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Highlights 

 Token-level measures outperform character-level measures when the order of the words varies 

 Q-grams provide a good compromise between token- and character-level measures 

 Token-level measures are significantly outperformed by their soft variants 

 Soft measures based on set-matching methods perform best when using q-gram at the character 

level 

 The performance of similarity measures varies depending on the type of the datasets 
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Framework for Syntactic String Similarity Measures
1
 

Najlah Gali
2
, Radu Mariescu-Istodor, Damien Hostettler, Pasi Fränti 

Machine Learning Group, School of Computing, University of Eastern Finland, Joensuu FI-80101, Finland  

Abstract Similarity measure is an essential component of information retrieval, document clustering, text 

summarization, and question answering, among others. In this paper, we introduce a general framework of 

syntactic similarity measures for matching short text. We thoroughly analyze the measures by dividing them 

into three components: character-level similarity, string segmentation, and matching technique. Soft variants 

of the measures are also introduced. With the help of two existing toolkits (SecondString and SimMetric), we 

provide an open-source Java toolkit of the proposed framework, which integrates the individual components 

together so that completely new combinations can be created. Experimental results reveal that the 

performance of the similarity measures depends on the type of the dataset. For well-maintained dataset, using 

a token-level measure is important but the basic (crisp) variant is usually enough. For uncontrolled dataset 

where typing errors are expected, the soft variants of the token-level measures are necessary. Among all 

tested measures, a soft token-level measure that combines set matching and q-grams at the character level 

perform best. A gap between human perception and syntactic measures still remains due to lacking semantic 

analysis.  

 

Keywords: similarity measure; string similarity; information retrieval; text processing  

1. Introduction 
Similarity measures are needed in several fields, including biomedical, signal processing, natural language 

processing, statistics, artificial intelligence, and information retrieval. For example, linking records requires a 

similarity measure to locate matches across pairs of lists not having unique identifiers (Agbehadji et al., 

2018; Song et al., 2019). In information retrieval, a measure is needed to retrieve documents relevant to a 

user‟s query. A similarity measure is also needed for resolving range violations in a large knowledge graph 

extracted from structured data such as Wikipedia (Lertvittayakumjorn et al., 2017) and for auto-correcting 

text where a misspelled word is replaced with a dictionary word with high similarity. Measuring similarity of 

text has further been used in detecting plagiarism. Since plagiarism usually happens in some parts of text, the 

text should be segmented into smaller fragments before measuring the similarity (Ehsan and Shakery, 2016). 

Modern techniques use skip-grams and Word2Vec for cross-language plagiarism detection as well as q-

grams (Barron-Cedeno et al., 2013; Franco-Salvador et al., 2016). Other types of data for which a similarity 

measure is needed include: 

 Titles of web pages (Gali et al., 2016), V-café – Viet-Café;  

 Keywords and keyphrases (Rezaei and Fränti, 2014), theater – theatre; 

                                                           
1 A preliminary version of the paper was presented in ICPR conference (Gali et al., 2016). It covered twenty-four 

existing measures for matching title phrases.  

 The new version thoroughly analyzes 132 similarity measures, of which 86 are novel. Additional data sets 

were analyzed, more experiments were conducted, and new conclusions were drawn. An open-source Java 

toolkit with adaptable components is provided to implement all the measures reviewed in this paper and is 

made publicly available on http://cs.uef.fi/sipu/soft/stringsim/ 

2 Najlah Gali ( ) • Radu Mariescu-Istodor • Damien Hostettler • Pasi Fränti 

e-mail: {najlaa, radum, damien, franti} @cs.uef.fi 
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 Named entities (Cohen et al., 2003b; Moreau et al., 2008), U.S State Department – US Department 

of State; 

 Personal names (Christen, 2006; Snae, 2007), Gail Vest – Gayle Vesty; 

 Place names (Recchia and Louwerse, 2013), Ting Tsi River – Tingtze River; 

 Ontology alignments (Cheatham and Hitzler, 2013; Sun et al. 2014), associate professor – senior 

lecturer; 

 Short segments of text (Metzler et al., 2007), Apple computer – Apple pie; 

 Sentences (Achananuparp et al., 2008), I haven't watched television for ages – It's been a long time 

since I watched television. 

 Trace links in software development (Alenazi et al., 2018). 

 Given two strings, the goal is to determine their similarity. Similarity can be semantic or syntactic. 

Strings are semantically similar if they have the same meaning such as car and automobile, and syntactically 

similar if they have the same character sequence. Existing semantic similarity measures can be classified into 

corpus-based, knowledge-based, or a combination of the two (Mihalcea et al., 2006). 

 Corpus-based measures, such as latent semantic analysis (LSA) (Landauer and Dumais, 1997), pairwise 

mutual information (PMI) (Turney, 2001), and Word2Vec (Mikolov et al., 2013), measure the similarity 

between two strings depending on information gained from large corpora. For example, LSA assumes that 

words of similar meaning will occur in related pieces of text. A word-paragraph matrix is created where each 

value represents how many times the given word appears in that paragraph. Singular value decomposition 

has been used to find reduced dimensional representation of the matrix so that only important words are 

retained. Word similarity is computed by taking the cosine of the angle between any two vectors (rows) 

corresponding to the words being compared.  

 Knowledge-based measures use semantic networks such as WordNet (Miller, 1995). For example, Wu 

and Palmer (1994) measure the similarity between two words using the depth of their least common 

subsumer (LSC) and the word depth, where depth is the number of links between the word and the root word 

in WordNet (see Figure 1). While useful, semantic similarity depends on language, taxonomy, and corpora. 

It may also provide poor results. For example, the similarity between staff and body is 0.76 although the two 

words are far from being similar (Wu and Palmer, 1994). 

 

 

Figure 1 Semantic similarity between wolf and hunting dog using WordNet taxonomy, with mammal being 

the least common subsumer; the circled numbers represent the depth 

 Syntactic measures operate on the words and their characters without any assumption of the language or 

the meaning of the content. They are, therefore, more general than semantic measures. Usually, syntactic 

measures output a distance, which indicates how dissimilar two data elements are. The larger the distance 

between the two elements, the less similar they are. Distance and similarity can be used interchangeably, as 

they are inverse functions. In this paper, all distance measures have been converted to similarity measures, 

which return a score in a [0, 1] interval where 0 means nothing in common and 1 means exact match.  
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 Existing measures have usually been created for a specific task or application in mind. Most researchers 

are not interested in the details of the similarity measures; they just need one single measure for their 

application to provide estimates of the similarities of two strings. For this reason, the existing measures have 

been widely adopted in other applications areas than they were originally designed for. Many ad hoc 

measures are also used to fulfill the need. It is, therefore, an open question which measure should be used in 

a certain type of application. If there is a measure that is universal, it should fit all conceivable applications, 

not only a wide set. 

 Previous comparative studies focus mainly on specific tasks such as names of people, places, institutions 

or companies. They point out that the performance of the similarity measures is affected by text length, 

spelling accuracy, abbreviations and the language. Another common observation is that measures that have 

good performance on one data type can perform poorly on another. As a result, there is no measure 

consistently outperforming the others in all tasks (Christen, 2006; Snae, 2007). For example, Levenshtein 

distance (Levenshtein, 1966) and the Jaro metric (Jaro, 1989) work well for matching names but perform 

poorly for matching acronyms such as Western Canadian Place fitness and WCP fitness. Despite them being 

used in many tasks, extensive review and evaluation of syntactic similarity measures are missing in the 

literature. 

 Syntactic similarity measures can be classified into two broad classes: character-level and token-level 

(Gali et al., 2016). Character-level measures, such as Levenshtein distance (Levenshtein, 1966), treat the 

strings as sequences of characters. This type of measure is useful when the strings are single words involving 

only misspellings, typographical errors or slight morphological variations. However, strings can be split into 

tokens by whitespace and punctuation marks. In this case, it can be more useful to analyze the strings as a 

sequence or a set of tokens instead of just characters; such measures are called token-level measures. They 

are more suitable when less significant tokens are missing from one string or when they are in different 

order. The biggest deficiency of most token-level measures is that they only compare whether the tokens are 

exactly the same or not. 

 Only a few methods combine character- and token-level measures (Cohen et al., 2003b; Vargas, 2008; 

Sidorov et al., 2014). These methods are called soft measures. The principle of a soft measure is to apply a 

character-level measure to all pairs of tokes between the strings and consider only tokens that satisfy a 

certain criterion (e.g. threshold) as input to a token-level measure. According to Jimenez et al. (2010), soft 

cosine, outperforms both character- and token-level measures for name matching. Soft-cosine combines the 

cosine for token matching and bigrams for character-level matching.  

 However, when applied as standalone measures, neither cosine nor bigrams is the best choice (Jimenez et 

al., 2010). It is expected that a better combination can be found from other character- and token-level 

measures by analyzing them extensively.  

 In this paper, we introduce a novel framework for a generic similarity measure. We provide a review of 

the existing syntactic similarity measures and show how they fit into this framework. We perform a 

comparative study of 143 similarity measures, in total, of which 52 exist in the literature and 91 are new 

combinations formed from the existing components. We study the design choices for each of the building 

blocks including the character-level measure, segmentation strategy, and the token-level matching. We aim 

at answering the questions, which combination works best in a certain type of applications, and whether a 

single multi-purpose measure could be identified that would fit, if not perfectly, but sufficiently well for 

most applications. For the sake of completeness, we compare the obtained results with the semantic 

similarity measure Word2Vec. 

 To begin with, we divided the procedure of measuring the similarity into three components (see Figure 2): 

 Character-level measure, 

 String segmentation, 

 Matching technique. 

 String similarity can be computed directly by considering the entire string as one token using 

character-level or q-gram measures; a q-gram is a substring of length q of some string s. An alternative 

approach is to segment the string with language components such as words or character groups taken into 
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account. We performed a systematic study of these components and found several new measures combining 

the best properties of various character- and token-level measures.  

 We also provide an open-source Java toolkit, StringSim that contains all the measures reviewed in this 

paper and allows combining different measures to produce their soft variants. To the best of our knowledge, 

there is no other public toolkit that goes beyond traditional measures by providing adaptable components and 

supports soft variants of the existing measures. Some combinations might not have a known application as of 

now; however, new applications appear every day. Therefore, investigating the different combinations for 

novel and non-trivial applications is worthwhile. This package also allows extensive cross-comparison of all 

known combinations. Several new meaningful measures are also introduced, of which q-grams and 

set-matching methods perform well in all text types used. Some combinations can also be found using the 

existing packages listed in Table 1. 

 
Figure 2 String similarity workflow 

Table 1 Existing similarity measure packages 

Year Package Language Type No. of measures Source 

2003 SecondString3  Java 
Character, Token, 

Soft 
38 Cohen et al. (2003) 

2005 SimMetric 4 Java 
Character, Q-gram, 

Token 
23 --- 

2013 DKPro5  Java 
Character, Q-gram, 

Token, Soft 
20 Bär et al. (2013) 

2014 Stringdist6  C Character, Q-gram 10 Van der Loo (2014) 

2016 Harry7  C Character, Token 21 Rieck and Wressnegger (2016) 

2017 StringSim8  Java 
Character, Q-gram, 

Token, Soft 
132 This paper 

 

                                                           
3 https://sourceforge.net/projects/secondstring 

4 https://sourceforge.net/projects/simmetrics 

5 https://dkpro.github.io/dkpro-similarity 

6 http://www.markvanderloo.eu/yaRb/category/string-metrics 

7 http://www.mlsec.org/harry 

8 http://cs.uef.fi/sipu/soft/stringsim 
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2. Character-level measures 
A string can be viewed as a unit composed of a sequence of characters. Existing character-level measures 

can be categorized into the following three classes: 

 Exact match, 

 Transformation,  

 Longest common substring (LCS). 

 Exact match provides a simple binary result: 1 = the strings are exactly the same, 0 = otherwise. This is 

the classical way of comparing strings in information retrieval but is slowly being replaced by approximate 

matching. Nevertheless, most token-level measures still use this naive approach. 

 Transformation measures quantify the similarity of two strings by counting the number of operations 

needed to turn one string into the other. It can be achieved in several ways. Most common is edit distance, 

which measures the minimum number of edit operations needed to transform a string s1 to string s2. The edit 

operations include insertion, deletion, and substitution. The best match can be found by dynamic 

programming in O(|s1|×|s2|) time using O(min(|s1|,|s2|)) space, where |s1| and |s2| are the lengths of the strings 

s1 and s2 to be compared in characters (Jimenez et al., 2009). Variations of edit distance have been proposed 

(depending on the number, type, and cost of operations), including Levenshtein (Levenshtein, 1966), 

Damerau-Levenshtein (Damerau, 1964), Needleman-Wunsch (Needleman and Wunsch, 1970), Smith-

Waterman (Smith and Waterman, 1981), and Smith-Waterman-Gotoh (Gotoh, 1982) (see Table 2). 

 Levenshtein allows insertion, deletion, and substitution at a cost of one unit. Damerau-Levenshtein allows 

swapping of two adjacent characters (ab ↔ ba) at a cost of one unit. Needleman-Wunsch was originally 

developed in the area of bioinformatics to align protein or nucleotide sequence. It uses a cost of two units for 

insertion and deletion, and one for substitution. These types of edit distances are suitable for matching strings 

with typographical errors (king sitric and kingsitric), but not for other types of mismatch such as truncated or 

shortened strings (Southville Running Club and Southville RC). Smith-Waterman and Smith-Waterman-

Gotoh offer solutions to this problem. 

 Smith-Waterman performs local alignment by finding similar regions in the two strings. It assigns a lower 

cost when the mismatch happens at the beginning or at the end of the strings than when it happens in the 

middle ([Bilenko et al., 2003; Elmagarmid et al., 2007). For example, the measure provides higher similarity 

value for strings such as Prof. Mohammed A. Gali, University of Baghdad and Mohammed A. Gali, Prof. 

than do Levenshtein or Needleman-Wunsch. The result is obtained in O(min(|s1|,|s2|)×|s1|×|s2|) using 

O(|s1|×|s2|) space (Christen, 2006).  

 Smith-Waterman-Gotoh (SWG) improves the scaling of Smith-Waterman by adding a so-called affine 

gap cost allowing better local alignment of the strings. It introduces two costs for insertion: gap open (a 

penalty of unmatched characters in the beginning of a string) and gap extension (a penalty for its 

continuation). In addition, substitution by a similar-sounding character ({d, t}, {g, j}) is given a higher score 

than by other mismatch characters. For example, a cost of +5 is assigned to matching characters, +3 to 

similar-sounding, and -3 to a mismatch. SWG requires O(|s1|×|s2|) in time and space. 

 Other examples of transformation measures are Hamming (Hamming, 1950), Jaro (Jaro, 1989), and Jaro-

Winkler (Winkler, 1990). Hamming allows only substitutions, and the length of the strings must be equal. 

Jaro was originally developed for linking records having inaccurate text fields. It calculates the number of 

matching and transposed characters. Characters are matched if they are the same and located no farther than 

[max(|s1|,|s2|)/2]-1 within the string, and transposed if they are the same but in reverse order (a-u, u-a). For 

example, in comparing CRATE with TRACE, only „R‟ „A‟ „E‟ are the matching characters. Although „C‟ and 

„T‟ appear in both strings, they are farther than 1 unit (the result of [5/2]-1). Jaro-Winkler modifies Jaro to 

provide higher weight to prefix matches. Winkler (1990) observed that typing errors usually occur in the 

middle or at the end of the string, but rarely at the beginning. As a result, Winkler adds a prefix weight (l × p 

(1 - dj)) which returns higher similarity scores when the strings match from the beginning, where l is the 

length of the common prefix up to four characters, p is a scaling factor of 0.1, and dj is the Jaro similarity 

(see Table 2). 
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 The LCS measure (Friedman and Sideli, 1992) was designed for applications such as matching patient 

records in a clinical setting and text summarization, but it can also be applied for comparing short text. 

Therefore, we study LCS as well. It finds the longest contiguous sequence of characters that co-occur in the 

two strings. The result is normalized by dividing the length of this sequence by the length of the longer 

string. 

 To sum up, character-level measures are useful for matching strings that contain only a few typographical 

errors but not for detecting the ordering of entire tokens. For example, they fail to capture the similarity 

between Café Manta and Manta café. 

Table 2 Character-level measures. Edit is the cost of operations according to the particular corresponding measure. The symbols s1 

and s2 refer to the input strings. In Jaro, m is the number of matching characters and x is the number of transposed characters divided 

by 2. Symbol p in Jaro-Winkler is a scaling factor of 0.1, and l is the length of the common prefix up to four characters between the 

strings.  

Similarity measure Equation 
Edit operation costs 

Insert Delete Substitute Swap 

Levenshtein (1966)   
           

    |  | |  | 
 1 1 1 - 

Damerau-Levenshtein (Damerau 1964)   
           

    |  | |  | 
 1 1 1 1 

Needleman and Wunsch (1970)   
           

      |  | |  | 
 variable variable 1 - 

Smith and Waterman (1981) 
           

    |  | |  | 
 variable variable -2 - 

Smith-Waterman-Gotoh (Gotoh 1982) 
           

    |  | |  | 
 variable variable 

-3  

+3 
- 

Hamming (1950)   
           

    |  | |  | 
 - - 1 - 

Jaro (1989) 
 

 
  (

 

|  |
 

 

|  |
 

   

 
) - - 

- 
- 

Jaro-Winkler (Winkler 1990)                           - - - - 

Longest common substring (Friedman 

and Sideli 1992) 

|   ́        |

    |  | |  | 
 - - - - 

 

3. String Segmentation 
Segmentation divides the strings into units such as q-grams or words. It utilizes information at a higher level 

than characters alone. Two approaches exist to segment the string: 

 Q-grams, 

 Tokenization. 

The q-grams approach (Shannon, 1948) divides a string into substrings of length q. The q-grams were first 

used for string matching in (Ukkonen, 1992). The segmentation is overlapping, as the same character 

belongs to several q-grams (except when q=1). Substrings of length 2 are called bigrams (or 2-grams) and 

length 3 trigrams (or 3-grams). The rationale behind q-grams is that the sequence of characters is more 

important than the characters alone. The q-grams for a string s are obtained by sliding a window of length q 

over the string (see Table 3). To consider also substrings of length q-1 and to recognize prefixes and suffixes 

of the string, so-called padding characters (# % $) are appended to the beginning and end of the string. The 

similarity is calculated as follows: 

 

                   
∑ |     (      

)       (      
)| 

   

|   
|  |   

|
 (1) 
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where Qs1 and Qs2 are the multi-sets of q-grams from s1 and s2, respectively, n = |Qs1⋃Qs2|, and match (qi,Qs1) 

is the number of times the q-gram qi appears in Qs1. In this paper, we use q-grams with paddings to consider 

tokens having fewer than q characters, such as the determiners a and an. 

 Variants of q-grams are positional q-grams and skip-grams. Positional q-grams (Christen, 2006) preserve 

the position of the grams in the string and match only q-grams with a distance of less than a predefined 

threshold. For example, club contains the positional bigrams (cl, 0), (lu, 1), (ub, 2). If the threshold is set to 

1, then the bigram (lu, 1) will only match to bigrams in the second string in positions 0, 1 or 2. Skip-grams 

(Keskustalo et al., 2003) are bigrams that skip one or more character in the middle (see Table 3). 

Table 3 The segmentation of string The club at the Ivy, symbol _ refers to space 

Segmentation method Output 

None (character sequence) the club at the ivy 

q-grams (q = 3) 
the, he_, e_c, _cl, clu, lub, ub_ , b_a,  _at, at_, 

t_t,  _th, the, he_ , e_i,  _iv, ivy  

q-grams  

with padding characters 

##t, #th, the, he_ , e_c, _cl, clu, lub, ub_ , b_a,  

_at, at_ , t_t, _th, the, he_ , e_i,  _iv, ivy, vy%, 

y%% 

1-skip-grams 
t*e, h*c, e*l, c*u, l*b, u*a, b*t, a*t, t*h, t*e, 

h*i, e*v, i*y 

Tokenization the, club, at, the, ivy 

 

 Tokenization breaks a string into units called tokens using whitespaces and punctuation characters (see 

Table 3). The rationale behind tokenization is to utilize information at the token level and to overcome 

problems of token swap and missing tokens. In Christen (2006), two solutions to solve the token ordering 

problem were introduced: sorting heuristic and permuting heuristic. In sorting heuristic, each string is 

tokenized, tokens alphabetically ordered, re-joined again, and then edit distance is applied to the modified 

strings. In permuting heuristic, all token permutations are obtained from the first string and a comparison 

between all the permuted strings and the second string is then performed; the highest similarity value is 

chosen. However, these heuristic solutions are inefficient for other types of mismatching such as missing 

tokens, especially when the length of the absent token is considerable such as Rosso and Rosso restaurant. A 

better solution is therefore needed in such cases. 

4. Matching Techniques 
Methods for token matching involve two challenges: which tokens to match and how to compute the 

similarity between the matched tokens. These challenges will be discussed next in greater detail. It should be 

noted that q-grams could also be used as the matching units even though we use the term token for 

simplicity. Matching depends on how the strings are represented. Three possibilities exist (see Figure 3): 

 Sequence,  

 Set, 

 Bag-of-tokens. 

4.1  Sequence 

The idea of sequence matching is to generalize Levenshtein or some other character-level measure to the 

token level. Instead of characters, tokens are used as comparative units. The cost of the edit operations 

insertion, deletion, and substitution is a function of the tokens being compared. In Chaudhuri et al. (2003), 

the cost of substitution is calculated as the Levenshtein distance of the two tokens weighted by the inverse 

document frequency calculated from the two strings. Some character-level measures such as Smith-

Waterman and SWG cannot be used at the token level because they are based on properties of characters 

such as their similar sounds. 
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Figure 3 Examples of exact string matching at token level 

4.2  Set 

The idea behind set matching is to make the matching independent of the order. Sets, which are a collection 

of non-repeating tokens, are first generated from the input strings. Any set-matching method then can be 

applied to measure the overlap between the sets. Most of them calculate the intersection and differ only on 

how they are normalized. Braun-Banquet (Choi et al., 2010), Simpson coefficient (Choi et al., 2010), Jaccard 

index (Rezaei and Fränti, 2016), and Dice coefficient (Brew and McKelvie, 1996) divide the cardinality of 

the intersection by the cardinality of the largest set, the smallest set, the cardinality of the union of the two 

sets, or the average cardinality of the two sets; where cardinality is the number of tokens in the set (see Table 

7 on page 11). Multiset allows the same token to appear multiple times as in Rouge-N (Lin, 2004). It 

computes the similarity by using the F-score, which combines the precision and the recall. 

 Although useful, these measures fail when the tokens have different spelling or have minor typographical 

errors. For instance, Jaccard („gray color‟, „color gray‟) = 1, but when the string is written with different 

spelling, then Jaccard („gray color‟, „colour grey‟) = 0 because both words have different forms despite 

having the same meaning. 

 To overcome this problem, two approaches (also called soft measures) to generalize set matching have 

been introduced. In one approach, a character-level measure is used to estimate the similarity between tokens 

consisting from different strings. Only token pairs that are similar enough are considered. For example, in 

Monge and Elkan (1996), only pairs that have highest similarity scores according to a character-level 

measure are used to calculate the overall similarity (see Table 4 and Figure 4). Michelson and Knoblock 

(2007) consider two tokens to match if their similarity score according to a character-level measure is above 

a predefined threshold. A drawback of this approach is that the threshold should be empirically chosen 

depending on the characteristics of the data set. 
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Table 4 Character-level similarities between the grey colour and gray color using SWG 

 the grey colour 

gray 0.20 0.90 0.30 

color 0.20 0.30 0.80 

Max. 0.20 0.90 0.80 

                                         
 

 
                       

Figure 4 Example of a soft matching measure 

 The second approach is a soft cardinality of set introduced by Vargas (2008). The idea for soft cardinality 

is that tokens similar to others in the same set count less than tokens that are unique. Therefore, the soft 

cardinality of a set containing similar tokens should be less than that of a set containing the same number of 

tokens but significantly different. 

 For example, consider the two sets {gray, grey} and {gray, color}. The soft cardinality of the former set 

using SWG as the character-level measure is 1.06 (a bit more than one object) and the latter is 1.54 (more 

than one but less than two objects) (see Table 5). Therefore, soft cardinality provides a better measure of the 

unique concepts represented by the string. 

 In this paper, we use the function presented in Vargas (2008) to estimate the soft cardinality of a set. Let 

T be a set of n tokens: T = {T
1
, T

2
… T

n
}, and d (T

i
,T

j
) is a character-level similarity measure scaled in the 

range [0,1]. The soft cardinality of T is computed as: 

 

| |     ∑[
 

∑          
   

]

 

   

 (2) 

Table 5 Soft cardinality of sets {gray, grey}, {gray, color} using SWG as the character-level measure 

 gray grey Sum 1/sum   gray color Sum 1/sum 

gray 1.00 0.90 1.90 0.53  gray 1.00 0.30 1.30 0.77 

grey 0.90 1.00 1.90 0.53  color 0.30 1.00 1.30 0.77 

|T|soft 1.06  |T|soft 1.54 

 

After soft cardinality has been defined, we use it to calculate the cardinality of union, as illustrated in Table 

6. The size of the intersection is computed through cardinalities of the two sets and their union (Vargas, 

2008), as follows: 

 

|     |     |  |     |  |     |     |     (3) 

 

Finally, any set-matching method can be applied to compute the overall similarity by replacing the classic 

cardinality with soft cardinality. For example, soft Jaccard is computed as follows: 

 

               
|     |    

|     |    
  (4) 
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Table 6 Soft cardinality of the union of the sets {gray, color} and {the, grey, colour} using SWG as a character-level measure 

 gray color the grey colour Sum 1/sum 

gray 1.00 0.30 0.20 0.90 0.30 2.70 0.37 

color 0.30 1.00 0.20 0.30 0.80 2.60 0.38 

the  0.20 0.20 1.00 0.33 0.20 1.93 0.52 

grey 0.90 0.30 0.33 1.00 0.30 2.83 0.35 

colour 0.30 0.80 0.20 0.30 1.00 2.60 0.38 

|T1T2|soft 2.01 

 

It should be noted that set-matching methods using soft cardinality may give similarity scores greater than 1, 

because soft cardinality does not guarantee the traditional set inequalities |T1⋂T2| ≤ min(|T1|, |T2|) and max 

(|T1|, |T2|) ≤ |T1⋃T2| (Vargas, 2008). 

4.3  Bag-of-tokens 

The bag-of-tokens method combines the unique tokens from the two input strings into a single set (the “bag 

of tokens”). Feature vectors are then generated for both strings where each feature is the number of times the 

particular token in the bag appears in the string; this is denoted as term frequency (TF). However, this is not 

necessarily the best way to represent the strings, as common tokens like a, to, and the often have high 

frequencies. In Song et al. (2014), it was observed that due to the short length of the phrases, most words 

appear only once in a text record and term frequency is therefore not efficient. Term frequency-inverse 

document frequency (TF-IDF) is therefore introduced to address this problem. It is the product of two 

statistics: the term frequency and its inverse document frequency (IDFw). The latter is the total number of 

compared strings divided by the number of strings that contain the specific token. Metrics such as cosine 

(Cohen et al., 2003b), Euclidean distance, and Manhattan distance (Malakasiotis and Androutsopoulos, 

2007) have been applied to compute the similarity between the two feature vectors (see Table 7). In Noh et 

al. (2015), TF-IDF and a set of 130 keywords were found to be the most promising components to estimate 

the similarity between patent documents. The length of patent documents is still much longer than typical 

text phrases that we consider.  

 Analogously to the set-matching techniques, these metrics compare tokens using exact match and ignore 

the degree of similarity between the tokens when generating the feature vectors. For instance, suppose that 

we have two strings s1 = play game and s2 = player gamer. Our bag-of-tokens consists of four tokens {play, 

game, player, gamer} and the feature vectors corresponding to the two strings are v1 = [1, 1, 0, 0] and v2 = [0, 

0, 1, 1]. According to cosine measure, the similarity of these two vectors is 0 although they are quite similar. 

 To overcome this limitation, the soft-cosine measure has been introduced (Sidorov et al., 2014). It 

computes the similarity of each pair of tokens using a character-level measure; in Sidorov et al., 2014), 

Levenshtein distance has been used. In the aforementioned example, if soft cosine (see Table 7) were applied 

with Jaro-Winkler as the character-level measure, the similarity of these two vectors would be 0.84. The 

same approach can also be applied to Euclidean and Manhattan metrics to produce their soft variants, 

although these have not been considered in literature so far (see Table 7). 

 Although generalized approaches suggest using a character-level measure to compare tokens, only a few 

combinations have been studied in the literature and were often tested only with one type of character-level 

measure. In addition, to best of our knowledge, there have not been unified tasks, data sets, and experimental 

setups in which all measures have been tested and evaluated for their usefulness. All these issues are 

addressed in this paper. 
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Table 7 Sequence, set and bag-of-tokens matching measures. For two strings s1 and s2, symbols v1 and v2 are their vector 

representation and T1 and T2 denote their token sets.   
  is the i:th token in the set of tokens T1 generated from string s1. Symbol [ ] is 

used when referring to a multiset. Symbol simij is the distance at the token level. Function d calculates the character-level similarity 

score between two tokens. Symbol n is the length of the feature vector.  

Matching measures 
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5. Experimental Evaluations  
We use the following experimental setup to analyze the performance of all the measures in relation to their 

properties, human intuition, clustering, and matching task. We aimed to find which measures  

 are robust to text manipulation such as typographical errors and token change, 

 correlate to human intuition, 

 have higher similarity to such character strings that refer to the same entity; 

 can be applied in clustering, 

 can be applied to find entries in different databases. 

We selected 10 matching techniques, 9 character-level measures, and 2 q-gram measures. This gave us 

(10 × (9 + 2)) = 110 soft token-level measures in total. We also considered exact match at the character level 
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and the semantic measure Word2Vec as references. We therefore had 143 different combinations in our 

experiments, of which 52 exist and 91 are novel (see Table 8).  

 Word2Vec model, provided by Google
9
, has been trained using the English language (US). We slightly 

modified the model so that it outputs value 0 (instead of infinite) if a word cannot be recognized and value 1 

if two words are equal, even if they are not recognized. Without this modification, infinite values would 

appear during the calculation of soft similarity. 

 All string characters were converted to lowercase as a pre-processing step in all tests because it can have 

positive effect on the accuracy (Uysal and Gunal, 2014). We also suppressed the spaces in the beginning and 

at the end of the strings if there were any. 

Table 8 The tested 143 similarity measures. Blue cell refers to an existing and √ to a novel measure. The first row contains measures 

that use exact matching at the character level. The first column contains all character-level, q-grams, and semantic measures. 

 

 
 

Token-level  

Set-matching Bag-of-tokens Seq. 

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit 

Exact match            

 Hamming  √ √ √ √ √ √ √ √ √ √ 

Levenshtein      √   √ √  

Dam-Levenshtein  √ √ √ √ √ √ √ √ √ √ 

Needle-Wunsch  √ √ √ √ √ √ √ √ √ √ 

SW  √ √ √ √ √ √ √ √ √ √ 

SWG  √ √ √ √ √  √ √ √ √ 

Jaro      √   √ √  

Jaro-Winkler  √ √   √ √ √ √ √ √ 

LCS  √ √ √ √ √ √ √ √ √ √ 

 2-Grams       √   √ √  

3-Grams   √ √ √ √ √ √ √ √ √ √ 

 
 

Word2Vec 

 

 √ √   √ √    √ 

5.1 Data sets 

We used three publicly available data sets containing mostly English text (see Table 9): 

 Titler
10 

(Gali et al., 2017), 

 The Mopsi photo collection
11,12

, 

 Match sets13 (Cohen et al., 2003).  

The Titler data set contains 4,968 candidate title phrases extracted from 1,002 English websites. The ground 

truth titles were manually annotated by two people independently on each other, and in the case of 

disagreement, a third person made a judgement between these two. The candidate title phrases were 

extracted automatically from the pages using the method in Gali et al. (2017); therefore, different 

typographical representations exist, such as Hotspring and Hot spring, Park hotel & spa and Park hotel and 

                                                           
9 https://code.google.com/archive/p/word2vec   
10 http://cs.uef.fi/mopsi/titler 

11 http://cs.uef.fi/mopsi/tools/photoclusters.php 

12 http://cs.uef.fi/mopsi/PhotoDescriptionsClusters/dataset.zip 

13 http://www.cs.cmu.edu/~wcohen/match.tar.gz 
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spa. The phrases were evaluated for their relevance so that the user rates them from 0 (irrelevant) to 5 

(excellent match). For example, 12 candidate phrases were extracted for the restaurant the Apollo; six of 

them were rated 5, two were rated 4, and four were rated 3. The minimum number of phrases extracted for a 

web page was one and the maximum was 30 (Gali et al., 2017). 

 The Mopsi photo collection contains 42,739 geo-tagged photos collected since April 2016. Each photo 

has a short description (English or Finnish), time stamp, and the location where it was taken. Mopsi users can 

write a description immediately after taking a photo. Then, the Mopsi app will offer pre-written descriptions 

that the user can simply tap to use. The pre-written descriptions are obtained from photos near to the user. 

Therefore, photos taken at the same location tend to have similar descriptions when they describe the same 

object. The descriptions may contain typing errors. 

 Match sets are publicly available data sets that have been used to test similarity measures on matching 

tasks (Cohen et al., 2003; Vargas, 2008; Jimenez et al., 2009). The data sets comprise seven domains, such as 

birds, business names, and games (see Table 9). Each domain consists of two or three databases collected 

from different sources. For example, the parks data set contains 396 national parks names from one listing 

and 258 from a second listing. Of these, 241 names describe the same park. In each data set, the entries 

contain different types of information that are joined by a tabulation character as follows: 

 Ny Bird: scientific name, common name, 

 Bird Scott1: web page link, common name, scientific name, 

 Bird Scott2: web page link, common name, scientific name, 

 Business: web page link, company name, 

 Game: ID, name, 

 Park: web page link, name, 

 Restaurant: name, address, phone number, and brief description of the cuisine served. 

The underlined fields are the identification keys (ID keys). Entries from different listings match if their ID 

keys are identical. These data sets are controlled; therefore, typing errors do not exist. 

Table 9 Summary of the data sets 

 String length 

Source Data set Size Language Token Character 

    Min Av. Max Min Av. Max 

Gali et al. (2017) Titler  4,968 English 1 3 8 4 14 39 

 
Mopsi photos 1,000 

English 

Finnish 
1 3 26 6 17 65 

 Bird Nybird  982 

English 

1 3 69 4 21 321 

Cohen et al. (2003) 

Bird Scott1  38 2 3 8 7 20 58 

Bird Scott2  719 3 4 9 15 35 83 

Business  2,139 1 3 8 4 19 51 

Game  855 1 5 55 4 27 255 

Park  654 2 3 12 6 16 58 

Restaurant  863 7 11 21 40 59 102 

5.2 Text manipulation  

We first examined how each measure performs under text manipulation: character change and token change. 

We selected 18 strings of different lengths
14

 (see Figure 5) as a baseline and applied several systematic 

changes.  

                                                           
14 http://cs.uef.fi/mopsi/TextManipulation/dataset.zip 
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  We first made k random character changes and then l random token changes and report the average 

results. The expected result is that a syntactic measure has a linear correspondence to the number of 

character or token changes (k and l). This is denoted as expected in Figs 6 and 8. This assumption might not 

hold in all cases. Humans are known to be able to recognize the content even with the presence of very 

severe spelling errors, but in some other applications humans can be very sensitive to even small amount of 

character changes.  

 In testing, we computed the similarity between the original string and the manipulated string. On average, 

we observed the performance of the measures to be mostly invariant with regard to string length. We 

therefore report only the results for one selected string: awesome animated monster maker: ultra-edition (6 

tokens and 40 characters). Due to the large number of tested measures, we only plot selected measures in 

Figures 6 and 8. The rest of the measures have been represented in a color pattern graph in Figures 7 and 9 

such that one line in Figures 6 and 8 represents not only the named measure but also another with the same 

color in Figures 7 and 9. 

 In Figure 6, we observe that most character-level measures have a constant decrease of similarity when 

the number of changes increases, but that the amount of decrease varies. Levenshtein and its modified 

versions such as Damerau-Levenshtein correlate best with the number of character changes. LCS is one of 

the mostly affected measures because changes in the middle of the string produce significantly shorter 

common substrings. For example, when changing two characters in our example awesome aRimated mXnster 

Maker: Ultra Edition, the similarity drops to 0.58. 

 Q-gram measures show a uniform decrease with the number of characters being changed. They are 

slightly more sensitive to character changes because one change will destroy two or more bi- and trigrams. 

The token-level measures with exact match generally drop faster than the character-level measures and the 

q-grams because they discard the entire token even if only minor difference exists. 

 The performance of the soft measures is more stable than their corresponding crisp variants. In Figure 6, 

we see that majority of the soft measures are less sensitive to the character change than expected. Indeed, 

because soft variants consider strings with minor differences as being similar, they also consider strings with 

major differences as having some similarity. One exception is the combination between Monge-Elkan and 

Smith-Waterman or SWG, which drops faster than expected. The combinations between Monge-Elkan and 

Levenshtein or Damerau-Levenshtein, together with the combination between set-matching methods, cosine 

and q-grams, correlate best with the expected result. 

 The semantic measure Word2Vec behaves very similar to exact match. Even a single character change 

usually brings the word out of the vocabulary, and therefore, it will not anymore match the original text. 

Exceptional cases appear only when a word changes to another word existing in the dictionary by luck, but 

the effect of this is insignificant. To sum up, semantic measures are not suitable for this kind of application.  
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Figure 6 Effect of character changes on the similarity measures 

 

 

Figure 7 Clusters of performance of similarity measures corresponding to Figure 6. Exact match refers to standard 

measures and black cells are the unique patterns.  

 To compare the measures with human intuition, we generated a ground truth depending on human 

understanding of the text. Eleven users were asked to perform the experiment as follows: one manipulated 

string was displayed to the user at a time (in the same order to all users) through an interface. The user had to 

write the correct string if able to recognize it and leave the input field empty otherwise. It should be noted 

that the same list of manipulated strings was given to all users and to all similarity measures. The process 

continued until all manipulations were tested. The average results were taken. 

 As can be observed in Figure 6, human intuition provides very different behavior compared to the 

expected linear behavior. Humans can perfectly recognize the text with up to 20% of character changes, 

Ch/Q Edit MongeElkan Manhattan Euclidean

Exact match

Hamming

Levenshtein &Damerau- 

Levenshtein

Needleman Wunch

Smith Waterman & SWG

Jaro & Jaro Winkler 12
LCS 2
2Grams & 3Grams

Word2Vec

13
15

4 11
3 5

Set matching methods and cosine

1 14

7
8

10
12 16
6

9
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depending on the text. One reason is that if a token was broken because of character changes, a human can 

still guess the correct word. In addition, the position of the characters being changed has an effect on human 

understanding. For example, a human can still read tihs correctly although the middle characters are 

swapped. 

 In conclusion, the majority of the measures performed well in this experiment, with the exception of exact 

match, LCS, token-level measures, and Manhattan soft variants, which dropped fast, as well as soft variants 

that combine set-matching methods or cosine with Needleman-Wunsch, Jaro and Jaro-Winkler, which 

dropped slowly. Euclidean soft variants may also be considered to have performed poorly because they did 

not see the differences between half-changed and totally changed strings. Levenshtein and Damerau-

Levenshtein alone or combined with Monge-Elkan, as well as set-matching methods and the cosine 

combined with q-grams, and Monge-Elkan combined with Smith-Waterman, SWG, or LCS were closer to 

the expectation than other measures. 

 Figure 8 illustrates that the majority of the measures had a uniform decrease with respect to the token 

change. Yellow in Figure 9 represents all these measures. Among the character-level measures, the LCS was 

the most sensitive to token change. Smith-Waterman, SWG, and the combination between Jaccard and q-

grams dropped the same amount as Jaccard alone. The Euclidean and Manhattan measures had the same 

behavior no matter what character-level or q-grams measure it combines. 

 As assumed, the soft measures provided higher similarity scores than expected due to their ability to 

capture the similarity between similar and identical tokens. In Figure 8, we observe that the similarity scores 

provided by the soft versions of the measures never reach 0, no matter how different the two strings are. 

Considering Needleman-Wunsch, Jaro, and Jaro-Winkler as secondary measures is not useful, as they 

provide high similarity regardless of the differences between the strings. Similar to character change, q-gram 

variants were always close to the expected results, having their worst performance with Simpson, Jaccard 

and Euclidean. 

 

 

Figure 8 Effect of token changes on the similarity measures 
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Figure 9 Clusters of performance of similarity measures corresponding to Figure 8. Exact match refers to standard 

measures and black cells are the unique patterns. 

5.3 Correlation to human intuition  

Next, we used the Titler data set to detect how well the similarity scores correlate with the human scores. We 

used the non-symmetric rank correlation Somers’ D (Somers, 1962) of the computed similarity with respect 

to human score, because it takes equal similarities for unequal human scores into account. It is calculated as: 

 

         
     

        
 (4) 

 

where Ns is the number of pairs ranked in the same order by both variables (see Figure 10), Nd is the number 

of pairs ranked in reversed order, and Nt is the number of pairs that have different human scores but given 

equal scores by a similarity measure (Somers, 1962). Tie cases are ignored, as they do not have any impact 

on the correlation. 

 

 

Figure 10 Rank correlation parameters (Jaccard+3-Grams) 

 The results are summarized in Table 10. We observe that most measures have a positive correlation to the 

human ranking. The strength of the correlation is moderate (from 40% to 52%) for most of them. The 
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correlation of the character-level measures Levenshtein, Damerau-Levenshtein, and Jaro, and the q-grams 

are slightly higher (from 50% to 52%) than that of the others (from 40% to 49%). Smith-Waterman and 

SWG have a weak correlation (16%). Word2Vec does not work well (4%) because titles usually consist of 

multiple words that form meaningful entity; such form is not a part of the model. 

Table 10 Summary of results (%) for correlation to human; exact match refers to standard measures; best, moderate, bad 

 

 
 

Token-level  

Set-matching Bag-of-tokens Seq. 

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit 

Exact match 40 46 14 46 45 45 46 48 44 46 48 

 Hamming 41 47 14 48 47 47 48 49 44 46 50 

Levenshtein 52 48 7 49 48 48 50 49 44 46 52 

Dam-Levenshtein 52 48 6 49 48 48 50 49 44 46 52 

Needle-Wunsch 49 43 4 45 34 34 48 42 43 47 51 

SW 16 46 -1 46 44 44 49 45 43 46 51 

SWG 16 44 -4 44 40 40 47 43 42 47 51 

Jaro 51 43 -1 42 39 39 47 43 44 47 49 

Jaro-Winkler 46 43 -1 42 39 39 46 43 44 47 49 

LCS 47 47 6 48 47 47 50 48 44 46 52 

 2-Grams  51 49 13 50 50 50 50 52 44 46 52 

3-Grams  52 50 14 50 50 50 50 51 44 46 52 

 

 

Word2Vec 

 

4 34 -5 34 34 34 35 34 36 26 36 

 

 The best performance of token-level measures was obtained by the soft versions of the set-matching 

methods when combined with q-grams (from 50% to 52%). The results indicate that there is at least one soft 

variant of each measure that correlates better to human judgment than with exact match. For example, Edit-

LCS (52%) versus Edit-Exact (48%). Exceptions are the bag-of-tokens measures Euclidean and Manhattan, 

which are not improved by the soft versions. An exception among the set-matching methods is the Simpson 

measure, which has a weak correlation (14%), and its performance becomes even worse (from 14 to -1%) 

with almost all combinations. The reason is that Simpson provides similarity scores greater than 1 when 

minor differences exist between the strings. For example, it gives a similarity score of 1.6 to the strings 

HotSpring and Hot spring home, while the human score is only 3.  

 Word2Vec provides smaller correlation values than the syntactic measures. It often fails because of 

finding similarities when it should not. For example, it gives high soft similarity scores (~90%) between the 

Garfish seafood restaurant and seafood restaurant because of the high similarity of the words‟ garfish and 

seafood. Semantically, the word Garfish is highly redundant but, as a restaurant name, it is an essential part 

of the title according to human intuition. Another example where semantic similarity fails is concatenated 

titles like HotSprings or GetFit because they are not part of the model dictionary. 

 To investigate why none of the measures correlated strongly with the human judgments, we analyzed 

human scores further and we observed that humans focus more on distinct words. For example, for the 

restaurant Ventuno pizzeria, if two candidate titles exist Ventuno and pizzeria, users consider Ventuno more 

relevant to the place than pizzeria. Therefore, they give scores of 4 to Ventuno but 0 to pizzeria. None of the 

syntactic measures can distinguish between generic and specific words without the existence of external 

information such as a corpus; therefore, to a measure both words are equally important. 

 We further observed that users pay less attention to typographical differences, as they consider the 

following phrases excellent matches: 
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 Freda‟s – Fredas  

 Drom UK – Dröm UK 

 Hot Spring – HotSpring 

 Park Hotel and Spa – Park Hotel & Spa  

 Holiday Inn Bristol Filton – Holiday Inn Filton-Bristol 

 Furthermore, human concentrates on the correctness of a phrase‟s structure, which is not shown in the 

numerical evaluation. For example, human gave a lower score for the similarity of the following phrases, but 

the measures tend to consider them highly similar: 

 Out of the Blue – Out the Blue 

 Arcata Pizzeria – At Arcata Pizzeria 

 3 Degrees – Degrees 

All these factors have a significant impact on the degree of correlation between the measures and the human 

scores. 

5.4 Correlation to distance  

Two geo-tagged photos taken at the same location are more likely to have more similar descriptions than 

those taken at different locations (see Figure 11). Accordingly, for a given input photo, a good similarity 

measure should rank the nearby photo similar more often than a random far-away photo. We performed the 

following experiment: for every photo, we randomly selected two other photos of which one must have been 

taken nearby (< 20 m). We counted how many times the nearby photo‟s description was more similar to the 

original than the random one. The expected result should be more than 50%, which would be the result if no 

relationship exists between the descriptions. The result was also not expected to reach 100% as not all nearby 

photos describe the same object, and likewise, far-away photos might sometime have similar description, 

such as a restaurant chain in two locations.  

 We used a subset of 1,000 Mopsi photos that have a description. The results presented in Table 11 

indicate that all measures correlate positively. The highest counts (normalized by the number of photos) were 

in the range of 70% to 72%. Levenshtein and Damerau-Levenshtein provided the best results (both 70%) 

among the character-level measures with 8 percentage points of improvement over the exact match. 2-Grams 

performed slightly better (70%) than 3-Grams (67%) in this experiment, but not any better than the 

character-level candidates. 

 

 

Figure 11 Nearby photos have more similar descriptions than far-away photos 
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 The token-level measures (exact match) failed to capture the similarity between similar tokens with small 

artifacts. They would give equally high scores to snow hotel versus snow hoteli, and snow hotel versus snow 

football. The performance of every token-level measure was improved by at least one soft variant (see Table 

11). The only exceptions were the bag-of-tokens measures Euclidean and Manhattan, which do not seem to 

benefit from a soft version. The token-level edit distance measure improved by five percentage points when 

using Smith-Waterman or the 2-grams at the character-level. The best result (72%) was obtained when 

combining the set-matching methods with SWG and 3-grams. These combinations rank the nearby photos 

similar more often than random far-away photos. The only exception here is Simpson, which was not among 

the best-performing measures. 

Table 11 Summary of results (%) for correlation to distance; exact match refers to standard measures; best, good, neutral 

 

 
 

Token-level  

Set-matching Bag-of-tokens Seq. 

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit 

Exact match 62 65 65 65 65 65 65 65 67 65 65 

 Hamming 63 67 66 66 66 67 66 66 67 65 65 

Levenshtein 70 67 67 67 67 67 67 69 65 65 62 

Dam-Levenshtein 70 67 67 67 67 67 66 68 65 64 65 

Needle-Wunsch 69 70 65 70 70 70 70 70 67 65 62 

SW 62 68 68 69 69 69 69 68 66 65 70 

SWG 62 72 69 72 72 72 67 70 65 65 67 

Jaro 64 67 59 67 67 67 67 66 65 65 62 

Jaro-Winkler 64 67 60 67 67 67 67 67 65 65 61 

LCS 67 69 68 69 69 69 70 71 66 66 65 

 2-Grams  70 71 69 70 70 70 70 70 69 65 70 

3-Grams  67 72 70 72 72 72 71 71 69 65 68 

 

 

 

 

Word2Vec 62 73 73 73 73 73 74 67 62 73 73 

 

 Despite the soft variants being useful, some combinations provided worse results; for example, Simpson-

Jaro (59%) and Simpson-Jaro-Winkler (60%) performed worse than their exact variants Simpson (67%), Jaro 

(64%), and Jaro-Winkler (64%). 

 In general, the soft measures performed better than character-level, q-gram, and token-level measures. 

The best combination was set-matching methods and the character-level measures Needleman-Wunsch, 

SWG, and q-grams. 

 Word2Vec performs very well in this application. This is because photos at the same location have 

typically different descriptions made by different people, who often use alternative partial synonyms such as 

building, house and architecture, or statue and sculpture or scenery and view. A semantic measure is 

therefore a good fit for this kind of situation. 

5.5 Clustering 

We next tested whether the measures are useful for clustering. From the Mopsi photos, we manually selected 

180 photos and divided them manually into 15 groups, based on their text description, to represent distinct 

objects. This manual clustering represents the ground truth (GT) (see Figure 12). 
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Figure 12 Example of three ground truth clusters 

 In testing, we grouped the photos into 15 clusters using an agglomerative clustering algorithm where, at 

each step, the pair of clusters that provides maximal improvement in total pairwise similarities within the 

clusters are merged. We applied each similarity measure to compute the pairwise similarities and compare 

the clustering result against the GT. The cluster quality was measured by the centroid similarity index (CSI) 

(Fränti et al., 2014); it determines how similar a clustering solution is to the GT solution. Given two 

clustering solutions A = {A1, A2…AK) and B = {B1, B2…BK} of K clusters, the CSI is computed as follows: 

 

    
∑     ∑    

 
   

 
   

  
 (5) 

 

where nij  (respectively nji) is the number of objects that cluster Ai (respectively Bj) and its most similar 

cluster Bj (respectively Ai) have in common: nij = |Ai ⋂ Bj|. It can be calculated efficiently from the 

contingency table. Here, N is the total number of objects. 

 Random clustering would produce a value of CSI = 28%, so the expected result of a successful clustering 

should be higher than that. Viewing the results presented in Table 12, we observe that even the simplest 

method (exact match) provided CSI = 47%. The Smith-Waterman character-level measure provided 

CSI = 78%. The advantage is that it does not penalize one missing token. For example, it considers Marriott 

and Bristol Marriott hotel as a perfect match and, therefore, it correctly concludes that these two strings 

belong to the same cluster. 

 Among the token-level set-matching measures, Simpson (74%) performed better than any other token-

level measure. This is because it normalizes by the length of the smaller string, which allows it to recognize 

the Marriott example as a perfect match. 

 The performance of all token-level measures was significantly improved by their soft variants. The 

percentage of improvement varies. Dice and Rouge benefit the most, having 12-percentage points of 

improvement when combined with 3-Grams. The Euclidean and Manhattan bag-of-tokens measures seemed 

not to benefit much from soft variants. The performance of the remaining measures improved by five to eight 

percentage points when combined with q-grams, Smith-Waterman, and LCS. The better performance of the 

soft variants can be explained by the fact that photo descriptions are often short (two tokens on average) with 

a higher probability of typing errors when using a small phone‟s keyboard, which is challenging to type on 

accurately, especially when in a hurry. Two such examples are Lighttower (Light tower) and Bibliotechue 

Nationale (Biblioteque Nationale). 

 In summary, soft measures outperformed character, q-gram and token-level measures in text clustering. 

The best clustering result (81%) was achieved when combining Simpson with 2-Grams. Using q-grams at the 

character level seem to benefit all token-level measures, but the combination with set-matching methods 

(Simpson, Dice, and Rouge) yielded the best results. 
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 Word2Vec does not perform so well here mainly because of the multi-language text descriptions that it 

cannot handle. As a result, everything written in non-English language will be grouped into one cluster 

regardless of the meaning of the words. 

Table 12 Summary of results (%) for clustering; exact match refers to standard measures; best, good, neutral, bad 

 

 
 

Token-level 

Set-matching Bag-of-tokens Seq. 

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit 

Exact match 47 63 74 67 66 66 66 67 58 66 63 

 Hamming 42 60 69 59 69 69 71 69 58 69 61 

Levenshtein 64 63 72 66 62 62 68 69 61 68 63 

Dam-Levenshtein 64 58 71 66 70 70 68 72 61 69 63 

Needle-Wunsch 53 61 76 59 61 61 67 66 60 70 64 

SW 78 62 70 66 70 70 74 75 59 66 70 

SWG 72 60 62 63 64 64 73 67 61 65 65 

Jaro 59 49 50 49 53 53 63 51 60 69 54 

Jaro Winkler 57 48 55 56 54 54 67 52 61 69 57 

LCS 67 66 74 67 78 78 74 74 58 67 66 

 2-Grams  71 69 81 68 74 74 73 73 56 65 67 

3-Grams  72 69 75 72 77 77 69 73 60 65 69 

 

Word2Vec 46 60 74 60 61 61 67 58 65 71 57 

5.6 Names matching  

The quality of a measure can also be determined by its ability to find matching entries in databases created 

from different sources. We used match data sets and followed the testing procedure proposed in Cohen et al. 

(2003). Paired entries from two different databases belonging to the same set (domain) were compared and 

considered a match if their corresponding ID keys were identical. 

 In testing, we calculated the similarity score between the pairs. We sorted all the pairs according to the 

calculated similarity scores, as illustrated in Table 13. In an ideal case, all matches should have higher 

similarity scores and, as a result, appear in the sorted list before all the mismatch cases. We calculated 

precision and recall as: 

 

          
    

 
 (6) 

 

       
    

 
 (7) 

 

Where c(i) is the number of correct matching pairs ranked before position i, and m is total number of correct 

matches. We, then computed the F-score of the ranking as: 

 

        
                  

                
 (8) 
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Table 13 Selected examples of pairs and their similarity scores. Red color indicates pairs that describe different entries and are 

therefore labelled as mismatches. The F-score for this ranking is 80%. 

Similarity % String 1 String 2 Key 1  Key 2 

100 Hyperstudio Hyperstudio hyperstudio hyperstudio 

90.7 Mario Teaches Typing Mario Teaches Typing 2 mariotype foobar 

74.9 Green Eggs and Ham Green Eggs and Ham by Dr. Seuss greeneggs greeneggs 

69.2 Fisher Price's Pirate Ship Pirate Ship pirateship pirateship 

69.1 Let's Color Let's Learn Shapes & Colors none foobar 

58.7 Catz Catz, Your Computer Petz catz catz 

 

 The results are summarized in Table 14 as averages of all domains. As can be observed, Smith-Waterman 

(73%) and SWG (74%) performed better than any other character-level measure. Q-grams performed slightly 

better (76% and 77%) than character-level candidates. Token-level measures performed better than 

character-level and q-gram measures by often providing 80% in the F-score. 

 The soft variants were less effective in this experiment. The majority of combinations led to either no 

improvement or even worse results; only Monge-Elkan benefitted from almost all soft versions (10 out of 11 

variants). While the best result (87%) was obtained by combining 3-grams with the set-matching methods 

Jaccard, Dice, and Rouge and with Monge-Elkan, it seems that the soft version of the measures is generally 

not useful for this type of data set. This is because the data is well maintained, having no typing errors. 

Therefore, two entries with slightly different words such as Silicon Valley Group, Inc and Silicon Valley 

Research Inc are really different companies, but the soft variants would wrongly consider them as similar.  

Table 14 Maximum F-score (%) for the measure on matching problem; exact match refers to standard measures; best, good, neutral, 

bad 

 

 
 

Token-level  

Set-matching Bag-of-tokens Seq. 

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit 

Exact match 13 80 78 80 80 80 81 80 66 79 74 

 Hamming 16 75 75 78 78 78 79 78 65 79 72 

Levenshtein 68 72 59 79 79 79 86 83 61 79 77 

Dam-Levenshtein 68 72 59 80 80 80 86 82 61 79 77 

Needle-Wunsch 58 69 56 80 80 79 85 84 57 80 70 

SW 73 63 21 62 62 61 84 62 59 80 72 

SWG 74 59 21 60 60 60 84 62 57 80 71 

Jaro 60 30 6 17 17 17 86 20 60 80 64 

Jaro Winkler 59 30 6 17 17 17 85 19 61 80 64 

LCS 65 75 69 81 81 81 86 83 62 80 77 

 2-Grams  76 80 78 86 86 86 87 83 64 78 79 

3-Grams  77 82 83 87 87 87 87 84 65 78 80 

 

Word2Vec 3 74 69 81 81 81 77 64 86 84 74 

 

 Some combinations with Word2Vec perform reasonably well, namely the Euclidean and Manhattan token 

level measures. However, the results are still worse than that of the q-grams. 

In general, 3-grams were the most useful soft variant for this data as they benefitted 8 out of 10 token-level 

measures. The best results were achieved when 3-grams were combined with the set-matching methods 

Jaccard, Dice, and Rouge and with Monge-Elkan. This indicates that q-grams is a proper choice as a 

character-level measure regardless of the text type. 
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6. Conclusions 
 

We have introduced a novel framework for a generic similarity measure. The framework has extensively 

tested and applied in four different applications. We also have reviewed and performed a systematic 

comparison of 143 similarity measures for various text types. We provide an open-source Java toolkit using 

unique adaptable components. It supports both the crisp and soft variants of all studied measures. The toolkit 

is easily available for researchers to verify the results and extend to other application. From the experiments, 

we learned several lessons as summarized below. 
 First, the crisp token-level measures perform better than the character-level measures when the order of 

the words varies. For example, Café Manta and Manta Café would not be matched by character-level 

measures. However, the crisp variants start to perform poorly when even a single character is changed. 

Humans pay less attention to this kind of typographic errors. This is the main reason why the soft token-level 

measures performed better than their crisp variants. For example, the strings gray color and colour grey 

should be considered similar not only based on their semantic meaning but also syntactically. The crisp 

versions however, fail to recognize their similarity.  

 Thus, the main lesson is that the performance of all token-level measures was significantly improved by 

their soft variants. Overall, humans perfectly recognized the text with up to 20% of character changes, 

depending on the text. 

 The semantic measure Word2Vec, behaves poorly in most cases because even a single character change 

leads to the out-of-vocabulary situation. Further, words that were not included in the training material also 

lead to a failure. The correlation between the location and the photos descriptions is a positive exception 

because of the frequent use of synonyms by people when annotating photos describing the same location. 

 It is arguable that Word2Vec could produce better results if it was trained using a similar dataset as in the 

experiments. For example, the clustering dataset consists of mixed words of Finnish and English, which 

should be good for Word2Vec if trained accordingly. This also reveals the main deficiency of machine 

learning approaches: the need for application specific training data. 

 The performance of all measures also varies depending on the datasets. In case of well-maintained 

databases, the soft variants of the token-level measures do not provide additional benefits because the data 

having no typing errors. On the contrary, they can even slightly weaken the performance. For casual text 

containing errors, the soft variants are needed. Q-gram provides a good compromise, as they are also 

independent on the order of the words. In our experiments, they always performed close to the best token-

level measures.  

Based on the experiments, none of the measures can be classified as universal, i.e. working perfectly for 

all applications (see Table 15). However, among all tested combinations, the soft token-level measures based 

on set-matching methods and using q-grams at character-level provided good results in all experiments. 

These combinations are all novel:  

 Dice (token-level) with 2-grams or 3-grams (character level) 

 Rouge (token-level) with 2-grams or 3-grams (character level) 

 Monge-Elkan (token-level) with LCS (character level) 

 There still remains a gap between the syntactic measures and human judgments caused by the lack of 

semantic analysis. In several cases, humans focus on the meaning of the words and they can conclude that 

the word Ventuno is more important than the word Pizzeria in the string Ventuno Pizzeria. If one of these 

two words were missing, humans give more weight on Ventuno because it identifies the service.  

 One limitation of the proposed framework is that it is designed mainly for text string consisting of natural 

language. It can be applied, into a certain extent, also to applications like bioinformatics. However, we have 

excluded measures utilizing application-specific features like reverse distance (Bulteau et al., 2014) and 

string kernels (Leslie et al., 2002) used in machine learning applications. Nevertheless, the results can still be 

highly relevant in bioinformatics. In fact, it would be an interesting research problem to see whether it would 

create a new state-of-the-art in that application area as well, possibly combining with the string reversing 

idea. 
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 Another limitation is that, although the framework is general, it is an open question to what extent the 

results generalize to longer text like patent documents and to other applications. The DNA sequences would 

be worth to consider in the future. 

Table 15 Summary of the results in respect to the applications considered. 
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Char level Both combined Token level Word2Vec 

Text manipulation:  

Most methods (+) 

LCS oversensitive (-) 

Q-grams oversensitive (-) 

Most methods (+) Oversensitive (-) 

 

Oversensitive (-) 

Human intuition:  

Most methods (+) 

Q-grams (+) 

Smith-Waterman/Gotoh (-) 

Most token level + Q-grams (+)  

Edit distance + Any char level (+) 

Simpson + Any char level (-) 

Edit distance (+) 

Simpson (-) 

 

Correlation to distance:  

Most methods (+/-) 

Damerau/Levenshtein (+) 

2-grams (+) 

Most token level + Q-grams (+) 

Euclidean/ Manhattan/Edit (+/-) 
Most methods (+/-) 

 

Mostly best (+) 

Clustering:  

Smith-Waterman/Gotoh (+) 

Q-grams (+) 

Hamming (-) 

Most token level + Q-grams (+) 

Bran-Ban worse (-) 

Simpson (+) 

 

 

Names matching:  

Hamming (-) 

Most token level + Q-grams (+)  

Monge-Elkan + Most char level (+) 

Most token level + Jaro /Winkler (-) 
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