but those approaches were too slow to handle more than a
few tens of thousands of targets efficiently. The relationship
between MST and TSP was also utilized by Fränti et al.
(2021). Density peaks clustering was considered by Liao and
Liu (2018).

Merging the Subsolutions
Another open question in the algorithms is how to merge the
subtours from the individual clusters into a single tour. All divide
and conquer submissions decide the merging strategy before
solving the clusters. The problem is essentially formulated as a
cluster-level TSP, where each cluster represents a node in a so-
called meta-level graph. This meta-level problem is solved to
decide which clusters are to be merged (Kobayashi, 1998). The
subproblems within each cluster are treated as open-loop TSP

FIGURE 3 | Local search operators should consider only nearby points and links. A given target has n − 2 � 13 new positions, where it could be relocated. However,
only the nearby points (marked by arrows) are worthwhile considering.
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instances with fixed end points, which are used for connecting the
clusters.

The divide-and-conquer approach optimizes the subsolutions
and the overall tour independently. It is likely to lead to some
suboptimal choices, which makes it also possible to improve the
overall tour later by applying additional operators as a fine-tuning
step. This outcome can significantly improve the solution,
especially across the cluster boundaries. Here, the same single-
solution TSP solver can be applied, but since the entire problem

instance is much larger, this approach can be quite time
consuming and can be applied only by a limited number of
iterations. Localization of the operations is therefore necessary in
this fine-tuning step.

Solutions From the Literature
In the literature, Karp (1977) applied a divide-and-conquer
technique with a k-d tree-like structure in 1997. Two heuristics
(including Lin and Kernighan) and one optimal heuristic

FIGURE 5 | An example of a TSP instance divided into clusters in three different ways. The optimum cannot be achieved when it enters the same cluster more than once.

FIGURE 4 | Efficiency of the local search operators depends highly on how to limit the search for candidates within the neighborhood. The grid-based approach
restricts the two operands (links) to be in the same or neighboring grid cells, while a neighborhood graph considers only connected nodes.
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(dynamic programming) were considered for solving the
subproblems. Problem sizes of N � 128 were used. No TSP
experiments were provided, but gap values of the
corresponding MST solutions using 16 clusters varied from
3.7 to 10.7%.

Valenzuela and Jones (1995) extended Karp’s idea by selecting
the direction of a cut via a genetic algorithm and by introducing a
method to merge the subsolutions. The results within a 1% gap to
the optimal were reported at the cost of 12–28 h of processing
time for a problem instance of size N � 5,000. Parallel
implementation of Karp’s algorithm was described by Cesari
(1996), and processing times less than 1 h were reported using
16 processors for problem sizes up to N � 7,937. Modest gap
values (approximately 5%) were reported with only two
subproblems.

Things started to develop significantly in 2003 when Mulder
and Wunsch (2003) applied the adaptive resonance theory
algorithm of Carpenter and Grossberg (1998) to cluster data
by a hierarchical k-means variant in combination with a variation
of the Lin–Kernighan heuristic. It reached an 11% gap with a
problem size of N � 1 M in which there were randomly
distributed cities, and the solution spent only 16% of the time
required by the full version (24 min vs. 2 h 30 min). In the same
year, 2003, the WorldTSP5 data set was published, which

consisted of 1.9 M city locations. In 2020, Geonames6 was
published with 12 M geographical features on Earth. Also in
2020, GalaxyTSP was published (Drori et al., 2020) and extended
the largest size ever considered by containing 1.69 billion stars.

A quadtree-based divide-and-conquer technique was applied
by Drori et al. (2020) using LKH to solve the subproblems in
parallel. It took 50 min to solve the WorldTSP, reaching a 1% gap
compared to the best known result. The current record holder is
Keld Helsgaun (15th Feb. 2021), who used essentially the same
LKH method that was submitted here to the Santa competition.
To solve the GalaryTSP, the data were divided into 1,963 tiles
with an average size of 861,913 nodes, and it took approximately
3 months to solve the problem in parallel (Drori et al., 2020).

Overall, the state of the art in the literature still appears to rely
mainly on local search and LKH. A variant of the LKH was
compared against a genetic algorithm with an edge assembly
crossover by Paul et al. (2019) to determine which method finds
the optimal solution faster given a 1-h time limit. The genetic
algorithm was better in 73% of the cases, but only problem sizes
up to N � 5,000 were considered. However, optimality was required,
and the authors expected the processing times to align when the
problem size increased. We cannot therefore conclude much about
how the genetic algorithm would perform with the Santa
competition, in which the success is measured by the gap value.

FIGURE 6 | A straightforward approach (A) and the pseudocode approach (B) to generate open-loop, fixed-start, and k-TSP (k � 2) solutions from the closed-loop
solution.

5http://www.math.uwaterloo.ca/tsp/world 6https://www.geonames.org
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Other Cases
A straightforward approach to support several TSP variants is to
create a base algorithm that solves the closed-loop TSP and then
to make small modifications to the result to generate solutions for
the open-loop, fixed-start, and k-TSP cases. For example, an
open-loop solution (TSP path) can be created by simply cutting
the longest link from the closed-loop variant (TSP tour). A fixed
start point can also be created in the same manner by cutting one
of the links connected to Santa’s home. The same idea generalizes
to the k-TSP case by removing k links (see Figure 6). However,
this variant is slightly naïve. For example, removing the longest
link from the optimal closed-loop solution does not necessarily
create an optimal open-loop solution.

A more sophisticated approach is to create a pseudonode that
has a constant distance to all other nodes (Sengupta et al., 2019).
Because of the equal distances, it does not matter which nodes it
will be connected to. However, it allows the remainder of the tour
to be optimized as a path and to avoid one long link somewhere
along the tour. The two nodes connected to the pseudonode will
represent the start and end points of the open-loop variant. The
chosen distance to the pseudonode does not matter if the TSP
solver is optimal. However, it was noted by Fränti et al. (2021)
that it is better to use some large constant, whereas using zero
values works poorly with some heuristics. A fixed start point can
be dealt with by setting its distance to the pseudonode to 0. This
approach will avoid one infinite link and guarantees that the
selected node will become one of the end nodes in the TSP path.

SUBMITTED METHODS

In total, 82 trial TSP solutions were submitted to the testing
website by 13 different authors to see how they ranked. However,

only four algorithms were eventually submitted to the
competition:

• Keld Helsgaun,
• Tilo Strutz,
• UEF,
• Anonymous.

Three worked as expected. They all were based on local search.
The fourth failed to work even if it ran significantly longer than
the time limit. Originally, we did not plan to submit our own
method because we were the organizers of the event. However,
since the number of submissions remained small, we decided to
contribute ourselves by using our simple baseline solver from
Sengupta et al. (2019) with the clustering-based divide-and-
conquer approach that we had implemented earlier to serve as
a reference solution. We did not expect it to perform well in this
competition.

Keld Helsgaun
Keld Helsgaun submitted his algorithm known as LKH7 with
minor modifications and with specific parameter settings. It is an
efficient implementation of the LKH that supports up to k � 5.
The algorithm uses a best-improvement strategy, because it tries
all combinations and selects the best combination when updating
the tours. This process is usually slow, but the author modified it
to have much better efficiency by precomputing a candidate set of
links to be considered instead of trying all possible links. This
strategy is accomplished by building a graph that preserves the
neighborhood, such as using Delaunay triangulation (Reinelt,

FIGURE 7 | Comparison of Delaunay links and those used in the LKH submission.

7http://akira.ruc.dk/∼keld/research/LKH
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1992; Peterson, 1998). LKH supports several options, of which
Keld Helsgaun considered a hybrid of Delaunay and Quadrant
links when building the graph (see Figure 7). The quadrant graph
is formed using the nearest neighbors in each of the four
quadrants centered at a given point.

The resulting links are prioritized using alpha-nearness: the
increase in cost when a minimum 1-tree is required to contain
the link to be scored (see Figure 8), where a 1-tree is a spanning tree
defined on a node set minus one special node combined with two
links from that special node. A 1-tree is actually not a tree because it
contains a cycle. LKH is primarily designed for the closed-loop
variant, where the 1-tree concept is especiallymeaningful; a TSP tour
is a 1-tree where all nodes have a branching factor of 2. The optimum
TSP tour is theminimum1-tree with all branching factors equal to 2.

Computing all alpha-nearness values is time consuming O(N2)
and will complete in several days on an instance the size of Santa
data. Fortunately, approximation is possible using subgradient
optimization (Held and Karp, 1971). This process has been

shown to eventually converge to the true alpha values, but
stopping it early is the key to high efficiency. This goal is
accomplished in LKH by setting a small initial period for the
ascent (INITIAL_PERIOD � 100, default is N/2).

A third necessary parameter setting is TIME_LIMIT. It is set
to 3,000 s (50 min) because time starts ticking only after the
preprocessing is done: generating the candidate sets and
estimating the alpha-nearness values take approximately 10 min.

The other parameters were the following:
INITIAL_TOUR_ALGORITHM � GREEDY
MAX_SWAPS � 1,000 maximum number of swaps allowed in

any search for a tour improvement
The greedy method used in LKH is explained in Figure 9.

Despite the fact that greedy heuristics such as nearest insertion
require quadratic time complexity and will not terminate during
the course of 1 h on the Santa data, this version of Greedy can be
computed efficiently due to the precalculated candidate set, which
significantly limits the choices at each step.

FIGURE 8 | An example of how alpha nearness is calculated for a given link with respect to the minimum 1-tree and the 1-tree that includes the forced link.

FIGURE 9 | Greedy algorithm used by LKH and the result on the Santa data.
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As such, LKH was applied to the closed loop variant of TSP
and produced a winning tour length of 109,284 km. The other
variants are supported with only minor modifications:

A. For the open-loop case, a pseudonode was added. This
node was marked as a special node to be recognized by LKH, and
all distances from it to all others were considered to be equal
to zero.

B. For the fixed-start case, the same pseudonode was added as
in (A), but it was forced to be linked to Santa’s home.

C. For the k-TSP case, multiple pseudonodes were added to the
instance and considered to be depots in themulti-TSP variant of LKH.

Analyses of the generated solutions can be found in the
Evaluation section.

Tilo Strutz
Tilo Strutz’s implementation is called DoLoWire, and its detailed
description is documented in his published work (Strutz, 2021). It
first clusters the points using a grid-based method. Because the
data are not uniformly distributed, the grid adds more cells in
regions with higher point density in an attempt tomake the size of
the subproblems smaller to be solvable in time. To control the
number of clusters, DoLoWire has a parameter setting for the
maximum value. This parameter was set to 1,500, and a total of
1,268 clusters were generated on the Santa data (see Figure 10).
Tilo Strutz noted that this value performed better in practice than
at the theoretical best,

��

N
√ � 1, 199. Once the cells are generated,

a k-means–like step is applied, where centroids are computed

FIGURE 10 | Grid-based division demonstrated (A) and the centroids after repartitioning (B).

FIGURE 11 | Intermediate steps of DoLoWire visualized.
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based on the data in each cell. Repartitioning is then performed
according to the updated centroid locations. This approach
models the data better, because it avoids making an overly
arbitrary division imposed by the grid (see Figure 10).

The cluster centroids are used to generate a coarse tour
(Figure 11). This step has a strong impact on the quality of
the final solution, because it decides the general order in which
the points will be traversed. For this optimization, DoLoWire
uses a local search composed of 2- to 3-opt operations with the
first improvement strategy: when a better tour is found, it is

updated immediately. One important aspect of the algorithm
design is that the maximum number of iterations of each
cluster is set to 5. This setting was used both when optimizing
the coarse tour and at the cluster level. This value controls the
processing time of the algorithm in such a way that a lower
value decreases the time at the cost of missing some
improvements.

With the course tour computed, the next step is to find suitable
end points between consecutive cluster pairs. This step is
accomplished using a simple search for the nearest pair across

FIGURE 12 | Two-level clusters produced by k-means applied first with k1 � 112 and then repeated for each cluster with k2 � 114 on each of the 112 clusters. A
distribution of the cluster sizes is also shown. TSPDiv intermediate steps.
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the cluster. This search requires quadratic time complexity.
However, since the number of clusters is a thousand times
smaller than the complete data, this part is not a bottleneck.
Figure 11 shows the clusters with the chosen links.

Once the clusters and their connections have been decided, the
algorithm optimizes each cluster individually. It uses the same 2-
to 3-opt–based local search using the fixed start and end points.
The optimization can stop at a prior iteration when 2- and 3-
optimality is already achieved. This process takes approximately
40 min (see Figure 11, right).

The remaining 20 min are used for fine-tuning. This step is
accomplished by splitting the tour into 500 long nonoverlapping
segments and optimizing the tour within each of them. This step
is applied in parallel and receives a strong boost here due to our
hardware system being composed of 48 cores. This method is the
only submission to use parallelization in some way. A final closed
loop tour of 115,620 km is reached.

To obtain the other variants, the closed-loop tour was
postprocessed as follows:

– Open Loop: Cut the longest link;
– Fixed start: Cut the longest link connected to Santa’s home;
– k-TSP: Cut the longest k links.

Analysis of the generated solutions can be found in the
Evaluation section.

UEF
Our method turns out to be very similar to Tilo Strutz’s
submission, and below, we merely discuss the differences in
their design. We use k-means instead of grid-based clustering
and find a much larger number of clusters (12,764 > 1,268). The
reason is that our TSP solver, which uses randommix local search
(Sengupta et al., 2019), was designed for an order of magnitude
smaller instances than what would be obtained by dividing the
data into √N clusters. Specifically, it can handle at most a few
hundred nodes in a reasonable time.

K-means takes O(Nk) and becomes slower with the increasing
number of clusters (k). We therefore apply two-level clustering
with which we first cluster the data into k1 �

��

N3
√ � 112 groups,

which are then clustered further by a second round of k-means
that makes the final number of clusters proportional to k2 �
���

N23
√

≈ 12, 764 (see Figure 12). The first step is followed by
finding the end points and solving the TSP within each of these 112
clusters in Level 2. A fine-tuning step is applied where consecutive
clusters are grouped together and optimized jointly. The result is a
coarse tour that passes through all 12,764 clusters. This process is
repeated to generate a complete tour (see Figure 12).

To complete in 1 h, we use the following parameter settings for
the random mix local search: five repeats each with N × 3,000
local search iterations at all levels; 1 repeat each with N × 3,000
iterations at the fine-tuning stage. The initial tour in the
beginning is random. The final tour length produced in this
way is 124,162 km before fine-tuning and 122,226 km after fine-
tuning.

We obtain the other variants as follows:

– Open Loop: Do not close the coarse tour.
– Fixed start: Force Santa’s home and the corresponding
clusters to be the first.

– K-TSP: Cluster the data into k groups by k-means and solve
them independently.

We note that in the case of large-scale instances, unlike as
reported in Sengupta et al. (2019), the Link swap operator does
not play a significant role because it operates with the end points,
which have only minor contributions to the very long TSP path. It
also does not apply at Level 2 within the clusters because their
start and end points are fixed when connecting the clusters. It also
does not apply to the closed-loop case. For these reasons, it has
been disabled elsewhere except at Level 1 in the open-loop and in
the k-TSP cases. The components and the processing time profiles
of all of the submitted methods are summarized in Figure 13 and
Table 1.

FIGURE 13 | Profiling of submitted methods over the course of 1 h.
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EVALUATION

The results of the submitted methods are summarized in
Figure 14. The main observation is that the performance
difference between the methods is clear. The tour length of
LKH is 109,284 km, and it is clearly the shortest of all. The gap
to the second best (DoLoWire) is approximately 6% and to the
third best (UEF) is 12%. What is surprising is that LKH does not

use any divide-and-conquer technique to reach the 1-h time limit.
A detailed example of the optimized tours is shown in Figure 15.

The results for the open-loop and fixed start point variants
have the same ranking. The results of the k-TSP case show the
importance of a proper task definition. The purpose was to use
Santa’s helpers to deliver all of the goodies as fast as possible, but
the exact objective was not defined. As a result, LKH and
DoLoWire minimize merely the total length of all of the

TABLE 1 | Summary of the submitted methods.

Keld Helsgaun Tilo Strutz UEF

Method: LKH DoLoWire TSPDiv
Localization Neighbors Grid Clusters
Local search Best improvement: 2- to 5-opt with alpha-prioritization First improvement: 2- to 3-opt First improvement: 2-opt, node swap and Link swap
Dividing — Grid-based clustering Two-level k-means
Merging — Two nearest Two nearest
Fine-tuning — Fixed-length segments (500) Consecutive cluster pairs
Other variants Pseudonode Postprocessing Pseudonode

FIGURE 14 | Summary of the results of the Santa competition. The difference between the 1st (109,284 km) and the 3rd (122,226 km) is approximately 12%.
When repeated 10 times, the standard deviations of the results were only 98 km (LKH), 47 km (DoLoWire) and 143 km (TSP Div), which shows that the effect of
randomness is negligible, which originates from the large number of trial operators applied and the large problem size. According to ANOVA, the results were statistically
significant (p < 1030 in all cases).
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subtours, while a more appropriate objective function would have
been to minimize the length of the longest subtour. LKH provides
four subtours with lengths that vary from 1 to 85,318 km, which is
not meaningful for Santa’s task. The UEF submission was the
only submission that provides a somewhat balanced workload
with subtour lengths that vary from 15,203 to 42,936 km.

Component-Level Analyses (Closed Loop)
Localization
LKHwas powerful enough to provide the winning tour by solving
the problem as a whole without division into subproblems. This
finding implies that the use of a neighborhood graph is important.
It could miss some links that belong to the optimal tour, but
according to the results, its effect is still much less than the effect
of the divide-and-merge strategy. It was reported in the work by

Peterson (1998) that 75% of the links in an optimal TSP path also
appear in the MST and 97% in the XNN graph, which is a
subgraph of the much larger Delaunay graph used in LKH. Thus,
the chosen neighborhood graph is likely to not miss much.

There are also other nearest neighborhood graphs, such as
KNN, XNN, ε-epsilon neighborhood, Delaunay, Gabriel, MST,
and k-MST. Some of them require parameters such as the number
of nearest neighbors (KNN), rounds of the algorithm (k-MST), or
size of the neighborhood (ε-neighborhood). Setting their values
larger would increase the number of connections, which would
reduce the probability of missing good links but would also
increase the search space and slow down the search. This
methodology needs to be balanced somehow. Another issue
is the connectivity. Other graphs (XNN, Delaunay, Gabriel, and
MST) guarantee connectivity and do not require any

FIGURE 15 | Tours of each of the submitted methods zoomed into view in the city of Joensuu, downtown area (above), and the city area including suburban areas.

FIGURE 16 | Different graphs and the corresponding number of links. Most people in Finland live in the South, where data are denser than those in the North.

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 68990814

Mariescu-Istodor and Fränti Santa Claus Challenge 2020

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


parameters. Their sizes vary in such a way that MST ⊂ Gabriel
⊂ Delaunay; Delaunay provides the largest number of links
(see Figure 16).

Keld Helsgaun considered a hybrid of Delaunay and quadrant
links when building the graph. The quadrant graph is formed using
nearest neighbors in each of the four quadrants centered at a given
point. This method was previously shown to work well in clustered
data (Helsgaun, 2000), which is the case with geographical
instances such as ours, where cities form clear, dense clusters.
Only a maximum of five Delaunay links and four quadrant links
per node were considered. The question of how to choose these
values for the best performance remains an open problem.

We experimented with LKH with the complete Delaunay
graph instead of the hybrid combination while keeping all of
the other parameters the same. This approach further improved
the tour by 0.3% to 108,996 km with the same processing time.
This finding shows that the choice of the neighborhood graph still
has room for improvement. Although the data show clear clusters
indicating that the hybrid combination of links should work well,
other characteristics also have an impact. Finland shows
significant differences in density from south to north.
Approximately 20% of the population lives in the Helsinki
metropolitan area and 50% in south Finland8 (see Figure 16).
Finland also has thousands of lakes that have a significant impact
on optimal routing, especially in East Finland.

Clustering allows solving larger-scale instances more
efficiently, but it also has a role in localizing the search space
by limiting the search within the cluster. Another benefit is that it
supports direct parallelization, where one cluster could be solved
by one processor if enough CPU resources are available.

Local Search
We compare the three search strategies:

– 2- to 5-opt with neighbor candidates and alpha prioritization
(Keld Helsgaun)

– 2- to 3-opt (Tilo Strutz)
– 2-opt, Relocate, and Link swap (UEF)

We fixed the division method and the grid-based clustering of
Tilo Strutz. We also fixed the order of the coarse tour, as shown
in Figure 17, in such a way that the resulting solutions would
differ only inside the clusters. We attempted to solve the same
clusters using all three methods shown above over the course of
40 min to allow for 20 min of fine-tuning (see the Clustering
section). To complete the computations in approximately
40 min, we set LKH to terminate after at the most 3 s per
cluster and set the number of random mix repeats to 1, and
the iterations equal to 11,000 × the size of the cluster. For
DoLoWire, we used the default settings. All of these settings
terminated in approximately 40 min.

From the results in Figure 17, we note that the solution
length varies significantly in the three cases. Even though they
do not look much different in the zoomed out view, zooming in
reveals the limitations of random mix in solving such large
cluster sizes properly. Many suboptimal choices are visible. It is
good on small instances but never converges with larger
instances because of a search space that is too large. The 2-
to 3-opt provides better results, and substantially fewer artifacts
are visible. The 2- to 5-opt with alpha-prioritization produces
the best result despite the extra time required to compute the
Delaunay graph for each cluster. The more powerful operator
and the selection strategy compensate for the extra time. The
result (113,598 km) is better than any of the submitted divide-
and-merge variants.

FIGURE 17 | Results when applying 3 different local search strategies when optimizing the same set of clusters and merging along the same coarse tour. The
between-cluster connections are shown in red.

8https://www.verkkouutiset.fi/karttakuva-nayttaa-puolet-suomalaisista-asuu-
taman-viivan-alapuolella
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Clustering
We next compare the two clustering methods (grid and k-means)
in Figure 18. Strutz’s grid-based method with his parameter
choices produced 1,268 clusters, and thus, we also set the same
value for k-means to have a fair comparison.

The centroids in the grid clustering are more uniformly
distributed over the country, and north Finland is better covered
by the clusters than using k-means. This finding occurs because grid-
based clustering has a fixed size of the cells independent of the
volume. K-means clusters vary more: larger clusters appear in the
north, and smaller clusters appear in the south. The coarse tour for
the grid clusters has links of roughly equal sizes (distances between
the cells) compared to the tour for k-means.

We used LKH to solve the individual clusters. In preparation
for the merging step to follow, we fixed the start and end points
for each cluster to be the nearest points between the consecutive
clusters in the coarse tour. We can impose the fixed start and end
points to be used by LKH using the pseudonode strategy and two
fixed links.

The grid clustering produces a better result. The main reason
is that it better represents the northern part of Finland. K-means
generates clusters with large volumes but loses information about
how those points are distributed (see Figure 19). For example, we
note that the north-most convex hull contains a visible looping
path formed by buildings along main roads; this information is

lost when a single centroid is used to represent the cluster. The
coarse tour is forced to move west from here, because going back
to the south is not possible (returning to the same cluster). The
grid-based clusters are smaller here and allow the coarse tour to
return to the south. The grid cells are small enough to better
preserve these patterns. The merged solution in k-means also has
visible artifacts where the solution could be easily improved (see
Figure 20).

The south is modeled better by k-means, but the improvement
is less significant. The reason is that in high-density areas, there
are plenty of alternative choices, and it is easier to find many
almost equally good alternatives. In the low-density areas in the
north, even a single mistake can have a serious impact on the
overall tour length, because there are fewer alternatives and
unnecessary detours can mean tours that are hundreds of
kilometers longer. In other words, sparsely populated areas are
more critical for performance than high-density areas.

We also experimented by changing the parameters that
control the cell size, but the value of k � 1,268 appears to be
locally optimal, and it is difficult to find significant improvement.
There are simply too many possible parameter combinations to
test, and the high computing time is a serious restriction to
running large-scale testing. The selected value is quite close to the
theoretical best

��

N
√ � 1, 199, and thus, we do not expect

significant improvement here.

FIGURE 18 | The data clustered by Strutz’ grid-based method (A) and k-means (B). The same number of clusters was used in both (k � 1,268). Example tours
through the centroids are shown. Histograms of the cluster sizes are also shown.
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In conclusion, grid clustering is better for this purpose because it
bettermodels the low-density areaswheremistakes have amore severe
impact on the overall tour length. In the following tests, we fix LKH to
use alpha prioritization on a full Delaunay graph to avoid the need for
parameter tuning and because it was shown to produce better results
than the original heuristic used by LKH (5 Delaunay, 4 Quad hybrid).

Fine Tuning
We tested the two fine-tuning strategies by applying the LKH
solver for subsets produced as follows:

– Nonoverlapping segments of length 500.
– Adjacent cluster pairs.

FIGURE 19 | Solutions after solving individual clusters and merging the subtours. The convex hulls of the clusters are given for reference. On the right, data points
are also shown to highlight the patterns.

FIGURE 20 | Result of fine-tuning using two techniques and an example where optimization is not possible using either of the two techniques.
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We applied fine-tuning for the Grid+LKH combination shown
in Figure 19 (left). We set a maximum processing time of 2 s per
subset. Each time, the initial tour was simply the combined
subtours of the two segments (or clusters). Both fine-tuning
strategies terminated in approximately 20 min each. The
results are shown in Figure 20. The adjacent clusters strategy
is better. However, both strategies optimize merely among the
pairs of points that are near to each other in the tour sequence but
not necessarily in the space. We expect a better fine-tuner to be
constructed by selecting the subsets from sequences (or clusters)
nearby in the space but far away in the tour sequence.

Summary of the Results
Themain results are summarized inTable 2. The first observation is
that localization is more effective than dividing. LKH (109,284 km)
achieves the best results even if fine-tuning was applied after
clustering (111,636 km). The role of clustering therefore remains
as facilitating parallel processing. The second observation is that the
localization can be improved using Delaunay alone instead of
combining it with the quadrant neighbors as in the submission.
The third observation is that the effect of fine-tuning is most
significant with DoLoWire (120,751 vs. 115,620 km) because of
the effect of parallelization. Without parallelization, UEF fine-
tuning method (adjacent clusters) is better. Among the other
parameters, the number of clusters is also remarkable. Too many
clusters are bad with LKH (121,020 vs. 117,496 km), whereas too few
clusters are bad for Rand mix (122,226 vs. 147,817 km) because the
clusters are large, and the local operators lose their effectiveness.

CONCLUSION

We studied three solutions for a large-scale TSP problem in the Santa
Claus challenge in 2020. From the results, we learned a few important
lessons. First, large-scale instances have immediate consequences that
must be taken into account when designing algorithms for big data.
Size of 1.4M is already so large that even a simple greedy algorithm
would take about 3 days with our current hardware to compute

because of quadratic time complexity. To solve problems of this size
in 1 h, a linear (or close to linear) algorithm is required.

We also draw the following conclusions:

• Spatial localization of the local search operator is most
important.

• Local search with k-opt is still the state of the art.
• The k-opt needs to be extended to 4-opt and 5-opt.
• Current divide-and-merge strategies requires further
improvements.

• Parallelization would be an easy addition to speed-up the
methods further.

In specific, without the neighborhood graph, the k-opt and
random mix operators produced three orders of magnitude worse
solutions because of the huge search space. Random initialization was
another limitation, but thanks to the localization by neighborhood
graph, greedy initialization could be calculated efficiently.

While there were only three valid submissions, they were all
based on local search. Literature review did not reveal any other
method than local search capable of scaling up to data of the size
of 1 M. In one article, GA was found to be more effective than
local search but only up toN � 5,000, and when needed to find the
exact optimum (Paul et al., 2019). Probably the strongest evidence
of local search being the state of the art is that the method by Keld
Helsgaun has held the record for the other large-scale benchmark
data set (WorldTSP), almost without a break since 2003.

About the chosen data fromOSM: it was fit for the purpose but
suffered some artifacts because the coverage of the data varied a
lot. While the data is valid, a more accurate building distribution
in Finland would be available.9

We derived the best divide-and-conquer approach from
the components of the submitted variants and reached a solution
with a 2% gap to the best method (LKH). This finding is significantly
better than the gap values of the two other submitted methods

TABLE 2 | Summary of the results. The baselines of the three submitted methods are in boldface.

Operator Localization Divide Clusters Fine-tuning Result (km)

Greedy — — — — — 129,775
UEF and DoLoWire:
UEF (no tuning) Rand mix Clusters K-means 12,764 — 124,162
UEF Rand mix Clusters K-means 12,764 Two clusters 122,226
UEF (grid clusters) Rand mix Clusters Grid 1,268 Two clusters 147,817
DoLoWire (no tuning) 2- to 3-opt Grid Grid 1,268 — 120,751
DoLoWire 2- to 3-opt Grid Grid 1,268 500 points 115,620

LKH with clustering:
LKH (k-means) 2- to 5-opt Neighbors K-means 12,764 — 121,020
LKH (k-means) 2- to 5-opt Neighbors K-means 1,268 — 117,496
LKH (grid) 2- to 5-opt Neighbors Grid 1,268 — 113,598
LKH (grid + tuning) 2- to 5-opt Neighbors Grid 1,268 500 points 112,404
LKH (grid + tuning) 2- to 5-opt Neighbors Grid 1,268 Two clusters 111,636

LKH without clustering:
LKH 2- to 5-opt Neighbors — — — 109,284
LKH (Delaunay) 2- to 5-opt Delaunay — — — 108,996

9https://www.avoindata.fi/data/fi/dataset/rakennusten-osoitetiedot-koko-suomi
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(DoLoWire � 6%, UEF � 12%). The potential of the divide-and-
conquer approach comes from the fact that the calculations could be
easily performed in parallel using a multiprocessor system. This
finding also applies to the fine-tuning step of the 1,267merged cluster
pairs. With a state-of-the-art cloud infrastructure, we could run
one task per machine (Mariescu-Istodor et al., 2021), which
would bring the processing time from 1 h down to 2 min.
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