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Abstract
We present the detailed empirical investigation of the speaker
verification system based on denoising autoencoder (DAE) in
the i-vector space firstly proposed in [1]. This paper includes
description of this system and discusses practical issues of the
system training. The aim of this investigation is to study the
properties of DAE in the i-vector space and analyze different
strategies of initialization and training of the back-end param-
eters. Also in this paper we propose several improvements to
our system to increase the accuracy. Finally, we demonstrate
potential of the proposed system in the case of domain mis-
match. It achieves considerable gain in performance compared
to the baseline system for the unsupervised domain adaptation
scenario on the NIST 2010 SRE task.

1. Introduction
In our previous study [1] we presented a speaker verification
system based on machine learning techniques originated from
the deep learning [2], [3]. We proposed to use denoising autoen-
coders (DAE) for the i-vector based speaker verification. The
autoencoder (AE) is a neural network that aims to reproduce its
input by learning efficient data representation (encoding). The
DAE is a variant of AE that attempts to reconstruct the original
data point from its corrupted version. While DAEs are usually
used for extracting robust features and building deep models
[4], we employ them to learn a nonlinear denoising transform
to reduce within-speaker variability in the i-vector space. In
contrast to the standard procedure for learning DAEs, we do not
add artificial corruptions to the features and assume that speaker
representations (i-vectors) are already corrupted by the channel
effects. Thus, proposed approach can be seen as a channel-
compensation technique which aims to minimize the effect of
channel in the i-vector speaker representations. After that a
standard back-end classifier such as probabilistic linear discrim-
inant analysis (PLDA) can be applied to the outputs of DAE.
This DAE based speaker verification system achieved consid-
erable performance improvement compared to the commonly
used baseline (i.e. PLDA on raw i-vectors) [1].

In this study we continue research on denoising autoen-
coders for speaker verification started in [1]. We analyze the
properties of the DAE system in more details than it was done
in the preliminary study. In particular, we analyze the important
effect of replacing the back-end parameters in the DAE system,
which was not covered before. We also explore the effects of
various training configurations and report system performance
on several datasets.

In addition to this analysis we propose several improve-
ments to our previous system. First, we employ dropout method

[5] for DAE training. Second, we make attempts to build a deep
DAE following the ideas from [6].

Also, as a part of more detailed study of the DAE system,
we considered the domain mismatch problem which is impor-
tant topic in the speaker recognition research. Our previous
experimental setup included only homogeneous speech corpus
leaving the open question about robustness of the DAE system
to domain mismatch. In these experiments we followed the
setup of the domain adaptation challenge (DAC) designed-by
MIT-LL.

2. Detailed study of the DAE system
2.1. Datasets and experimental setup

For experiments presented in this Section and in Section 3 we
used the same setup as in our previous study [1]. The train-
ing set contains telephone channel recordings from the NIST
SRE 1998-2008 corpora. It includes 16618 sessions of 1763
male speakers (only English language). We also used 228 male
speakers (7065 files) from the training data set of the NIST 2010
SRE as the cross-validation set for detecting the stopping point
during autoencoder training. We measured speaker verification
system performance according to the protocol from the NIST
2010 SRE (condition 5 extended, males, English language) [7].
All the evaluation results are presented in terms of two operat-
ing points: equal error rate (EER) and minimum detection cost
function (minDCF) with probability of target trial set to 10−3

[7].

2.2. Description of the DAE system

Here we describe our speaker verification system in more detail
than it was done in [1]. In this study we do not consider any
issues in the front-end or i-vector extraction and focus only on
data modeling in the i-vector space. The detailed block diagram
of the DAE system is shown in Figure 1.

The key element in this diagram is the denoising restricted
Boltzmann machine (RBM) introduced in [1]. For each speaker,
this RBM models the joint distribution of the ”mean” i-vector
of the speaker and another i-vector corresponding to a session
of the same speaker. Trained RBM can map any i-vector to its
denoised version reducing the effect of channel. This denois-
ing transform can be further fine-tuned using discriminative ob-
jective termed as denoising autoencoder (DAE). More details
about denoising transform can be found in Section 2.2.2. In the
end we pass i-vectors through the learned nonlinear transform
and use the standard PLDA back-end for making decision about
speakers’ identity [1].

During our experiments we found out that whitening and
length normalization (LN) [8] are critical for training RBM.
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Figure 1: Block diagram of speaker recognition systems com-
pared in our experiments. Arrows denote transferring of param-
eters and dashed rectangle denotes discriminative training of the
encircled part.

Following the standard recipe, first, we estimate dataset mean
vector µ and the whitening matrixA, then we project whitened
i-vector on the unit hypersphere [8] (hereinafter these three
steps are referred to as normalization). Accordingly, as shown
on the diagram in Figure 1, we also use the same normalization
block before DAE training.

2.2.1. Front-end

We computed 20 MFCC (including C0) with their first- and
second-order derivatives using freely available Kaldi toolkit [9].
Similarly to [10], deep neural network (DNN) was used to cal-
culate Baum-Welch statistics for the i-vector extraction. The
outputs of the DNN correspond to the set of triphone states as
well as non-speech states (noise, silence, laughing, etc.). This
allowed us to use DNN outputs without any standalone voice
activity detection (VAD) in an elegant way. The sum of tri-
phone state outputs is closer to one for speech segments and
closer to zero for non-speech segments. To eliminate the influ-
ence of non-speech segments to the Baum-Welch statistics it is
necessary to remove components corresponding to non-speech
states. Our experiments showed that such approach outperforms
”hard” removal of non-speech segments according to VAD.
Mean and variance normalization was done by re-normalizing
Baum-Welch statistics according to formula:

F̂ c = (F c −mNc)σ
−1, c ∈ Itri

m =

∑
c∈Itri

F c

∑
c∈Itri

Nc
, σ2 =

∑
c∈Itri

Sc

∑
c∈Itri

Nc
−m2,

where Itri is the set of DNN output indices corresponding to
triphone states. Nc, F c, Sc are the 0th- 1st- and 2nd-order
statistics calculated for the raw 60-dimensional features. In con-
trast to the commonly used approach feature normalization was
applied both for MFCC and their deltas. DNN contains 2700
thiphone states and 20 non-speech states trained on the Switch-
board corpus [11] using the standard recipes implemented in
Kaldi. We extracted 400-dimensional i-vectors.

2.2.2. DAE training

The DAE training starts from generative supervised training of
the denoising RBM (Figure 2, left). Similarly to [12], this RBM
has binary hidden layer and Gaussian visible layer, taking a con-

catenation of two real-valued vectors as an input. The first vec-
tor i(s, h) is an i-vector extracted from the h-th session of the
s-th speaker, the second vector i(s) is the average over all ses-
sions of this speaker. i(s) can be viewed as the maximum like-
lihood estimate in the following model of within-speaker vari-
ability: i(s, h) ∼ N (i(s),ΣW ), where N (·) is the Gaussian
distribution with mean i(s) and covariance ΣW .

denoising RBM denoising AE

hidden layer

hidden layer

Figure 2: Learning denoising transform. i(s, h) is the i-vector
representing h-th session of s-th speaker. i(s) is the mean i-
vecotor for speaker s. RBM parameters are used to initialize
denoising neural network.

The input layer is connected to the hidden layer by bidirec-
tional connections represented by rectangular weight matrices
W and V . In our experiments the optimal size of the hidden
layer was found to be 1300. We trained RBM by running Con-
trastive Divergence algorithm (CD-1) [13] for 20 epochs on the
training set divided into small mini-batches of 20 cases.

Then we ”unfold” trained RBM to form the neural network
which we refer as denoising autoencoder (DAE) [14] (Figure 2,
right). DAE is discriminatively trained (fine-tuned) to minimize
within-speaker variability, defined in the following way:

∑

s

∑

h

‖i(s)− f(i(s, h))‖2 → min, (1)

where f(x) = V >σ(Wx) is the denoising transform and σ(·)
is the sigmoid function.

To optimize this objective we used Carl Rasmussen’s
minimize.m function [15] which implements conjugate gra-
dient algorithm with Polak-Ribiére updates. On each iteration
we computed minDCF on the cross-validation set to detect a
stopping point.

2.2.3. Back-end

Given either raw or nonlinearly transformed i-vectors, we em-
ploy PLDA back-end to compute the scores for speaker verifi-
cation. Specifically we used two-covariance model [16] which
can be viewed as a special case of PLDA. In order to carry
out a large number of experiments we did not use costly EM-
algorithm [17, 18] to estimate the model parameters. Instead of
that, as in our previous study [1], we estimated between-speaker
and within-speaker covariances, respectively, according to for-
mulas:

ΣB =
1

S

S∑

s=1

(i(s)− µ)(i(s)− µ)>, (2)

ΣW =
1

S

S∑

s=1

1

H(s)

H(s)∑

h=1

(i(s, h)− i(s))(i(s, h)− i(s))>,

(3)
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where i(s, h), i(s) were defined in the Section 2.2.2, µ is the
dataset mean, S is the number of speakers in the training set and
H(s) is the number of sessions of s-th speaker.

Given a pair of i-vectors i1 and i2, assuming zero mean and
skipping the scalar term, the commonly used PLDA verification
score can be written as [8]:

score(i1, i2) = i1Pi2 + i2Pi1 + i1Qi1 + i2Qi2,

where square matrices P and Q can be expressed in terms of
(2) and (3) [8].

2.2.4. Replacing back-end

During our experiments we found out that we get the best per-
formance for the DAE system if we use the set of parameters
{P ,Q,A,µ} estimated on the i-vectors passed through the
RBM instead of DAE. This parameter transfer is depicted by
arrows on the Figure 1. In more detail, first, we train denoising
RBM and apply it to the training set of i-vectors, second, we
estimate the parameters of the whitening transform and PLDA
on the RBM outputs, then, we train autoencoder initialized from
the RBM (depicted as the dashed rectangle on the Figure 1) and,
finally, we apply whitening and PLDA to the test set passed
though the autoencoder. That is, we apply PLDA to i-vectors
from the feature space which differs from the space used to
train PLDA and whitening. We investigate the effects of such
parameter substitution in Section 2.3.1. Whenever we mention
the default DAE system, we refer to the configuration described
above.

Table 1 presents the results of the described above DAE
based speaker verification system evaluation for the NIST SRE
2010 condition 5 extended test. Also in Table 2 we present re-
sults for another corpus called ”Rus-Telecom”. Rus-Telecom is
the Russian-language corpus of telephone recordings, collected
by the call-centers in Russia. For our experiments we used only
male subcorpus. Training set consists of 6508 male speakers
and 33678 speech cuts. Evaluation part consists of 235 male
speakers and 4210 speech cuts. Evaluation protocol (single-
session enrollments) contains 37184 target trials and 111660
impostor trials.

Table 1: Performance comparison of three systems reported on
the NIST SRE 2010 test.

System EER,% minDCF
Baseline 1.67 0.347
RBM 1.55 0.332
DAE 1.43 0.284

Table 2: Performance comparison of three systems trained and
tested on the Rus-Telecom corpus.

System EER,% minDCF
Baseline 1.63 0.644
RBM 1.65 0.632
DAE 1.43 0.557

Comparing the 1st and 3rd rows in Table 1 and Table 2,
we observe that the DAE system considerably outperforms the
Baseline system.

2.3. Analysis of the DAE system performance

Here we explore the main causes leading to performance gaps
between the Baseline and DAE system showed in Table 1 and
consider the impact of each processing unit of the entire sys-
tem separately. First, in Sections 2.3.1-2.3.2 we try to assess
the nonlinear mappings learned by RBM and DAE. Then, in
Section 2.3.3 we explore the effect of parameter substitution
described in Section 2.2.4.

2.3.1. Assessing denoising transform

We assess the nonlinear mapping learned by DAE indepen-
dently of the back-end to separate the impacts of DAE and
PLDA to the overall error reduction. Intuitively, we aim at min-
imizing within-speaker variability and maximizing between-
speaker variability simultaneously. This aim is formalized by
the following class-separability criterion [19]:

J = tr(Σ−1
W ΣB) ≡ tr(F ), (4)

where ΣW and ΣB are the within-speaker and between-speaker
covariance matrices, respectively, estimated from either raw or
transformed i-vectors. In addition to that, we use cosine scor-
ing to estimate EER and minDCF which can be also used as
independent criteria.

Table 3 shows a comparison of four feature spaces in terms
of discriminative ability for speaker verification. The first
row corresponds to the whitened and length normalized raw i-
vectors. The next three rows correspond to the transformed i-
vectors. It should be noted that in the latter cases i-vectors were
normalized before passing through the nonlinear transform but
no normalization was applied to their images.

Table 3: Comparison of four feature spaces in terms of speaker
verification performance (EER,% minDCF) with cosine back-
end and criterion J (higher is better).

System EER,% minDCF J
Baseline 5.34 0.603 501.4
RBM 5.27 0.611 525.6
DAE 3.19 0.427 537.7
AE 5.42 0.583 494.1

As can be seen from Table 3, DAE transform gives the
largest value of J and the smallest EER and minDCF. Better
performance for cosine scoring can be explained by narrowing
the ”cone” of speaker’s sessions after the nonlinear transform.

In the last row we present the results for the standard au-
toencoder (AE). In this case we replaced i(s) by i(s, h) in the
training objective (1). As expected, the values of J , EER and
minDCF for the AE system are comparable to those for the
Baseline system. In contrast to DAE, which attempts to min-
imize within-speaker variability, the objective of AE is to per-
fectly reconstruct the input and map the i-vectors as close as
possible to their original locations.

For the more detailed view on class-separability in these
feature spaces Figure 3 shows the spectrum of the matrix
F for three cases: Baseline, RBM and DAE. As J is in-
dependent to a linear transform (i.e. given a full-rank C,
tr(C−>Σ−1

W C−1CΣBC
>) = tr(Σ−1

W ΣB) ), F−1 can be
viewed as within-class covariance matrix in the space where
ΣB = I (i.e. C = chol(Σ−1

B )).
The gap between the spectrum of the DAE system and

spectra of two other systems demonstrates that discriminatively
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Figure 3: Eigenvalues of the matrix F for the systems
corrsponding to the first three rows in Table 3. No normaliza-
tion was applied to the outputs of RBM and DAE

trained denoising transform increases class-separability of the
i-vector space.

2.3.2. Effect of normalization

Similarly to Table 3, Table 4 shows measurements of discrim-
inative ability of the same three feature spaces. The only dif-
ference is that the transformed i-vectors were normalized i.e.
whitened and projected to sphere.

Table 4: Comparison of three feature spaces in terms of speaker
verification performance with cosine back-end. RBM and DAE
outputs are normalized.

System EER,% minDCF
Baseline 5.34 0.603
RBM 4.96 0.565
DAE 4.95 0.558

We can observe that normalization reduces EER for the
RBM from 5.36% to 4.96%, but increases it for the DAE from
3.19% to 4.96%. In this case RBM and DAE transforms do not
make much difference in terms of cosine similarity. This is con-
sistent with Figure 4 which shows the 10 largest eigenvalues of
the matrix F computed for each of three cases.
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RBM

DAE

Figure 4: The 10 largest eigenvalues of the matrix F for the
same three systems as in Table 4.

As was mentioned in Section 2.2.4, we found that using pa-
rameters of the normalization and the back-end classifier trained
on the i-vectors denoised by RBM instead of DAE leads to the

best performance of the DAE system. Table 5 shows consid-
erable reduction of EER and minDCF after replacing A and µ
by the corresponding normalization parameters estimated be-
fore discriminative fine-tuning.

Table 5: Comparison of three feature spaces in terms of speaker
verification performance with cosine back-end. RBM and DAE
outputs are normalized. Whitening and back-end parameters of
the DAE system are replaced as described in text.

System EER,% minDCF
Baseline 5.34 0.603
RBM 4.96 0.565
DAE 2.83 0.393

As before, Figure 5 demonstrates the largest eigenvalues of
the matrix F . We can see that the i-vectors denoised by DAE
and normalized in the way described above have considerably
better discriminative properties.
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Figure 5: The 10 largest eigenvalues of matrix F for the same
three systems as in Table 5.

2.3.3. Effect of replacing back-end parameters

In the Section 2.3.2 we found that transferring whitening param-
eters from the RBM system leads to much better class separa-
bility in terms of cosine similarity. Now we explore the effect of
joint substitution of {A,µ;P ,Q} trained on RBM outputs to
the DAE system. Table 6 reports evaluation results for various
configurations of the DAE system.

It is important to note that PLDA parameterized by {P ,Q}
(2nd column of Table 6) was trained using whitening parame-
ters estimated on the same training data, while the whitening
parameters {A,µ} (3rd column in Table 6) for the test data
may be different.

Analyzing Table 6, we can make the following conclusions.
The performances of the RBM and DAE systems are compara-
ble (2nd and 3rd rows) when all the parameters were estimated
on the same corresponding data, which is consistent with Ta-
ble 4. In this case DAE system (3rd row) yields only moderate
improvement over the Baseline.

As we can see in the 6th row in Table 6, the substitution of
the whitening matrix A from the RBM system has the largest
impact to increasing accuracy. The further substitution of the
mean vector µ (7th row) brings only minor improvement of the
DAE system. This can be explained by the fact that for a ho-
mogeneous corpus both the global means of DAE and RBM
outputs are close zero and almost match each other.
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Table 6: Performance comparison for different configurations
of the DAE system. (See Section 2.3.3 for details).

System
PLDA:
{P ,Q}

Whitening:
A/µ

EER,% minDCF

Baseline raw raw/raw 1.67 0.347
RBM RBM RBM/RBM 1.55 0.332
DAE DAE DAE/DAE 1.58 0.336
DAE DAE DAE/RBM 1.55 0.338
DAE RBM DAE/DAE 1.56 0.33
DAE DAE RBM/DAE 1.43 0.291
DAE DAE RBM/RBM 1.44 0.287
DAE RBM RBM/RBM 1.43 0.284

Then, using {P ,Q} from the RBM system makes the
smallest contribution to filling the performance gap between
the 3rd and 8th rows. However, as observed in [1], replacing
of the parameters {P ,Q} makes the largest contribution to the
accuracy when whitening parameters are kept unchanged (i.e.
trained on DAE outputs).

Thus, Table 6 demonstrates how much replacing of each
parameter in the DAE system by the corresponding one from
the RBM system affects the overall accuracy. The question why
training system parameters in the different feature space leads
to better accuracy is still open.

3. An improved DAE system
In this Section we describe two improvements to our previous
system [1].

3.1. Dropout for RBM training

Dropout is the heuristic for training neural networks which can
be viewed as a type of regularization to prevent neural net-
work from overfitting [5]. Dropout training has been empiri-
cally found to be more efficient than the commonly used L2
regularization [20].

The intuition behind dropout is to randomly drop units from
the neural network during training to prevent co-adaptation of
units. It can be applied either to the generative training of a
RBM or to the discriminative fine-tuning of a neural network
[20]. We applied dropout during RBM training. In our case,
dropping out the 20% of hidden units was found to be optimal.

Our experiments show (see Table 7) that RBM trained with
dropout provides better initialization for DAE before discrimi-
native fine-tuning compared to the training without dropout.

Table 7: Effect of dropout for RBM training. RBM is used to
initialize DAE.

System EER,% minDCF
DAE 1.43 0.284
DAE+dropout 1.41 0.270

Unfortunately, applying dropout at the stage of discrimina-
tive fine-tuning was not helpful.

3.2. Deep denoising autoencoders

Adopting ideas from the deep learning where autoencoders are
usually used as a building block for deep neural networks [6] we

make attempts to build such model. We will describe two ap-
proaches to build and train deep networks to denoise i-vectors.

3.2.1. Stacking RBMs

First, we train a stack of two RBMs according to Figure 6. After
training, the first RBM is unfolded and the input vector i(s, h)
is mapped to the i(s), which becomes the input for the second
RBM. Then the second RBM is unfolded to form the 5-layer
denoising neural network, further referred to as deep DAE. Be-
fore discriminative fine-tuning it is initialized by two pairs of
weight matrices {W ,V >} from the corresponding RBMs. It
is important to note that all the parameters of the deep DAE are
trained jointly. We apply whitening and length normalization
both to raw i-vectors and to the outputs of the network. As de-
scribed in Section 2.3.3, we transfer parameters from the PLDA
trained on the outputs of the second RBM.

RBM

PLDA

Whitening & LN

Whitening & Length Normalization

RBM

PLDA

Whitening & LN

i-vector

RBM RBM

Figure 6: Block diagram for the system based on deep DAE.
Each RBM block corresponds to the RBM showed on Figure
2. Dashed rectangle denotes discriminatively trained parts, it
surrounds the blocks trained jointly.

Table 8: Comparison of the single DAE and the jointly trained
deep DAE initialized from the stack of RBMs. (See Figure 6
for details).

System EER,% minDCF
Baseline 1.67 0.347
DAE 1.43 0.284
deep DAE 1.43 0.297

As we can see from Table 8 this strategy does not bring im-
provement to the performance. In the next Section we describe
an alternative approach leading to the better performance.

3.2.2. Stacking DAEs

Here we present another starategy to build a deep model. In
contrast to the previously described approach based on the joint
training of the 5-layered DAE, we build a stack of two DAEs
and train each DAE separately applying whitening and length
normalization to the mapped vectors. Figure 7 shows detailed
pipeline. As before, we transfer parameters of the network,
whitening and PLDA. This is denoted by arrows on the diagram.
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Figure 7: Block diagram for the system based on stack of DAEs.
Each RBM block corresponds to the RBM showed on Figure 2.
Dashed rectangle denotes discriminative training.

Table 9 compares performance of stacked RBMs and DAEs
(denoted by 2-RBM and 2-DAE, respectively) to the variant
with the single DAE. This approach allows reducing EER to
1.30% which is the our best result on the NIST SRE 2010 CC5
extended protocol. We did not try to build the stack of three
DAEs as we do not expect significant improvement further.

Table 9: Performance of the system based on stacked DAEs
trained separately.

System EER,% minDCF
Baseline 1.67 0.347
RBM 1.55 0.332
DAE 1.43 0.284
2-RBM 1.58 0.392
2-DAE 1.30 0.282

4. DAE system in the domain mismatch
scenario

Recently, the problem of domain mismatch (i.e. mismatch of the
distribution of inputs between source and target domains, also
referred to as domain shift or dataset bias [21]) has attracted
careful attention of the speaker recognition community. It was
found that domain mismatch leads to considerable performance
gap between the in-domain and out-of-domain speaker recog-
nition systems (i.e. systems trained on the in-domain and out-
of-domain data, respectively) [22]. This motivated to set up
the domain adaptation challenge (DAC) which was one of the
main topics of interest during the summer workshop held at the
Johns Hopkins University (JHU) in 2013 [22]. Domain adapta-
tion aims to effectively exploit scarce in-domain data along with
typically more plentiful out-of-domain data whose distributions
are different. It assumed that in domain dataset has limited num-
ber of labeled samples or class labels are not available due to the
high cost of manual annotation. Otherwise a classifier could be
accurately trained on the in-domain dataset directly.

In our current and previous studies [1] we have already

shown that nonlinear mapping learned by DAE allows to im-
prove speaker verification performance in matched conditions.
In this Section we explore the contribution of DAE in the case
of domain mismatch.

4.1. Dataset

We followed the DAC setup detailed as follows. The i-vector
extractor uses 40-dimensional MFCCs (20 base + deltas) with
short-term mean and variance normalization. It uses a 2048-
component gender-independent UBM with a 600 dimensional
gender- independent i-vector extractor. As for our previous
experiments, the SRE10 telephone data (condition 5 extended
task, males) was used for evaluation. This evaluation set con-
sists of 3,465 target and 175,873 non-target trials. For param-
eter training two datasets are defined. The in-domain SRE set
includes telephone calls from 1,115 male speakers and 13,628
speech cuts taken from SRE 04, 05, 06, and 08 collections. The
out-of-domain SWB set includes calls from 1,461 male speak-
ers and 15,164 speech cuts taken from Switchboard [11]. More
details of this setup can be found at [22]. In our experiments we
ignore labels of the in-domain data. We used in-domain SRE
set only to estimate the whitening parameters of our systems.

4.2. Back-ends

We use cosine scoring, two-covariance model (referred to as
PLDA) and simplified PLDA [8] with 400-dimensional speaker
subspace (referred to as SPLDA).

4.3. Results

Table 10 demonstrates performance of three different speaker
verification systems for the domain mismatch conditions. The
details of training of the RBM and DAE systems can be found
in Section 2. We used RBM with one hidden layer trained with
dropout to pre-train DAE.

We evaluated these systems under three setups which differ
by the datasets used to estimate the whitening transform and
PLDA parameters.

The first three rows of Table 10 show evaluation results for
the case when both whitening transform and PLDA were es-
timated on the in-domain (SRE) data. As before, we can see
that applying denoising transform reduces EER and minDCF
compared to the Baseline system. Next three rows show results
for the ”opposite” case – no in-domain data is available. In
this case DAE brings only little performance improvement. But
when in-domain data is used to estimate the whitening param-
eters we can see a considerable improvement. For the Baseline
system EER drops from 6.45% to 4.23%. At the same time
DAE system, having EER of 2.63%, achieves 38% of relative
error reduction compared to the Baseline. Also in this case co-
sine based system with DAE transform has comparable perfor-
mance to the Baseline PLDA.

Thus, from these results we can conclude that using whiten-
ing parameters from the target domain along with DAE trained
on the out-of-domain set allows to avoid significant perfor-
mance gap caused by domain mismatch.

Our recipe can be applied in cases where only unlabeled
data from a target domain is available. This data can be used to
find the mean and the whitening transform for supervised train-
ing of the DAE based speaker verification system on a labeled
out-of-domain set.

We also evaluated performance of SPLDA on the same
setup. Table 11 shows slightly better performance of SPLDA
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Table 10: Performance summary of speaker verification sys-
tems with PLDA and cosine back-ends. The second column
shows which dataset was used to estimate the whitening trans-
form and PLDA parameters.

System
Whitening/

Training
COS PLDA

EER,% minDCF EER,% minDCF
Baseline

SRE/SRE
5.45 0.621 2.18 0.360

RBM 5.47 0.634 2.16 0.348
DAE 3.67 0.467 1.67 0.307
Baseline

SWB/SWB
9.13 0.788 6.45 0.660

RBM 8.97 0.778 6.28 0.667
DAE 8.97 0.764 6.01 0.644
Baseline

SRE/SWB
5.45 0.621 4.23 0.554

RBM 5.35 0.631 2.97 0.447
DAE 4.62 0.560 2.63 0.401

Table 11: Performance of speaker verification systems with
SPLDA back-end. The second column shows which dataset
was used to estimate whitening transform and to train PLDA
parameters.

System
Whitening/

Training
SPLDA

EER,% minDCF
Baseline

SRE/SRE
2.23 0.312

RBM 2.07 0.317
DAE 1.61 0.292
Baseline

SRE/SWB
4.21 0.531

RBM 2.66 0.410
DAE 2.36 0.400

while being consistent with Table 10 in terms of relative perfor-
mance gaps for the different systems.

5. Conclusion
In this paper a comprehensive study of denoising autoencoders
in the i-vector space is presented. The investigated DAE based
speaker verification system firstly introduced in [1] has shown
significant improvement for two operating points in comparison
to a standard baseline. The improvement has been demonstrated
for two independent tasks when training and testing conditions
were matched: NIST SRE 2010 and Rus-Telecom.

It is found that the observed performance gain was due
to employing a whitening matrix derived from RBM out-
puts. However we propose to use in practice all parameters
{A,µ;P ,Q} trained on RBM outputs. We have achieved fur-
ther improvements for our DAE system with such substitution
and with a modified structure and training procedure. The new
version of DAE system consists of two stacked denising autoen-
coders and employs dropout during training.

The key point of this paper is the question of a theoretical
basis for the observed gains associated with substitution. Such
gains were observed to be reproducible, yet the authors strug-
gled without success to find a convincing theoretical explana-
tion why RBM transform provides better whitening for a test
set. We bring this question forward for discussion and we hope
to find the answer with the help of the speaker recognition com-
munity.

Performance of a system based on denoising autoencoders
in domain mismatch conditions has been investigated. It is

shown that calculating whitening parameters on in-domain data
and using them to train a denoising autoencoder based system
on out-of-domain data allows to avoid large performance gap
typically arising due to mismatched conditions between train-
ing and testing data. In other words one can use unlabeled in-
domain data to obtain whitening parameters and use them to
preprocess available out-of-domain data before training a DAE
based speaker verification system with these data to improve
system performance significantly.

All our findings regarding speaker verification systems in
matched conditions hold true for mismatched conditions case.
The experiments with the DAC datasets support the importance
of employing the back-end parameters found using RBM model
in a DAE based system and demonstrate that it is necessary
to reconcile whitening parameters used during a training phase
with those used in a testing phase when mismatched conditions
occur.
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