

Christmas seminar 2018

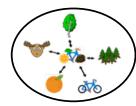
Social and health care services as an optimization problem

Pasi Fränti

Univ. of Eastern Finland Joensuu, FINLAND

Data mining Information retrieval Location-aware applications



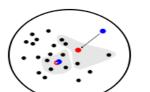


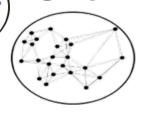
Location-aware applications

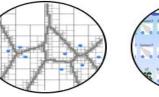
Clustering

GPS trajectories

TSP







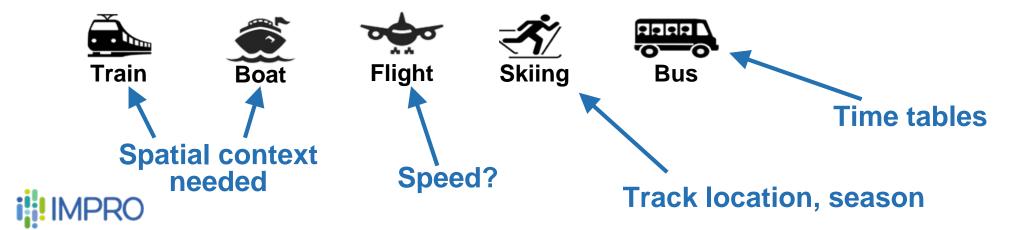
Neighborhood graphs

Text mining

Move type detection

Movement types considered:

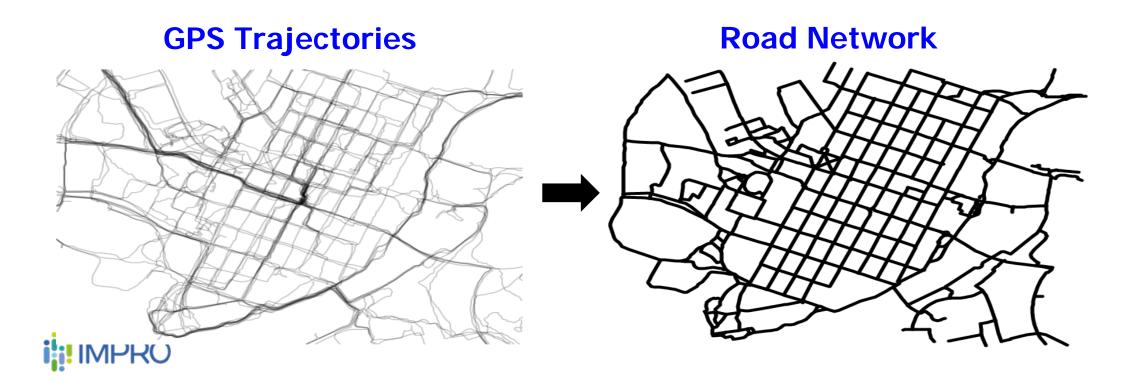
K. Waga, A. Tabarcea, M. Chen and P. Fränti, "Detecting movement type by route segmentation and Classification", *CollaborateCom*, Pittsburgh, USA, 2012



Other possibilities:

Shape search

R. Mariescu-Istodor and P. Fränti, "Gesture input for GPS route search", *Joint Int. Workshop on Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2016)*, Merida, Mexico, LNCS 10029, 439-449, November 2016



Road network extraction

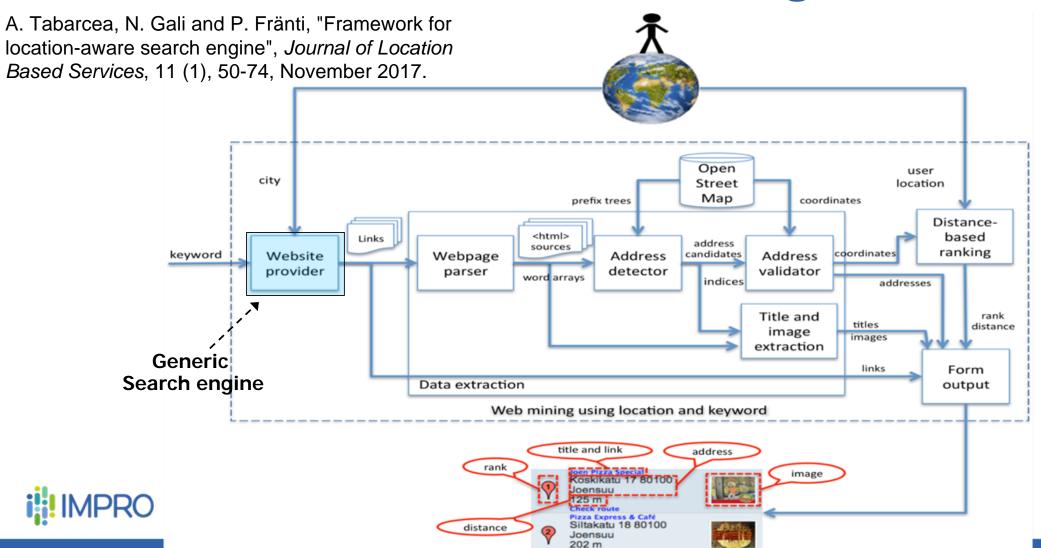
R. Mariescu-Istodor and P. Fränti, "From Routes to Roads: Infer road network using GPS trajectories", *ACM Trans. on Spatial Algorithms and Systems*, 2018

Applications: share riding MOPSI Events All Users · All Events · Create Event Botanical Garden 🚱

Web content mining

Keyword extraction


M. Rezaei, N. Gali and P. Fränti "ClRank: a method for keyword extraction from web pages using clustering and distribution of nouns", *IEEE/WIC/ACM Web Intelligence and Intelligent Agent Technology* Singapore, 2015


Address detection

A. Tabarcea, V. Hautamäki, P. Fränti, "Ad-hoc georeferencing of web-pages using street-name prefix trees", *Int. Conf. on Web Information Systems & Technologies (WEBIST'10)*, Valencia, Spain, vol.1, 237-244, April 2010.

Location-aware search engine

Clustering algorithms

Random Swap (RS)

```
Random Swap(X) \rightarrow C, P

C \leftarrow Select random representatives(X);
P \leftarrow Optimal partition(X, C);
REPEAT T times

(C^{new}, j) \leftarrow Random swap(X, C);
P^{new} \leftarrow Local repartition(X, C^{new}, P, j);
C^{new}, P^{new} \leftarrow Kmeans(X, C^{new}, P^{new});
IF f(C^{new}, P^{new}) < f(C, P) THEN
(C, P) \leftarrow C^{new}, P^{new};
RETURN (C, P);

C = 0
```

P. Fränti, "Efficiency of random swap clustering", Journal of Big Data, 5:13, 1-29, 2018

!!IMPRO

Genetic Algorithm (GA)

```
GeneticAlgorithm(X) \rightarrow (C, P)
                                                                                CombineCentroids(C^1, C^2) \rightarrow C^{\text{new}}
                                                                                  C^{\text{new}} \leftarrow C^1 \cup C^2
    FOR i\leftarrow 1 TO Z DO
            C^{i} \leftarrow \mathsf{RandomCodebook}(X);
                                                                               CombinePartitions(C^{\text{new}}, P^1, P^2) \rightarrow P^{\text{new}}
            P \leftarrow \text{OptimalPartition}(X, C):
                                                                                  FOR i \leftarrow 1 TO N DO
    SortSolutions(C,P);
                                                                                         IF \|x_i - c_{p!}\|^2 \le \|x_i - c_{p!}\|^2 THEN
    REPEAT
            \{C,P\} \leftarrow CreateNewSolutions(\{C,P\});
                                                                                       p_i^{new} \leftarrow p_i^1
ELSE
            SortSolutions(C,P);
    UNTIL no improvement;
                                                                                                   p_i^{new} \leftarrow p_i^2
CreateNewSolutions(\{C, P\}) \rightarrow \{C^{\text{new}}, P^{\text{new}}\}
    C^{\text{new-1}}. P^{\text{new-1}} \leftarrow C^1. P^1:
                                                                               UpdateCentroids(C^1, C^2) \rightarrow C^{\text{new}}
    FOR i\leftarrow 2 TO Z DO
                                                                                 FOR i\leftarrow 1 TO |C^{\text{new}}| DO
            (a,b) ← SelectNextPair;
                                                                                          c_{i}^{new} \leftarrow CalculateCentroid(P^{new}, j);
            C^{\text{new-i}}. P^{\text{new-l}} \leftarrow \text{Cross}(C^{\text{a}}, P^{\text{a}}, C^{\text{b}}, P^{\text{b}}):
            IterateK-Means(C<sup>new-i</sup>, P<sup>new-i</sup>);
Cross(C^1, P^1, C^2, P^2) \rightarrow (C^{new}, P^{new})
    C^{\text{new}} \leftarrow \text{CombineCentroids}(C^1, C^2);
    P^{\text{new}} \leftarrow \text{CombinePartitions}(P^1, P^2):
    C^{\text{new}} \leftarrow \text{UpdateCentroids}(\hat{C}^{\text{new}}, P^{\text{new}})
    RemoveEmptyClusters(\hat{C}^{\text{new}}, \hat{P}^{\text{new}});
    IS(Cnew, Pnew);
```

P. Fränti, "Genetic algorithm with deterministic crossover for vector quantization", *Pattern Recognition Letters*, 2000.

Distance functions

Euclidean distance:

$$d(x, y) = \sqrt{\sum_{i=1}^{D} ||x_i - y_i||^2}$$

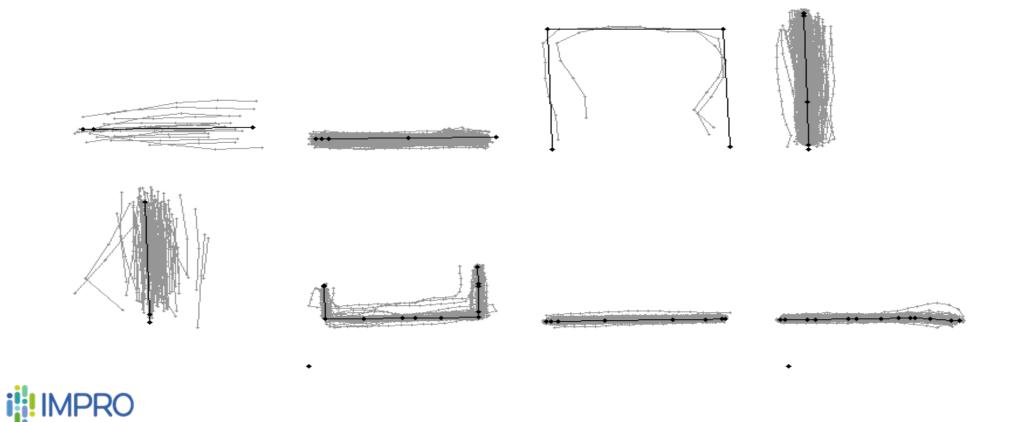
Dice coefficients:

$$d_{Dice}(x, y) = 1 - \frac{2 \cdot |x \cap y|}{|x| + |y|}$$

Edit distance:

Minimum number of edit operations (insert, delete, substitute) to transform string *x* to string *y*.

Strings divided into bi-grams:


```
String (5) Mining (5) 

{st, tr, ri, in, ng} {mi, in, ni, in, ng} 

x \cup y = \{st, tr, ri, in, ng, mi, ni\} 
x \cap y = \{in, ng\} 
d = 1-4/(5+5) = 60\%
```


Calculating mean

Means from scrambled text

HOELSVVKIG

HLSQPKPK

QHSELINI

HELSSINI

EVSDNFCKVM

THELSIFBJI

EOMLSNI

HEHTLSINKI

ZULSINKI

DHELSIRIWKJII

HELSINKI

REJOGNEITION

UCGNRTION

RECOGUITPON

WEIOTNNIHTMIOJ

RRSCGNXIIUN

RRCOOGEPIONN

RXONUIUOK

RUPCOWGNIPZTHUN

ECOBNFITIUOND

RCOGQNOIRTON

RECOGNITION

Clustering English words

466,544 words

Cluster 41	Cluster 43	Cluster 247	Cluster 292	Cluster 326
soft-bill soot-grimed sweet-toothed split-tongued black-visaged soft-winged short-witted short-termed stout-armed still-fishing stiff-limbed swift-stealing short-leaved snotty-nosed ivory-billed hot-mettled soft-going snowy-winged	Livingstone herringbone Burlingham Neowashingtonia Upington Hillingdon Lovington Arlington Lexington Herington Stringtown Arrington milliangstrom Accrington Northington Farlington Ellington	slommacky crummock bummack mimmock slammock bummalos mimmocky malmock hommocks earthgrubber crumhorn malbrouck krumhorn shammocky Babcock plumrock fleadock Cummock	Kurtz dinarchy myriarchy freshly triarcuated matriarch mandriarch dyarchic myriarch BSLArch taxiarch Bush Ruthi Knuth fleshy gush Thushi Furth	injelly johnin Conley moulvi Solly wolly Poulenc woodsy doozy oofy goodbyes coolly Woodlyn woofy boolya Lolly Coplay Goodbys

Clustering Tweets

544,113 tweets

If you're looking for work in #Oslo, Oslo, check out this #job: https://t.co/ycYqTgJc8r #BusinessMgmt #Hiring #CareerArc

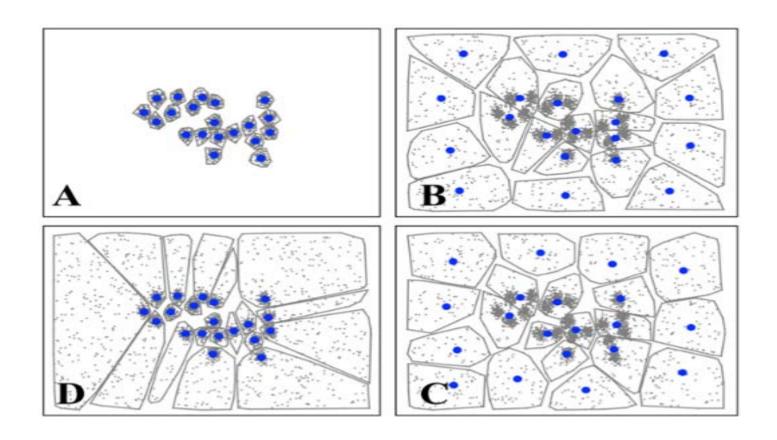
If you're looking for work in #Göteborg, check out this #job: https://t.co/bJGKIco2SN #CustomerService #Hiring #CareerArc

Interested in a #job in #Uppsala, Uppsala County? This could be a great fit: https://t.co/O7O91oVF1j #Hiring #CareerArc

See our latest #kirkkonummi #job and click to apply: Software Developer Trainee - https://t.co/vrsxjPMhsA #SoftwareDev #Hiring #CareerArc

If you're looking for work in #Solna, check out this #job: https://t.co/BUwsuBfXiO #LEGO #Hiring #CareerArc

Många stör sig på andra på Twitter. På snälla Fredagen vill jag komma med lite bra tips: 1 https://t.co/TFh40S7cC1... https://t.co/FjfR8ALvnn


If you're looking for work in #HKI, check out this #job: https://t.co/ZJLzylpqxf #DellJobs #Sales #Hiring #CareerArc

See our latest #kirkkonummi #job and click to apply: SW Developer Intern, IoT Device and Data Management -... https://t.co/5GEkyiMUlh

We're #hiring! Click to apply: Technical Program Manager - https://t.co/BP0qrfigRK #ProjectMgmt #stockholm #Job #Jobs #CareerArc

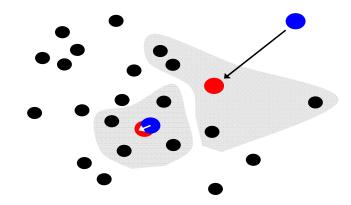
Detection and omission of outliers

Neighborhood graphs

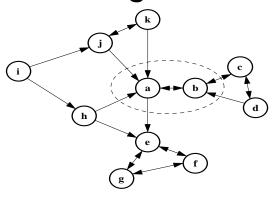
1. Fast NN-search

Full search:

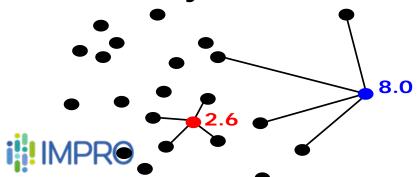
Graph structure:


Graph structure:

O(N) distance
calculations.


Graph structure:

O(k) distance
calculations.


2. Outlier detection

3. Fast clustering

4. Density estimation

5. Recommendation system

Data

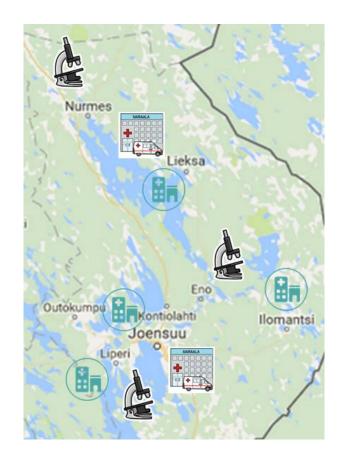
Knowledge

HOELSVVKIG

HLSQPKPK QHSELINI

HELSSINI EVSDNFCKVM THELSIFBJI EOMLSNI

HEHTLSINKI ZULSINKI
DHELSIRIWKJII

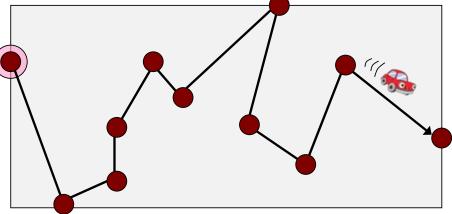

Health care services

Goals of the project

- 1. Create web interface
 - To access data
 - Importing external data in compatible formats
- 2. Interactive optimization tool
 - Working on map
 - Optimizes service locations and allocations for given cost provision site for specific groups
- 3. Algorithms and methods
 - Balanced data clustering
 - Network optimization
 - Data analysis

Clustering

Work allocation

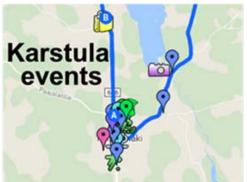


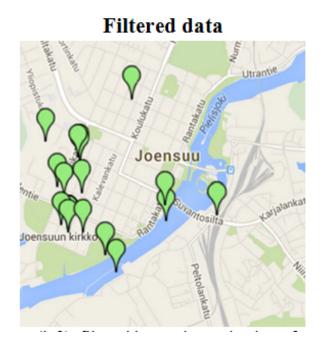
Touring nurse

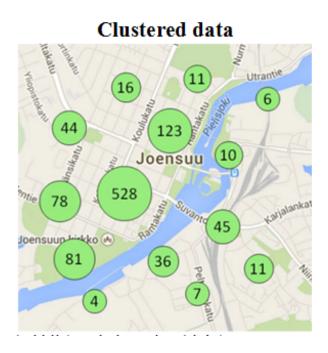
Health care services provided

- 1. Health center
- 2. Hospital
- 3. Dental
- 4. Rehabilitation
- 5. Aging therapies
- 6. Aging accomodation
- 7. Children's daycare

Solutions found on web







Clustering of data filtering?

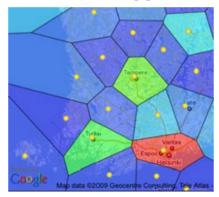
All data

Visualizations of clustering (1)

Flickr

- (a) Filtering
- (b) Circle icon
- (c) -
- (d) -
- (e) -
- (f) Yes

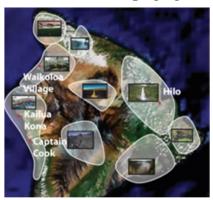
Panoramio


- (a) Filtering
- (b) Image icon
- (c) -
- (d) Yes
- (e) -
- (f) Yes

Google maps

- (a) Clustering
- (b) Circle icon
- (c) Color, number
- (d) -
- (e) Yes
- (f) -

Voronoi [2]



- (a) Clustering
- (b) Voronoi
- (c) Color
- (d) Yes
- (e) Yes
- (f) -

Visualizations of clustering (2)

Container shape [11]

- (a) Clustering
- (b) Area, image
- (c) -
- (d) Yes
- (e) Yes
- (f) -

Mopsi

- (a) Clustering
- (b) Image icon
- (c) Number
- (d) -
- (e) Yes
- (f) Yes

Heat map [14]

Cells [12]

(a) Clustering

(a) Clustering

(b) Heat map

(c) Color (d) Yes

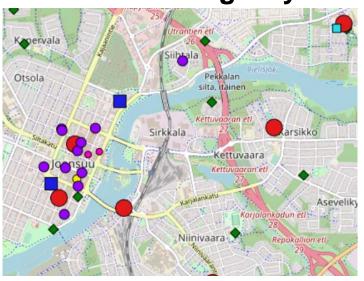
(e) Yes

(f) -

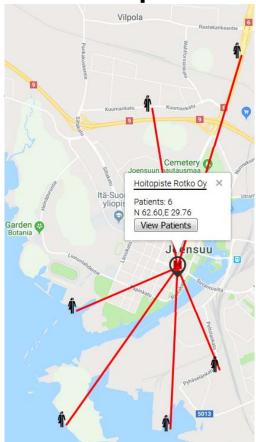
- (b) Cell
- (c) Color
- (d) Yes
- (e) Yes
- (f) -

Clusters in Mopsi

Clusters in Mopsi


M. Rezaei and P. Fränti "Real-time clustering of large geo-referenced data for visualizing on map", *Advances in Electrical and Computer Engineering*, 2018.

Various map view prototypes


Geoserver image layers

Quick-n-dirty pins

Team proto

http://cs.uef.fi/impro_dev/map/map.php

Data

Knowledge

HOELSVVKIG

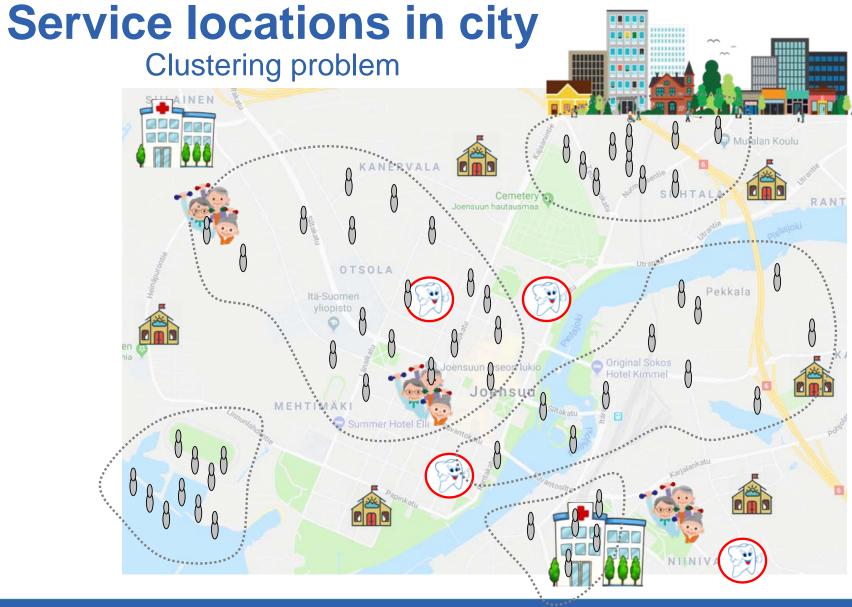
HLSQPKPK QHSELINI

HELSSINI EVSDNFCKVM

THELSIFBJI EOMLSNI

HEHTLSINKI ZULSINKI
DHELSIRIWKJII

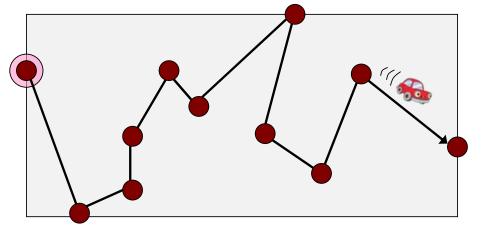
Making the tools to meet the data


Correlation analysis of patient records

						Scalett.
relation 🔻	share(%) 🔷	patients 🔷	A \oplus	В ≑	Α	В
103.54	0.12	11	185	K74	Esophageal varices	Fibrosis and cirrhosis of liver
22.98	0.14	13	C25	Z51	Malignant neoplasm of pancreas	Encounter for other aftercare and medical care
15.72	0.12	11	135	136	Nonrheumatic aortic valve disorders	Nonrheumatic tricuspid valve disorders
15.24	0.22	20	C34	Z51	Malignant neoplasm of bronchus and lung	Encounter for other aftercare and medical care
13.45	0.13	12	J44	J96	Other chronic obstructive pulmonary disease	Respiratory failure, not elsewhere classified
11.75	0.16	15	G47	J96	Sleep disorders	Respiratory failure, not elsewhere classified
10.84	0.12	11	H35	H43	Other retinal disorders	Disorders of vitreous body
10.79	0.16	15	K02	K04	Dental caries	Diseases of pulp and periapical tissues
10.66	0.14	13	H34	H40	Retinal vascular occlusions	Glaucoma
10.0	0.23	21	134	135	Nonrheumatic mitral valve disorders	Nonrheumatic aortic valve disorders

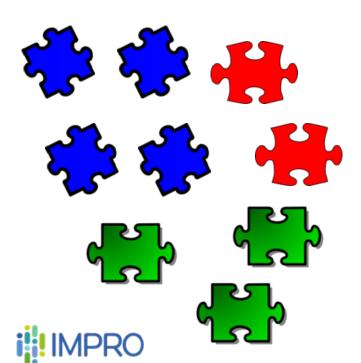
- 1. Esophageal varices Fibrosis and Cirrhosis of liver
- 2. Malignant neoplasm of pancreas Aftercare
- 3. Sleep disorders Non-classified respiratory failure

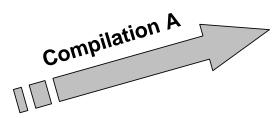
Services in rural area: touring nurse

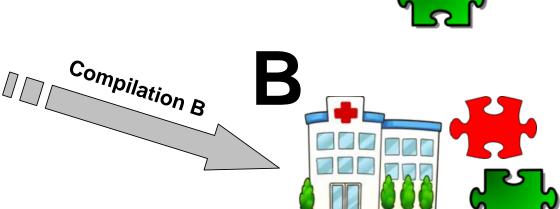


Travelling salesman problem

Touring nurse

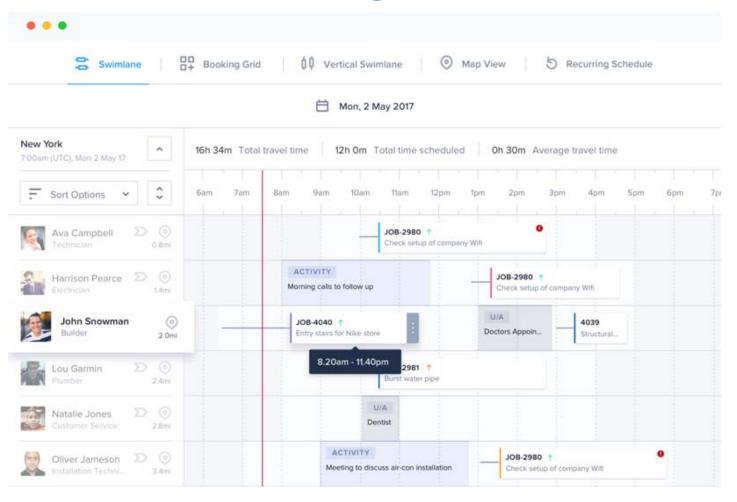




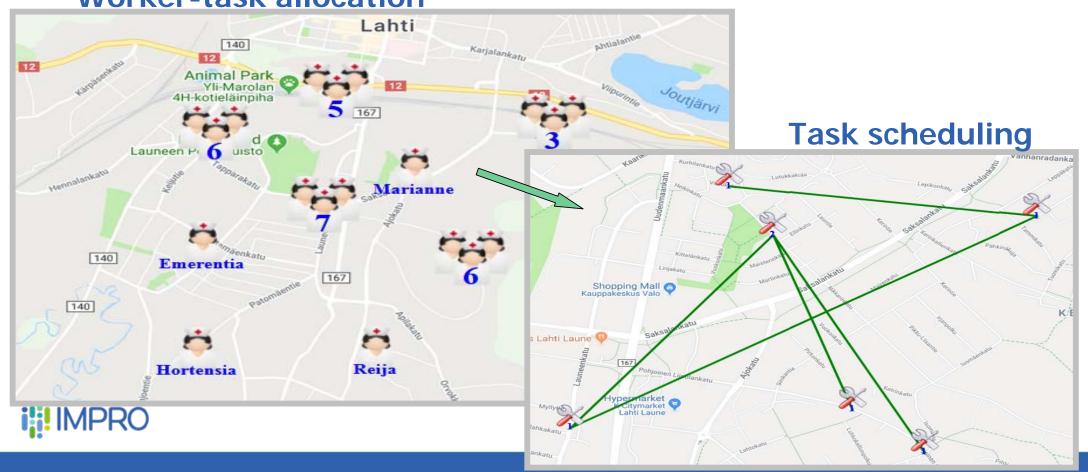


Recompiling the services

Resources



Scheduling problem



Home take care proto

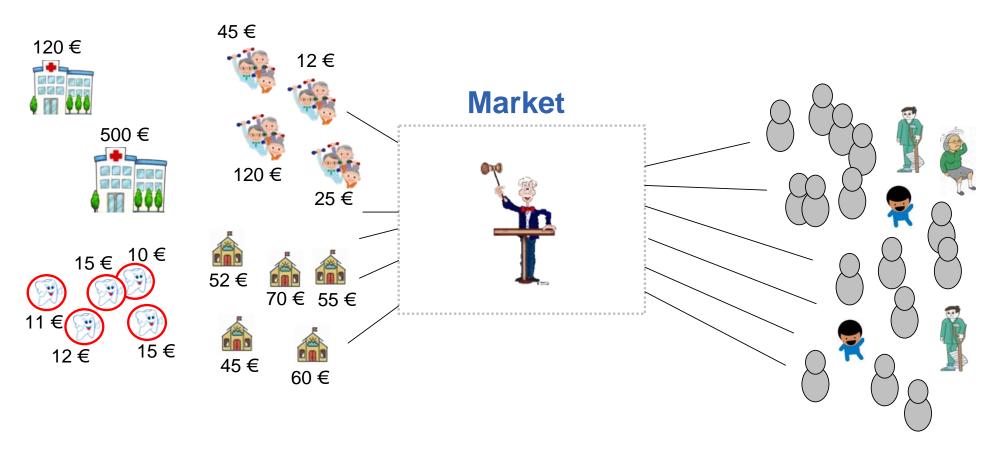
MOPSI project

Worker-task allocation

Sleep management, maintain daily vitality

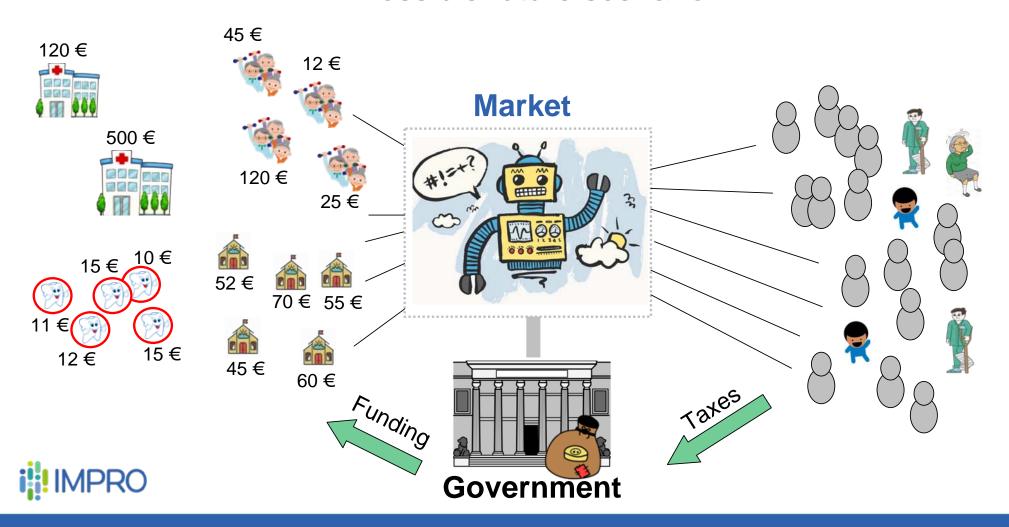
Munitar sleep. Sixel both sync data to the phone and the cloud, so you know more about your quality of sleep

Self-monitoring



Market place of services

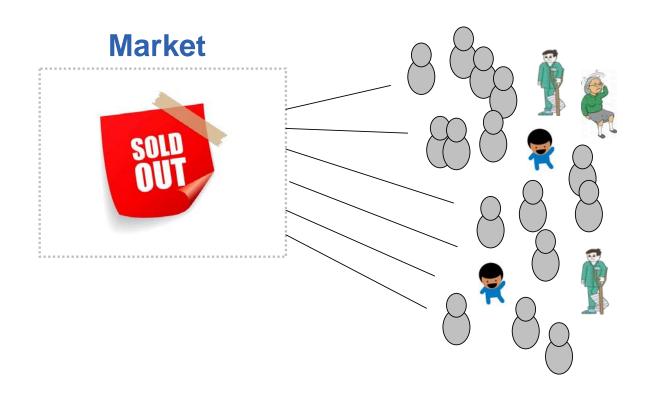
Ideal case



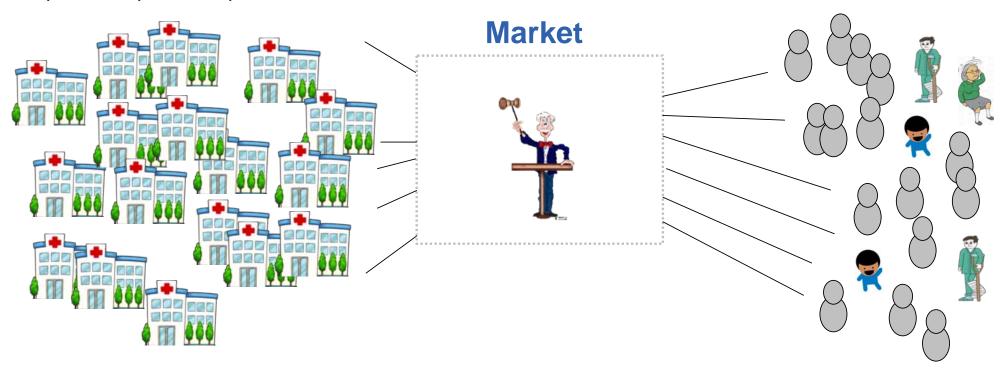
Market place of services

Possible future scenario

What to optimize exactly?



Case 1: No services, no costs



Case 2: Full service to everyone

1,000,000,000...€

The end

... future under process...

