On the splitting method for vector quantization

codebook generation

Pasi Franti

University of Joensuu
Department of Computer Science
P.O. Box 111

FIN-80101 Joensuu, Finland
E-mail: franti@cs.joensuu.fi

Timo Kaukoranta

Olli Nevalainen

University of Turku

Turku Centre for Computer Science

Abstract. The well-known LBG algorithm uses binary splitting for gen-
erating an initial codebook, which is then iteratively improved by the
generalized Lloyd algorithm (GLA). We study different variants of the
splitting method and its application to codebook generation with and
without the GLA. A new iterative splitting method is proposed, which is
applicable to codebook generation without the GLA. Experiments show
that the improved splitting method outperforms both the GLA and the
other existing splitting-based algorithms. The best combination uses hy-
perplane partitioning of the clusters along the principal axis as proposed
by Wu and Zhang, integrated with a local repartitioning phase at each
step of the algorithm. © 1997 Society of Photo-Optical Instrumentation Engineers.

(TUCS) [S0091-3286(97)02311-8]
Department of Computer Science
Lemminkaisenkatu 14 A
FIN-20520 Turku, Finland

Subject terms: vector quantization; codebook generation; clustering problem; im-
age compression.

Paper 27017 received Jan. 26, 1997; accepted for publication June 7, 1997.

1 Introduction makes a rough approximation of the next-level codebook,
which is then fine-tuned by a repartitioning stage. This re-

In this paper we study codebook generation of vector quan- . . : . .
bap Y g q sults in a better codebook with an algorithm that is still

tization (VQ).” The aim is to findM representative code faster than the GLA.

vectors for givenN training vectors in aK-dimensional The rest of the paper is organized as follows. The itera-
Euclidean spacéwhere N>M) by minimizing the total tjve splitting algorithm is described in Sec. 2. The selection

squared error. The codebook is usually generated by theof the cluster for splitting is briefly discussed in Sec. 2.1,

generalized Lloyd algorithrtiGLA) ? It starts with an initial followed by a detailed treatment of various splitting meth-

codebook, which is then improved iteratively using two ods in Secs. 2.2 and 2.3. They are classified into two cat-
optimality criteria in turn until a local minimum is reached. egories: (1) heuristic code-vector-based algorithm&)

The splitting problemis an important special case of partitioning-based algorithms using principal-component
codebook generation. The aim is to partition the training analysis. The refinement phase is then discussed in Sec.
vectors into two clusters so that the total square error be-2.4. The time complexity of the main variants is analyzed
tween the training vectors and their closest cluster centroidin Sec. 3, and test results appear in Sec. 4. Finally, conclu-
is minimized. The number of code vectors is tHds=2. sions are drawn in Sec. 5.

The problem has several applications in:

2 lterative Splitting Algorithm
The iterative splitting algorithm starts with a codebook of

. . i size 1, where the only code vector is the centroid of the
* split-and-merge algorithms for codebook generation raining set. The codebook is then iteratively enlarged by a

+ tree-structured vector quantizatfon splitting procedure until it reaches si. The sketch of
« the quantization problem in color-image block trunca- the algorithm is as follows:
tion coding(BTC)®

 any two-class clustering problem.

« iterative splitting algorithms for VQ codebook genera-
tion (as in this paper

Iterative splitting algorithm:

Here we study the iterative splitting algorithm for VQ 1. Setm=1, and calculate the training set centroid.

codebook generation. The algorithm was originally used 2. Repeat the following untin= M:
only for generating an initial codebook for the GI2At has 2.1 Select clustés) to be split.
been shown since that the iterative splitting is applicable 2.2 Split the clustes); m—m-+1.
also by itself and is able to produce codebooks similar to or 2.3 Refine the partitions and code vectors.
better than the GLA with less computatidf. 3. Output theM code vectors.

We propose a new iterative splitting algorithm where the
intermediate codebooks are refined by partial remapping The main steps of the algorithm are basically the same
after each splitting stage. Since only two new vectors are as in Refs. 4, 6, and 7; only phase 2.3 is new. In the fol-
created, two comparisons are sufficient to reassign eachlowing, the size of an intermediate codebook is denoted by
training vector. In a sense, the splitting operation first m, and the size of the processed clustemby

Opt. Eng. 36(11) 3043—-3051 (November 1997) 0091-3286/97/$10.00 © 1997 Society of Photo-Optical Instrumentation Engineers 3043

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

than to apply it separateR/The running time is increased
manyfold by doing so, but there are ways to avoid this
problem; see Sec. 2.4 for the detalils.

2.1 Selecting the Cluster to Be Split

Four methods are considered here for selecting the cluster
o % to be split. The simplest strategy is to split the cluster with
o the highest variancé This is a natural choice when mini-
° mizing the total squared error, but its result is suboptimal.
°oe, Denote the distortion of the processed clustebhyand the
oo optimal partition distortions of the two subclusters after the splitting Dy
boundary for andD,. It is most likely thatD=D,+ D, but there is no
o 2-level clustering way to know beforehand which cluster yields the greatest
e’ o improvement in the total distortion.
% Another simple heuristic is to select thddest cluster
¢ i.e., the one with the maximal distance of the two furthest
vectors in the cluster. The method has its own intuitive
appeal, builike the previous methaqdit is not able to de-
Fig. 1 A situation where the local optimization fails. tect the bimodality{or multimodality) of the cluster. In fact,
it might be a proper choice to split the cluster that consists
of two (or more subclusters. Since the detection of multi-
modality is difficult we try to find the skewest cluster in-
An important parameter of the algorithm is the number stead. Skewness of a distribution can be measured by cal-
of clusters that will be split at each iteration step. Here we culating the third moment, which weights heavily the
consider two possibilities. In the main variant only one distances to the mean. We approximate it by the following
cluster is split at a time. Thus, the algorithm perforims formula:
steps in total. Another variariteferred asinary splitting
uses blind recursiog and splits all clusters at each step, thus
taking logM steps>® Phase 2.1 can then be omitted. W:Z =[x _7)‘.

The benefit of binary splitting is that the resulting tree 2)

structure is perfectly balanced. This allows logarithmic-

time encoding in vector quantization. A well-balanced tree p large value ofw indicates a skew distribution of the
structure is reported to be obtained with an ordindnstep vectors.

splitting algorithnt also; our test results confirm this. Bi- The local optimizationstrategy considers each cluster
nary splitting is therefore not necessary for this purpose. and chooses the one decreasing the distortion fnst.

The binary splitting was originally used for generating a each iteration only the two newly formed subclusters need
starting point for the GLA. This is because the original o be evaluated, because the vaiues for all other clusters are
method can hardly ever create reasonable codebooks bynown from the previous iterations. The total number of
itself. On the other hand, it has been shown thatMhetep splitting procedures, though, is doubled due to the local
splitting variant is competitive on its own if a suitable se- optimization. The splitting procedure is applied iteratively,
lection method and an efficient splitting operation are and there is no guarantee that the local optimization yields
applied*® a globally optimum solution.

The existing algorithms perform local optimization only. In summary we have discussed four selection methods:
Consider the example of Fig. 1, where two-level splitting is the highest variance, the widest cluster, the skewest cluster,
performed for the data. The optimal three-level clustering is and the local optimization strategy. We assume that the
unreachable if the cluster boundary of the first split is not criterion of the splitting can be calculated during the split-
modified. In the method of this paper we refine the inter- ting operation without extra cost. Thus, the selection can be

mediate codebooks after each splitting phase, either by theperformed inO(logm) time when using a binary search
GLA or by some other means. We discuss the following tree.

variants of the iterative splitting algorithm:;
2.2 Heuristic Code-Vector-Based Splitting Methods

There are two basic approaches for splitting the cluster:
code-vector-base(CB) andpartitioning-basedPB). In the

« iterative splitting algorithm(Split)
« iterative splitting as an initial codebook to GLA

.(SJFC_;LA) o . PB variant we divide the training vectors into two subclus-
« iterative splitting using GLA at phase 2(3SGLA) ters and replace the original code vector by the centroids of
¢ jterative Sp“tting using local repartitioning at phase the two subclusters. In the CB variant we select two neyv

2.3 (SLR). code vectors by some heuristic method and map the train-

ing vectors to the nearest of these new code vectors. The
Experiments in other contexts have shown that it is bet- code vector of the original cluster is discarded. The CB
ter to integrate the GLA within the steps of the algorithm variant will be studied in this section.

3044 Optical Engineering, Vol. 36 No. 11, November 1997

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

\

dividing hyperplane

* principal axis -~

*

Fig. 2 The first five iterations of the iterative splitting along the principal axis. The centroid is used as
the dividing point. The numbers indicate the total squared error of the partitions (X 10%).

In Ref. 2 the new code vectors afée—e and C+ e, Our experiments have indicated that in general it is bet-
wheree is a fixed deviation vector. We fix= ¢, i.e., the ter to select two new vectors instead of only one, no matter
deviation vector is formed by taking the standard-deviation What heuristic is used. In summary we have discussed three
values of the components. Without considering the direc- heuristic methodsC—e & C+e, two random vectors, and
tion of e this method is of little use. A simpler and better two furthest strategy. A training vector is assigned to the
heuristic is to select the two new vectors randomly among subcluster whose centroid is closer. This takegnK)
the training vectors of the cluster. This seems to work es- time, which is also the overall time complexity of the CB-
pecially well for binary data. based splitting step.

In Ref. 3 the original vector was retained and a new one
was the furthest training vector to it. Here we propose a 2.3 Partition-Based Splitting along the Principal Axis
modification to this method, called théwo-furthest- In this subsection we will discuss various PB variants for
strategy methadt is possible to make an exhaustive search th ltti hasé&® Th I based incinal-
for the pair of training vectors with maximal distance from € Spiitting phase. ey are all based omrincipal-
each other. This naive algorithm take®(n?K) time, component analys[@(_:A) (Rej. 10, p. 8. T.h? main idea is

. . . to calculate the principal axis of the training vectors. The
whereas a fasteO(nK) algorithm (giving virtually the training vectors are classified by K {- 1)-dimensional hy-

same resultproceeds in two step¢l) find C, as the fur- porniane perpendicular to the principal axis, passing it at a
thest vector from the cluster centro@i (2) find C, as the point P (e.g., the cluster centrojfisee Fig. 2. A sketch of
furthest vector fronC, . The vector<C, andC,, however, he algorithm is as follows:

tend to be near the cluster boundaries, and the central area
is ignored. It is therefore better to calculate the averages of 1. Calculate the principal axis using tpewer method
C, andC and ofC, andC. (Ref. 11, p. 457.

Optical Engineering, Vol. 36 No. 11, November 1997 3045

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

2. Select the dividing poinP on the principal axis.
3. Partition the training vectors with a hyperplane.

4. Calculate two new code vectors as the centroids of

the two subclusters.

It takesO(nK?) time to obtain the principal axis. The

4. Choose theV; that gave the lowest total distortion
D = D1+ D2 .

The algorithm starts by assigning all vectors to subclus-
ter 2, and none to subcluster 1. The implementation keeps
track of all centroids, the numbers of training vectors as-
signed to the clusters, and the total distort{diversity) of

calculation of the covariance matrix dominates the running 5| clusters. ThusD,, is initially the distortion of the entire

time, see Ref. 4. We propose a fastex(;nK)-time algo-
rithm where the principal component is approximated for

cluster, andD;=0. In each iteration, one vectgthe one
corresponding to the tentative dividing poing removed

each dimension separately with respect to the dimensionfrom subcluster 2 and assigned to subcluster 1. The in-

with largest variance, and by assuming distahgenstead
of theL,. The result is slightly worse in the mean-squared-

crease irD, and decrease iD, can be calculated by modi-
fying the equation(13) in Ref. 14 as follows. The total

error sense. In the following discussions, we assume thedistortion after the modification is

O(nK?)-time algorithm unless otherwise noted.
The partitioning is performed by calculating the inner

productPir r, wherer is the eigenvector of the principal
axis andPV,; is the vector from the dividing poirf® to V;.

The sign of the inner product determines the subcluster that €€ N1

V; is assigned to. The operation of the algorithm is illus-
trated in Fig. 2 for a two-dimensional case.

There are several possibilities for choosing the dividing
point along the principal axis. Theluster centroidis the

most natural but not necessarily the best choice. The use of

theradius-weighted centroitvas proposed in Ref. 12. It is
calculated similarly to the centroid, but the training vectors
are weighted proportionally to the distance from the origi-
nal centroid. In this way, vectors far from the centroid con-
tribute more to the choice of dividing point than vectors
near the centroid.

In principle, any quantization method that is used in

n, , M
n1+1|C1 vil n,—1

[

|Co—Vil2. ®)

and n, are the numbers of training vectors as-
signed to the subclusters. The new centroids due to the
modification are

C,_n1C1+Vi 3
A1 .
, NGV,
2= =1 (4)

These calculations take(K) time for one iteration, and
O(nK) time in total. Thus, the time complexity of the op-
timal partitioning (along the principal axisis O(nK?)

BTC can be applied here; see Ref. 13. We experiment with +QO(n log n) due to PCA and sorting of the projected val-

one such method, thmidpoint of the two furthestt finds

ues. In most situation&?>log n, so the time complexity

the two vectors whose distance along the principal axis is remainsO(nK?2). In summary we have discussed four PB

maximal: argmax(|CV;-r—CV;-r|), and the dividing
point P is their average.

All the above PCA-based algorithms ta®¢nK?) time,
but it is not clear which algorithm should be used. It is not
even evident that the choice of the dividing point is critical,
especially if the partitions are refined after the splitting.
Nevertheless, the optimal algoritAftfor finding the divid-
ing point is discussed next for completeness.

Let us consider the hyperplanes that are perpendicular to

the principal axis of the training vectors. We can obtain

optimal partitioning among these hyperplanes by consider-

ing each training vector as a tentative dividing point

through which the hyperplane passes. The one with the

lowest distortion value is selected. This can be imple-
mented by the following exhaustive search algorithm:

1. Calculate the projectionBV;-r of the training vec-
tors on the principal axis.

2. Sort the training vectors according to their projec-
tions.

3. Repeat the following for each training vecidy:
3.1. Calculate the two clusters, usikgas the divid-
ing point.
3.2. Calculate the total distortion valu®s and D,
of the subclusters.

3046 Optical Engineering, Vol. 36 No. 11, November 1997

methods that choose the dividing point as: centroid, radius

weighted centroid, midpoint of the furthest, optimal.

The partitioning could be fine-tuned by applying the
GLA within the cluster as proposed in Ref. 4. There are
only two code vectors in the cluster, and the number of
iterations remains very smakbout 3 to 6 according to our
experiments The GLA, however, is applied only within
the cluster, without any interaction with the neighboring
clusters. This is referred here as timracluster GLA as
opposed to the standarglpbal GLA A different approach
is taken in the next section.

2.4 Refinement of the Intermediate Solutions

The splitting operates with one cluster at a time, without
any interaction with the neighboring clusters. It is likely
that some training vectors in the neighboring clusters will
become closer to a new code vector than to the original
one. Thus, the partition boundaries can be improved by a
refining operation.

A natural choice is to apply the GLAglobally) to the
newly createdm-level intermediate codebook. Only few
GLA iterations are needed in practice, but it would still be
computationally expensive to apply the GLA in each itera-

tion step. Instead, we propose partial remapping of the
training vectors. Assume that a training vectgmwas origi-

nally mapped to its nearest code vectar Since only two

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

Table 1 Time complexity of the different phases of the algorithm.

Complexity
Phase Splitting Binary splitting

Selections O(M log M) -
Splittings:

average O(NK? log M) O(NK 2 log M)

worst O(NMK ?) O(NMK ?)
GLA iterations O(NM?K) O(NMK)
Local refinement O(NMK) O(NMK)

3.1 Selection
Fig. 3 The code vectors and partitions of the PCA-based splitting Each selection method of Section 2.1 tak&dog m) time

with local repartitioning. The numbers indicate the total squared er-

for of the partitions (x 10°). per iteration andO(M log M) time for M iterations. In

binary splitting, no selection phase is needed at all.

new code vectoréC,; andC,) have been created, the opti- 3.2 _Sp litting) o

mal mapping forV; is C, C;, or C,. A remapping is The time complexity of the splitting phases depends on the
performed by checking which one of these is closed;to size of the clusters. In the following we assume that the
This takesO(NK) time. Furthermore, assuming thalt the largest cluster is always split. In the best case a cluster

- P : : . sizen) will be split into two equal-sizer{/2) subclusters.
original partitioning before split was optimal, the partial
remapping performs the partitioning step of the GLA. The total number of processed vectdfsr the best cage

In the implementation, we also update a sum vector for therefore becomes
eachC. Every time the mapping of a training vectuk
changege.g., fromC to C,), we subtracV,; from the sum
vector of C and add it to the sum vector &;. A new _ N N
codebook can thus be calculated at any stage of the algo—2 ni_N+(§+ 21T\ stz a3t
rithm in O(MK) time. This performs the codebook step of

f

the GLA N N)
: Foeee | — 4o ——
The subsequent application of partial remapping and cal- M/2 M/2
culation of a new codebook essentially performs a full N N M N
GLA iteration in O(NK) time, compared to th©(NMK) =N+2=+4—+-+—=-——=NlogM. (5
time of the GLA. This is referred here &scal repartition- 2 4 2 M2

ing. The result of the PCA-based splitting method with par-
tition refinement is illustrated in Fig. 3. Compare this with

Fig. 2. The total running time become®(NK? log M) for an

O(nK?)-time splitting algorithm. This holds also for the
average case; an intuitive proof follows.
: : : - Assume that the size of the smaller subcluster in a split
3 Complexny Analysis of the Iterative Splitting has always the same constant of proporion of the n
Algorithm ;
) . o .) . points, for examplg=0.25. It can then be shown that the
The iterative splitting algorithm consist of the following sjze of the largest clustenf,,,) and the smallestr(y;,) in

three components: selecting the cluster, splitting the cluster, gy stage of the algorithm satisfies the followifpyoof is
and possible refinement&GLA or local repartitioning. omitted her

Their time complexities are analyzed next, not for one it-

eration, but in total. A summary is shown in Table 1. The

total running time depends on the training set sixg, (the

number of iterationsN!), the cluster sizes in the splitting Mmin= P Nmax- (6)
phase, and the methods for the steps of the algorithm. De-

note the number of clusters by, and the size of the pro-

cessed cluster by at any intermediate stage of the algo- Consider any intermediate stage of the algorithm. The clus-
rithm. ter sizes obey the following:

Optical Engineering, Vol. 36 No. 11, November 1997 3047

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

N=n;+n,+...+Np=M-Npin=M- Nppax P

m-p
N

!

C)I’]maxi

(7)

= Nmax™ O(

The total number of processed vectdfsr the average
case is therefore

> n=0(N)+0 +--40

N
M

N) N
2]*0l3
=0O(N log M), (8)

which proves the claim.

Note that this balanced case analysis does not give an
exact proof for the general case even though it does provide

a strong indication for most variants. In principle, the av-

erage case analysis of the famous quicksort algorithm could

be applied herdsee Chapter 8 in Ref. 15However, the
splitting procedure stops already afidriterations whereas
quicksort continues the partitioning until all clusters are of
size 1. Therefore this analysis would result in an overpes-
simisticO(NK? logN) time. Furthermore, it is not possible

to give analysis for the general case because it depends on

the way the split procedure is designed.

The worst case of the splitting phase is SBI{NMK?)
in the case where the sizes of the two subclustersnare
—1 and 1. Fortunately this is not common in practical situ-
ations. For our training sets, each training vector was in-
volved in the splitting process 8 times on an average when
M = 256.

3.3 Refinement

There are two alternative ways to refine the partitions after
the splitting process(l) inclusion of GLA iterations, and
(2) local repartitioning. The application of the GLA takes
O(GNmK) time for each phase whefgrefers to the num-
ber of GLA calculations. Assuming that only a fixed num-
ber of iterations is applie¢e.g.,G=2), this is reduced to
O(NmK). The total running time of this phase becomes

9

Local repartitioning takes onlP(NK); see Sec. 2.4. The
total complexity is therO(NMK), which is significantly
lower than if we include the GLA iterations.

In binary splitting, the GLA is applied only loly! times.
The codebook size is doubled before each application of
the GLA. The time complexity of the GLA for binary split-
ting is therefore

NK+2NK+3NK+4NK+---+ MNK=0O(NM?3K).

NK+2NK+4NK+8NK+:---+MNK=0O(NMK). (10
The application of the local repartitioning is somewhat

problematic in binary splitting because there are not only

two, but m new code vectors at each iteration. Therefore

Table 2 Time complexity of the different variants.

Complexity
Variant With splitting With binary splitting
Split O(NK? log M) O(NK? log M)
S+GLA O(GNMK) O(GNMK)
SGLA O(NM?K) O(NMK)
SLR O(NMK) O(NMK)

vectors, which yields a®(NmK)-time algorithm, result-
ing in O(NMK) time in total. This is of the same order of
magnitude as with the application of GLA iterations.

3.4 Summary

The time complexities of the different components of the
iterative splitting algorithm are summarized in Table 1. Us-
ing these components we can sum up the running times of
the main variants of the algorithm, see Table 2.

» Split Without any refinements the iterative splitting
algorithm with PCA takeO(NK? log M) time, and
O(NK log M) time if the approximativeL; norm is
used instead of the PCA.

» SLR:The local repartitioning increases the time com-

plexity to O(NMK), which is worse than

O(NK logM), and for typical data K=16,M

=256) worse tharD(NK? log M).

SGLA: If the GLA is integrated with the splitting al-

gorithm, the time complexity i©O(NM?K). In this

case, logV-stage binary splitting is faster than the

M-stage splitting algorithm.

On the basis of this analysis, no variant can be shown to
be superior to any other; they are tradeoffs between speed
and quality.

4 Test Results

Three training set¢‘Bridge,” “Camera,” “Lena”) were
prepared by taking % 4 pixel blocks from the gray-scale
images of Fig. 4. In the following experiments, we fixed the
number of codevectors & = 256.

Among the different cluster selection methods the local
optimization strategy is preferred because it gives the best
speed versus quality tradeoff. The improvement in MSE
was 5% in comparison with the heuristic selection methods
on an average, and 15% in comparison with binary split-
ting. At the same time the increase in time was only about
10%, despite the fact that the number of split operations is
doubled. The extra clusters that are only tentatively split
tend to appear in the later stages of the algorithm, when the
cluster sizes are radically smaller. In fact, half of the pro-
cessing time of the splitting phases originates from the first
16 iterations(of 256).

The splitting variants are compared in Table 3. In these
comparisons the intracluster GLA was applied as proposed
in Ref. 4. In the case of PCA-based variants, it gave an

each training vector must be compared against all new codeimprovement of 1% on an average at the cost of 15% in-

3048 Optical Engineering, Vol. 36 No. 11, November 1997

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

Camera (256x256)
Fig. 4 Training-set images.

Bridge (256x256)

Table 3 Comparison of the splitting variants (without refinement phase).

Lena (512x512)

MSE values
Heuristic algorithms PCA-based variants
Training C—e¢ Two Two Radius- Midpoint
image & C+e random furthest Centroid weighted of furthest Optimal
“Bridge” 182.80 181.62 181.09 180.80 179.77 178.44 176.96
“Camera” 85.64 83.24 81.01 80.44 80.63 78.78 76.55
“Lena” 61.22 59.72 59.89 60.14 59.94 59.64 59.46

crease in the running time. In the heuristic variants, the
inclusion of the intracluster GLA was vital; the reduction in

method as proposed in Ref. 2. The GLA was iterated for
each initial codebook until no improvement was obtained.

MSE was about 20 to 80%. Nevertheless, the PCA-based The results of Table 4 show that the best-splitting vari-

variants are superior to the heuristic ones.

The running time of the PCA-based splitting variants
can be decreased by 50% if we replace the PCA by the
faster O(nK)-time approximative algorithm proposed in
Sec. 2.3. The deficiency in MSE remains only about 1%.

Table 4 summarizes the results of the GLA using differ-
ent initialization methods. “Best splitting” refers to the
best variant of Table 3. Note that it is precisely the same
algorithm proposed by Wu and Zhafgsing local optimi-
zation for selection, an optimal PCA-based splitting
method, and an intracluster GLA, but no refinement phase.
(The other splitting algorithms found in the literature are
inferior to this methoil A random codebook is created by
selectingM random code vectors from the training $e-
plicates are not allowedLBG refers to the binary splitting

Table 4 Different methods for generating the initial codebook for
the GLA. The results for the random initialization are averages of
100 test runs.

MSE values
Training Binary Best
image Random splitting splitting
“Bridge” 179.68 195.59 169.93
“Camera” 122.61 127.25 74.70
“Lena” 59.73 62.89 56.24

ant is clearly the best method of these for the GLA initial-
ization. Surprisingly, it is also the fastest combination of
these. Because the GLA is the time-critical phase of the
algorithm, the time spent for the initialization is of second-
ary importance. It is therefore better to perform slower but
better initialization than(e.g) random selection. In this
way, the total number of GLA iterations is reduced and the
overall running time shortened. For example, the total num-
ber of GLA iterations for(Bridge, Camera, Lenafter ran-
dom initialization wag(21, 32, 48, and after splitting16,

12, 24.

The main variants are compared in Table 5. Split-1 is the
best splitting variant of Table 3, and Split-2 refers to our
variant in which the PCA has been replaced by the faster
approximative algorithm, and the intracluster GLA has
been omitted. SLR is the same as Split-2 but has been
augmented by the local repartitioning phase-@&.A and
SLR+GLA are the corresponding Split-1 and SLR algo-
rithms when they have been improved using GLA. SGLA
aims at the best quality by applying twglobal) GLA it-
erations after each splitting phase.

The results for “Bridge” are also shown in Fig. 5 to
illustrate the time-distortion performance of the algorithms.
Two additional methods, Random and-BLA, refer re-
spectively to the average value of randomly chosen code-
books and to the standard GLA algorithm using the random
codebook as initialization. The proposed SLR algorithm
gives better MSE values than the splitting variants. The
running time, on the other hand, is compromised. Even if

Optical Engineering, Vol. 36 No. 11, November 1997 3049

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

Table 5 Comparison of the main variants.

MSE values
Training
image Split-1 Split-2 SLR S+GLA SLR+GLA SGLA
“Bridge” 176.96 180.02 170.22 169.93 167.31 165.86
“Camera” 76.55 78.25 72.98 74.70 71.64 71.05
“Lena” 59.46 59.91 56.88 56.24 55.68 54.95

SLR is asymptotically faster than the methods using the such asKd-tree or neighborhood graph could be us&d.
GLA, its speed benefit is only about 50%. Thus, These methods are suboptimal, but their speed advantage
SLR+GLA can be regarded as a good choice if more com- may be significant.

putation time can be spent. The superiority of any variantis The proposed splitting method is a compromise between

clearly a trade-off between running time and quality. quality and time. Therefore the loss in the qualitdue to
suboptimal nearest neighbor searchuld be compensated
5 Conclusions by allocating computing resources to other parts of the al-

: . - . . gorithm. This would make the overall algorithm more com-
An iterative splitting algorithm has been studied. Several plex, though.

ideas for the cluster selection and splitting phase were dis-

cussed. The method of Wu and Zh&mgas found to be the

best choice if no refinement phase is used. It includes local

optimization for selection, and optimal PCA-based splitting Acknowledgments
augmented by an intracluster GLA. Its drawback is that the
splitting is optimized locally within the cluster only.

A local repartitioning phase was proposed for the itera-
tive splitting. The next-level codebook is first prepared by
the split operation and then fine-tuned by the local reparti-
tioning. This results in a better codebook with an algorithm References
that is still faster than the GLA. For better results than that,
the GLA must be included in the algorithm. Either the re- 1 A GeKrlshO a”Ad RdM-.Gfg%ﬁptﬁfraggrgizaﬁon and Signal Compres-
sulting codebook is used as an initial codebook for the ?(I.Orlfindlé\,lvg Bﬁgo,er;rfj Rl.J NIIS C?ray, “An algorithm for vector quan-

GLA, or the GLA itself is integrated within each step of the tizer design,”|IEEE Trans. Commurg(1), 84-95(Jan. 1980
aIgorithm 3. T. Kaukoranta, P. Frai, and O. Nevalainen, Reallocation of GLA
Th " " codevectors for evading local minim&lectron. Lett.32(17), 1563—
ere is still potential to improve the iterative splitting 1564 (Aug. 1998. o
algorithm. The method includes the nearest neighbor prob- 4. X. Wu and K. Zhang, “A better tree-structured vector quantizer,” in

lem as a basic component in splitting, local repartitioning, — §oy SenEdsagq - o Pression Confereraowbird, UT, pp. 392-

and the GLA. The optimal solution is commonly found by 5. Y. Wu and D. C. Coll, “Single bit-map block truncation coding of
exhaustive search. Instead, sophisticated data structures ?j’d%‘;'%%gzesv IEEE J. Selected Areas Commutn(5), 952-959
6. C.-K. Ma and C.-K. Chan, “Maximum descent method for image
vector quantization,'Electron. Lett.27(19), 1772-1773Sep. 1991
7. C.-K. Chan and C.-K. Ma, “Maximum descent method for image
vector quantization,”|EEE Trans. Commun42(2/3/4), 237-242

The work of Pasi Frati was supported by a grant of the
Academy of Finland.

(1994).
Random 8. C.-M. Huang and R. W. Harris, “A comparison of several vector
! ' o Existing method guantization codebook generation approachdEEE Trans. Image
260 - - - - - - - - Processing2(1), 108—-112(Jan. 1998
! ' : ‘ ® New method 9. P. Frati, J. Kivijarvi, T. Kaukoranta, and O. Nevalainen, “Genetic

' algorithms for codebook generation in vector quantization,Phoc.
' 3rd Nordic Workshop on Genetic Algorithmdelsinki, Finland, pp.
' 207-222(1997.
Ll Split-1 . ' 10. S. Kotz, N. L. Johnson, and C. B. Read, E@gyclopedia of Sta-
% 180+ @ - - R S :‘ : tistical SciencesVol. 6, John Wiley & Sons, New York1985.
. . 11. R. L. Burden and J. D. Faireslumerical Analysis3rd ed., Prindle,
175+ - -+ - -- - SLR-- S+GLA - - - - - - - Weber & Smith, Bostor{1985.
. . 4 / 12. C.-Y. Yang and J.-C. Ling, “Use of radius weighted mean to cluster
170+ - - - - - G c/ SLR+GLA. _sGLA two-class data,"Electron. Lett.30(10), 757—75%May 1994.
4 . 13. P. Frati, O. Nevalainen, and T. Kaukoranta, “Compression of digital
165+ - - - - -

: @ images by block truncation coding: a surveyComput. J.37(4),
' . 308-332(1994).
| | | % /\/__‘_) 14. W. H. Equitz, “A new vector quantization clustering algorithm,”
IEEE Trans. Acoustics Speech Signal Proces&10), 1568—-1575
10 20 30 40 50 60 940 oo 1500, P g 10
i 15. T. H. Cormen, C. E. Leiserson, and R. L. Rivdsttroduction to
Time (Seconds) Algorithms MIT Press, Cambridge, Massachusgft890.

'
[
'
'
!
1

t

)) .) _ 16. S. Arya and D. M. Mount, “Algorithms for fast vector quantization,”
Fig. 5 Speed-versus-quality trade-off comparison of the main vari- in Proceedings Data Compression ConferenSeowbird, UT, pp.
ants (“Bridge”). See text for abbreviations. 381-390, IEEE1994.

3050 Optical Engineering, Vol. 36 No. 11, November 1997

Franti, Kaukoranta, and Nevalainen: On the splitting method . . .

Pasi Franti received his MSc and PhD de-
grees in computer science from the Uni-
versity of Turku, Finland, in 1991 and
1994, respectively. From 1992 to 1995 he
was with the University of Turku. Currently
he is with the University of Joensuu as a
researcher funded by the Academy of Fin-
land. His primary research interests are in
image compression, vector quantization,
and clustering algorithms.

Timo Kaukoranta received his MSc de-
gree in computer science from the Univer-
sity of Turku, Finland, in 1994. Currently,
he is a doctoral student at Turku Center
for Computer Science (TUCS), University
of Turku, Finland. His primary research in-
terests are in image compression and vec-
tor quantization.

Olli Nevalainen received his MSc and
PhD degrees in 1969 and 1976, respec-
tively. From 1972 to 1979, he was a lec-
turer in the Department of Computer Sci-
ence, University of Turku, Finland. Since
1976 he has been an associate professor
in the same department. He lectures in the
areas of data structures, algorithm design
and analysis, compiler construction, and
operating systems. His research interests
are in the broad field of algorithm design,

including image compression, scheduling algorithms, and produc-

Optical Engineering, Vol. 36 No. 11, November 1997 3051

