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Abstract-Local search algorithms, such as randomized and 
deterministic swap-based clustering, are often used for solving 
clustering problem. In this paper, we propose a new swap-based 
local search algorithm, Smart Swap, which preserves the 
stability of the previous solutions but is more efficient. It 
performs the swap by finding the nearest pair among the 
centroids and sorting the clusters by their distortion values. 
Then it swaps one of the nearest pair centroids to any position in 
that cluster. K-means iteration is employed to repartition the 
dataset and to fine-tune the swapped solution. The algorithm is 
easy to implement and iterates less than the previous swap­
based local search algorithms. Experiments show that the 
proposed algorithm keeps at least 97% stability for the synthetic 
datasets and 0.577 of standard deviation for the real data. It is 
also much faster than the other swap-based algorithms. 

I. INTRODUCTION 

Clustering algorithms are widely used in machine learning, 
data mining, and pattern recognition. Besides the validity of 
the clustering result itself, computational efficiency is 
considered also as one of the most important criteria for 
identifying a good clustering algorithm. 

The clustering problem can be defined as follows. Given a 
set of N D-dimensional data objects X = {x], x], . . .  , XN}, 
partition the dataset into M clusters by optimizing a given cost 
function. Several swap-based local search algorithms for 
clustering have been proposed in literature [1-4]. In a so-called 
J-MEANS [1] algorithm, the jump/swap is relocating the 
centroids by considering all possible data objects which results 
in time complexity O(N2), and follows the changes of 
reassignments. Randomized local search (random swap) [2] is 
based on a simple swapping technique, which is performed by 
replacing a randomly selected centroid by a data object 
randomly selected as well. It applies fIrst-improvement search 
strategy and accepts the new solution every time it improves 
the previous solution, as measured by the cost function. 

Although the random swap is efficient search strategy on 
average, the total number of iterations required to fmd the 
clustering is upper bounded by quadratic O(NM) dependency 
on the number of clusters [3]. A deterministic swap-based 
method has therefore been considered to fmd the good swaps 
faster. The method in [4] removes the centroid and replaces 
the centroid within the cluster that has the largest distortion. 
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The method has the drawback that, unlike random swap, it can 
stuck into a local minimum, and that takes O(MN) time to find 
the cluster to be removed. 

The fIrst problem (local minimum) was improved by 
considering four combinations of swap strategy in [5]. The 
combination of random removal and deterministic addition 
(RD) provided the best overall performance. The second 
problem (high time complexity) was attacked in [6] by 
proposing a faster implementation of the deterministic 
removal by maintaining secondary partition. Despite these 
improvements, the random swap remained the most favorite 
strategy due to its much simpler implementation and because 
the worst case slowness can be tolerated in most applications 
when M is not too high. 

In this paper, we propose a simpler and more efficient 
alternative for the swap-based algorithm, called Smart swap. It 
can be considered as one of the deterministic swap-based 
algorithms. Instead of calculating the optimal choice for the 
centroid to be removed, it chooses the nearest pair of centroids 
as the target centroid to be removed. This can be calculated 
faster in O( M) time. It then replaces the chosen centroid to 
any position in the cluster with the highest distortion. To speed 
up the algorithm, we employ a fast variant k-means to fine­
tune the swapped result [7]. We compare the efficiency of the 
proposed method with random swap [2], hybrid swap (RD) [5] 
and fast hybrid swap (D2R) [6] in the experiments. 

II. SMART SWAP ALGORITHM 

To express the algorithm more formally, we define the 
following notations: 

N Number of data objects; 
M Number of clusters; 

X Dataset with Ndata objectsX= {Xi}' i= 1, . . .  , N; 
C Set of M cluster centroids C = {c;J,j = 1, ... , U· 

P Set of NpartitionsP = {Pk}, k = 1, ... ,N. 

The clustering problem is an optimization problem. We 
use mean squared error (MSE) as the cost function for the 
optimization problem, calculated as: 



(1) 

where c is the centroid of the cluster that Xi is assigned to, d 
P, 

is a distance function. In this paper, Euclidean distance is 
used, which is calculated as (for D-dimensional data object): 

D 
d(xi'xJ= �)x; _X�)2 (2) 

i=l 

A. Swap-based Clustering 

The efficiency of a swap-based clustering algorithm 
depends on two questions: how many iterations (swaps) are 
needed, and how much time each iteration consumes. In the 
random swap algorithm [2], the swap step (randomly remove 
one centroid and randomly add at one position) is completely 
random so it needs a large number of iterations to provide a 
good quality result. In the deterministic swap method [4], the 
centroid to be removed is chosen by calculating removal cost, 
and the addition is made within the cluster of highest 
distortion. In this case, the number of iterations is limited 
because the algorithm will stop whenever there is no 
improvement. However the time required for each iteration is 
quite high, for example, it takes O(MN) for fmding the 
minimum removal cost, or O( aN) if the secondary partition is 
maintained. Our algorithm attempts to fmd a local optimum 
with fewer swaps and shorter time required per iteration. 

B. Smart Swap 

The main challenge of efficient swap-based algorithm is to 
design an efficient swap pattern, i.e. which centroid to be 
removed and where to be replaced in as few iterations as 
possible. 

Intuitively, combining two closest clusters is expected to 
work well, and more importantly, it can be calculated in a 
straightforward manner. Hence, we choose the centroid to be 
removed (cswap) from the nearest pair of all centroids, which 
takes O( M) time by calculating the distance between any two 
centroids from C. For the replacement, one more effective 
choice is to choose the cluster with the largest distortion [4]. 
The distortion function is calculated as: 

(3) 

High distortion value indicates a big variance inside the 
cluster, which implies that two clusters should appear instead 
of only one. Thus, the distortion values of the clusters are used 
to fmd the location for replacement and also to ensure that the 
algorithm will converge. In order to reduce the problem of 
getting stuck at a local minimum, we sort the clusters by their 
distortion values in descending order, marked as S = {Sorder} 
(order = I, ... , M). For example, cluster s, has the largest 
distortion, and cluster SM has the smallest distortion. At each 
swap, the cluster s, is selected as the fIrst-priority replacement 
cluster (C'ocation) . In most cases, this improves the result. 
However, when a local minimum is reached, no further 
improvement can be obtained using this greedy search strategy. 
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In the case of local minimum, cluster S2 (the cluster with 
the second largest distortion) is selected instead of s,. If 
improves, we continue by selecting the cluster s, again in the 
next iteration. Otherwise, we keep on selecting the next cluster 
(S3) from the priority queue. Since the cluster with lower order 
in the priority queue are less likely to provide improvements, 
going through all of the clusters will increase the time 
complexity unnecessarily. Hence, we set a Maxorder 
(Maxorder = I, ... , M) to defme the size of the search space in 
this algorithm. We can see that the larger the value of 
Maxorder is set, the slower the algorithm. We set Maxorder to 
log2M as a compromise. 

K -means algorithm is applied in our algorithm to 
repartition the swapped data objects and fme-tune the 
solutions. One iteration in the traditional k-means algorithm 
requires O(MN), which is quite high. To reduce the total time 
complexity of the algorithm, we employ a fast variant of k­
means [7]. The fast variant classifIes the clusters into active 
and static clusters. A cluster is labeled as active when the 
centroid of the cluster has been changed from previous 
iteration; otherwise it is labeled as static. Since most of the 
clusters belong to the static group during a swap, most 
calculation depends mainly on the number of active clusters. 
The time complexity of this fast variant is estimated as O( aN) 
in [5], where ais the number of neighbor clusters. 

Repartitioning data objects and fine· tuning 

Figure l. Demonstration of one run of Smart swap algorithm for a dataset 
with 5000 data objects and 15 clusters. 

Summarizing the ideas above, we demonstrate one run of 
Smart swap algorithm visually in Figure I, and then present 
the algorithm as follows. 

Step I (Initialization): Initial centroids C are generated by 
taking M data objects chosen randomly from the dataset. 
Partition the data objects in X with corresponding C using one 
k-means iteration and get the partition of the clustering P. We 
set order = 1, and Maxorder = log2M. 



Step 2 (Swap): Find the centroid to be removed and the 
location where the centroid should be relocated. 

• Find the nearest cluster pair by calculating the 
distance between all of the centroid pairs in C. 

• Calculate the distortions of each cluster and sort them 
to get a list S. Choose the cluster Sorder as the replacing 
cluster C/ocation' 

• Replace the chosen centroid with any point in the 
cluster C/ocation since k-means can later fine-tune the 
solution. Here we select the fIrst point in C/ocation for 
simplifIcation, and generate the Cnew' 

Step 3 (Repartitioning and fine-tuning): We use one k­
means iteration for local repartitioning data objects since there 
is only one active centroid in the current Cnew compared to the 
previous C, and then two k-means iterations for fine-tuning 
centroids. 

Step 4 (Stopping Criterion): 

• 

• 

If I(Cnew) < I(e), it means that the result has been 
improved, we then reset the order = 1 and repeat the 
Step 2 and Step3. 

Otherwise, resume the previous C and do one more k­
means iteration for refmement, then increase order to 
order + 1, and repeat the Step 2 and Step 3. 
Meanwhile, check the stopping criterion: order > 
Maxorder, which is to terminate the iterating (a local 
optimum was found). 

The pseudo-code of the Smart swap is shown in Figure 2. 

SmartSwap Local search Algorithm: 

G +- InitializeGentroids(X); 
P +-PartitionDataset(X, G); 
Maxorder +- /og2M; 
order+- 1; 
WHILE order < Maxorder 

Cj, cj+-FindNearestPair(C); 
S +- SortGlustersByDistortion(P, G); 
cswap +-RandomSelect(cj, Cj ); 
Clocation +-Sorder; 
Gnew +- Swap(cswap, Clocation); 
Pnew+- LocaIRepartition(P, Gnaw); 
Kmeanslteration(Pnew, Gnaw); 
IF f(Gnew) < f(G) , THEN 

order+-1; 
C +-Gnew; 

ELSE 
order +- order + 1; 
Kmeanslteration(P, C); 

Figure 2. Pseudo-code of Smart swap algorithm 

It should be highlighted here that the Smart swap, as a 
local search algorithm, can converge very fast. We have also 
observed from a large number of experiments that the 
additional iterations, from increasing the search space by 
setting Maxorder, is less than 2 times of Maxorder (2Iog]M in 
this paper) compared to the general deterministic swap 
algorithms. 

448 

C. Time Complexity Analysis 

Random initialization requires O(MN) time due to 
performing the optimal partition, which is the bottleneck of 
the algorithm in the beginning. 

After that during each iteration, the algorithm needs OeM) 
to find the nearest pair, O(N) time to calculate the distortion of 
the clusters, O(MlogM) to sort the clusters according to the 
distortion, and finally O(N) to evaluate the swapping result. 
These sum up to M + MlogM + N = O(N) for every iteration, 
with the assumption that the number of clusters is upper 
limited by M <.IN . 

The main bottleneck comes from repartitioning and fine­
tuning by the k-means iterations. Even with the fast variant of 
k-means, it takes O( aN), on average. The fast variant has little 
effect at the early iterations because most of the centroids are 
still active. However, it reduces the processing time 
signifIcantly when the algorithm approaches to the optimal 
solution. For higher number of clusters (M), the fast k-means 
algorithm works much more efficient. 

To sum up, the proposed algorithm has O(MN) time 
complexity of the initialization, and then O( aN) for each 
iteration. This outperforms the previous algorithms presented 
in [1, 4, 5], and equals the hybrid swap in [6], and he random 
swap in [2]. Meanwhile, the algorithm requires much fewer 
iterations to reach the same clustering quality as that of the 
algorithm in [6], and signifIcantly less iterations than required 
by the random swap [2]. 

III. EXPERIMENTS 

The algorithm is tested on both synthetic and real datasets. To 
demonstrate the efficiency of the proposed algorithm, it is 
compared with three other swap-based local search 
algorithms: random swap [2], hybrid swap (RD) in [5] and 
fast hybrid swap (D2R) in [6]. The datasets are described in 
Table 1 (http://cs.joensuu.fI/sipuJdatasets). 

TABLE l. DATASETS USED IN EXPERIMENTS 

Name Number Description 
of objects 

Sl 5000 Synthetic 2-d dataset with 15 clusters 
A2 5250 Synthetic 2-d dataset with 35 clusters 
A3 7500 Synthetic 2-d dataset with 50 clusters 

House 34112 Image 3-d dataset (64 clusters) 

The swap-based algorithms can improve the local optimal 
problem of local search algorithms [1-4]. The proposed 
algorithm shares the stability (low variation in the MSE 
across different runs) with random swap and hybrid swap. 
We run the Smart swap on all of the datasets 100 times. As 
shown in Figure 3, at least 97% of the runs for synthetic 
datasets (SI, A2, and A3) we obtain the same result 
(presumably the optimal clustering), which indicates the 
stability of the proposed algorithm on synthetic data. For real 
dataset (House), the standard deviation is 0.577. As shown in 
the fIgure, the result from each run keeps close to the 



(assumed) optimal result. In our experiments, unstable result 
for real datasets is quite rare in practice. 

As shown by the analysis in the previous sections, the 
proposed algorithm is equally efficient than the random swap 
and hybrid swap in one iteration. In the following 
experiments, we will demonstrate that the proposed smart 
swap requires fewer iterations. 

The experiment is performed so that we compare the time 
consumed of each algorithm when they achieve the same 
MSE value (value that is observed to be the optimal or very 
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close to optimal) with high stability (more than 97%). As 
shown in Figure 4, the Smart swap is the most efficient. It 

becomes even more efficient when increasing the number of 
clusters M in comparison to random swap. The main reason 
to affect the efficiency is the number of iterations. The Smart 
swap has dramatical improvements on the efficiency 
compared to the other two algorithms. It is at least 90% faster 
than the random swap, 75% faster than the hybrid swap, and 
60% faster than the fast hybrid swap. Moreover, with the 
higher M value, the Smart swap becomes more efficient. 
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Figure 3. Stability of Smart swap algorithm. The experiments are performed 100 times on datasets SI, A2, A3 and House. 
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Figure 4. Efficiency comparison of Smart, Fast hybrid, Hybrid and Random swap-based local search algorithms on datasets SI, A2, A3 and House. The 
time is a percentage based on 100% for Random swap. The numbers on the bars are the exact processing time in millisecond to obtain the approximate 

optimal MSE with high stability. 
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IV. CONCLUSIONS 

We have proposed a more efficient swap-based algorithm 
called Smart swap. It always selects the nearest cluster pair to 
be removed, which takes only O( M) time, and chooses the 
cluster with largest distortion for relocating its position. In 
order to avoid getting stuck into a local minimum, we extend 
the search space by considering the next best cluster pairs, 
which causes only little time burden in the overall processing 
time. To reduce the total time complexity, a fast variant of k­
means is applied for repartitioning and fine-tuning is 
employed. According to the experimental results, significant 
efficiency and competitive clustering result are obtained. 

The proposed algorithm is easy to implement and gets 
competitive performance efficiently. However, as a local 
search algorithm, it still has the problem of getting stuck into a 
local optimal sometimes. How to improve the local optimal is 
a key point in the future studies. 
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