
Smart Swap for More Efficient Clustering

Jinhua Chen, Qinpei Zhao, and Pasi Franti
School of Computing

University of Eastern Finland
Joensuu, Finland

{jinchen, zhao, franti}@cs.joensuu.fi

Abstract-Local search algorithms, such as randomized and
deterministic swap-based clustering, are often used for solving
clustering problem. In this paper, we propose a new swap-based
local search algorithm, Smart Swap, which preserves the
stability of the previous solutions but is more efficient. It
performs the swap by finding the nearest pair among the
centroids and sorting the clusters by their distortion values.
Then it swaps one of the nearest pair centroids to any position in
that cluster. K-means iteration is employed to repartition the
dataset and to fine-tune the swapped solution. The algorithm is
easy to implement and iterates less than the previous swap­
based local search algorithms. Experiments show that the
proposed algorithm keeps at least 97% stability for the synthetic
datasets and 0.577 of standard deviation for the real data. It is
also much faster than the other swap-based algorithms.

I. INTRODUCTION

Clustering algorithms are widely used in machine learning,
data mining, and pattern recognition. Besides the validity of
the clustering result itself, computational efficiency is
considered also as one of the most important criteria for
identifying a good clustering algorithm.

The clustering problem can be defined as follows. Given a
set of N D-dimensional data objects X = {x], x], . . . , XN},
partition the dataset into M clusters by optimizing a given cost
function. Several swap-based local search algorithms for
clustering have been proposed in literature [1-4]. In a so-called
J-MEANS [1] algorithm, the jump/swap is relocating the
centroids by considering all possible data objects which results
in time complexity O(N2), and follows the changes of
reassignments. Randomized local search (random swap) [2] is
based on a simple swapping technique, which is performed by
replacing a randomly selected centroid by a data object
randomly selected as well. It applies fIrst-improvement search
strategy and accepts the new solution every time it improves
the previous solution, as measured by the cost function.

Although the random swap is efficient search strategy on
average, the total number of iterations required to fmd the
clustering is upper bounded by quadratic O(NM) dependency
on the number of clusters [3]. A deterministic swap-based
method has therefore been considered to fmd the good swaps
faster. The method in [4] removes the centroid and replaces
the centroid within the cluster that has the largest distortion.

978-1-4244-6878-2/10/$26.00 ©2010 IEEE 446

The method has the drawback that, unlike random swap, it can
stuck into a local minimum, and that takes O(MN) time to find
the cluster to be removed.

The fIrst problem (local minimum) was improved by
considering four combinations of swap strategy in [5]. The
combination of random removal and deterministic addition
(RD) provided the best overall performance. The second
problem (high time complexity) was attacked in [6] by
proposing a faster implementation of the deterministic
removal by maintaining secondary partition. Despite these
improvements, the random swap remained the most favorite
strategy due to its much simpler implementation and because
the worst case slowness can be tolerated in most applications
when M is not too high.

In this paper, we propose a simpler and more efficient
alternative for the swap-based algorithm, called Smart swap. It
can be considered as one of the deterministic swap-based
algorithms. Instead of calculating the optimal choice for the
centroid to be removed, it chooses the nearest pair of centroids
as the target centroid to be removed. This can be calculated
faster in O(M) time. It then replaces the chosen centroid to
any position in the cluster with the highest distortion. To speed
up the algorithm, we employ a fast variant k-means to fine­
tune the swapped result [7]. We compare the efficiency of the
proposed method with random swap [2], hybrid swap (RD) [5]
and fast hybrid swap (D2R) [6] in the experiments.

II. SMART SWAP ALGORITHM

To express the algorithm more formally, we define the
following notations:

N Number of data objects;
M Number of clusters;

X Dataset with Ndata objectsX= {Xi}' i= 1, . . . , N;
C Set of M cluster centroids C = {c;J,j = 1, ... , U·

P Set of NpartitionsP = {Pk}, k = 1, ... ,N.

The clustering problem is an optimization problem. We
use mean squared error (MSE) as the cost function for the
optimization problem, calculated as:

(1)

where c is the centroid of the cluster that Xi is assigned to, d
P,

is a distance function. In this paper, Euclidean distance is
used, which is calculated as (for D-dimensional data object):

D
d(xi'xJ= �)x; _X�)2 (2)

i=l

A. Swap-based Clustering

The efficiency of a swap-based clustering algorithm
depends on two questions: how many iterations (swaps) are
needed, and how much time each iteration consumes. In the
random swap algorithm [2], the swap step (randomly remove
one centroid and randomly add at one position) is completely
random so it needs a large number of iterations to provide a
good quality result. In the deterministic swap method [4], the
centroid to be removed is chosen by calculating removal cost,
and the addition is made within the cluster of highest
distortion. In this case, the number of iterations is limited
because the algorithm will stop whenever there is no
improvement. However the time required for each iteration is
quite high, for example, it takes O(MN) for fmding the
minimum removal cost, or O(aN) if the secondary partition is
maintained. Our algorithm attempts to fmd a local optimum
with fewer swaps and shorter time required per iteration.

B. Smart Swap

The main challenge of efficient swap-based algorithm is to
design an efficient swap pattern, i.e. which centroid to be
removed and where to be replaced in as few iterations as
possible.

Intuitively, combining two closest clusters is expected to
work well, and more importantly, it can be calculated in a
straightforward manner. Hence, we choose the centroid to be
removed (cswap) from the nearest pair of all centroids, which
takes O(M) time by calculating the distance between any two
centroids from C. For the replacement, one more effective
choice is to choose the cluster with the largest distortion [4].
The distortion function is calculated as:

(3)

High distortion value indicates a big variance inside the
cluster, which implies that two clusters should appear instead
of only one. Thus, the distortion values of the clusters are used
to fmd the location for replacement and also to ensure that the
algorithm will converge. In order to reduce the problem of
getting stuck at a local minimum, we sort the clusters by their
distortion values in descending order, marked as S = {Sorder}
(order = I, ... , M). For example, cluster s, has the largest
distortion, and cluster SM has the smallest distortion. At each
swap, the cluster s, is selected as the fIrst-priority replacement
cluster (C'ocation) . In most cases, this improves the result.
However, when a local minimum is reached, no further
improvement can be obtained using this greedy search strategy.

447

In the case of local minimum, cluster S2 (the cluster with
the second largest distortion) is selected instead of s,. If
improves, we continue by selecting the cluster s, again in the
next iteration. Otherwise, we keep on selecting the next cluster
(S3) from the priority queue. Since the cluster with lower order
in the priority queue are less likely to provide improvements,
going through all of the clusters will increase the time
complexity unnecessarily. Hence, we set a Maxorder
(Maxorder = I, ... , M) to defme the size of the search space in
this algorithm. We can see that the larger the value of
Maxorder is set, the slower the algorithm. We set Maxorder to
log2M as a compromise.

K -means algorithm is applied in our algorithm to
repartition the swapped data objects and fme-tune the
solutions. One iteration in the traditional k-means algorithm
requires O(MN), which is quite high. To reduce the total time
complexity of the algorithm, we employ a fast variant of k­
means [7]. The fast variant classifIes the clusters into active
and static clusters. A cluster is labeled as active when the
centroid of the cluster has been changed from previous
iteration; otherwise it is labeled as static. Since most of the
clusters belong to the static group during a swap, most
calculation depends mainly on the number of active clusters.
The time complexity of this fast variant is estimated as O(aN)
in [5], where ais the number of neighbor clusters.

Repartitioning data objects and fine· tuning

Figure l. Demonstration of one run of Smart swap algorithm for a dataset
with 5000 data objects and 15 clusters.

Summarizing the ideas above, we demonstrate one run of
Smart swap algorithm visually in Figure I, and then present
the algorithm as follows.

Step I (Initialization): Initial centroids C are generated by
taking M data objects chosen randomly from the dataset.
Partition the data objects in X with corresponding C using one
k-means iteration and get the partition of the clustering P. We
set order = 1, and Maxorder = log2M.

Step 2 (Swap): Find the centroid to be removed and the
location where the centroid should be relocated.

• Find the nearest cluster pair by calculating the
distance between all of the centroid pairs in C.

• Calculate the distortions of each cluster and sort them
to get a list S. Choose the cluster Sorder as the replacing
cluster C/ocation'

• Replace the chosen centroid with any point in the
cluster C/ocation since k-means can later fine-tune the
solution. Here we select the fIrst point in C/ocation for
simplifIcation, and generate the Cnew'

Step 3 (Repartitioning and fine-tuning): We use one k­
means iteration for local repartitioning data objects since there
is only one active centroid in the current Cnew compared to the
previous C, and then two k-means iterations for fine-tuning
centroids.

Step 4 (Stopping Criterion):

•

•

If I(Cnew) < I(e), it means that the result has been
improved, we then reset the order = 1 and repeat the
Step 2 and Step3.

Otherwise, resume the previous C and do one more k­
means iteration for refmement, then increase order to
order + 1, and repeat the Step 2 and Step 3.
Meanwhile, check the stopping criterion: order >
Maxorder, which is to terminate the iterating (a local
optimum was found).

The pseudo-code of the Smart swap is shown in Figure 2.

SmartSwap Local search Algorithm:

G +- InitializeGentroids(X);
P +-PartitionDataset(X, G);
Maxorder +- /og2M;
order+- 1;
WHILE order < Maxorder

Cj, cj+-FindNearestPair(C);
S +- SortGlustersByDistortion(P, G);
cswap +-RandomSelect(cj, Cj);
Clocation +-Sorder;
Gnew +- Swap(cswap, Clocation);
Pnew+- LocaIRepartition(P, Gnaw);
Kmeanslteration(Pnew, Gnaw);
IF f(Gnew) < f(G) , THEN

order+-1;
C +-Gnew;

ELSE
order +- order + 1;
Kmeanslteration(P, C);

Figure 2. Pseudo-code of Smart swap algorithm

It should be highlighted here that the Smart swap, as a
local search algorithm, can converge very fast. We have also
observed from a large number of experiments that the
additional iterations, from increasing the search space by
setting Maxorder, is less than 2 times of Maxorder (2Iog]M in
this paper) compared to the general deterministic swap
algorithms.

448

C. Time Complexity Analysis

Random initialization requires O(MN) time due to
performing the optimal partition, which is the bottleneck of
the algorithm in the beginning.

After that during each iteration, the algorithm needs OeM)
to find the nearest pair, O(N) time to calculate the distortion of
the clusters, O(MlogM) to sort the clusters according to the
distortion, and finally O(N) to evaluate the swapping result.
These sum up to M + MlogM + N = O(N) for every iteration,
with the assumption that the number of clusters is upper
limited by M <.IN .

The main bottleneck comes from repartitioning and fine­
tuning by the k-means iterations. Even with the fast variant of
k-means, it takes O(aN), on average. The fast variant has little
effect at the early iterations because most of the centroids are
still active. However, it reduces the processing time
signifIcantly when the algorithm approaches to the optimal
solution. For higher number of clusters (M), the fast k-means
algorithm works much more efficient.

To sum up, the proposed algorithm has O(MN) time
complexity of the initialization, and then O(aN) for each
iteration. This outperforms the previous algorithms presented
in [1, 4, 5], and equals the hybrid swap in [6], and he random
swap in [2]. Meanwhile, the algorithm requires much fewer
iterations to reach the same clustering quality as that of the
algorithm in [6], and signifIcantly less iterations than required
by the random swap [2].

III. EXPERIMENTS

The algorithm is tested on both synthetic and real datasets. To
demonstrate the efficiency of the proposed algorithm, it is
compared with three other swap-based local search
algorithms: random swap [2], hybrid swap (RD) in [5] and
fast hybrid swap (D2R) in [6]. The datasets are described in
Table 1 (http://cs.joensuu.fI/sipuJdatasets).

TABLE l. DATASETS USED IN EXPERIMENTS

Name Number Description
of objects

Sl 5000 Synthetic 2-d dataset with 15 clusters
A2 5250 Synthetic 2-d dataset with 35 clusters
A3 7500 Synthetic 2-d dataset with 50 clusters

House 34112 Image 3-d dataset (64 clusters)

The swap-based algorithms can improve the local optimal
problem of local search algorithms [1-4]. The proposed
algorithm shares the stability (low variation in the MSE
across different runs) with random swap and hybrid swap.
We run the Smart swap on all of the datasets 100 times. As
shown in Figure 3, at least 97% of the runs for synthetic
datasets (SI, A2, and A3) we obtain the same result
(presumably the optimal clustering), which indicates the
stability of the proposed algorithm on synthetic data. For real
dataset (House), the standard deviation is 0.577. As shown in
the fIgure, the result from each run keeps close to the

(assumed) optimal result. In our experiments, unstable result
for real datasets is quite rare in practice.

As shown by the analysis in the previous sections, the
proposed algorithm is equally efficient than the random swap
and hybrid swap in one iteration. In the following
experiments, we will demonstrate that the proposed smart
swap requires fewer iterations.

The experiment is performed so that we compare the time
consumed of each algorithm when they achieve the same
MSE value (value that is observed to be the optimal or very

100 ----------------------
Optimal M5E: 178'10' 51

1� ----------------------

,;:;­
iii' 180
(J) :;

'G'

1n ----------------------

170 L-_�_� __ �_�_�
o 20 40 60 80 100

Runs

�o ----------------------
A3 Optimal M5E: 385'10'

65 ----------------------

iii' 390
(J) :;

385 r----...A..---II.----...A..--

380 L-_� __ �_�_�_�
20 40 60 80 100

Runs

close to optimal) with high stability (more than 97%). As
shown in Figure 4, the Smart swap is the most efficient. It

becomes even more efficient when increasing the number of
clusters M in comparison to random swap. The main reason
to affect the efficiency is the number of iterations. The Smart
swap has dramatical improvements on the efficiency
compared to the other two algorithms. It is at least 90% faster
than the random swap, 75% faster than the hybrid swap, and
60% faster than the fast hybrid swap. Moreover, with the
higher M value, the Smart swap becomes more efficient.

'G'

400 ----------------------
A2 Optimal M5E: 386'10'

395 ----------------------

iii' 390
(J) :;

w

385 ----------------------

380 L-_�_� __ �_�_�
o 20 40 60 80 100

Runs

100 ----------------------
House Optimal M5E: 70

00 ----------------------

(J) 80 :;

70

60 L-_� __ �_�_��_�
20 40 60 80 100

Runs

Figure 3. Stability of Smart swap algorithm. The experiments are performed 100 times on datasets SI, A2, A3 and House.

100

80
,-...
� 0
ar 60
E
F

40

20

0

Il!ISmart swap 633
l:;] Fast hybrid
1::1 Hybrid swap
o Random

UU't'V'�. .
_�VV'vt . . .

81

4030

. . . -------------- ." . . .

A2 A3

11546 215928

House

Figure 4. Efficiency comparison of Smart, Fast hybrid, Hybrid and Random swap-based local search algorithms on datasets SI, A2, A3 and House. The
time is a percentage based on 100% for Random swap. The numbers on the bars are the exact processing time in millisecond to obtain the approximate

optimal MSE with high stability.

449

IV. CONCLUSIONS

We have proposed a more efficient swap-based algorithm
called Smart swap. It always selects the nearest cluster pair to
be removed, which takes only O(M) time, and chooses the
cluster with largest distortion for relocating its position. In
order to avoid getting stuck into a local minimum, we extend
the search space by considering the next best cluster pairs,
which causes only little time burden in the overall processing
time. To reduce the total time complexity, a fast variant of k­
means is applied for repartitioning and fine-tuning is
employed. According to the experimental results, significant
efficiency and competitive clustering result are obtained.

The proposed algorithm is easy to implement and gets
competitive performance efficiently. However, as a local
search algorithm, it still has the problem of getting stuck into a
local optimal sometimes. How to improve the local optimal is
a key point in the future studies.

V. REFERENCES

[I] P. Hansen and N. Mladenovic, "J-means: A new local search heuristic
for minimum sum-of-squares clustering," Pattern Recognition, vol. 34,
pp. 405-413, Jan. 2001.

[2] P. Frllnti and J. Kivijllrvi, "Randomised local search algorithm for the
clustering problem," Pattern Analysis and Applications, vol. 3, pp. 358-
369,2000.

[3] P. Frllnti, O. Virmajoki and V. Hautamllki, "Probabilistic clustering by
random swap algorithm," IAPR Int. Coni on Pattern Recognition
(ICPR'08), Tampa, Florida, USA, Dec. 2008.

[4] B. Fritzke, "The LBO-U method for vector quantization - an
improvement over LBO inspired from neural networks," Neural
Processing Letters, vol. 5, pp. 35-45, 1997.

[5] P. Frllnti, M. Tuononen and O. Virmajoki, "Deterministic and
randomized local search algorithms for clustering," IEEE Int. Coni on
Multimedia and Expo, (ICME'08), Hannover, Germany, pp. 837-840,
Jun. 2008.

[6] P. Franti and O. Virmajoki. "On the efficiency of swap-based
clustering," lot. Conf. on Adaptive and Natural Computing Algorithms
(ICANNOA'09), Kuopio, Finland, pp. 303-312, Apr. 2009.

[7] T. Kaukoranta, P. Frllnti and O. Nevalainen, "A fast exact OLA based
on code vector activity detection," IEEE Trans. on Image Processing,
vol. 9 (8), pp. 1337-1342, Aug. 2000.

450

