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Abstract. The well-known LBG algorithm uses binary splitting for gen-
erating an initial codebook, which is then iteratively improved by the
generalized Lloyd algorithm (GLA). We study different variants of the
splitting method and its application to codebook generation with and
without the GLA. A new iterative splitting method is proposed, which is
applicable to codebook generation without the GLA. Experiments show
that the improved splitting method outperforms both the GLA and the
other existing splitting-based algorithms. The best combination uses hy-
perplane partitioning of the clusters along the principal axis as proposed
by Wu and Zhang, integrated with a local repartitioning phase at each
step of the algorithm. © 1997 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(97)02311-8]
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1 Introduction

In this paper we study codebook generation of vector qu
tization ~VQ!.1 The aim is to findM representative code
vectors for givenN training vectors in aK-dimensional
Euclidean space~where N@M ! by minimizing the total
squared error. The codebook is usually generated by
generalized Lloyd algorithm~GLA!.2 It starts with an initial
codebook, which is then improved iteratively using tw
optimality criteria in turn until a local minimum is reache

The splitting problem is an important special case o
codebook generation. The aim is to partition the train
vectors into two clusters so that the total square error
tween the training vectors and their closest cluster cent
is minimized. The number of code vectors is thusM52.
The problem has several applications in:

• iterative splitting algorithms for VQ codebook gener
tion ~as in this paper!

• split-and-merge algorithms for codebook generatio3

• tree-structured vector quantization4

• the quantization problem in color-image block trunc
tion coding~BTC!5

• any two-class clustering problem.

Here we study the iterative splitting algorithm for V
codebook generation. The algorithm was originally us
only for generating an initial codebook for the GLA.2 It has
been shown since that the iterative splitting is applica
also by itself and is able to produce codebooks similar to
better than the GLA with less computation.4,6

We propose a new iterative splitting algorithm where t
intermediate codebooks are refined by partial remapp
after each splitting stage. Since only two new vectors
created, two comparisons are sufficient to reassign e
training vector. In a sense, the splitting operation fi
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makes a rough approximation of the next-level codebo
which is then fine-tuned by a repartitioning stage. This
sults in a better codebook with an algorithm that is s
faster than the GLA.

The rest of the paper is organized as follows. The ite
tive splitting algorithm is described in Sec. 2. The select
of the cluster for splitting is briefly discussed in Sec. 2
followed by a detailed treatment of various splitting met
ods in Secs. 2.2 and 2.3. They are classified into two
egories: ~1! heuristic code-vector-based algorithms,~2!
partitioning-based algorithms using principal-compone
analysis. The refinement phase is then discussed in
2.4. The time complexity of the main variants is analyz
in Sec. 3, and test results appear in Sec. 4. Finally, con
sions are drawn in Sec. 5.

2 Iterative Splitting Algorithm

The iterative splitting algorithm starts with a codebook
size 1, where the only code vector is the centroid of
training set. The codebook is then iteratively enlarged b
splitting procedure until it reaches sizeM . The sketch of
the algorithm is as follows:

Iterative splitting algorithm:

1. Setm51, and calculate the training set centroid.

2. Repeat the following untilm5M :
2.1 Select cluster~s! to be split.
2.2 Split the cluster~s!; m←m11.
2.3 Refine the partitions and code vectors.

3. Output theM code vectors.

The main steps of the algorithm are basically the sa
as in Refs. 4, 6, and 7; only phase 2.3 is new. In the f
lowing, the size of an intermediate codebook is denoted
m, and the size of the processed cluster byn.
3043© 1997 Society of Photo-Optical Instrumentation Engineers
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Fränti, Kaukoranta, and Nevalainen: On the splitting method . . .
An important parameter of the algorithm is the numb
of clusters that will be split at each iteration step. Here
consider two possibilities. In the main variant only o
cluster is split at a time. Thus, the algorithm performsM
steps in total. Another variant~referred asbinary splitting!
uses blind recursion and splits all clusters at each step,
taking logM steps.2,8 Phase 2.1 can then be omitted.

The benefit of binary splitting is that the resulting tr
structure is perfectly balanced. This allows logarithm
time encoding in vector quantization. A well-balanced tr
structure is reported to be obtained with an ordinaryM -step
splitting algorithm4 also; our test results confirm this. B
nary splitting is therefore not necessary for this purpose

The binary splitting was originally used for generating
starting point for the GLA.2 This is because the origina
method can hardly ever create reasonable codebook
itself. On the other hand, it has been shown that theM -step
splitting variant is competitive on its own if a suitable s
lection method and an efficient splitting operation a
applied.4,6

The existing algorithms perform local optimization onl
Consider the example of Fig. 1, where two-level splitting
performed for the data. The optimal three-level clustering
unreachable if the cluster boundary of the first split is n
modified. In the method of this paper we refine the int
mediate codebooks after each splitting phase, either by
GLA or by some other means. We discuss the followi
variants of the iterative splitting algorithm:

• iterative splitting algorithm~Split!

• iterative splitting as an initial codebook to GLA
(S1GLA)

• iterative splitting using GLA at phase 2.3~SGLA!

• iterative splitting using local repartitioning at pha
2.3 ~SLR!.

Experiments in other contexts have shown that it is b
ter to integrate the GLA within the steps of the algorith

Fig. 1 A situation where the local optimization fails.
3044 Optical Engineering, Vol. 36 No. 11, November 1997
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than to apply it separately.9 The running time is increase
manyfold by doing so, but there are ways to avoid th
problem; see Sec. 2.4 for the details.

2.1 Selecting the Cluster to Be Split

Four methods are considered here for selecting the clu
to be split. The simplest strategy is to split the cluster w
the highest variance.4 This is a natural choice when mini
mizing the total squared error, but its result is suboptim
Denote the distortion of the processed cluster byD, and the
distortions of the two subclusters after the splitting byD1

andD2 . It is most likely thatD>D11D2 but there is no
way to know beforehand which cluster yields the great
improvement in the total distortion.

Another simple heuristic is to select thewidest cluster,
i.e., the one with the maximal distance of the two furthe
vectors in the cluster. The method has its own intuiti
appeal, but~like the previous method! it is not able to de-
tect the bimodality~or multimodality! of the cluster. In fact,
it might be a proper choice to split the cluster that cons
of two ~or more! subclusters. Since the detection of mul
modality is difficult we try to find the skewest cluster in
stead. Skewness of a distribution can be measured by
culating the third moment, which weights heavily th
distances to the mean. We approximate it by the follow
formula:

w5U(
i

uxi2 x̄u~xi2 x̄!U. ~1!

A large value ofw indicates a skew distribution of th
vectors.

The local optimizationstrategy considers each clust
and chooses the one decreasing the distortion most.6 In
each iteration only the two newly formed subclusters ne
to be evaluated, because the values for all other clusters
known from the previous iterations. The total number
splitting procedures, though, is doubled due to the lo
optimization. The splitting procedure is applied iterative
and there is no guarantee that the local optimization yie
a globally optimum solution.

In summary we have discussed four selection metho
the highest variance, the widest cluster, the skewest clu
and the local optimization strategy. We assume that
criterion of the splitting can be calculated during the sp
ting operation without extra cost. Thus, the selection can
performed inO(log m) time when using a binary searc
tree.

2.2 Heuristic Code-Vector-Based Splitting Methods

There are two basic approaches for splitting the clus
code-vector-based~CB! andpartitioning-based~PB!. In the
PB variant we divide the training vectors into two subclu
ters and replace the original code vector by the centroid
the two subclusters. In the CB variant we select two n
code vectors by some heuristic method and map the tr
ing vectors to the nearest of these new code vectors.
code vector of the original cluster is discarded. The C
variant will be studied in this section.
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Fig. 2 The first five iterations of the iterative splitting along the principal axis. The centroid is used as
the dividing point. The numbers indicate the total squared error of the partitions (3103).
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In Ref. 2 the new code vectors areC2e and C1e,
wheree is a fixed deviation vector. We fixe5s, i.e., the
deviation vector is formed by taking the standard-deviat
values of the components. Without considering the dir
tion of e this method is of little use. A simpler and bett
heuristic is to select the two new vectors randomly amo
the training vectors of the cluster. This seems to work
pecially well for binary data.

In Ref. 3 the original vector was retained and a new o
was the furthest training vector to it. Here we propose
modification to this method, called thetwo-furthest-
strategy method. It is possible to make an exhaustive sear
for the pair of training vectors with maximal distance fro
each other. This naive algorithm takesO(n2K) time,
whereas a fasterO(nK) algorithm ~giving virtually the
same result! proceeds in two steps:~1! find C1 as the fur-
thest vector from the cluster centroidC, ~2! find C2 as the
furthest vector fromC1 . The vectorsC1 andC2 , however,
tend to be near the cluster boundaries, and the central
is ignored. It is therefore better to calculate the average
C1 andC and ofC2 andC.
a
f

Our experiments have indicated that in general it is b
ter to select two new vectors instead of only one, no ma
what heuristic is used. In summary we have discussed th
heuristic methods:C2« & C1«, two random vectors, and
two furthest strategy. A training vector is assigned to t
subcluster whose centroid is closer. This takesO(nK)
time, which is also the overall time complexity of the CB
based splitting step.

2.3 Partition-Based Splitting along the Principal Axis

In this subsection we will discuss various PB variants
the splitting phase.4,8 They are all based onprincipal-
component analysis~PCA! ~Ref. 10, p. 8!. The main idea is
to calculate the principal axis of the training vectors. T
training vectors are classified by a (K21)-dimensional hy-
perplane perpendicular to the principal axis, passing it a
point P ~e.g., the cluster centroid!; see Fig. 2. A sketch of
the algorithm is as follows:

1. Calculate the principal axis using thepower method
~Ref. 11, p. 457!.
3045Optical Engineering, Vol. 36 No. 11, November 1997
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Fränti, Kaukoranta, and Nevalainen: On the splitting method . . .
2. Select the dividing pointP on the principal axis.

3. Partition the training vectors with a hyperplane.

4. Calculate two new code vectors as the centroids
the two subclusters.

It takesO(nK2) time to obtain the principal axis. Th
calculation of the covariance matrix dominates the runn
time, see Ref. 4. We propose a faster,O(nK)-time algo-
rithm where the principal component is approximated
each dimension separately with respect to the dimen
with largest variance, and by assuming distanceL1 instead
of theL2 . The result is slightly worse in the mean-square
error sense. In the following discussions, we assume
O(nK2)-time algorithm unless otherwise noted.

The partitioning is performed by calculating the inn
productPVi•r , wherer is the eigenvector of the principa
axis andPVi is the vector from the dividing pointP to Vi .
The sign of the inner product determines the subcluster
Vi is assigned to. The operation of the algorithm is illu
trated in Fig. 2 for a two-dimensional case.

There are several possibilities for choosing the divid
point along the principal axis. Thecluster centroidis the
most natural but not necessarily the best choice. The us
the radius-weighted centroidwas proposed in Ref. 12. It i
calculated similarly to the centroid, but the training vecto
are weighted proportionally to the distance from the ori
nal centroid. In this way, vectors far from the centroid co
tribute more to the choice of dividing point than vecto
near the centroid.

In principle, any quantization method that is used
BTC can be applied here; see Ref. 13. We experiment w
one such method, themidpoint of the two furthest. It finds
the two vectors whose distance along the principal axi
maximal: argmaxi j (uCVi•r2CVj•r u), and the dividing
point P is their average.

All the above PCA-based algorithms takeO(nK2) time,
but it is not clear which algorithm should be used. It is n
even evident that the choice of the dividing point is critic
especially if the partitions are refined after the splittin
Nevertheless, the optimal algorithm4,6 for finding the divid-
ing point is discussed next for completeness.

Let us consider the hyperplanes that are perpendicula
the principal axis of the training vectors. We can obta
optimal partitioning among these hyperplanes by consid
ing each training vector as a tentative dividing po
through which the hyperplane passes. The one with
lowest distortion value is selected. This can be imp
mented by the following exhaustive search algorithm:

1. Calculate the projectionsPVi•r of the training vec-
tors on the principal axis.

2. Sort the training vectors according to their proje
tions.

3. Repeat the following for each training vectorVi :
3.1. Calculate the two clusters, usingVi as the divid-

ing point.
3.2. Calculate the total distortion valuesD1 and D2

of the subclusters.
3046 Optical Engineering, Vol. 36 No. 11, November 1997
t

f

4. Choose theVi that gave the lowest total distortio
D5D11D2 .

The algorithm starts by assigning all vectors to subcl
ter 2, and none to subcluster 1. The implementation ke
track of all centroids, the numbers of training vectors a
signed to the clusters, and the total distortion~diversity! of
all clusters. Thus,D2 is initially the distortion of the entire
cluster, andD150. In each iteration, one vector~the one
corresponding to the tentative dividing point! is removed
from subcluster 2 and assigned to subcluster 1. The
crease inD1 and decrease inD2 can be calculated by modi
fying the equation~13! in Ref. 14 as follows. The tota
distortion after the modification is

D85D1
n1

n111
uC12Vi u22

n2

n221
uC22Vi u2. ~2!

Here n1 and n2 are the numbers of training vectors a
signed to the subclusters. The new centroids due to
modification are

C185
n1C11Vi

n111
, ~3!

C285
n2C22Vi

n221
. ~4!

These calculations takeO(K) time for one iteration, and
O(nK) time in total. Thus, the time complexity of the op
timal partitioning ~along the principal axis! is O(nK2)
1O(n log n) due to PCA and sorting of the projected va
ues. In most situationsK2. log n, so the time complexity
remainsO(nK2). In summary we have discussed four P
methods that choose the dividing point as: centroid, rad
weighted centroid, midpoint of the furthest, optimal.

The partitioning could be fine-tuned by applying th
GLA within the cluster as proposed in Ref. 4. There a
only two code vectors in the cluster, and the number
iterations remains very small~about 3 to 6 according to ou
experiments!. The GLA, however, is applied only within
the cluster, without any interaction with the neighborin
clusters. This is referred here as theintracluster GLA, as
opposed to the standard,global GLA. A different approach
is taken in the next section.

2.4 Refinement of the Intermediate Solutions

The splitting operates with one cluster at a time, witho
any interaction with the neighboring clusters. It is like
that some training vectors in the neighboring clusters w
become closer to a new code vector than to the orig
one. Thus, the partition boundaries can be improved b
refining operation.

A natural choice is to apply the GLA~globally! to the
newly createdm-level intermediate codebook. Only few
GLA iterations are needed in practice, but it would still b
computationally expensive to apply the GLA in each ite
tion step. Instead, we propose partial remapping of
training vectors. Assume that a training vectorVi was origi-
nally mapped to its nearest code vectorC. Since only two
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new code vectors~C1 andC2! have been created, the opti-
mal mapping forVi is C, C1 , or C2 . A remapping is
performed by checking which one of these is closest toVi .
This takesO(NK) time. Furthermore, assuming that th
original partitioning before split was optimal, the parti
remapping performs the partitioning step of the GLA.

In the implementation, we also update a sum vector
eachC. Every time the mapping of a training vectorVi

changes~e.g., fromC to C1!, we subtractVi from the sum
vector of C and add it to the sum vector ofC1 . A new
codebook can thus be calculated at any stage of the a
rithm in O(MK) time. This performs the codebook step
the GLA.

The subsequent application of partial remapping and
culation of a new codebook essentially performs a f
GLA iteration in O(NK) time, compared to theO(NMK)
time of the GLA. This is referred here aslocal repartition-
ing. The result of the PCA-based splitting method with p
tition refinement is illustrated in Fig. 3. Compare this wi
Fig. 2.

3 Complexity Analysis of the Iterative Splitting
Algorithm

The iterative splitting algorithm consist of the followin
three components: selecting the cluster, splitting the clus
and possible refinements~GLA or local repartitioning!.
Their time complexities are analyzed next, not for one
eration, but in total. A summary is shown in Table 1. T
total running time depends on the training set size (N), the
number of iterations (M ), the cluster sizes in the splittin
phase, and the methods for the steps of the algorithm.
note the number of clusters bym, and the size of the pro
cessed cluster byn at any intermediate stage of the alg
rithm.

Fig. 3 The code vectors and partitions of the PCA-based splitting
with local repartitioning. The numbers indicate the total squared er-
ror of the partitions (3103).
-

,

-

3.1 Selection

Each selection method of Section 2.1 takesO(log m) time
per iteration andO(M log M) time for M iterations. In
binary splitting, no selection phase is needed at all.

3.2 Splitting

The time complexity of the splitting phases depends on
size of the clusters. In the following we assume that
largest cluster is always split. In the best case a cluster~of
size n! will be split into two equal-size (n/2) subclusters.
The total number of processed vectors~for the best case!
therefore becomes

( ni5N1S N

2
1

N

2 D1S N

4
1

N

4
1

N

4
1

N

4 D
1•••1S N

M /2
1•••1

N

M /2D
5N12

N

2
14

N

4
1•••1

M

2
•

N

M /2
5N log M . ~5!

The total running time becomesO(NK2 log M) for an
O(nK2)-time splitting algorithm. This holds also for th
average case; an intuitive proof follows.

Assume that the size of the smaller subcluster in a s
has always the same constant of proportionp•n of the n
points, for examplep50.25. It can then be shown that th
size of the largest cluster (nmax) and the smallest (nmin) in
any stage of the algorithm satisfies the following~proof is
omitted here!:

nmin>p•nmax. ~6!

Consider any intermediate stage of the algorithm. The c
ter sizes obey the following:

Table 1 Time complexity of the different phases of the algorithm.

Phase

Complexity

Splitting Binary splitting

Selections O(M log M) –

Splittings:

average O(NK 2 log M) O(NK 2 log M)

worst O(NMK 2) O(NMK 2)

GLA iterations O(NM 2K) O(NMK)

Local refinement O(NMK) O(NMK)
3047Optical Engineering, Vol. 36 No. 11, November 1997
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N5n11n21...1nm>m•nmin>m• nmax•p

⇔nmax<
N

m•p

⇒nmax5OS N

mD . ~7!

The total number of processed vectors~for the average
case! is therefore

( ni5O~N!1OS N

2 D1OS N

3 D1•••1OS N

M D
5O~N log M !, ~8!

which proves the claim.
Note that this balanced case analysis does not give

exact proof for the general case even though it does pro
a strong indication for most variants. In principle, the a
erage case analysis of the famous quicksort algorithm co
be applied here~see Chapter 8 in Ref. 15!. However, the
splitting procedure stops already afterM iterations whereas
quicksort continues the partitioning until all clusters are
size 1. Therefore this analysis would result in an overp
simisticO(NK2 logN) time. Furthermore, it is not possibl
to give analysis for the general case because it depend
the way the split procedure is designed.

The worst case of the splitting phase is stillO(NMK2)
in the case where the sizes of the two subclusters an
21 and 1. Fortunately this is not common in practical si
ations. For our training sets, each training vector was
volved in the splitting process 8 times on an average w
M5256.

3.3 Refinement

There are two alternative ways to refine the partitions a
the splitting process:~1! inclusion of GLA iterations, and
~2! local repartitioning. The application of the GLA take
O(GNmK) time for each phase whereG refers to the num-
ber of GLA calculations. Assuming that only a fixed num
ber of iterations is applied~e.g.,G52!, this is reduced to
O(NmK). The total running time of this phase becomes

NK12NK13NK14NK1•••1MNK5O~NM2K !. ~9!

Local repartitioning takes onlyO(NK); see Sec. 2.4. The
total complexity is thenO(NMK), which is significantly
lower than if we include the GLA iterations.

In binary splitting, the GLA is applied only logM times.
The codebook size is doubled before each application
the GLA. The time complexity of the GLA for binary split
ting is therefore

NK12NK14NK18NK1•••1MNK5O~NMK!. ~10!

The application of the local repartitioning is somewh
problematic in binary splitting because there are not o
two, but m new code vectors at each iteration. Therefo
each training vector must be compared against all new c
3048 Optical Engineering, Vol. 36 No. 11, November 1997
n

n

f

e

vectors, which yields anO(NmK)-time algorithm, result-
ing in O(NMK) time in total. This is of the same order o
magnitude as with the application of GLA iterations.

3.4 Summary

The time complexities of the different components of t
iterative splitting algorithm are summarized in Table 1. U
ing these components we can sum up the running time
the main variants of the algorithm, see Table 2.

• Split: Without any refinements the iterative splittin
algorithm with PCA takesO(NK2 log M) time, and
O(NK log M) time if the approximativeL1 norm is
used instead of the PCA.

• SLR:The local repartitioning increases the time com
plexity to O(NMK), which is worse than
O(NK log M), and for typical data (K516,M
5256) worse thanO(NK2 log M).

• SGLA: If the GLA is integrated with the splitting al-
gorithm, the time complexity isO(NM2K). In this
case, logM-stage binary splitting is faster than th
M -stage splitting algorithm.

On the basis of this analysis, no variant can be shown
be superior to any other; they are tradeoffs between sp
and quality.

4 Test Results

Three training sets~‘‘Bridge,’’ ‘‘Camera,’’ ‘‘Lena’’ ! were
prepared by taking 434 pixel blocks from the gray-scale
images of Fig. 4. In the following experiments, we fixed t
number of codevectors atM5256.

Among the different cluster selection methods the lo
optimization strategy is preferred because it gives the b
speed versus quality tradeoff. The improvement in M
was 5% in comparison with the heuristic selection metho
on an average, and 15% in comparison with binary sp
ting. At the same time the increase in time was only ab
10%, despite the fact that the number of split operation
doubled. The extra clusters that are only tentatively s
tend to appear in the later stages of the algorithm, when
cluster sizes are radically smaller. In fact, half of the p
cessing time of the splitting phases originates from the fi
16 iterations~of 256!.

The splitting variants are compared in Table 3. In the
comparisons the intracluster GLA was applied as propo
in Ref. 4. In the case of PCA-based variants, it gave
improvement of 1% on an average at the cost of 15%

Table 2 Time complexity of the different variants.

Variant

Complexity

With splitting With binary splitting

Split O(NK 2 log M) O(NK 2 log M)

S1GLA O(GNMK) O(GNMK)

SGLA O(NM2K) O(NMK)

SLR O(NMK) O(NMK)
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Table 3 Comparison of the splitting variants (without refinement phase).

Training
image

MSE values

Heuristic algorithms PCA-based variants

C2e
& C1e

Two
random

Two
furthest Centroid

Radius-
weighted

Midpoint
of furthest Optimal

‘‘Bridge’’ 182.80 181.62 181.09 180.80 179.77 178.44 176.96

‘‘Camera’’ 85.64 83.24 81.01 80.44 80.63 78.78 76.55

‘‘Lena’’ 61.22 59.72 59.89 60.14 59.94 59.64 59.46

Fig. 4 Training-set images.
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crease in the running time. In the heuristic variants,
inclusion of the intracluster GLA was vital; the reduction
MSE was about 20 to 80%. Nevertheless, the PCA-ba
variants are superior to the heuristic ones.

The running time of the PCA-based splitting varian
can be decreased by 50% if we replace the PCA by
faster O(nK)-time approximative algorithm proposed
Sec. 2.3. The deficiency in MSE remains only about 1%

Table 4 summarizes the results of the GLA using diff
ent initialization methods. ‘‘Best splitting’’ refers to th
best variant of Table 3. Note that it is precisely the sa
algorithm proposed by Wu and Zhang,4 using local optimi-
zation for selection, an optimal PCA-based splitti
method, and an intracluster GLA, but no refinement pha
~The other splitting algorithms found in the literature a
inferior to this method!. A random codebook is created b
selectingM random code vectors from the training set~du-
plicates are not allowed!. LBG refers to the binary splitting

Table 4 Different methods for generating the initial codebook for
the GLA. The results for the random initialization are averages of
100 test runs.

Training
image

MSE values

Random
Binary

splitting
Best

splitting

‘‘Bridge’’ 179.68 195.59 169.93

‘‘Camera’’ 122.61 127.25 74.70

‘‘Lena’’ 59.73 62.89 56.24
.

method as proposed in Ref. 2. The GLA was iterated
each initial codebook until no improvement was obtaine

The results of Table 4 show that the best-splitting va
ant is clearly the best method of these for the GLA initia
ization. Surprisingly, it is also the fastest combination
these. Because the GLA is the time-critical phase of
algorithm, the time spent for the initialization is of secon
ary importance. It is therefore better to perform slower b
better initialization than~e.g.! random selection. In this
way, the total number of GLA iterations is reduced and t
overall running time shortened. For example, the total nu
ber of GLA iterations for~Bridge, Camera, Lena! after ran-
dom initialization was~21, 32, 48!, and after splitting~16,
12, 24!.

The main variants are compared in Table 5. Split-1 is
best splitting variant of Table 3, and Split-2 refers to o
variant in which the PCA has been replaced by the fas
approximative algorithm, and the intracluster GLA h
been omitted. SLR is the same as Split-2 but has b
augmented by the local repartitioning phase. S1GLA and
SLR1GLA are the corresponding Split-1 and SLR alg
rithms when they have been improved using GLA. SGL
aims at the best quality by applying two~global! GLA it-
erations after each splitting phase.

The results for ‘‘Bridge’’ are also shown in Fig. 5 t
illustrate the time-distortion performance of the algorithm
Two additional methods, Random and R1GLA, refer re-
spectively to the average value of randomly chosen co
books and to the standard GLA algorithm using the rand
codebook as initialization. The proposed SLR algorith
gives better MSE values than the splitting variants. T
running time, on the other hand, is compromised. Even
3049Optical Engineering, Vol. 36 No. 11, November 1997
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Table 5 Comparison of the main variants.

Training
image

MSE values

Split-1 Split-2 SLR S1GLA SLR1GLA SGLA

‘‘Bridge’’ 176.96 180.02 170.22 169.93 167.31 165.86

‘‘Camera’’ 76.55 78.25 72.98 74.70 71.64 71.05

‘‘Lena’’ 59.46 59.91 56.88 56.24 55.68 54.95
the
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’’
SLR is asymptotically faster than the methods using
GLA, its speed benefit is only about 50%. Thu
SLR1GLA can be regarded as a good choice if more co
putation time can be spent. The superiority of any varian
clearly a trade-off between running time and quality.

5 Conclusions

An iterative splitting algorithm has been studied. Seve
ideas for the cluster selection and splitting phase were
cussed. The method of Wu and Zhang4 was found to be the
best choice if no refinement phase is used. It includes lo
optimization for selection, and optimal PCA-based splitti
augmented by an intracluster GLA. Its drawback is that
splitting is optimized locally within the cluster only.

A local repartitioning phase was proposed for the ite
tive splitting. The next-level codebook is first prepared
the split operation and then fine-tuned by the local repa
tioning. This results in a better codebook with an algorith
that is still faster than the GLA. For better results than th
the GLA must be included in the algorithm. Either the r
sulting codebook is used as an initial codebook for t
GLA, or the GLA itself is integrated within each step of th
algorithm.

There is still potential to improve the iterative splittin
algorithm. The method includes the nearest neighbor pr
lem as a basic component in splitting, local repartitionin
and the GLA. The optimal solution is commonly found b
exhaustive search. Instead, sophisticated data struct

Fig. 5 Speed-versus-quality trade-off comparison of the main vari-
ants (‘‘Bridge’’). See text for abbreviations.
neering, Vol. 36 No. 11, November 1997
-

l

-

s

such asKd-tree or neighborhood graph could be used16

These methods are suboptimal, but their speed advan
may be significant.

The proposed splitting method is a compromise betw
quality and time. Therefore the loss in the quality~due to
suboptimal nearest neighbor search! could be compensate
by allocating computing resources to other parts of the
gorithm. This would make the overall algorithm more com
plex, though.

Acknowledgments

The work of Pasi Fra¨nti was supported by a grant of th
Academy of Finland.

References

1. A. Gersho and R. M. Gray,Vector Quantization and Signal Compres
sion, Kluwer Academic Publishers~1992!.

2. Y. Linde, A. Buzo, and R. M. Gray, ‘‘An algorithm for vector quan
tizer design,’’IEEE Trans. Commun.28~1!, 84–95~Jan. 1980!.

3. T. Kaukoranta, P. Fra¨nti, and O. Nevalainen, Reallocation of GLA
codevectors for evading local minima,Electron. Lett.32~17!, 1563–
1564 ~Aug. 1996!.

4. X. Wu and K. Zhang, ‘‘A better tree-structured vector quantizer,’’
Proceedings Data Compression Conference, Snowbird, UT, pp. 392–
401, IEEE~1991!.

5. Y. Wu and D. C. Coll, ‘‘Single bit-map block truncation coding o
color images,’’ IEEE J. Selected Areas Commun.10~5!, 952–959
~June 1992!.

6. C.-K. Ma and C.-K. Chan, ‘‘Maximum descent method for ima
vector quantization,’’Electron. Lett.27~19!, 1772–1773~Sep. 1991!.

7. C.-K. Chan and C.-K. Ma, ‘‘Maximum descent method for ima
vector quantization,’’ IEEE Trans. Commun.42~2/3/4!, 237–242
~1994!.

8. C.-M. Huang and R. W. Harris, ‘‘A comparison of several vect
quantization codebook generation approaches,’’IEEE Trans. Image
Processing2~1!, 108–112~Jan. 1993!.
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