

Accepted Manuscript

Framework for Syntactic String Similarity Measures

Najlah Gali , Radu Mariescu-Istodor , Damien Hostettler ,
Pasi Fränti

PII: S0957-4174(19)30222-2
DOI: https://doi.org/10.1016/j.eswa.2019.03.048
Reference: ESWA 12574

To appear in: Expert Systems With Applications

Received date: 17 September 2018
Revised date: 4 March 2019
Accepted date: 27 March 2019

Please cite this article as: Najlah Gali , Radu Mariescu-Istodor , Damien Hostettler , Pasi Fränti ,
Framework for Syntactic String Similarity Measures, Expert Systems With Applications (2019), doi:
https://doi.org/10.1016/j.eswa.2019.03.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.eswa.2019.03.048
https://doi.org/10.1016/j.eswa.2019.03.048

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

 Token-level measures outperform character-level measures when the order of the words varies

 Q-grams provide a good compromise between token- and character-level measures

 Token-level measures are significantly outperformed by their soft variants

 Soft measures based on set-matching methods perform best when using q-gram at the character

level

 The performance of similarity measures varies depending on the type of the datasets

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Framework for Syntactic String Similarity Measures
1

Najlah Gali
2
, Radu Mariescu-Istodor, Damien Hostettler, Pasi Fränti

Machine Learning Group, School of Computing, University of Eastern Finland, Joensuu FI-80101, Finland

Abstract Similarity measure is an essential component of information retrieval, document clustering, text

summarization, and question answering, among others. In this paper, we introduce a general framework of

syntactic similarity measures for matching short text. We thoroughly analyze the measures by dividing them

into three components: character-level similarity, string segmentation, and matching technique. Soft variants

of the measures are also introduced. With the help of two existing toolkits (SecondString and SimMetric), we

provide an open-source Java toolkit of the proposed framework, which integrates the individual components

together so that completely new combinations can be created. Experimental results reveal that the

performance of the similarity measures depends on the type of the dataset. For well-maintained dataset, using

a token-level measure is important but the basic (crisp) variant is usually enough. For uncontrolled dataset

where typing errors are expected, the soft variants of the token-level measures are necessary. Among all

tested measures, a soft token-level measure that combines set matching and q-grams at the character level

perform best. A gap between human perception and syntactic measures still remains due to lacking semantic

analysis.

Keywords: similarity measure; string similarity; information retrieval; text processing

1. Introduction
Similarity measures are needed in several fields, including biomedical, signal processing, natural language

processing, statistics, artificial intelligence, and information retrieval. For example, linking records requires a

similarity measure to locate matches across pairs of lists not having unique identifiers (Agbehadji et al.,

2018; Song et al., 2019). In information retrieval, a measure is needed to retrieve documents relevant to a

user‟s query. A similarity measure is also needed for resolving range violations in a large knowledge graph

extracted from structured data such as Wikipedia (Lertvittayakumjorn et al., 2017) and for auto-correcting

text where a misspelled word is replaced with a dictionary word with high similarity. Measuring similarity of

text has further been used in detecting plagiarism. Since plagiarism usually happens in some parts of text, the

text should be segmented into smaller fragments before measuring the similarity (Ehsan and Shakery, 2016).

Modern techniques use skip-grams and Word2Vec for cross-language plagiarism detection as well as q-

grams (Barron-Cedeno et al., 2013; Franco-Salvador et al., 2016). Other types of data for which a similarity

measure is needed include:

 Titles of web pages (Gali et al., 2016), V-café – Viet-Café;

 Keywords and keyphrases (Rezaei and Fränti, 2014), theater – theatre;

1 A preliminary version of the paper was presented in ICPR conference (Gali et al., 2016). It covered twenty-four

existing measures for matching title phrases.

 The new version thoroughly analyzes 132 similarity measures, of which 86 are novel. Additional data sets

were analyzed, more experiments were conducted, and new conclusions were drawn. An open-source Java

toolkit with adaptable components is provided to implement all the measures reviewed in this paper and is

made publicly available on http://cs.uef.fi/sipu/soft/stringsim/

2 Najlah Gali () • Radu Mariescu-Istodor • Damien Hostettler • Pasi Fränti

e-mail: {najlaa, radum, damien, franti} @cs.uef.fi

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Named entities (Cohen et al., 2003b; Moreau et al., 2008), U.S State Department – US Department

of State;

 Personal names (Christen, 2006; Snae, 2007), Gail Vest – Gayle Vesty;

 Place names (Recchia and Louwerse, 2013), Ting Tsi River – Tingtze River;

 Ontology alignments (Cheatham and Hitzler, 2013; Sun et al. 2014), associate professor – senior

lecturer;

 Short segments of text (Metzler et al., 2007), Apple computer – Apple pie;

 Sentences (Achananuparp et al., 2008), I haven't watched television for ages – It's been a long time

since I watched television.

 Trace links in software development (Alenazi et al., 2018).

 Given two strings, the goal is to determine their similarity. Similarity can be semantic or syntactic.

Strings are semantically similar if they have the same meaning such as car and automobile, and syntactically

similar if they have the same character sequence. Existing semantic similarity measures can be classified into

corpus-based, knowledge-based, or a combination of the two (Mihalcea et al., 2006).

 Corpus-based measures, such as latent semantic analysis (LSA) (Landauer and Dumais, 1997), pairwise

mutual information (PMI) (Turney, 2001), and Word2Vec (Mikolov et al., 2013), measure the similarity

between two strings depending on information gained from large corpora. For example, LSA assumes that

words of similar meaning will occur in related pieces of text. A word-paragraph matrix is created where each

value represents how many times the given word appears in that paragraph. Singular value decomposition

has been used to find reduced dimensional representation of the matrix so that only important words are

retained. Word similarity is computed by taking the cosine of the angle between any two vectors (rows)

corresponding to the words being compared.

 Knowledge-based measures use semantic networks such as WordNet (Miller, 1995). For example, Wu

and Palmer (1994) measure the similarity between two words using the depth of their least common

subsumer (LSC) and the word depth, where depth is the number of links between the word and the root word

in WordNet (see Figure 1). While useful, semantic similarity depends on language, taxonomy, and corpora.

It may also provide poor results. For example, the similarity between staff and body is 0.76 although the two

words are far from being similar (Wu and Palmer, 1994).

Figure 1 Semantic similarity between wolf and hunting dog using WordNet taxonomy, with mammal being

the least common subsumer; the circled numbers represent the depth

 Syntactic measures operate on the words and their characters without any assumption of the language or

the meaning of the content. They are, therefore, more general than semantic measures. Usually, syntactic

measures output a distance, which indicates how dissimilar two data elements are. The larger the distance

between the two elements, the less similar they are. Distance and similarity can be used interchangeably, as

they are inverse functions. In this paper, all distance measures have been converted to similarity measures,

which return a score in a [0, 1] interval where 0 means nothing in common and 1 means exact match.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Existing measures have usually been created for a specific task or application in mind. Most researchers

are not interested in the details of the similarity measures; they just need one single measure for their

application to provide estimates of the similarities of two strings. For this reason, the existing measures have

been widely adopted in other applications areas than they were originally designed for. Many ad hoc

measures are also used to fulfill the need. It is, therefore, an open question which measure should be used in

a certain type of application. If there is a measure that is universal, it should fit all conceivable applications,

not only a wide set.

 Previous comparative studies focus mainly on specific tasks such as names of people, places, institutions

or companies. They point out that the performance of the similarity measures is affected by text length,

spelling accuracy, abbreviations and the language. Another common observation is that measures that have

good performance on one data type can perform poorly on another. As a result, there is no measure

consistently outperforming the others in all tasks (Christen, 2006; Snae, 2007). For example, Levenshtein

distance (Levenshtein, 1966) and the Jaro metric (Jaro, 1989) work well for matching names but perform

poorly for matching acronyms such as Western Canadian Place fitness and WCP fitness. Despite them being

used in many tasks, extensive review and evaluation of syntactic similarity measures are missing in the

literature.

 Syntactic similarity measures can be classified into two broad classes: character-level and token-level

(Gali et al., 2016). Character-level measures, such as Levenshtein distance (Levenshtein, 1966), treat the

strings as sequences of characters. This type of measure is useful when the strings are single words involving

only misspellings, typographical errors or slight morphological variations. However, strings can be split into

tokens by whitespace and punctuation marks. In this case, it can be more useful to analyze the strings as a

sequence or a set of tokens instead of just characters; such measures are called token-level measures. They

are more suitable when less significant tokens are missing from one string or when they are in different

order. The biggest deficiency of most token-level measures is that they only compare whether the tokens are

exactly the same or not.

 Only a few methods combine character- and token-level measures (Cohen et al., 2003b; Vargas, 2008;

Sidorov et al., 2014). These methods are called soft measures. The principle of a soft measure is to apply a

character-level measure to all pairs of tokes between the strings and consider only tokens that satisfy a

certain criterion (e.g. threshold) as input to a token-level measure. According to Jimenez et al. (2010), soft

cosine, outperforms both character- and token-level measures for name matching. Soft-cosine combines the

cosine for token matching and bigrams for character-level matching.

 However, when applied as standalone measures, neither cosine nor bigrams is the best choice (Jimenez et

al., 2010). It is expected that a better combination can be found from other character- and token-level

measures by analyzing them extensively.

 In this paper, we introduce a novel framework for a generic similarity measure. We provide a review of

the existing syntactic similarity measures and show how they fit into this framework. We perform a

comparative study of 143 similarity measures, in total, of which 52 exist in the literature and 91 are new

combinations formed from the existing components. We study the design choices for each of the building

blocks including the character-level measure, segmentation strategy, and the token-level matching. We aim

at answering the questions, which combination works best in a certain type of applications, and whether a

single multi-purpose measure could be identified that would fit, if not perfectly, but sufficiently well for

most applications. For the sake of completeness, we compare the obtained results with the semantic

similarity measure Word2Vec.

 To begin with, we divided the procedure of measuring the similarity into three components (see Figure 2):

 Character-level measure,

 String segmentation,

 Matching technique.

 String similarity can be computed directly by considering the entire string as one token using

character-level or q-gram measures; a q-gram is a substring of length q of some string s. An alternative

approach is to segment the string with language components such as words or character groups taken into

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

account. We performed a systematic study of these components and found several new measures combining

the best properties of various character- and token-level measures.

 We also provide an open-source Java toolkit, StringSim that contains all the measures reviewed in this

paper and allows combining different measures to produce their soft variants. To the best of our knowledge,

there is no other public toolkit that goes beyond traditional measures by providing adaptable components and

supports soft variants of the existing measures. Some combinations might not have a known application as of

now; however, new applications appear every day. Therefore, investigating the different combinations for

novel and non-trivial applications is worthwhile. This package also allows extensive cross-comparison of all

known combinations. Several new meaningful measures are also introduced, of which q-grams and

set-matching methods perform well in all text types used. Some combinations can also be found using the

existing packages listed in Table 1.

Figure 2 String similarity workflow

Table 1 Existing similarity measure packages

Year Package Language Type No. of measures Source

2003 SecondString3 Java
Character, Token,

Soft
38 Cohen et al. (2003)

2005 SimMetric 4 Java
Character, Q-gram,

Token
23 ---

2013 DKPro5 Java
Character, Q-gram,

Token, Soft
20 Bär et al. (2013)

2014 Stringdist6 C Character, Q-gram 10 Van der Loo (2014)

2016 Harry7 C Character, Token 21 Rieck and Wressnegger (2016)

2017 StringSim8 Java
Character, Q-gram,

Token, Soft
132 This paper

3 https://sourceforge.net/projects/secondstring

4 https://sourceforge.net/projects/simmetrics

5 https://dkpro.github.io/dkpro-similarity

6 http://www.markvanderloo.eu/yaRb/category/string-metrics

7 http://www.mlsec.org/harry

8 http://cs.uef.fi/sipu/soft/stringsim

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2. Character-level measures
A string can be viewed as a unit composed of a sequence of characters. Existing character-level measures

can be categorized into the following three classes:

 Exact match,

 Transformation,

 Longest common substring (LCS).

 Exact match provides a simple binary result: 1 = the strings are exactly the same, 0 = otherwise. This is

the classical way of comparing strings in information retrieval but is slowly being replaced by approximate

matching. Nevertheless, most token-level measures still use this naive approach.

 Transformation measures quantify the similarity of two strings by counting the number of operations

needed to turn one string into the other. It can be achieved in several ways. Most common is edit distance,

which measures the minimum number of edit operations needed to transform a string s1 to string s2. The edit

operations include insertion, deletion, and substitution. The best match can be found by dynamic

programming in O(|s1|×|s2|) time using O(min(|s1|,|s2|)) space, where |s1| and |s2| are the lengths of the strings

s1 and s2 to be compared in characters (Jimenez et al., 2009). Variations of edit distance have been proposed

(depending on the number, type, and cost of operations), including Levenshtein (Levenshtein, 1966),

Damerau-Levenshtein (Damerau, 1964), Needleman-Wunsch (Needleman and Wunsch, 1970), Smith-

Waterman (Smith and Waterman, 1981), and Smith-Waterman-Gotoh (Gotoh, 1982) (see Table 2).

 Levenshtein allows insertion, deletion, and substitution at a cost of one unit. Damerau-Levenshtein allows

swapping of two adjacent characters (ab ↔ ba) at a cost of one unit. Needleman-Wunsch was originally

developed in the area of bioinformatics to align protein or nucleotide sequence. It uses a cost of two units for

insertion and deletion, and one for substitution. These types of edit distances are suitable for matching strings

with typographical errors (king sitric and kingsitric), but not for other types of mismatch such as truncated or

shortened strings (Southville Running Club and Southville RC). Smith-Waterman and Smith-Waterman-

Gotoh offer solutions to this problem.

 Smith-Waterman performs local alignment by finding similar regions in the two strings. It assigns a lower

cost when the mismatch happens at the beginning or at the end of the strings than when it happens in the

middle ([Bilenko et al., 2003; Elmagarmid et al., 2007). For example, the measure provides higher similarity

value for strings such as Prof. Mohammed A. Gali, University of Baghdad and Mohammed A. Gali, Prof.

than do Levenshtein or Needleman-Wunsch. The result is obtained in O(min(|s1|,|s2|)×|s1|×|s2|) using

O(|s1|×|s2|) space (Christen, 2006).

 Smith-Waterman-Gotoh (SWG) improves the scaling of Smith-Waterman by adding a so-called affine

gap cost allowing better local alignment of the strings. It introduces two costs for insertion: gap open (a

penalty of unmatched characters in the beginning of a string) and gap extension (a penalty for its

continuation). In addition, substitution by a similar-sounding character ({d, t}, {g, j}) is given a higher score

than by other mismatch characters. For example, a cost of +5 is assigned to matching characters, +3 to

similar-sounding, and -3 to a mismatch. SWG requires O(|s1|×|s2|) in time and space.

 Other examples of transformation measures are Hamming (Hamming, 1950), Jaro (Jaro, 1989), and Jaro-

Winkler (Winkler, 1990). Hamming allows only substitutions, and the length of the strings must be equal.

Jaro was originally developed for linking records having inaccurate text fields. It calculates the number of

matching and transposed characters. Characters are matched if they are the same and located no farther than

[max(|s1|,|s2|)/2]-1 within the string, and transposed if they are the same but in reverse order (a-u, u-a). For

example, in comparing CRATE with TRACE, only „R‟ „A‟ „E‟ are the matching characters. Although „C‟ and

„T‟ appear in both strings, they are farther than 1 unit (the result of [5/2]-1). Jaro-Winkler modifies Jaro to

provide higher weight to prefix matches. Winkler (1990) observed that typing errors usually occur in the

middle or at the end of the string, but rarely at the beginning. As a result, Winkler adds a prefix weight (l × p

(1 - dj)) which returns higher similarity scores when the strings match from the beginning, where l is the

length of the common prefix up to four characters, p is a scaling factor of 0.1, and dj is the Jaro similarity

(see Table 2).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 The LCS measure (Friedman and Sideli, 1992) was designed for applications such as matching patient

records in a clinical setting and text summarization, but it can also be applied for comparing short text.

Therefore, we study LCS as well. It finds the longest contiguous sequence of characters that co-occur in the

two strings. The result is normalized by dividing the length of this sequence by the length of the longer

string.

 To sum up, character-level measures are useful for matching strings that contain only a few typographical

errors but not for detecting the ordering of entire tokens. For example, they fail to capture the similarity

between Café Manta and Manta café.

Table 2 Character-level measures. Edit is the cost of operations according to the particular corresponding measure. The symbols s1

and s2 refer to the input strings. In Jaro, m is the number of matching characters and x is the number of transposed characters divided

by 2. Symbol p in Jaro-Winkler is a scaling factor of 0.1, and l is the length of the common prefix up to four characters between the

strings.

Similarity measure Equation
Edit operation costs

Insert Delete Substitute Swap

Levenshtein (1966)

 | | | |
 1 1 1 -

Damerau-Levenshtein (Damerau 1964)

 | | | |
 1 1 1 1

Needleman and Wunsch (1970)

 | | | |
 variable variable 1 -

Smith and Waterman (1981)

 | | | |
 variable variable -2 -

Smith-Waterman-Gotoh (Gotoh 1982)

 | | | |
 variable variable

-3

+3
-

Hamming (1950)

 | | | |
 - - 1 -

Jaro (1989)

 (

| |

| |

) - -

-
-

Jaro-Winkler (Winkler 1990) - - - -

Longest common substring (Friedman

and Sideli 1992)

| ́ |

 | | | |
 - - - -

3. String Segmentation
Segmentation divides the strings into units such as q-grams or words. It utilizes information at a higher level

than characters alone. Two approaches exist to segment the string:

 Q-grams,

 Tokenization.

The q-grams approach (Shannon, 1948) divides a string into substrings of length q. The q-grams were first

used for string matching in (Ukkonen, 1992). The segmentation is overlapping, as the same character

belongs to several q-grams (except when q=1). Substrings of length 2 are called bigrams (or 2-grams) and

length 3 trigrams (or 3-grams). The rationale behind q-grams is that the sequence of characters is more

important than the characters alone. The q-grams for a string s are obtained by sliding a window of length q

over the string (see Table 3). To consider also substrings of length q-1 and to recognize prefixes and suffixes

of the string, so-called padding characters (# % $) are appended to the beginning and end of the string. The

similarity is calculated as follows:

∑ | (

) (
)|

|
| |

|
 (1)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where Qs1 and Qs2 are the multi-sets of q-grams from s1 and s2, respectively, n = |Qs1⋃Qs2|, and match (qi,Qs1)

is the number of times the q-gram qi appears in Qs1. In this paper, we use q-grams with paddings to consider

tokens having fewer than q characters, such as the determiners a and an.

 Variants of q-grams are positional q-grams and skip-grams. Positional q-grams (Christen, 2006) preserve

the position of the grams in the string and match only q-grams with a distance of less than a predefined

threshold. For example, club contains the positional bigrams (cl, 0), (lu, 1), (ub, 2). If the threshold is set to

1, then the bigram (lu, 1) will only match to bigrams in the second string in positions 0, 1 or 2. Skip-grams

(Keskustalo et al., 2003) are bigrams that skip one or more character in the middle (see Table 3).

Table 3 The segmentation of string The club at the Ivy, symbol _ refers to space

Segmentation method Output

None (character sequence) the club at the ivy

q-grams (q = 3)
the, he_, e_c, _cl, clu, lub, ub_ , b_a, _at, at_,

t_t, _th, the, he_ , e_i, _iv, ivy

q-grams

with padding characters

##t, #th, the, he_ , e_c, _cl, clu, lub, ub_ , b_a,

at, at , t_t, _th, the, he_ , e_i, _iv, ivy, vy%,

y%%

1-skip-grams
t*e, h*c, e*l, c*u, l*b, u*a, b*t, a*t, t*h, t*e,

h*i, e*v, i*y

Tokenization the, club, at, the, ivy

 Tokenization breaks a string into units called tokens using whitespaces and punctuation characters (see

Table 3). The rationale behind tokenization is to utilize information at the token level and to overcome

problems of token swap and missing tokens. In Christen (2006), two solutions to solve the token ordering

problem were introduced: sorting heuristic and permuting heuristic. In sorting heuristic, each string is

tokenized, tokens alphabetically ordered, re-joined again, and then edit distance is applied to the modified

strings. In permuting heuristic, all token permutations are obtained from the first string and a comparison

between all the permuted strings and the second string is then performed; the highest similarity value is

chosen. However, these heuristic solutions are inefficient for other types of mismatching such as missing

tokens, especially when the length of the absent token is considerable such as Rosso and Rosso restaurant. A

better solution is therefore needed in such cases.

4. Matching Techniques
Methods for token matching involve two challenges: which tokens to match and how to compute the

similarity between the matched tokens. These challenges will be discussed next in greater detail. It should be

noted that q-grams could also be used as the matching units even though we use the term token for

simplicity. Matching depends on how the strings are represented. Three possibilities exist (see Figure 3):

 Sequence,

 Set,

 Bag-of-tokens.

4.1 Sequence

The idea of sequence matching is to generalize Levenshtein or some other character-level measure to the

token level. Instead of characters, tokens are used as comparative units. The cost of the edit operations

insertion, deletion, and substitution is a function of the tokens being compared. In Chaudhuri et al. (2003),

the cost of substitution is calculated as the Levenshtein distance of the two tokens weighted by the inverse

document frequency calculated from the two strings. Some character-level measures such as Smith-

Waterman and SWG cannot be used at the token level because they are based on properties of characters

such as their similar sounds.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3 Examples of exact string matching at token level

4.2 Set

The idea behind set matching is to make the matching independent of the order. Sets, which are a collection

of non-repeating tokens, are first generated from the input strings. Any set-matching method then can be

applied to measure the overlap between the sets. Most of them calculate the intersection and differ only on

how they are normalized. Braun-Banquet (Choi et al., 2010), Simpson coefficient (Choi et al., 2010), Jaccard

index (Rezaei and Fränti, 2016), and Dice coefficient (Brew and McKelvie, 1996) divide the cardinality of

the intersection by the cardinality of the largest set, the smallest set, the cardinality of the union of the two

sets, or the average cardinality of the two sets; where cardinality is the number of tokens in the set (see Table

7 on page 11). Multiset allows the same token to appear multiple times as in Rouge-N (Lin, 2004). It

computes the similarity by using the F-score, which combines the precision and the recall.

 Although useful, these measures fail when the tokens have different spelling or have minor typographical

errors. For instance, Jaccard („gray color‟, „color gray‟) = 1, but when the string is written with different

spelling, then Jaccard („gray color‟, „colour grey‟) = 0 because both words have different forms despite

having the same meaning.

 To overcome this problem, two approaches (also called soft measures) to generalize set matching have

been introduced. In one approach, a character-level measure is used to estimate the similarity between tokens

consisting from different strings. Only token pairs that are similar enough are considered. For example, in

Monge and Elkan (1996), only pairs that have highest similarity scores according to a character-level

measure are used to calculate the overall similarity (see Table 4 and Figure 4). Michelson and Knoblock

(2007) consider two tokens to match if their similarity score according to a character-level measure is above

a predefined threshold. A drawback of this approach is that the threshold should be empirically chosen

depending on the characteristics of the data set.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4 Character-level similarities between the grey colour and gray color using SWG

 the grey colour

gray 0.20 0.90 0.30

color 0.20 0.30 0.80

Max. 0.20 0.90 0.80

Figure 4 Example of a soft matching measure

 The second approach is a soft cardinality of set introduced by Vargas (2008). The idea for soft cardinality

is that tokens similar to others in the same set count less than tokens that are unique. Therefore, the soft

cardinality of a set containing similar tokens should be less than that of a set containing the same number of

tokens but significantly different.

 For example, consider the two sets {gray, grey} and {gray, color}. The soft cardinality of the former set

using SWG as the character-level measure is 1.06 (a bit more than one object) and the latter is 1.54 (more

than one but less than two objects) (see Table 5). Therefore, soft cardinality provides a better measure of the

unique concepts represented by the string.

 In this paper, we use the function presented in Vargas (2008) to estimate the soft cardinality of a set. Let

T be a set of n tokens: T = {T
1
, T

2
… T

n
}, and d (T

i
,T

j
) is a character-level similarity measure scaled in the

range [0,1]. The soft cardinality of T is computed as:

| | ∑[

∑

]

 (2)

Table 5 Soft cardinality of sets {gray, grey}, {gray, color} using SWG as the character-level measure

 gray grey Sum 1/sum gray color Sum 1/sum

gray 1.00 0.90 1.90 0.53 gray 1.00 0.30 1.30 0.77

grey 0.90 1.00 1.90 0.53 color 0.30 1.00 1.30 0.77

|T|soft 1.06 |T|soft 1.54

After soft cardinality has been defined, we use it to calculate the cardinality of union, as illustrated in Table

6. The size of the intersection is computed through cardinalities of the two sets and their union (Vargas,

2008), as follows:

| | | | | | | | (3)

Finally, any set-matching method can be applied to compute the overall similarity by replacing the classic

cardinality with soft cardinality. For example, soft Jaccard is computed as follows:

| |

| |
 (4)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6 Soft cardinality of the union of the sets {gray, color} and {the, grey, colour} using SWG as a character-level measure

 gray color the grey colour Sum 1/sum

gray 1.00 0.30 0.20 0.90 0.30 2.70 0.37

color 0.30 1.00 0.20 0.30 0.80 2.60 0.38

the 0.20 0.20 1.00 0.33 0.20 1.93 0.52

grey 0.90 0.30 0.33 1.00 0.30 2.83 0.35

colour 0.30 0.80 0.20 0.30 1.00 2.60 0.38

|T1T2|soft 2.01

It should be noted that set-matching methods using soft cardinality may give similarity scores greater than 1,

because soft cardinality does not guarantee the traditional set inequalities |T1⋂T2| ≤ min(|T1|, |T2|) and max

(|T1|, |T2|) ≤ |T1⋃T2| (Vargas, 2008).

4.3 Bag-of-tokens

The bag-of-tokens method combines the unique tokens from the two input strings into a single set (the “bag

of tokens”). Feature vectors are then generated for both strings where each feature is the number of times the

particular token in the bag appears in the string; this is denoted as term frequency (TF). However, this is not

necessarily the best way to represent the strings, as common tokens like a, to, and the often have high

frequencies. In Song et al. (2014), it was observed that due to the short length of the phrases, most words

appear only once in a text record and term frequency is therefore not efficient. Term frequency-inverse

document frequency (TF-IDF) is therefore introduced to address this problem. It is the product of two

statistics: the term frequency and its inverse document frequency (IDFw). The latter is the total number of

compared strings divided by the number of strings that contain the specific token. Metrics such as cosine

(Cohen et al., 2003b), Euclidean distance, and Manhattan distance (Malakasiotis and Androutsopoulos,

2007) have been applied to compute the similarity between the two feature vectors (see Table 7). In Noh et

al. (2015), TF-IDF and a set of 130 keywords were found to be the most promising components to estimate

the similarity between patent documents. The length of patent documents is still much longer than typical

text phrases that we consider.

 Analogously to the set-matching techniques, these metrics compare tokens using exact match and ignore

the degree of similarity between the tokens when generating the feature vectors. For instance, suppose that

we have two strings s1 = play game and s2 = player gamer. Our bag-of-tokens consists of four tokens {play,

game, player, gamer} and the feature vectors corresponding to the two strings are v1 = [1, 1, 0, 0] and v2 = [0,

0, 1, 1]. According to cosine measure, the similarity of these two vectors is 0 although they are quite similar.

 To overcome this limitation, the soft-cosine measure has been introduced (Sidorov et al., 2014). It

computes the similarity of each pair of tokens using a character-level measure; in Sidorov et al., 2014),

Levenshtein distance has been used. In the aforementioned example, if soft cosine (see Table 7) were applied

with Jaro-Winkler as the character-level measure, the similarity of these two vectors would be 0.84. The

same approach can also be applied to Euclidean and Manhattan metrics to produce their soft variants,

although these have not been considered in literature so far (see Table 7).

 Although generalized approaches suggest using a character-level measure to compare tokens, only a few

combinations have been studied in the literature and were often tested only with one type of character-level

measure. In addition, to best of our knowledge, there have not been unified tasks, data sets, and experimental

setups in which all measures have been tested and evaluated for their usefulness. All these issues are

addressed in this paper.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7 Sequence, set and bag-of-tokens matching measures. For two strings s1 and s2, symbols v1 and v2 are their vector

representation and T1 and T2 denote their token sets.
 is the i:th token in the set of tokens T1 generated from string s1. Symbol [] is

used when referring to a multiset. Symbol simij is the distance at the token level. Function d calculates the character-level similarity

score between two tokens. Symbol n is the length of the feature vector.

Matching measures

Sequence Soft variant

Chaudhuri et al.

(2003)

{

 {

{

 {

 (

)

 (

)

 (

)

Set Soft variant

Braun- Banquet

(Choi et al., 2010)

| |

 | | | |

| |

 | | | |

Simpson (Choi et

al., 2010)

| |

 | | | |

| |

 | | | |

Jaccard (Rezaei

and Fränti, 2016)

| |

| |

| |

| |

Dice (Brew and

McKelvie, 1996)

 | |

| | | |

 | |

| | | |

Rouge-N (Lin,

2004)

((

) (

))

| |

| |

| |

| |

((

) (

))

| |

| |

| |

| |

Monge-Elkan

(1996)

| |
∑

 | |
 (

)

| |

Bag-of-tokens Soft variant

Cosine (Cohen et

al., 2003b)

∑

√∑

 √∑

∑ (

)

√∑ (

)

 √∑ (

)

Euclidean

(Malakasiotis and

Androutsopoulos,

2007)

√∑ (

)

√|
 |

 |

 |

√∑ (

)(

)

√(∑ (

)

)

 (∑ (

)

)

Manhattan

(Malakasiotis and

Androutsopoulos,

2007)

∑ |

 |

|
 | |

 |

∑ (

)|

|

∑ (

)

 ∑ (

)

5. Experimental Evaluations
We use the following experimental setup to analyze the performance of all the measures in relation to their

properties, human intuition, clustering, and matching task. We aimed to find which measures

 are robust to text manipulation such as typographical errors and token change,

 correlate to human intuition,

 have higher similarity to such character strings that refer to the same entity;

 can be applied in clustering,

 can be applied to find entries in different databases.

We selected 10 matching techniques, 9 character-level measures, and 2 q-gram measures. This gave us

(10 × (9 + 2)) = 110 soft token-level measures in total. We also considered exact match at the character level

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and the semantic measure Word2Vec as references. We therefore had 143 different combinations in our

experiments, of which 52 exist and 91 are novel (see Table 8).

 Word2Vec model, provided by Google
9
, has been trained using the English language (US). We slightly

modified the model so that it outputs value 0 (instead of infinite) if a word cannot be recognized and value 1

if two words are equal, even if they are not recognized. Without this modification, infinite values would

appear during the calculation of soft similarity.

 All string characters were converted to lowercase as a pre-processing step in all tests because it can have

positive effect on the accuracy (Uysal and Gunal, 2014). We also suppressed the spaces in the beginning and

at the end of the strings if there were any.

Table 8 The tested 143 similarity measures. Blue cell refers to an existing and √ to a novel measure. The first row contains measures

that use exact matching at the character level. The first column contains all character-level, q-grams, and semantic measures.

Token-level

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match

 Hamming √ √ √ √ √ √ √ √ √ √

Levenshtein √ √ √

Dam-Levenshtein √ √ √ √ √ √ √ √ √ √

Needle-Wunsch √ √ √ √ √ √ √ √ √ √

SW √ √ √ √ √ √ √ √ √ √

SWG √ √ √ √ √ √ √ √ √

Jaro √ √ √

Jaro-Winkler √ √ √ √ √ √ √ √

LCS √ √ √ √ √ √ √ √ √ √

 2-Grams √ √ √

3-Grams √ √ √ √ √ √ √ √ √ √

Word2Vec

 √ √ √ √ √

5.1 Data sets

We used three publicly available data sets containing mostly English text (see Table 9):

 Titler
10

(Gali et al., 2017),

 The Mopsi photo collection
11,12

,

 Match sets13 (Cohen et al., 2003).

The Titler data set contains 4,968 candidate title phrases extracted from 1,002 English websites. The ground

truth titles were manually annotated by two people independently on each other, and in the case of

disagreement, a third person made a judgement between these two. The candidate title phrases were

extracted automatically from the pages using the method in Gali et al. (2017); therefore, different

typographical representations exist, such as Hotspring and Hot spring, Park hotel & spa and Park hotel and

9 https://code.google.com/archive/p/word2vec
10 http://cs.uef.fi/mopsi/titler

11 http://cs.uef.fi/mopsi/tools/photoclusters.php

12 http://cs.uef.fi/mopsi/PhotoDescriptionsClusters/dataset.zip

13 http://www.cs.cmu.edu/~wcohen/match.tar.gz

G
ra

m
s

C
h

a
ra

ct
er

-l
ev

el

S
em

a
n

ti
c

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

spa. The phrases were evaluated for their relevance so that the user rates them from 0 (irrelevant) to 5

(excellent match). For example, 12 candidate phrases were extracted for the restaurant the Apollo; six of

them were rated 5, two were rated 4, and four were rated 3. The minimum number of phrases extracted for a

web page was one and the maximum was 30 (Gali et al., 2017).

 The Mopsi photo collection contains 42,739 geo-tagged photos collected since April 2016. Each photo

has a short description (English or Finnish), time stamp, and the location where it was taken. Mopsi users can

write a description immediately after taking a photo. Then, the Mopsi app will offer pre-written descriptions

that the user can simply tap to use. The pre-written descriptions are obtained from photos near to the user.

Therefore, photos taken at the same location tend to have similar descriptions when they describe the same

object. The descriptions may contain typing errors.

 Match sets are publicly available data sets that have been used to test similarity measures on matching

tasks (Cohen et al., 2003; Vargas, 2008; Jimenez et al., 2009). The data sets comprise seven domains, such as

birds, business names, and games (see Table 9). Each domain consists of two or three databases collected

from different sources. For example, the parks data set contains 396 national parks names from one listing

and 258 from a second listing. Of these, 241 names describe the same park. In each data set, the entries

contain different types of information that are joined by a tabulation character as follows:

 Ny Bird: scientific name, common name,

 Bird Scott1: web page link, common name, scientific name,

 Bird Scott2: web page link, common name, scientific name,

 Business: web page link, company name,

 Game: ID, name,

 Park: web page link, name,

 Restaurant: name, address, phone number, and brief description of the cuisine served.

The underlined fields are the identification keys (ID keys). Entries from different listings match if their ID

keys are identical. These data sets are controlled; therefore, typing errors do not exist.

Table 9 Summary of the data sets

 String length

Source Data set Size Language Token Character

 Min Av. Max Min Av. Max

Gali et al. (2017) Titler 4,968 English 1 3 8 4 14 39

Mopsi photos 1,000

English

Finnish
1 3 26 6 17 65

 Bird Nybird 982

English

1 3 69 4 21 321

Cohen et al. (2003)

Bird Scott1 38 2 3 8 7 20 58

Bird Scott2 719 3 4 9 15 35 83

Business 2,139 1 3 8 4 19 51

Game 855 1 5 55 4 27 255

Park 654 2 3 12 6 16 58

Restaurant 863 7 11 21 40 59 102

5.2 Text manipulation

We first examined how each measure performs under text manipulation: character change and token change.

We selected 18 strings of different lengths
14

 (see Figure 5) as a baseline and applied several systematic

changes.

14 http://cs.uef.fi/mopsi/TextManipulation/dataset.zip

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T Figure 5 Eighteen strings plotted based on how many characters and tokens they contain.

 We first made k random character changes and then l random token changes and report the average

results. The expected result is that a syntactic measure has a linear correspondence to the number of

character or token changes (k and l). This is denoted as expected in Figs 6 and 8. This assumption might not

hold in all cases. Humans are known to be able to recognize the content even with the presence of very

severe spelling errors, but in some other applications humans can be very sensitive to even small amount of

character changes.

 In testing, we computed the similarity between the original string and the manipulated string. On average,

we observed the performance of the measures to be mostly invariant with regard to string length. We

therefore report only the results for one selected string: awesome animated monster maker: ultra-edition (6

tokens and 40 characters). Due to the large number of tested measures, we only plot selected measures in

Figures 6 and 8. The rest of the measures have been represented in a color pattern graph in Figures 7 and 9

such that one line in Figures 6 and 8 represents not only the named measure but also another with the same

color in Figures 7 and 9.

 In Figure 6, we observe that most character-level measures have a constant decrease of similarity when

the number of changes increases, but that the amount of decrease varies. Levenshtein and its modified

versions such as Damerau-Levenshtein correlate best with the number of character changes. LCS is one of

the mostly affected measures because changes in the middle of the string produce significantly shorter

common substrings. For example, when changing two characters in our example awesome aRimated mXnster

Maker: Ultra Edition, the similarity drops to 0.58.

 Q-gram measures show a uniform decrease with the number of characters being changed. They are

slightly more sensitive to character changes because one change will destroy two or more bi- and trigrams.

The token-level measures with exact match generally drop faster than the character-level measures and the

q-grams because they discard the entire token even if only minor difference exists.

 The performance of the soft measures is more stable than their corresponding crisp variants. In Figure 6,

we see that majority of the soft measures are less sensitive to the character change than expected. Indeed,

because soft variants consider strings with minor differences as being similar, they also consider strings with

major differences as having some similarity. One exception is the combination between Monge-Elkan and

Smith-Waterman or SWG, which drops faster than expected. The combinations between Monge-Elkan and

Levenshtein or Damerau-Levenshtein, together with the combination between set-matching methods, cosine

and q-grams, correlate best with the expected result.

 The semantic measure Word2Vec behaves very similar to exact match. Even a single character change

usually brings the word out of the vocabulary, and therefore, it will not anymore match the original text.

Exceptional cases appear only when a word changes to another word existing in the dictionary by luck, but

the effect of this is insignificant. To sum up, semantic measures are not suitable for this kind of application.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6 Effect of character changes on the similarity measures

Figure 7 Clusters of performance of similarity measures corresponding to Figure 6. Exact match refers to standard

measures and black cells are the unique patterns.

 To compare the measures with human intuition, we generated a ground truth depending on human

understanding of the text. Eleven users were asked to perform the experiment as follows: one manipulated

string was displayed to the user at a time (in the same order to all users) through an interface. The user had to

write the correct string if able to recognize it and leave the input field empty otherwise. It should be noted

that the same list of manipulated strings was given to all users and to all similarity measures. The process

continued until all manipulations were tested. The average results were taken.

 As can be observed in Figure 6, human intuition provides very different behavior compared to the

expected linear behavior. Humans can perfectly recognize the text with up to 20% of character changes,

Ch/Q Edit MongeElkan Manhattan Euclidean

Exact match

Hamming

Levenshtein &Damerau-

Levenshtein

Needleman Wunch

Smith Waterman & SWG

Jaro & Jaro Winkler 12
LCS 2
2Grams & 3Grams

Word2Vec

13
15

4 11
3 5

Set matching methods and cosine

1 14

7
8

10
12 16
6

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

depending on the text. One reason is that if a token was broken because of character changes, a human can

still guess the correct word. In addition, the position of the characters being changed has an effect on human

understanding. For example, a human can still read tihs correctly although the middle characters are

swapped.

 In conclusion, the majority of the measures performed well in this experiment, with the exception of exact

match, LCS, token-level measures, and Manhattan soft variants, which dropped fast, as well as soft variants

that combine set-matching methods or cosine with Needleman-Wunsch, Jaro and Jaro-Winkler, which

dropped slowly. Euclidean soft variants may also be considered to have performed poorly because they did

not see the differences between half-changed and totally changed strings. Levenshtein and Damerau-

Levenshtein alone or combined with Monge-Elkan, as well as set-matching methods and the cosine

combined with q-grams, and Monge-Elkan combined with Smith-Waterman, SWG, or LCS were closer to

the expectation than other measures.

 Figure 8 illustrates that the majority of the measures had a uniform decrease with respect to the token

change. Yellow in Figure 9 represents all these measures. Among the character-level measures, the LCS was

the most sensitive to token change. Smith-Waterman, SWG, and the combination between Jaccard and q-

grams dropped the same amount as Jaccard alone. The Euclidean and Manhattan measures had the same

behavior no matter what character-level or q-grams measure it combines.

 As assumed, the soft measures provided higher similarity scores than expected due to their ability to

capture the similarity between similar and identical tokens. In Figure 8, we observe that the similarity scores

provided by the soft versions of the measures never reach 0, no matter how different the two strings are.

Considering Needleman-Wunsch, Jaro, and Jaro-Winkler as secondary measures is not useful, as they

provide high similarity regardless of the differences between the strings. Similar to character change, q-gram

variants were always close to the expected results, having their worst performance with Simpson, Jaccard

and Euclidean.

Figure 8 Effect of token changes on the similarity measures

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 9 Clusters of performance of similarity measures corresponding to Figure 8. Exact match refers to standard

measures and black cells are the unique patterns.

5.3 Correlation to human intuition

Next, we used the Titler data set to detect how well the similarity scores correlate with the human scores. We

used the non-symmetric rank correlation Somers’ D (Somers, 1962) of the computed similarity with respect

to human score, because it takes equal similarities for unequal human scores into account. It is calculated as:

 (4)

where Ns is the number of pairs ranked in the same order by both variables (see Figure 10), Nd is the number

of pairs ranked in reversed order, and Nt is the number of pairs that have different human scores but given

equal scores by a similarity measure (Somers, 1962). Tie cases are ignored, as they do not have any impact

on the correlation.

Figure 10 Rank correlation parameters (Jaccard+3-Grams)

 The results are summarized in Table 10. We observe that most measures have a positive correlation to the

human ranking. The strength of the correlation is moderate (from 40% to 52%) for most of them. The

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

correlation of the character-level measures Levenshtein, Damerau-Levenshtein, and Jaro, and the q-grams

are slightly higher (from 50% to 52%) than that of the others (from 40% to 49%). Smith-Waterman and

SWG have a weak correlation (16%). Word2Vec does not work well (4%) because titles usually consist of

multiple words that form meaningful entity; such form is not a part of the model.

Table 10 Summary of results (%) for correlation to human; exact match refers to standard measures; best, moderate, bad

Token-level

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 40 46 14 46 45 45 46 48 44 46 48

 Hamming 41 47 14 48 47 47 48 49 44 46 50

Levenshtein 52 48 7 49 48 48 50 49 44 46 52

Dam-Levenshtein 52 48 6 49 48 48 50 49 44 46 52

Needle-Wunsch 49 43 4 45 34 34 48 42 43 47 51

SW 16 46 -1 46 44 44 49 45 43 46 51

SWG 16 44 -4 44 40 40 47 43 42 47 51

Jaro 51 43 -1 42 39 39 47 43 44 47 49

Jaro-Winkler 46 43 -1 42 39 39 46 43 44 47 49

LCS 47 47 6 48 47 47 50 48 44 46 52

 2-Grams 51 49 13 50 50 50 50 52 44 46 52

3-Grams 52 50 14 50 50 50 50 51 44 46 52

Word2Vec

4 34 -5 34 34 34 35 34 36 26 36

 The best performance of token-level measures was obtained by the soft versions of the set-matching

methods when combined with q-grams (from 50% to 52%). The results indicate that there is at least one soft

variant of each measure that correlates better to human judgment than with exact match. For example, Edit-

LCS (52%) versus Edit-Exact (48%). Exceptions are the bag-of-tokens measures Euclidean and Manhattan,

which are not improved by the soft versions. An exception among the set-matching methods is the Simpson

measure, which has a weak correlation (14%), and its performance becomes even worse (from 14 to -1%)

with almost all combinations. The reason is that Simpson provides similarity scores greater than 1 when

minor differences exist between the strings. For example, it gives a similarity score of 1.6 to the strings

HotSpring and Hot spring home, while the human score is only 3.

 Word2Vec provides smaller correlation values than the syntactic measures. It often fails because of

finding similarities when it should not. For example, it gives high soft similarity scores (~90%) between the

Garfish seafood restaurant and seafood restaurant because of the high similarity of the words‟ garfish and

seafood. Semantically, the word Garfish is highly redundant but, as a restaurant name, it is an essential part

of the title according to human intuition. Another example where semantic similarity fails is concatenated

titles like HotSprings or GetFit because they are not part of the model dictionary.

 To investigate why none of the measures correlated strongly with the human judgments, we analyzed

human scores further and we observed that humans focus more on distinct words. For example, for the

restaurant Ventuno pizzeria, if two candidate titles exist Ventuno and pizzeria, users consider Ventuno more

relevant to the place than pizzeria. Therefore, they give scores of 4 to Ventuno but 0 to pizzeria. None of the

syntactic measures can distinguish between generic and specific words without the existence of external

information such as a corpus; therefore, to a measure both words are equally important.

 We further observed that users pay less attention to typographical differences, as they consider the

following phrases excellent matches:

C
h

a
ra

ct
er

-l
ev

el

G
ra

m
s

S
em

a
n

ti
c

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Freda‟s – Fredas

 Drom UK – Dröm UK

 Hot Spring – HotSpring

 Park Hotel and Spa – Park Hotel & Spa

 Holiday Inn Bristol Filton – Holiday Inn Filton-Bristol

 Furthermore, human concentrates on the correctness of a phrase‟s structure, which is not shown in the

numerical evaluation. For example, human gave a lower score for the similarity of the following phrases, but

the measures tend to consider them highly similar:

 Out of the Blue – Out the Blue

 Arcata Pizzeria – At Arcata Pizzeria

 3 Degrees – Degrees

All these factors have a significant impact on the degree of correlation between the measures and the human

scores.

5.4 Correlation to distance

Two geo-tagged photos taken at the same location are more likely to have more similar descriptions than

those taken at different locations (see Figure 11). Accordingly, for a given input photo, a good similarity

measure should rank the nearby photo similar more often than a random far-away photo. We performed the

following experiment: for every photo, we randomly selected two other photos of which one must have been

taken nearby (< 20 m). We counted how many times the nearby photo‟s description was more similar to the

original than the random one. The expected result should be more than 50%, which would be the result if no

relationship exists between the descriptions. The result was also not expected to reach 100% as not all nearby

photos describe the same object, and likewise, far-away photos might sometime have similar description,

such as a restaurant chain in two locations.

 We used a subset of 1,000 Mopsi photos that have a description. The results presented in Table 11

indicate that all measures correlate positively. The highest counts (normalized by the number of photos) were

in the range of 70% to 72%. Levenshtein and Damerau-Levenshtein provided the best results (both 70%)

among the character-level measures with 8 percentage points of improvement over the exact match. 2-Grams

performed slightly better (70%) than 3-Grams (67%) in this experiment, but not any better than the

character-level candidates.

Figure 11 Nearby photos have more similar descriptions than far-away photos

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 The token-level measures (exact match) failed to capture the similarity between similar tokens with small

artifacts. They would give equally high scores to snow hotel versus snow hoteli, and snow hotel versus snow

football. The performance of every token-level measure was improved by at least one soft variant (see Table

11). The only exceptions were the bag-of-tokens measures Euclidean and Manhattan, which do not seem to

benefit from a soft version. The token-level edit distance measure improved by five percentage points when

using Smith-Waterman or the 2-grams at the character-level. The best result (72%) was obtained when

combining the set-matching methods with SWG and 3-grams. These combinations rank the nearby photos

similar more often than random far-away photos. The only exception here is Simpson, which was not among

the best-performing measures.

Table 11 Summary of results (%) for correlation to distance; exact match refers to standard measures; best, good, neutral

Token-level

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 62 65 65 65 65 65 65 65 67 65 65

 Hamming 63 67 66 66 66 67 66 66 67 65 65

Levenshtein 70 67 67 67 67 67 67 69 65 65 62

Dam-Levenshtein 70 67 67 67 67 67 66 68 65 64 65

Needle-Wunsch 69 70 65 70 70 70 70 70 67 65 62

SW 62 68 68 69 69 69 69 68 66 65 70

SWG 62 72 69 72 72 72 67 70 65 65 67

Jaro 64 67 59 67 67 67 67 66 65 65 62

Jaro-Winkler 64 67 60 67 67 67 67 67 65 65 61

LCS 67 69 68 69 69 69 70 71 66 66 65

 2-Grams 70 71 69 70 70 70 70 70 69 65 70

3-Grams 67 72 70 72 72 72 71 71 69 65 68

Word2Vec 62 73 73 73 73 73 74 67 62 73 73

 Despite the soft variants being useful, some combinations provided worse results; for example, Simpson-

Jaro (59%) and Simpson-Jaro-Winkler (60%) performed worse than their exact variants Simpson (67%), Jaro

(64%), and Jaro-Winkler (64%).

 In general, the soft measures performed better than character-level, q-gram, and token-level measures.

The best combination was set-matching methods and the character-level measures Needleman-Wunsch,

SWG, and q-grams.

 Word2Vec performs very well in this application. This is because photos at the same location have

typically different descriptions made by different people, who often use alternative partial synonyms such as

building, house and architecture, or statue and sculpture or scenery and view. A semantic measure is

therefore a good fit for this kind of situation.

5.5 Clustering

We next tested whether the measures are useful for clustering. From the Mopsi photos, we manually selected

180 photos and divided them manually into 15 groups, based on their text description, to represent distinct

objects. This manual clustering represents the ground truth (GT) (see Figure 12).

C
h

a
ra

ct
er

-l
ev

el

G
ra

m
s

S
em

a
n

ti
c

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 12 Example of three ground truth clusters

 In testing, we grouped the photos into 15 clusters using an agglomerative clustering algorithm where, at

each step, the pair of clusters that provides maximal improvement in total pairwise similarities within the

clusters are merged. We applied each similarity measure to compute the pairwise similarities and compare

the clustering result against the GT. The cluster quality was measured by the centroid similarity index (CSI)

(Fränti et al., 2014); it determines how similar a clustering solution is to the GT solution. Given two

clustering solutions A = {A1, A2…AK) and B = {B1, B2…BK} of K clusters, the CSI is computed as follows:

∑ ∑

 (5)

where nij (respectively nji) is the number of objects that cluster Ai (respectively Bj) and its most similar

cluster Bj (respectively Ai) have in common: nij = |Ai ⋂ Bj|. It can be calculated efficiently from the

contingency table. Here, N is the total number of objects.

 Random clustering would produce a value of CSI = 28%, so the expected result of a successful clustering

should be higher than that. Viewing the results presented in Table 12, we observe that even the simplest

method (exact match) provided CSI = 47%. The Smith-Waterman character-level measure provided

CSI = 78%. The advantage is that it does not penalize one missing token. For example, it considers Marriott

and Bristol Marriott hotel as a perfect match and, therefore, it correctly concludes that these two strings

belong to the same cluster.

 Among the token-level set-matching measures, Simpson (74%) performed better than any other token-

level measure. This is because it normalizes by the length of the smaller string, which allows it to recognize

the Marriott example as a perfect match.

 The performance of all token-level measures was significantly improved by their soft variants. The

percentage of improvement varies. Dice and Rouge benefit the most, having 12-percentage points of

improvement when combined with 3-Grams. The Euclidean and Manhattan bag-of-tokens measures seemed

not to benefit much from soft variants. The performance of the remaining measures improved by five to eight

percentage points when combined with q-grams, Smith-Waterman, and LCS. The better performance of the

soft variants can be explained by the fact that photo descriptions are often short (two tokens on average) with

a higher probability of typing errors when using a small phone‟s keyboard, which is challenging to type on

accurately, especially when in a hurry. Two such examples are Lighttower (Light tower) and Bibliotechue

Nationale (Biblioteque Nationale).

 In summary, soft measures outperformed character, q-gram and token-level measures in text clustering.

The best clustering result (81%) was achieved when combining Simpson with 2-Grams. Using q-grams at the

character level seem to benefit all token-level measures, but the combination with set-matching methods

(Simpson, Dice, and Rouge) yielded the best results.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Word2Vec does not perform so well here mainly because of the multi-language text descriptions that it

cannot handle. As a result, everything written in non-English language will be grouped into one cluster

regardless of the meaning of the words.

Table 12 Summary of results (%) for clustering; exact match refers to standard measures; best, good, neutral, bad

Token-level

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 47 63 74 67 66 66 66 67 58 66 63

 Hamming 42 60 69 59 69 69 71 69 58 69 61

Levenshtein 64 63 72 66 62 62 68 69 61 68 63

Dam-Levenshtein 64 58 71 66 70 70 68 72 61 69 63

Needle-Wunsch 53 61 76 59 61 61 67 66 60 70 64

SW 78 62 70 66 70 70 74 75 59 66 70

SWG 72 60 62 63 64 64 73 67 61 65 65

Jaro 59 49 50 49 53 53 63 51 60 69 54

Jaro Winkler 57 48 55 56 54 54 67 52 61 69 57

LCS 67 66 74 67 78 78 74 74 58 67 66

 2-Grams 71 69 81 68 74 74 73 73 56 65 67

3-Grams 72 69 75 72 77 77 69 73 60 65 69

Word2Vec 46 60 74 60 61 61 67 58 65 71 57

5.6 Names matching

The quality of a measure can also be determined by its ability to find matching entries in databases created

from different sources. We used match data sets and followed the testing procedure proposed in Cohen et al.

(2003). Paired entries from two different databases belonging to the same set (domain) were compared and

considered a match if their corresponding ID keys were identical.

 In testing, we calculated the similarity score between the pairs. We sorted all the pairs according to the

calculated similarity scores, as illustrated in Table 13. In an ideal case, all matches should have higher

similarity scores and, as a result, appear in the sorted list before all the mismatch cases. We calculated

precision and recall as:

 (6)

 (7)

Where c(i) is the number of correct matching pairs ranked before position i, and m is total number of correct

matches. We, then computed the F-score of the ranking as:

 (8)

C
h

a
ra

ct
er

-l
ev

el

G
ra

m
s

S
em

a
n

ti
c

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 13 Selected examples of pairs and their similarity scores. Red color indicates pairs that describe different entries and are

therefore labelled as mismatches. The F-score for this ranking is 80%.

Similarity % String 1 String 2 Key 1 Key 2

100 Hyperstudio Hyperstudio hyperstudio hyperstudio

90.7 Mario Teaches Typing Mario Teaches Typing 2 mariotype foobar

74.9 Green Eggs and Ham Green Eggs and Ham by Dr. Seuss greeneggs greeneggs

69.2 Fisher Price's Pirate Ship Pirate Ship pirateship pirateship

69.1 Let's Color Let's Learn Shapes & Colors none foobar

58.7 Catz Catz, Your Computer Petz catz catz

 The results are summarized in Table 14 as averages of all domains. As can be observed, Smith-Waterman

(73%) and SWG (74%) performed better than any other character-level measure. Q-grams performed slightly

better (76% and 77%) than character-level candidates. Token-level measures performed better than

character-level and q-gram measures by often providing 80% in the F-score.

 The soft variants were less effective in this experiment. The majority of combinations led to either no

improvement or even worse results; only Monge-Elkan benefitted from almost all soft versions (10 out of 11

variants). While the best result (87%) was obtained by combining 3-grams with the set-matching methods

Jaccard, Dice, and Rouge and with Monge-Elkan, it seems that the soft version of the measures is generally

not useful for this type of data set. This is because the data is well maintained, having no typing errors.

Therefore, two entries with slightly different words such as Silicon Valley Group, Inc and Silicon Valley

Research Inc are really different companies, but the soft variants would wrongly consider them as similar.

Table 14 Maximum F-score (%) for the measure on matching problem; exact match refers to standard measures; best, good, neutral,

bad

Token-level

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 13 80 78 80 80 80 81 80 66 79 74

 Hamming 16 75 75 78 78 78 79 78 65 79 72

Levenshtein 68 72 59 79 79 79 86 83 61 79 77

Dam-Levenshtein 68 72 59 80 80 80 86 82 61 79 77

Needle-Wunsch 58 69 56 80 80 79 85 84 57 80 70

SW 73 63 21 62 62 61 84 62 59 80 72

SWG 74 59 21 60 60 60 84 62 57 80 71

Jaro 60 30 6 17 17 17 86 20 60 80 64

Jaro Winkler 59 30 6 17 17 17 85 19 61 80 64

LCS 65 75 69 81 81 81 86 83 62 80 77

 2-Grams 76 80 78 86 86 86 87 83 64 78 79

3-Grams 77 82 83 87 87 87 87 84 65 78 80

Word2Vec 3 74 69 81 81 81 77 64 86 84 74

 Some combinations with Word2Vec perform reasonably well, namely the Euclidean and Manhattan token

level measures. However, the results are still worse than that of the q-grams.

In general, 3-grams were the most useful soft variant for this data as they benefitted 8 out of 10 token-level

measures. The best results were achieved when 3-grams were combined with the set-matching methods

Jaccard, Dice, and Rouge and with Monge-Elkan. This indicates that q-grams is a proper choice as a

character-level measure regardless of the text type.

C
h

a
ra

ct
er

-l
ev

el

G
ra

m
s

S
em

a
n

ti
c

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6. Conclusions

We have introduced a novel framework for a generic similarity measure. The framework has extensively

tested and applied in four different applications. We also have reviewed and performed a systematic

comparison of 143 similarity measures for various text types. We provide an open-source Java toolkit using

unique adaptable components. It supports both the crisp and soft variants of all studied measures. The toolkit

is easily available for researchers to verify the results and extend to other application. From the experiments,

we learned several lessons as summarized below.
 First, the crisp token-level measures perform better than the character-level measures when the order of

the words varies. For example, Café Manta and Manta Café would not be matched by character-level

measures. However, the crisp variants start to perform poorly when even a single character is changed.

Humans pay less attention to this kind of typographic errors. This is the main reason why the soft token-level

measures performed better than their crisp variants. For example, the strings gray color and colour grey

should be considered similar not only based on their semantic meaning but also syntactically. The crisp

versions however, fail to recognize their similarity.

 Thus, the main lesson is that the performance of all token-level measures was significantly improved by

their soft variants. Overall, humans perfectly recognized the text with up to 20% of character changes,

depending on the text.

 The semantic measure Word2Vec, behaves poorly in most cases because even a single character change

leads to the out-of-vocabulary situation. Further, words that were not included in the training material also

lead to a failure. The correlation between the location and the photos descriptions is a positive exception

because of the frequent use of synonyms by people when annotating photos describing the same location.

 It is arguable that Word2Vec could produce better results if it was trained using a similar dataset as in the

experiments. For example, the clustering dataset consists of mixed words of Finnish and English, which

should be good for Word2Vec if trained accordingly. This also reveals the main deficiency of machine

learning approaches: the need for application specific training data.

 The performance of all measures also varies depending on the datasets. In case of well-maintained

databases, the soft variants of the token-level measures do not provide additional benefits because the data

having no typing errors. On the contrary, they can even slightly weaken the performance. For casual text

containing errors, the soft variants are needed. Q-gram provides a good compromise, as they are also

independent on the order of the words. In our experiments, they always performed close to the best token-

level measures.

Based on the experiments, none of the measures can be classified as universal, i.e. working perfectly for

all applications (see Table 15). However, among all tested combinations, the soft token-level measures based

on set-matching methods and using q-grams at character-level provided good results in all experiments.

These combinations are all novel:

 Dice (token-level) with 2-grams or 3-grams (character level)

 Rouge (token-level) with 2-grams or 3-grams (character level)

 Monge-Elkan (token-level) with LCS (character level)

 There still remains a gap between the syntactic measures and human judgments caused by the lack of

semantic analysis. In several cases, humans focus on the meaning of the words and they can conclude that

the word Ventuno is more important than the word Pizzeria in the string Ventuno Pizzeria. If one of these

two words were missing, humans give more weight on Ventuno because it identifies the service.

 One limitation of the proposed framework is that it is designed mainly for text string consisting of natural

language. It can be applied, into a certain extent, also to applications like bioinformatics. However, we have

excluded measures utilizing application-specific features like reverse distance (Bulteau et al., 2014) and

string kernels (Leslie et al., 2002) used in machine learning applications. Nevertheless, the results can still be

highly relevant in bioinformatics. In fact, it would be an interesting research problem to see whether it would

create a new state-of-the-art in that application area as well, possibly combining with the string reversing

idea.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Another limitation is that, although the framework is general, it is an open question to what extent the

results generalize to longer text like patent documents and to other applications. The DNA sequences would

be worth to consider in the future.

Table 15 Summary of the results in respect to the applications considered.

Credit Author Statement

 Submission date: 01.03.2019

Term Definition

Conceptualization

The idea was originated by Professor Pasi Franti and it was jointly refined via discussion with Najlah Gali

and Radu Mariescu Istodor

Methodology Jointly by Najlah Gali, Radu Mariescu Istodor, and Pasi Franti

Software Radu Mariescu Istodor and Damien Hostettler

Validation Najlah Gali, Radu Mariescu Istodor, Damien Hostettler

Formal Analysis Radu Mariescu Istodor

Investigation Najlah Gali

Resources Najlah Gali, Radu Mariescu Istodor, Damien Hostettler

Data Curation Radu Mariescu Istodor, Damien Hostettler

Writing – Original Draft Najlah Gali

Writing – Review & Editing Najlah Gali, Radu Mariescu Istodor, Damien Hostettler, Pasi Franti

Visualization Najlah Gali, Radu Mariescu Istodor, Damien Hostettler

Supervision Najlah Gali, Pasi Franti

Char level Both combined Token level Word2Vec

Text manipulation:

Most methods (+)

LCS oversensitive (-)

Q-grams oversensitive (-)

Most methods (+) Oversensitive (-)

Oversensitive (-)

Human intuition:

Most methods (+)

Q-grams (+)

Smith-Waterman/Gotoh (-)

Most token level + Q-grams (+)

Edit distance + Any char level (+)

Simpson + Any char level (-)

Edit distance (+)

Simpson (-)

Correlation to distance:

Most methods (+/-)

Damerau/Levenshtein (+)

2-grams (+)

Most token level + Q-grams (+)

Euclidean/ Manhattan/Edit (+/-)
Most methods (+/-)

Mostly best (+)

Clustering:

Smith-Waterman/Gotoh (+)

Q-grams (+)

Hamming (-)

Most token level + Q-grams (+)

Bran-Ban worse (-)

Simpson (+)

Names matching:

Hamming (-)

Most token level + Q-grams (+)

Monge-Elkan + Most char level (+)

Most token level + Jaro /Winkler (-)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References:

1. Achananuparp. P., Hu. X., & Shen. X. (2008). The evaluation of sentence similarity measures.

In International Conference on Data Warehousing and Knowledge Discovery (pp. 305-316).

Springer Berlin Heidelberg.

2. Agbehadji, I. E., Yang, H., Fong, S., & Millham, R. (2018). The Comparative Analysis of Smith-

Waterman Algorithm with Jaro-Winkler Algorithm for the Detection of Duplicate Health Related

Records. In IEEE International Conference on Advances in Big Data, Computing and Data

Communication Systems (pp. 1-10).

3. Alenazi, M., Reddy, D., & Niu, N. (2018). Assuring Virtual PLC in the Context of SysML Models.

In International Conference on Software Reuse (pp. 121-136). Springer, Cham.

4. Barrón-Cedeño, A., Gupta, P., & Rosso, P. (2013). Methods for cross-language plagiarism

detection. Knowledge-Based Systems, 50, (pp. 211-217).

5. Bär, D., Zesch, T., & Gurevych, I. (2013). Dkpro similarity: An open source framework for text

similarity. In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics: System Demonstrations (pp. 121-126).

6. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., & Fienberg, S. (2003). Adaptive name

matching in information integration. IEEE Intelligent Systems, 18(5), (pp. 16-23).

7. Brew, C., & McKelvie, D. (1996). Word-pair extraction for lexicography. In Proceedings of the 2nd

International Conference on New Methods in Language Processing (pp. 45-55).

8. Bulteau, L., Fertin, G., Komusiewicz, C. (2014). Reversal distances for strings with few blocks or

small alphabets. Lecture Notes in Computer Science, Vol. 8486, 50-59, Springer.

9. Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust and efficient fuzzy match for

online data cleaning. In Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data (pp. 313-324).

10. Cheatham, M., & Hitzler, P. (2013). String similarity metrics for ontology alignment.

In International Semantic Web Conference (pp. 294-309). Springer Berlin Heidelberg.

11. Christen, P. (2006). A comparison of personal name matching: Techniques and practical issues.

Technical Report (TR-CS-06-02). In Sixth IEEE International Conference on Data Mining-

Workshops (pp. 290-294).

12. Choi, S. S., Cha, S. H., & Tappert, C. C. (2010). A survey of binary similarity and distance

measures. Journal of Systemics, Cybernetics and Informatics, 8(1), (pp. 43-48).

13. Cohen, W., Ravikumar, P., & Fienberg, S. (2003a). A comparison of string metrics for matching

names and records. In Kdd workshop on data cleaning and object consolidation, 3, (pp. 73-78).

14. Cohen, W., Ravikumar, P., & Fienberg, S. (2003b). A comparison of string distance metrics for

name-matching tasks. In II Web (pp. 73-78).

15. Damerau, F. J. (1964). A technique for computer detection and correction of spelling

errors. Communications of the ACM, 7(3), (pp. 171-176).

16. Ehsan, N., & Shakery, A. (2016). Candidate document retrieval for cross-lingual plagiarism

detection using two-level proximity information. Information Processing & Management, 52(6), (pp.

1004-1017).

17. Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate record detection: A

survey. IEEE Transactions on knowledge and data engineering, 19(1), (pp. 1-16).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18. Franco-Salvador, M., Rosso, P., & Montes-y-Gómez, M. (2016). A systematic study of knowledge

graph analysis for cross-language plagiarism detection. Information Processing &

Management, 52(4), (pp. 550-570).

19. Fränti, P., Rezaei, M., & Zhao, Q. (2014). Centroid index: cluster level similarity measure. Pattern

Recognition, 47(9), (pp. 3034-3045).

20. Friedman, C., & Sideli, R. (1992). Tolerating spelling errors during patient validation. Computers

and Biomedical Research, 25(5), (pp. 486-509).

21. Gali, N., Mariescu-Istodor, R., & Fränti, P. (2016). Similarity measures for title matching. In 23rd

International Conference on Pattern Recognition (ICPR) (pp. 1548-1553).

22. Gali, N., Mariescu-Istodor, R., & Fränti, P. (2017). Using linguistic features to automatically extract

web page title. Expert Systems with Applications, 79, (pp. 296-312).

23. Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular

Biology, 162(3), (pp. 705-708).

24. Hamming, R. W. (1950). Error detecting and error correcting codes. Bell Labs Technical

Journal, 29(2), (pp. 147-160).

25. Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 census

of Tampa, Florida. Journal of the American Statistical Association, 84(406), (pp. 414-420).

26. Jimenez, S., Becerra, C., Gelbukh, A., & Gonzalez, F. (2009). Generalized mongue-elkan method for

approximate text string comparison. In International Conference on Intelligent Text Processing and

Computational Linguistics (pp. 559-570). Springer Berlin Heidelberg.

27. Jimenez, S., Gonzalez, F., & Gelbukh, A. (2010). Text comparison using soft cardinality.

In International Symposium on String Processing and Information Retrieval (pp. 297-302). Springer

Berlin Heidelberg.

28. Keskustalo, H., Pirkola, A., Visala, K., Leppänen, E., & Järvelin, K. (2003). Non-adjacent digrams

improve matching of cross-lingual spelling variants. In International Symposium on String

Processing and Information Retrieval (pp. 252-265). Springer Berlin Heidelberg.

29. Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent semantic analysis

theory of acquisition, induction, and representation of knowledge. Psychological review, 104(2), (pp.

211).

30. Lertvittayakumjorn, P., Kertkeidkachorn, N., & Ichise, R. (2017). Resolving Range Violations in

DBpedia. In Joint International Semantic Technology Conference (pp. 121-137). Springer, Cham.

31. Leslie, C., Eskin, E., Noble, W.S. (2002). The spectrum kernel: A string kernel for SVM protein

classification. Biocomputing (pp. 565-575).

32. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.

In Soviet physics doklady, 10(8), (pp. 707-710).

33. Lin, C. Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text summarization

branches out: Proceedings of the ACL-04 workshop (8).

34. Malakasiotis, P., & Androutsopoulos, I. (2007). Learning textual entailment using SVMs and string

similarity measures. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and

Paraphrasing (pp. 42-47).

35. Metzler, D., Dumais, S., & Meek, C. (2007). Similarity measures for short segments of text.

In European Conference on Information Retrieval (pp. 16-27). Springer Berlin Heidelberg.

36. Michelson, M., & Knoblock, C. A. (2007). Unsupervised information extraction from unstructured,

ungrammatical data sources on the world wide web. International Journal of Document Analysis and

Recognition (IJDAR), 10(3-4), (pp. 211-226).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37. Mihalcea, R., Corley, C., & Strapparava, C. (2006). Corpus-based and knowledge-based measures of

text semantic similarity. In American Association for Artificial Intelligence, 6, (pp. 775-780).

38. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. In Advances in neural information processing

systems (pp. 3111-3119).

39. Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11),

(pp. 39-41).

40. Monge, A. E., & Elkan, C. (1996). The Field Matching Problem: Algorithms and Applications. In

KDD-96 Proceedings (pp. 267-270).

41. Moreau, E., Yvon, F., & Cappé, O. (2008). Robust similarity measures for named entities matching.

In Proceedings of the 22nd International Conference on Computational Linguistics (1), (pp. 593-

600).

42. Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), (pp.

443-453).

43. Noh, H., Jo, Y., & Lee, S. (2015). Keyword selection and processing strategy for applying text

mining to patent analysis. Expert Systems with Applications, 42(9), (pp. 4348-4360).

44. Recchia, G., & Louwerse, M. M. (2013). A Comparison of String Similarity Measures for Toponym

Matching. In COMP@ SIGSPATIAL (pp. 54-61).

45. Rezaei, M., & Fränti, P. (2014). Matching Similarity for Keyword-Based Clustering. In Joint IAPR

International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and

Syntactic Pattern Recognition (SSPR) (pp. 193-202). Springer Berlin Heidelberg.

46. Rezaei, M., & Fränti, P. (2016). Set matching measures for external cluster validity. IEEE

Transactions on Knowledge and Data Engineering, 28(8), (pp. 2173-2186).

47. Rieck, K., & Wressnegger, C. (2016). Harry: a tool for measuring string similarity. The Journal of

Machine Learning Research, 17(1), (pp. 258-262).

48. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal,

27(3), (pp. 379-423).

49. Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft similarity and soft cosine

measure: Similarity of features in vector space model. Computación y Sistemas, 18(3), (pp. 491-504).

50. Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal

of molecular biology, 147(1), (pp. 195-197).

51. Snae, C. (2007). A comparison and analysis of name matching algorithms. International Journal of

Applied Science, Engineering and Technology, 4(1), (pp. 252-257).

52. Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables. American

sociological review (pp. 799-811).

53. Song, S., Zhu, H., & Chen, L. (2014). Probabilistic correlation-based similarity measure on text

records. Information Sciences, 289, (pp. 8-24).

54. Song, Y., Batjargal, B., & MAEDA, A. (2019). Cross-Language Record Linkage based on Semantic

Matching of Metadata. The Database Society of Japan English Journal, 17(1).

55. Sun, Y., Ma, L., & Wang, S. (2015). A comparative evaluation of string similarity metrics for

ontology alignment. Journal of Information and Computational Science, 12(3), (pp. 957-964).

56. Turney, P. D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In European

Conference on Machine Learning (pp. 491-502). Springer Berlin Heidelberg.

57. Ukkonen, E. (1992). Approximate string-matching with q-grams and maximal matches. Theoretical

computer science, 92(1), (pp. 191-211).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

58. Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information

Processing & Management, 50(1), (pp. 104-112).

59. Van der Loo, M. P. (2014). The stringdist package for approximate string matching. The R

Journal, 6(1), (pp. 111-122).

60. Vargas, S. G. J. (2008). A knowledge-based information extraction prototype for data-rich

documents in the information technology domain. Doctoral dissertation. National University of

Colombia (Bogota).

61. Winkler, W. E. (1990). String Comparator Metrics and Enhanced Decision Rules in the Fellegi-

Sunter Model of Record Linkage. In Proceedings of the Section on Survey Research Methods (pp.

354–359)

62. Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. In Proceedings of the 32nd

annual meeting on Association for Computational Linguistics (pp. 133-138).

