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a b s t r a c t 

Similarity measure is an essential component of information retrieval, document clustering, text sum- 

marization, and question answering, among others. In this paper, we introduce a general framework of 

syntactic similarity measures for matching short text. We thoroughly analyze the measures by divid- 

ing them into three components: character-level similarity, string segmentation, and matching technique. 

Soft variants of the measures are also introduced. With the help of two existing toolkits (SecondString 

and SimMetric), we provide an open-source Java toolkit of the proposed framework, which integrates 

the individual components together so that completely new combinations can be created. Experimental 

results reveal that the performance of the similarity measures depends on the type of the dataset. For 

well-maintained dataset, using a token-level measure is important but the basic (crisp) variant is usually 

enough. For uncontrolled dataset where typing errors are expected, the soft variants of the token-level 

measures are necessary. Among all tested measures, a soft token-level measure that combines set match- 

ing and q-grams at the character level perform best. A gap between human perception and syntactic 

measures still remains due to lacking semantic analysis. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Similarity measures are needed in several fields, including

iomedical, signal processing, natural language processing, statis-

ics, artificial intelligence, and information retrieval. For example,

inking records requires a similarity measure to locate matches

cross pairs of lists not having unique identifiers ( Agbehadji et al.,

018; Song, Batjargal, & Maeda, 2019 ). In information retrieval,

 measure is needed to retrieve documents relevant to a user’s

uery. A similarity measure is also needed for resolving range vio-

ations in a large knowledge graph extracted from structured data

uch as Wikipedia ( Lertvittayakumjorn, Kertkeidkachorn, & Ichise,

017 ) and for auto-correcting text where a misspelled word is re-

laced with a dictionary word with high similarity. Measuring sim-

larity of text has further been used in detecting plagiarism. Since

lagiarism usually happens in some parts of text, the text should

e segmented into smaller fragments before measuring the simi-
✩ A preliminary version of the paper was presented in ICPR conference ( Gali et al., 

016 ). It covered twenty-four existing measures for matching title phrases. 

he new version thoroughly analyzes 143 similarity measures, of which 91 are 

ovel. Additional data sets were analyzed, more experiments were conducted, and 

ew conclusions were drawn. An open-source Java toolkit with adaptable compo- 

ents is provided to implement all the measures reviewed in this paper and is 

ade publicly available on http://cs.uef.fi/sipu/soft/stringsim/ . 
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arity ( Ehsan & Shakery, 2016 ). Modern techniques use skip-grams

nd Word2Vec for cross-language plagiarism detection as well as

-grams ( Barrón-Cedeño, Gupta, & Rosso, 2013; Franco-Salvador,

osso, & Montes-y-Gómez, 2016 ). Other types of data for which a

imilarity measure is needed include: 

• Titles of web pages ( Gali, Mariescu-Istodor, & Fränti, 2016 ), V-

café – Viet-Café; 
• Keywords and keyphrases ( Rezaei & Fränti, 2014 ), theater – the-

atre ; 
• Named entities ( Cohen, Ravikumar, & Fienberg, 2003b; Moreau,

Yvon, & Cappé, 2008 ), U.S State Department – US Department of

State ; 
• Personal names ( Christen, 2006; Snae, 2007 ), Gail Vest – Gayle

Vesty ; 
• Place names ( Recchia & Louwerse, 2013 ), Ting Tsi River – Tingtze

River ; 
• Ontology alignments ( Cheatham & Hitzler, 2013 ; Sun, Ma, &

Wang, 2015 ), associate professor – senior lecturer ; 
• Short segments of text ( Metzler, Dumais, & Meek, 2007 ), Apple

computer – Apple pie ; 
• Sentences ( Achananuparp, Hu, & Shen, 2008 ), I haven’t watched

television for ages – It’s been a long time since I watched televi-

sion . 
• Trace links in software development ( Alenazi, Reddy, & Niu,

2018 ). 

https://doi.org/10.1016/j.eswa.2019.03.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.03.048&domain=pdf
https://cs.uef.fi/sipu/soft/stringsim/
mailto:najlaa@cs.uef.fi
mailto:radum@cs.uef.fi
mailto:damien@cs.uef.fi
mailto:franti@cs.uef.fi
https://doi.org/10.1016/j.eswa.2019.03.048
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Given two strings, the goal is to determine their similarity.

Similarity can be semantic or syntactic. Strings are s emantically

similar if they have the same meaning such as car and automo-

bile , and syntactically similar if they have the same character se-

quence. Existing semantic similarity measures can be classified

into corpus-based, knowledge-based , or a combination of the two

( Mihalcea, Corley, & Strapparava, 2006 ). 

Corpus-based measures, such as latent semantic analysis (LSA)

( Landauer & Dumais, 1997 ), pairwise mutual information (PMI)

( Turney, 2001 ), and Word2Vec ( Mikolov, Sutskever, Chen, Corrado, &

Dean, 2013 ), measure the similarity between two strings depend-

ing on information gained from large corpora. For example, LSA as-

sumes that words of similar meaning will occur in related pieces

of text. A word-paragraph matrix is created where each value rep-

resents how many times the given word appears in that paragraph.

Singular value decomposition has been used to find reduced dimen-

sional representation of the matrix so that only important words

are retained. Word similarity is computed by taking the cosine of

the angle between any two vectors (rows) corresponding to the

words being compared. 

Knowledge-based measures use semantic networks such as

WordNet ( Miller, 1995 ). For example, Wu and Palmer (1994) mea-

sure the similarity between two words using the depth of their

least common subsumer (LSC) and the word depth , where depth

is the number of links between the word and the root word in

WordNet (see Fig. 1 ). While useful, semantic similarity depends

on language, taxonomy, and corpora. It may also provide poor re-

sults. For example, the similarity between staff and body is 0.76

although the two words are far from being similar ( Wu & Palmer,

1994 ). 

Syntactic measures operate on the words and their characters

without any assumption of the language or the meaning of the

content. They are, therefore, more general than semantic measures.

Usually, syntactic measures output a distance, which indicates how

dissimilar two data elements are. The larger the distance between

the two elements, the less similar they are. Distance and similar-

ity can be used interchangeably, as they are inverse functions. In

this paper, all distance measures have been converted to similarity

measures, which return a score in a [0, 1] interval where 0 means

nothing in common and 1 means exact match . 

Existing measures have usually been created for a specific task

or application in mind. Most researchers are not interested in the

details of the similarity measures; they just need one single mea-

sure for their application to provide estimates of the similarities

of two strings. For this reason, the existing measures have been

widely adopted in other applications areas than they were origi-

nally designed for. Many ad hoc measures are also used to fulfill

the need. It is, therefore, an open question which measure should

be used in a certain type of application. If there is a measure that
Fig. 1. Semantic similarity between wolf and hunting dog using WordNet taxonomy, wit

depth. 
s universal, it should fit all conceivable applications, not only a

ide set. 

Previous comparative studies focus mainly on specific tasks

uch as names of people, places, institutions or companies. They

oint out that the performance of the similarity measures is af-

ected by text length, spelling accuracy, abbreviations and the lan-

uage. Another common observation is that measures that have

ood performance on one data type can perform poorly on an-

ther. As a result, there is no measure consistently outperform-

ng the others in all tasks ( Christen, 2006; Snae, 2007 ). For exam-

le, Levenshtein distance ( Levenshtein, 1966 ) and the Jaro metric

 Jaro, 1989 ) work well for matching names but perform poorly for

atching acronyms such as Western Canadian Place fitness and WCP

tness . Despite them being used in many tasks, extensive review

nd evaluation of syntactic similarity measures are missing in the

iterature. 

Syntactic similarity measures can be classified into two

road classes: character-level and token-level ( Gali et al.,

016 ). Character-level measures, such as Levenshtein distance

 Levenshtein, 1966 ), treat the strings as sequences of characters.

his type of measure is useful when the strings are single words

nvolving only misspellings, typographical errors or slight mor-

hological variations. However, strings can be split into tokens by

hitespace and punctuation marks. In this case, it can be more

seful to analyze the strings as a sequence or a set of tokens

nstead of just characters; such measures are called token-level

easures . They are more suitable when less significant tokens are

issing from one string or when they are in different order. The

iggest deficiency of most token-level measures is that they only

ompare whether the tokens are exactly the same or not. 

Only a few methods combine character- and token-level mea-

ures ( Cohen et al., 2003b; Sidorov, Gelbukh, Gómez-Adorno, &

into, 2014; Vargas, 2008 ). These methods are called soft measures .

he principle of a soft measure is to apply a character-level mea-

ure to all pairs of tokes between the strings and consider only

okens that satisfy a certain criterion (e.g. threshold) as input to

 token-level measure. According to Jimenez, Gonzalez, and Gel-

ukh (2010) , soft cosine, outperforms both character- and token-

evel measures for name matching. Soft-cosine combines the cosine

or token matching and bigrams for character-level matching. 

However, when applied as standalone measures, neither cosine

or bigrams is the best choice ( Jimenez et al., 2010 ). It is expected

hat a better combination can be found from other character- and

oken-level measures by analyzing them extensively. 

In this paper, we introduce a novel framework for a generic

imilarity measure. We provide a review of the existing syntac-

ic similarity measures and show how they fit into this frame-

ork. We perform a comparative study of 143 similarity mea-

ures, in total, of which 52 exist in the literature and 91 are new
h mammal being the least common subsumer; the circled numbers represent the 
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Fig. 2. String similarity workflow. 

c  

t  

c  

m  

w  

m  

p  

c  

s

 

l

 

e  

s  

a  

p  

W  

s  

c

 

c  

b  

b  

b  

a  

b  

e  

t  

w  

o  

a  

f  

f

2

 

c  

i

 

e  

p  

b  

s

 

b  

i  

e  

t  

t  

c  

i  

t  

c  

h  

o

L  

W  

S

 

o  

c  

o  

o  

d  

s  

a  

c  

R  

t

ombinations formed from the existing components. We study

he design choices for each of the building blocks including the

haracter-level measure, segmentation strategy, and the token-level

atching. We aim at answering the questions, which combination

orks best in a certain type of applications, and whether a single

ulti-purpose measure could be identified that would fit, if not

erfectly, but sufficiently well for most applications. For the sake of

ompleteness, we compare the obtained results with the semantic

imilarity measure Word2Vec . 

To begin with, we divide the procedure of measuring the simi-

arity into three components (see Fig. 2 ): 

• Character-level measure, 
• String segmentation, 
• Matching technique. 

String similarity can be computed directly by considering the

ntire string as one token using character-level or q-gram mea-

ures; a q-gram is a substring of length q of some string s . An

lternative approach is to segment the string with language com-

onents such as words or character groups taken into account.

e performed a systematic study of these components and found

everal new measures combining the best properties of various

haracter- and token-level measures. 

We also provide an open-source Java toolkit, StringSim that

ontains all the measures reviewed in this paper and allows com-

ining different measures to produce their soft variants. To the

est of our knowledge, there is no other public toolkit that goes
Table 1 

Existing similarity measure packages. 

Year Package Language Type 

2003 SecondString a Java Character, Token, Soft 

2005 SimMetric b Java Character, Q-gram, Token 

2013 DKPro c Java Character, Q-gram, Token,

2014 Stringdist d C Character, Q-gram 

2016 Harry e C Character, Token 

2017 StringSim 

f Java Character, Q-gram, Token,

a https://sourceforge.net/projects/secondstring . 
b https://sourceforge.net/projects/simmetrics . 
c https://dkpro.github.io/dkpro-similarity . 
d http://www.markvanderloo.eu/yaRb/category/string-metrics . 
e http://www.mlsec.org/harry . 
f http://cs.uef.fi/sipu/soft/stringsim . 
eyond traditional measures by providing adaptable components

nd supports soft variants of the existing measures. Some com-

inations might not have a known application as of now; how-

ver, new applications appear every day. Therefore, investigating

he different combinations for novel and non-trivial applications is

orthwhile. This package also allows extensive cross-comparison

f all known combinations. Several new meaningful measures are

lso introduced, of which q-grams and set-matching methods per-

orm well in all text types used. Some combinations can also be

ound using the existing packages listed in Table 1 . 

. Character-level measures 

A string can be viewed as a unit composed of a sequence of

haracters. Existing character-level measures can be categorized

nto the following three classes: 

• Exact match, 
• Transformation, 
• Longest common substring (LCS). 

Exact match provides a simple binary result: 1 = the strings are

xactly the same , 0 = otherwise . This is the classical way of com-

aring strings in information retrieval but is slowly being replaced

y approximate matching. Nevertheless, most token-level measures

till use this naive approach. 

Transformation measures quantify the similarity of two strings

y counting the number of operations needed to turn one string

nto the other. It can be achieved in several ways. Most common is

dit distance , which measures the minimum number of edit opera-

ions needed to transform a string s 1 to string s 2 . The edit opera-

ions include insertion, deletion, and substitution. The best match

an be found by dynamic programming in O(| s 1 | ×| s 2 |) time us-

ng O(min(| s 1 |,| s 2 |)) space, where | s 1 | and | s 2 | are the lengths of

he strings s 1 and s 2 to be compared in characters ( Jimenez, Be-

erra, Gelbukh, & Gonzalez, 2009 ). Variations of edit distance

ave been proposed (depending on the number, type, and cost

f operations), including Levenshtein ( Levenshtein, 1966 ), Damerau–

evenshtein ( Damerau, 1964 ), Needleman–Wunsch ( Needleman &

unsch, 1970 ), Smith–Waterman ( Smith & Waterman, 1981 ), and

mith–Waterman–Gotoh ( Gotoh, 1982 ) (see Table 2 ). 

Levenshtein allows insertion, deletion, and substitution at a cost

f one unit. Damerau–Levenshtein allows swapping of two adjacent

haracters ( ab ↔ ba ) at a cost of one unit. Needleman–Wunsch was

riginally developed in the area of bioinformatics to align protein

r nucleotide sequence. It uses a cost of two units for insertion and

eletion, and one for substitution. These types of edit distances are

uitable for matching strings with typographical errors ( king sitric

nd kingsitric ), but not for other types of mismatch such as trun-

ated or shortened strings ( Southville Running Club and Southville

C ). Smith–Waterman and Smith–Waterman–Gotoh offer solutions to

his problem. 
No. of measures Source 

38 Cohen et al. (2003) 

23 —

 Soft 20 Bär et al. (2013) 

10 Van der Loo (2014) 

21 Rieck and Wressnegger (2016) 

 Soft 143 This paper 

https://sourceforge.net/projects/secondstring
https://sourceforge.net/projects/simmetrics
https://dkpro.github.io/dkpro-similarity
https://www.markvanderloo.eu/yaRb/category/string-metrics
https://www.mlsec.org/harry
https://cs.uef.fi/sipu/soft/stringsim
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Table 2 

Character-level measures. Edit is the cost of operations according to the particular corresponding measure. The symbols s 1 and s 2 
refer to the input strings. In Jaro, m is the number of matching characters and x is the number of transposed characters divided by 

2. Symbol p in Jaro–Winkler is a scaling factor of 0.1, and l is the length of the common prefix up to four characters between the 

strings. 

Similarity measure Equation Edit operation costs 

Insert Delete Substitute Swap 

Levenshtein (1966) 1 − edit( s 1 , s 2 ) 
max ( | s 1 | , | s 2 | ) 1 1 1 –

Damerau–Levenshtein ( Damerau, 1964 ) 1 − edit( s 1 , s 2 ) 
max ( | s 1 | , | s 2 | ) 1 1 1 1 

Needleman and Wunsch (1970) 1 − edit( s 1 , s 2 ) 
2 ×max ( | s 1 | , | s 2 | ) Variable Variable 1 –

Smith and Waterman (1981) edit( s 1 , s 2 ) 
min ( | s 1 | , | s 2 | ) Variable Variable −2 –

Smith–Waterman–Gotoh ( Gotoh, 1982 ) edit( s 1 , s 2 ) 
min ( | s 1 | , | s 2 | ) Variable Variable −3 + 3 –

Hamming (1950) 1 − edit( s 1 , s 2 ) 
max ( | s 1 | , | s 2 | ) – – 1 –

Jaro (1989) 1 
3 

×
(

m 
| s 1 | + 

m 
| s 2 | + 

m −x 
m 

)
– – – –

Jaro–Winkler ( Winkler, 1990 ) J ( s 1 , s 2 ) + ( l × p (1 − J ( s 1 , s 2 )) – – – –

Longest common substring ( Friedman & Sideli, 1992 ) | s ́u b ( s 1 , s 2 ) | 
max ( | s 1 | , | s 2 | ) – – – –
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Smith–Waterman performs local alignment by finding similar re-

gions in the two strings. It assigns a lower cost when the mis-

match happens at the beginning or at the end of the strings

than when it happens in the middle ([ Bilenko, Mooney, Cohen,

Ravikumar, & Fienberg, 2003; Elmagarmid, Ipeirotis, & Verykios,

2007 ). For example, the measure provides higher similarity value

for strings such as Prof. Mohammed A. Gali, University of Baghdad

and Mohammed A. Gali, Prof. than do Levenshtein or Needleman–

Wunsch. The result is obtained in O(min(| s 1 |,| s 2 |) × | s 1 | × | s 2 |) us-

ing O(| s 1 | × | s 2 |) space ( Christen, 2006 ). 

Smith–Waterman–Gotoh (SWG) improves the scaling of Smith–

Waterman by adding a so-called affine gap cost allowing better lo-

cal alignment of the strings. It introduces two costs for insertion:

gap open (a penalty of unmatched characters in the beginning of a

string) and gap extension (a penalty for its continuation). In addi-

tion, substitution by a similar-sounding character ({d, t}, {g, j}) is

given a higher score than by other mismatch characters. For exam-

ple, a cost of + 5 is assigned to matching characters, + 3 to similar-

sounding, and −3 to a mismatch. SWG requires O(| s 1 | × | s 2 |) in

time and space. 

Other examples of transformation measures are Ham-

ming ( Hamming, 1950 ), Jaro ( Jaro, 1989 ), and Jaro–Winkler

( Winkler, 1990 ). Hamming allows only substitutions, and the

length of the strings must be equal. Jaro was originally developed

for linking records having inaccurate text fields. It calculates

the number of matching and transposed characters. Characters

are matched if they are the same and located no farther than

[max(| s 1 |,| s 2 |)/2] − 1 within the string, and transposed if they are

the same but in reverse order (a-u, u-a). For example, in compar-

ing CRATE with TRACE , only ‘ R ’ ‘ A ’ ‘ E ’ are the matching characters.

Although ‘ C ’ and ‘ T ’ appear in both strings, they are farther than 1

unit (the result of [5/2] − 1). Jaro–Winkler modifies Jaro to provide

higher weight to prefix matches. Winkler (1990) observed that

typing errors usually occur in the middle or at the end of the

string, but rarely at the beginning. As a result, Winkler adds a

prefix weight ( l × p (1 − d j )) which returns higher similarity scores

when the strings match from the beginning, where l is the length

of the common prefix up to four characters, p is a scaling factor of

0.1, and d j is the Jaro similarity (see Table 2 ). 

The LCS measure ( Friedman & Sideli, 1992 ) was designed for

applications such as matching patient records in a clinical setting

and text summarization, but it can also be applied for comparing

short text. Therefore, we study LCS as well. It finds the longest

contiguous sequence of characters that co-occur in the two strings.

The result is normalized by dividing the length of this sequence by

the length of the longer string. 
To sum up, character-level measures are useful for matching

trings that contain only a few typographical errors but not for

etecting the ordering of entire tokens. For example, they fail to

apture the similarity between Café Manta and Manta café. 

. String segmentation 

Segmentation divides the strings into units such as q-grams

r words. It utilizes information at a higher level than characters

lone. Two approaches exist to segment the string: 

• Q-grams, 
• Tokenization. 

The q-grams approach ( Shannon, 1948 ) divides a string into sub-

trings of length q . The q-grams were first used for string match-

ng in Ukkonen (1992) . The segmentation is overlapping, as the

ame character belongs to several q-grams (except when q = 1).

ubstrings of length 2 are called bigrams (or 2-grams) and length 3

rigrams (or 3-grams) . The rationale behind q-grams is that the se-

uence of characters is more important than the characters alone.

he q-grams for a string s are obtained by sliding a window of

ength q over the string (see Table 3 ). To consider also substrings

f length q − 1 and to recognize prefixes and suffixes of the string,

o-called padding characters (#% $) are appended to the beginning

nd end of the string. The similarity is calculated as follows: 

GramsSim ( s 1 , s 2 ) = 1 −
∑ n 

i =1 | match ( q i , Q s 1 ) − match ( q i , Q s 2 ) | 
| Q s 1 | + | Q s 2 | 

(1)

here Q s 1 and Q s 2 are the multi-sets of q-grams from s 1 and s 2 , re-

pectively, n = | Q s 1 �Q s 2 |, and match ( q i ,Q s 1 ) is the number of times

he q-gram q i appears in Q s 1 . In this paper, we use q-grams with

addings to consider tokens having fewer than q characters, such

s the determiners a and an . 

Variants of q-grams are positional q-grams and skip-grams. Po-

itional q-grams ( Christen, 2006 ) preserve the position of the grams

n the string and match only q-grams with a distance of less than

 predefined threshold. For example, club contains the positional

igrams ( cl , 0), ( lu , 1), ( ub , 2). If the threshold is set to 1, then the

igram ( lu , 1) will only match to bigrams in the second string in

ositions 0, 1 or 2. Skip-grams ( Keskustalo, Pirkola, Visala, Leppä-

en, & Järvelin, 2003 ) are bigrams that skip one or more character

n the middle (see Table 3 ). 

Tokenization breaks a string into units called tokens using

hitespaces and punctuation characters (see Table 3 ). The ratio-

ale behind tokenization is to utilize information at the token level
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Table 3 

The segmentation of string The club at the Ivy , symbol _ refers to space. 

Segmentation method Output 

None (character sequence) the club at the ivy 

q-grams ( q = 3) the, he_, e_c, _cl, clu, lub, ub_, b_a, _at, at_, t_t, _th, the, he_, e_i, _iv, ivy 

q-grams with padding characters ##t, #th, the, he_, e_c, _cl, clu, lub, ub_, b_a, _at, at_, t_t, _th, the, he_, e_i, _iv, ivy, vy%, y%% 

1-skip-grams t ∗e, h ∗c, e ∗l, c ∗u, l ∗b, u ∗a, b ∗t, a ∗t, t ∗h, t ∗e, h ∗i, e ∗v, i ∗y 

Tokenization the, club, at, the, ivy 
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m  
nd to overcome problems of token swap and missing tokens. In

hristen (2006) , two solutions to solve the token ordering prob-

em were introduced: sorting heuristic and permuting heuristic . In

orting heuristic, each string is tokenized, tokens alphabetically or-

ered, re-joined again, and then edit distance is applied to the

odified strings. In permuting heuristic, all token permutations

re obtained from the first string and a comparison between all

he permuted strings and the second string is then performed; the

ighest similarity value is chosen. However, these heuristic solu-

ions are inefficient for other types of mismatching such as miss-

ng tokens, especially when the length of the absent token is con-

iderable such as Rosso and Rosso restaurant . A better solution is

herefore needed in such cases. 

. Matching techniques 

Methods for token matching involve two challenges: which to-

ens to match and how to compute the similarity between the

atched tokens. These challenges will be discussed next in greater

etail. It should be noted that q-grams could also be used as the

atching units even though we use the term token for simplicity.

atching depends on how the strings are represented. Three pos-

ibilities exist (see Fig. 3 ): 

• Sequence, 
• Set, 
• Bag-of-tokens. 

.1. Sequence 

The idea of sequence matching is to generalize Levenshtein or

ome other character-level measure to the token level. Instead of

haracters, tokens are used as comparative units. The cost of the

dit operations insertion, deletion, and substitution is a function
Fig. 3. Examples of exact string matching at token level. 
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V  
f the tokens being compared. In Chaudhuri, Ganjam, Ganti, and

otwani (2003) , the cost of substitution is calculated as the Lev-

nshtein distance of the two tokens weighted by the inverse doc-

ment frequency calculated from the two strings. Some character-

evel measures such as Smith–Waterman and SWG cannot be used

t the token level because they are based on properties of charac-

ers such as their similar sounds. 

.2. Set 

The idea behind set matching is to make the matching inde-

endent of the order. Sets, which are a collection of non-repeating

okens, are first generated from the input strings. Any set-matching

ethod then can be applied to measure the overlap between the

ets. Most of them calculate the intersection and differ only on

ow they are normalized. Braun-Banquet ( Choi, Cha, & Tappert,

010 ), Simpson coefficient ( Choi et al., 2010 ), Jaccard index ( Rezaei

 Fränti, 2016 ), and Dice coefficient ( Brew & McKelvie, 1996 ) di-

ide the cardinality of the intersection by the cardinality of the

argest set, the smallest set, the cardinality of the union of the two

ets, or the average cardinality of the two sets; where cardinality

s the number of tokens in the set (see Table 7 on page 11). Multi-

et allows the same token to appear multiple times as in Rouge-N

 Lin, 2004 ). It computes the similarity by using the F -score, which

ombines the precision and the recall. 

Although useful, these measures fail when the tokens have dif-

erent spelling or have minor typographical errors. For instance,

accard (‘ gray color ’, ‘ color gray ’) = 1, but when the string is written

ith different spelling, then Jaccard (‘ gr a y color ’, ‘ colo u r gr e y ’) = 0

ecause both words have different forms despite having the same

eaning. 

To overcome this problem, two approaches (also called soft

easures ) to generalize set matching have been introduced. In one

pproach, a character-level measure is used to estimate the sim-

larity between tokens consisting from different strings. Only to-

en pairs that are similar enough are considered. For example, in

onge and Elkan (1996) , only pairs that have highest similarity

cores according to a character-level measure are used to calcu-

ate the overall similarity (see Table 4 and Fig. 4 ). Michelson and

noblock (2007) consider two tokens to match if their similarity

core according to a character-level measure is above a predefined

hreshold. A drawback of this approach is that the threshold should

e empirically chosen depending on the characteristics of the data

et. 

The second approach is a soft cardinality of set introduced by

argas (2008) . The idea for soft cardinality is that tokens similar
Table 4 

Character-level similarities between 

the grey colour and gray color using 

SWG. 

the grey colour 

gray 0.20 0.90 0.30 

color 0.20 0.30 0.80 

Max. 0.20 0.90 0.80 
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Fig. 4. Example of a soft matching measure. 

Table 5 

Soft cardinality of sets {gray, grey}, {gray, color} using SWG as the character-level mea- 

sure. 

gray grey Sum 1/sum gray color Sum 1/sum 

gray 1.00 0.90 1.90 0.53 gray 1.00 0.30 1.30 0.77 

grey 0.90 1.00 1.90 0.53 color 0.30 1.00 1.30 0.77 

|T| soft 1.06 |T| soft 1.54 

Table 6 

Soft cardinality of the union of the sets {gray, color} and {the, grey, 

colour} using SWG as a character-level measure. 

gray color the grey colour Sum 1/sum 

gray 1.00 0.30 0.20 0.90 0.30 2.70 0.37 

color 0.30 1.00 0.20 0.30 0.80 2.60 0.38 

the 0.20 0.20 1.00 0.33 0.20 1.93 0.52 

grey 0.90 0.30 0.33 1.00 0.30 2.83 0.35 

colour 0.30 0.80 0.20 0.30 1.00 2.60 0.38 

|T 1 ∪ T 2 | soft 2.01 
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to others in the same set count less than tokens that are unique.

Therefore, the soft cardinality of a set containing similar tokens

should be less than that of a set containing the same number of

tokens but significantly different. 

For example, consider the two sets { gray, grey } and { gray, color }.

The soft cardinality of the former set using SWG as the character-

level measure is 1.06 (a bit more than one object) and the latter

is 1.54 (more than one but less than two objects) (see Table 5 ).

Therefore, soft cardinality provides a better measure of the unique

concepts represented by the string. 

In this paper, we use the function presented in Vargas (2008) to

estimate the soft cardinality of a set. Let T be a set of n tokens:

T = { T 1 , T 2 … T n }, and d ( T i , T j ) is a character-level similarity measure

scaled in the range [0,1]. The soft cardinality of T is computed as:

| T | sof t = 

n ∑ 

i =1 

[ 

1 ∑ n 
j=1 d 

(
T i , T j 

)
] 

(2)

After soft cardinality has been defined, we use it to calculate

the cardinality of union, as illustrated in Table 6 . The size of the

intersection is computed through cardinalities of the two sets and

their union ( Vargas, 2008 ), as follows: 

| T 1 ∩ 

T 2 | sof t = | T 1 | sof t + | T 2 | sof t − | T 1 ∪ 

T 2 | sof t (3)

Finally, any set-matching method can be applied to compute

the overall similarity by replacing the classic cardinality with soft

cardinality. For example, soft Jaccard is computed as follows: 

Jaccard ( T 1 , T 2 ) = 

| T 1 ∩ 

T 2 | sof t 

| T 1 ∪ 

T 2 | sof t 

(4)

It should be noted that set-matching methods using soft

cardinality may give similarity scores greater than 1, because

soft cardinality does not guarantee the traditional set inequal-

ities | T 1 �T 2 | ≤ min(| T 1 |, | T 2 |) and max (| T 1 |, | T 2 |) ≤ | T 1 �T 2 |

( Vargas, 2008 ). 

4.3. Bag-of-tokens 

The bag-of-tokens method combines the unique tokens from the

two input strings into a single set (the “bag of tokens”). Feature

vectors are then generated for both strings where each feature is
he number of times the particular token in the bag appears in the

tring; this is denoted as term frequency (TF). However, this is not

ecessarily the best way to represent the strings, as common to-

ens like a, to , and the often have high frequencies. In Song, Zhu,

nd Chen (2014) , it was observed that due to the short length of

he phrases, most words appear only once in a text record and

erm frequency is therefore not efficient. Term frequency-inverse

ocument frequency (TF-IDF) is therefore introduced to address this

roblem. It is the product of two statistics: the term frequency

nd its inverse document frequency (IDF w 

). The latter is the total

umber of compared strings divided by the number of strings that

ontain the specific token . Metrics such as cosine ( Cohen et al.,

003b ), Euclidean distance , and Manhattan distance ( Malakasiotis &

ndroutsopoulos, 2007 ) have been applied to compute the simi-

arity between the two feature vectors (see Table 7 ). In Noh, Jo,

nd Lee (2015) , TF-IDF and a set of 130 keywords were found to

e the most promising components to estimate the similarity be-

ween patent documents. The length of patent documents is still

uch longer than typical text phrases that we consider. 

Analogously to the set-matching techniques, these metrics com-

are tokens using exact match and ignore the degree of similar-

ty between the tokens when generating the feature vectors. For

nstance, suppose that we have two strings s 1 = play game and

 2 = player gamer . Our bag-of-tokens consists of four tokens { play,

ame, player, gamer } and the feature vectors corresponding to the

wo strings are v 1 = [1, 1, 0, 0] and v 2 = [0, 0, 1, 1]. According to

osine measure, the similarity of these two vectors is 0 although

hey are quite similar. 

To overcome this limitation, the soft-cosine measure has been

ntroduced ( Sidorov et al., 2014 ). It computes the similarity of each

air of tokens using a character-level measure; in ( Sidorov et al.,

014 ), Levenshtein distance has been used. In the aforementioned

xample, if soft cosine (see Table 7 ) were applied with Jaro–

inkler as the character-level measure, the similarity of these two

ectors would be 0.84. The same approach can also be applied to

uclidean and Manhattan metrics to produce their soft variants,

lthough these have not been considered in literature so far (see

able 7 ). 

Although generalized approaches suggest using a character-level

easure to compare tokens, only a few combinations have been

tudied in the literature and were often tested only with one type

f character-level measure. In addition, to best of our knowledge,

here have not been unified tasks, data sets, and experimental se-

ups in which all measures have been tested and evaluated for

heir usefulness. All these issues are addressed in this paper. 

. Experimental evaluations 

We use the following experimental setup to analyze the perfor-

ance of all the measures in relation to their properties, human

ntuition, clustering, and matching task. We aimed to find which

easures 
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Table 7 

Sequence, set and bag-of-tokens matching measures. For two strings s 1 and s 2 , symbols v 1 and v 2 are their vector representation and T 1 and T 2 denote their token sets. 

T i 1 is the i:th token in the set of tokens T 1 generated from string s 1 . Symbol [] is used when referring to a multiset. Symbol sim ij is the distance at the token level. 

Function d calculates the character-level similarity score between two tokens. Symbol n is the length of the feature vector. 

Matching measures 

Sequence Soft variant 

Chaudhuri et al. (2003) si m i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

si m i −1 , j−1 i f T i 1 = T j 
2 

min 

⎧ ⎨ 

⎩ 

si m i −1 , j + 1 

si m i, j−1 + 1 

si m i −1 , j−1 + 1 

otherwise 
si m i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

si m i −1 , j−1 i f T i 1 = T j 
2 

min 

⎧ ⎨ 

⎩ 

si m i −1 , j + ( 1 − d( T i 1 , T 
j 

2 
) ) 

si m i, j−1 + ( 1 − d( T i 1 , T 
j 

2 
) ) 

si m i −1 , j−1 + ( 1 − d( T i 1 , T 
j 

2 
) ) 

otherwise 

Set Soft variant 

Braun- Banquet ( Choi et al., 2010 ) | T 1 ∩ T 2 | 
max ( | T 1 | , | T 2 | ) 

| T 1 ∩ T 2 | sof t 

max ( | T 1 | sof t , | T 2 | sof t ) 

Simpson ( Choi et al., 2010 ) | T 1 ∩ T 2 | 
min ( | T 1 | , | T 2 | ) 

| T 1 ∩ T 2 | sof t 

min ( | T 1 | sof t , | T 2 | sof t ) 

Jaccard ( Rezaei & Fränti, 2016 ) | T 1 ∩ T 2 | | T 1 ∪ T 2 | 
| T 1 ∩ T 2 | sof t 

| T 1 ∪ T 2 | sof t 

Dice ( Brew & McKelvie, 1996 ) 2 ×| T 1 ∩ T 2 | | T 1 | + | T 2 | 
2 ×| T 1 ∩ T 2 | sof t 

| T 1 | sof t + | T 2 | sof t 

Rouge-N ( Lin, 2004 ) ( ( 1 
p 

) + ( 1 
r 
) ) −1 

p = 

| [ T 1 ] ∩ [ T 2 ] | | [ T 1 ] | , r = 

| [ T 1 ] ∩ [ T 2 ] | | [ T 2 ] | 

( ( 1 
p 

) + ( 1 
r 
) ) −1 

p = 

| [ T 1 ] ∩ [ T 2 ] | sof t 

| [ T 1 ] | sof t 
, r = 

| [ T 1 ] ∩ [ T 2 ] | sof t 

| [ T 2 ] | sof t 

Monge-Elkan (1996) 1 
| [ T 1 ] | 

| [ T 1 ] | ∑ 

i =0 

max 
1 ≤ j≤| [ T 2 ] | 

d( T i 1 , T 
j 

2 
) 

Bag-of-tokens Soft variant 

Cosine ( Cohen et al., 2003b ) 
∑ n 

i =1 v i 1 v 
i 
2 √ ∑ n 

i =1 ( v i 1 ) 
2 

√ ∑ n 
i =1 ( v i 2 ) 

2 

∑ n 
i, j=1 d( T i 1 ,T 

j 
2 
) v i 1 v 

j 
2 √ ∑ n 

i, j=1 d( T i 
1 
,T j 

1 
) v i 

1 
v j 

1 

√ ∑ n 
i, j=1 d( T i 

2 
,T j 

2 
) v i 

2 
v j 

2 

Euclidean ( Malakasiotis & 

Androutsopoulos, 2007 ) 

1 −
√ ∑ n 

i =1 ( v i 1 −v i 
2 
) 

2 √ 
| v i 

1 
| 2 + | v i 

2 
| 2 

1 −
√ ∑ n 

i, j=1 d( T i 
1 
,T j 

2 
) ( v i 

1 
−v j 

2 
) 

2 √ 
( 
∑ n 

i, j=1 d( T i 
1 
,T j 

1 
) v i 

1 
v j 

1 
) 

2 + ( ∑ n 
i, j=1 d( T i 

2 
,T j 

2 
) v i 

2 
v j 

2 
) 

2 

Manhattan ( Malakasiotis & 

Androutsopoulos, 2007 ) 

1 −
∑ n 

i =1 | v i 1 −v i 2 | 
| v i 

1 
| + | v i 

2 
| 1 −

∑ n 
i, j=1 d( T i 1 ,T 

j 
2 
) | v i 1 −v j 

2 
| ∑ n 

i, j=1 d( T i 
1 
,T j 

1 
) v i 

1 
v j 

1 
+ ∑ n 

i, j=1 d( T i 
2 
,T j 

2 
) v i 

2 
v j 

2 
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Each domain consists of two or three databases collected from dif- 
• are robust to text manipulation such as typographical errors

and token change, 
• correlate to human intuition, 
• have higher similarity to such character strings that refer to the

same entity; 
• can be applied in clustering, 
• can be applied to find entries in different databases. 

We selected 10 matching techniques, 9 character-level mea-

ures, and 2 q-gram measures. This gave us (10 × (9 + 2)) = 110 soft

oken-level measures in total. We also considered exact match at

he character level and the semantic measure Word2Vec as refer-

nces. We therefore had 143 different combinations in our experi-

ents, of which 52 exist and 91 are novel (see Table 8 ). 

Word2Vec model, provided by Google, 1 has been trained using

he English language (US). We slightly modified the model so that

t outputs value 0 (instead of infinite) if a word cannot be recog-

ized and value 1 if two words are equal, even if they are not rec-

gnized. Without this modification, infinite values would appear

uring the calculation of soft similarity. 

All string characters were converted to lowercase as a pre-

rocessing step in all tests because it can have positive effect on

he accuracy ( Uysal & Gunal, 2014 ). We also suppressed the spaces

n the beginning and at the end of the strings if there were any. 

.1. Data sets 

We used three publicly available data sets containing mostly

nglish text (see Table 9 ): 

• Titler 2 ( Gali, Mariescu-Istodor, & Fränti, 2017 ), 
1 https://code.google.com/archive/p/word2vec . 
2 http://cs.uef.fi/mopsi/titler . 
• The Mopsi photo collection 

3 , 4 , 
• Match sets 5 ( Cohen, Ravikumar, & Fienberg, 2003a ). 

The Titler data set contains 4 96 8 candidate title phrases ex-

racted from 1002 English websites. The ground truth titles were

anually annotated by two people independently on each other,

nd in the case of disagreement, a third person made a judgment

etween these two. The candidate title phrases were extracted au-

omatically from the pages using the method in Gali et al. (2017) ;

herefore, different typographical representations exist, such as

otspring and Hot spring, Park hotel & spa and Park hotel and spa .

he phrases were evaluated for their relevance so that the user

ates them from 0 ( irrelevant ) to 5 ( excellent match ). For example,

2 candidate phrases were extracted for the restaurant the Apollo ;

ix of them were rated 5, two were rated 4, and four were rated

. The minimum number of phrases extracted for a web page was

ne and the maximum was 30 ( Gali et al., 2017 ). 

The Mopsi photo collection contains 42,739 geo-tagged photos

ollected since April 2016. Each photo has a short description (En-

lish or Finnish), time stamp, and the location where it was taken.

opsi users can write a description immediately after taking a

hoto. Then, the Mopsi app will offer pre-written descriptions that

he user can simply tap to use. The pre-written descriptions are

btained from photos near to the user. Therefore, photos taken at

he same location tend to have similar descriptions when they de-

cribe the same object. The descriptions may contain typing errors.

Match sets are publicly available data sets that have been used

o test similarity measures on matching tasks ( Cohen et al., 2003a;

imenez et al., 2009; Vargas, 2008 ). The data sets comprise seven

omains, such as birds, business names, and games (see Table 9 ).
3 http://cs.uef.fi/mopsi/tools/photoclusters.php . 
4 http://cs.uef.fi/mopsi/PhotoDescriptionsClusters/dataset.zip . 
5 http://www.cs.cmu.edu/ ∼wcohen/match.tar.gz . 

https://www.code.google.com/archive/p/word2vec
http://www.cs.uef.fi/mopsi/titler
http://cs.uef.fi/mopsi/tools/photoclusters.php
http://www.cs.uef.fi/mopsi/PhotoDescriptionsClusters/dataset.zip
http://www.cs.cmu.edu/~wcohen/match.tar.gz
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Table 8 

The tested 143 similarity measures. Blue cell refers to an existing and 
√ 

to a novel measure. The first row contains measures that use exact 

matching at the character level. The first column contains all character-level, q-grams, and semantic measures. 

Table 9 

Summary of the data sets. 

Source Data set Size Language String length 

Token Character 

Min Av. Max Min Av. Max 

Gali et al. (2017) Titler 4 96 8 English 1 3 8 4 14 39 

This paper Mopsi photos 10 0 0 English Finnish 1 3 26 6 17 65 

Cohen et al. (2003) Bird Nybird 982 English 1 3 69 4 21 321 

Bird Scott1 38 2 3 8 7 20 58 

Bird Scott2 719 3 4 9 15 35 83 

Business 2139 1 3 8 4 19 51 

Game 855 1 5 55 4 27 255 

Park 654 2 3 12 6 16 58 

Restaurant 863 7 11 21 40 59 102 
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6 http://cs.uef.fi/mopsi/TextManipulation/dataset.zip . 
ferent sources. For example, the parks data set contains 396 na-

tional parks names from one listing and 258 from a second listing.

Of these, 241 names describe the same park. In each data set, the

entries contain different types of information that are joined by a

tabulation character as follows: 

• Ny Bird: scientific name , common name, 
• Bird Scott1: web page link , common name, scientific name, 
• Bird Scott2: web page link , common name, scientific name, 
• Business: web page link , company name, 
• Game: ID , name, 
• Park: web page link , name, 
• Restaurant: name, address, phone number , and brief descrip-

tion of the cuisine served. 

The underlined fields are the identification keys (ID keys). En-

tries from different listings match if their ID keys are identical.

These data sets are controlled; therefore, typing errors do not exist.

5.2. Text manipulation 

We first examined how each measure performs under text ma-

nipulation: character change and token change. We selected 18
trings of different lengths 6 (see Fig. 5 ) as a baseline and applied

everal systematic changes. 

We first made k random character changes and then l random

oken changes and report the average results. The expected re-

ult is that a syntactic measure has a linear correspondence to the

umber of character or token changes ( k and l ). This is denoted

s expected in Figs 6 and 8 . This assumption might not hold in all

ases. Humans are known to be able to recognize the content even

ith the presence of very severe spelling errors, but in some other

pplications humans can be very sensitive to even small amount

f character changes. 

In testing, we computed the similarity between the original

tring and the manipulated string. On average, we observed the

erformance of the measures to be mostly invariant with regard

o string length. We therefore report only the results for one se-

ected string: awesome animated monster maker: ultra-edition (6 to-

ens and 40 characters). Due to the large number of tested mea-

ures, we only plot selected measures in Figs. 6 and 8 . The rest

http://cs.uef.fi/mopsi/TextManipulation/dataset.zip
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Fig. 5. Eighteen strings plotted based on how many characters and tokens they contain. 

Fig. 6. Effect of character changes on the similarity measures. 
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f the measures have been clustered in a color pattern graph in

igs. 7 and 9 such that one line in Figs. 6 and 8 represents not

nly the named measure but also another with the same number

n Figs. 7 and 9 . 

In Fig. 6 , we observe that most character-level measures have

 constant decrease of similarity when the number of changes in-

reases, but that the amount of decrease varies. Levenshtein and

ts modified versions such as Damerau–Levenshtein correlate best

ith the number of character changes. LCS is one of the mostly af-

ected measures because changes in the middle of the string pro-

uce significantly shorter common substrings. For example, when

hanging two characters in our example awesome aRimated mXn-

ter Maker: Ultra Edition, the similarity drops to 0.58. 

Q-gram measures show a uniform decrease with the number of

haracters being changed. They are slightly more sensitive to char-

cter changes because one change will destroy two or more bi-

nd trigrams. The token-level measures with exact match gener-

lly drop faster than the character-level measures and the q-grams

ecause they discard the entire token even if only minor difference

xists. 

The performance of the soft measures is more stable than their

orresponding crisp variants. In Fig. 6 , we see that majority of

he soft measures are less sensitive to the character change than

xpected. Indeed, because soft variants consider strings with mi-
or differences as being similar, they also consider strings with

ajor differences as having some similarity. One exception is

he combination between Monge–Elkan and Smith–Waterman or

WG, which drops faster than expected. The combinations between

onge–Elkan and Levenshtein or Damerau–Levenshtein, together 

ith the combination between set-matching methods, cosine and

-grams, correlate best with the expected result. 

The semantic measure Word2Vec behaves very similar to exact

atch. Even a single character change usually brings the word out

f the vocabulary, and therefore, it will not anymore match the

riginal text. Exceptional cases appear only when a word changes

o another word existing in the dictionary by luck, but the effect of

his is insignificant. To sum up, semantic measures are not suitable

or this kind of application. 

To compare the measures with human intuition, we generated

 ground truth depending on human understanding of the text.

leven users were asked to perform the experiment as follows:

ne manipulated string was displayed to the user at a time (in the

ame order to all users) through an interface. The user had to write

he correct string if able to recognize it and leave the input field

mpty otherwise. It should be noted that the same list of manipu-

ated strings was given to all users and to all similarity measures.

he process continued until all manipulations were tested. The av-

rage results were taken. 
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Fig. 7. Clusters of performance of similarity measures corresponding to Fig. 6 . Exact match refers to standard measures and black cells are the unique patterns. 

Fig. 8. Effect of token changes on the similarity measures. 

Fig. 9. Clusters of performance of similarity measures corresponding to Fig. 8 . Exact match refers to standard measures and black cells are the unique patterns. 
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Fig. 10. Rank correlation parameters (Jaccard + 3-Grams). 
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Holiday Inn Bristol Filton – Holiday Inn Filton - Bristol 
As can be observed in Fig. 6 , human intuition provides very

ifferent behavior com pared to the expected linear behavior. Hu-

ans can perfectly recognize the text with up to 20% of charac-

er changes, depending on the text. One reason is that if a token

as broken because of character changes, a human can still guess

he correct word. In addition, the position of the characters being

hanged has an effect on human understanding. For example, a hu-

an can still read tihs correctly although the middle characters are

wapped. 

In conclusion, the majority of the measures performed well in

his experiment, with the exception of exact match, LCS, token-

evel measures, and Manhattan soft variants, which dropped fast,

s well as soft variants that combine set-matching methods or

osine with Needleman–Wunsch, Jaro and Jaro–Winkler, which

ropped slowly. Euclidean soft variants may also be considered to

ave performed poorly because they did not see the differences be-

ween half-changed and totally changed strings. Levenshtein and

amerau–Levenshtein alone or combined with Monge–Elkan, as

ell as set-matching methods and the cosine combined with q-

rams, and Monge–Elkan combined with Smith–Waterman, SWG,

r LCS were closer to the expectation than other measures. 

Fig. 8 illustrates that the majority of the measures had a uni-

orm decrease with respect to the token change. Number 4 in

ig. 9 represents all these measures. Among the character-level

easures, the LCS was the most sensitive to token change. Smith–

aterman, SWG, and the combination between Jaccard and q-

rams dropped the same amount as Jaccard alone. The Euclidean

nd Manhattan measures had the same behavior no matter what

haracter-level or q-grams measure it combines. 

As assumed, the soft measures provided higher similarity scores

han expected due to their ability to capture the similarity between

imilar and identical tokens. In Fig. 8 , we observe that the simi-

arity scores provided by the soft versions of the measures never

each 0, no matter how different the two strings are. Considering

eedleman–Wunsch, Jaro, and Jaro-Winkler as secondary measures

s not useful, as they provide high similarity regardless of the dif-

erences between the strings. Similar to character change, q-gram

ariants were always close to the expected results, having their

orst performance with Simpson, Jaccard and Euclidean. 

.3. Correlation to human intuition 

Next, we used the Titler data set to detect how well the sim-

larity scores correlate with the human scores. We used the non-

ymmetric rank correlation Somers’ D ( Somers, 1962 ) of the com-

uted similarity with respect to human score, because it takes

qual similarities for unequal human scores into account. It is cal-

ulated as: 

omers ′ D = 

N s − N d 

N s + N d + N t 
(4) 

here N s is the number of pairs ranked in the same order by

oth variables (see Fig. 10 ), N d is the number of pairs ranked in

eversed order, and N t is the number of pairs that have differ-

nt human scores but given equal scores by a similarity measure

 Somers, 1962 ). Tie cases are ignored, as they do not have any im-

act on the correlation. 

The results are summarized in Table 10 . We observe that most

easures have a positive correlation to the human ranking. The

trength of the correlation is moderate (from 40% to 52%) for

ost of them. The correlation of the character-level measures Lev-

nshtein, Damerau–Levenshtein, and Jaro, and the q-grams are

lightly higher (from 50% to 52%) than that of the others (from 40%

o 49%). Smith–Waterman and SWG have a weak correlation (16%).

ord2Vec does not work well (4%) because titles usually consist
f multiple words that form meaningful entity; such form is not a

art of the model. 

The best performance of token-level measures was obtained by

he soft versions of the set-matching methods when combined

ith q-grams (from 50% to 52%). The results indicate that there

s at least one soft variant of each measure that correlates bet-

er to human judgment than with exact match. For example, Edit-

CS (52%) versus Edit-Exact (48%). Exceptions are the bag-of-tokens

easures Euclidean and Manhattan, which are not improved by

he soft versions. An exception among the set-matching methods

s the Simpson measure, which has a weak correlation (14%), and

ts performance becomes even worse (from 14 to −1%) with al-

ost all combinations. The reason is that Simpson provides simi-

arity scores greater than 1 when minor differences exist between

he strings. For example, it gives a similarity score of 1.6 to the

trings HotSpring and Hot spring home, while the human score is

nly 3. 

Word2Vec provides smaller correlation values than the syntac-

ic measures. It often fails because of finding similarities when it

hould not. For example, it gives high soft similarity scores ( ∼90%)

etween the Garfish seafood restaurant and seafood restaurant be-

ause of the high similarity of the words’ garfish and seafood . Se-

antically, the word Garfish is highly redundant but, as a restau-

ant name, it is an essential part of the title according to human

ntuition. Another example where semantic similarity fails is con-

atenated titles like HotSprings or GetFit because they are not part

f the model dictionary. 

To investigate why none of the measures correlated strongly

ith the human judgments, we analyzed human scores further and

e observed that humans focus more on distinct words. For exam-

le, for the restaurant Ventuno pizzeria , if two candidate titles exist

entuno and pizzeria , users consider Ventuno more relevant to the

lace than pizzeria . Therefore, they give scores of 4 to Ventuno but

 to pizzeria . None of the syntactic measures can distinguish be-

ween generic and specific words without the existence of external

nformation such as a corpus; therefore, to a measure both words

re equally important. 

We further observed that users pay less attention to typograph-

cal differences, as they consider the following phrases excellent

atches: 

• Freda’s – Fredas 
• Drom UK – Dröm UK 

• Hot Spring – HotSpring 
• Park Hotel and Spa – Park Hotel & Spa 
•
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Table 10 

Summary of results (%) for correlation to human; exact match refers to standard measures; best, moderate, bad. 

Token-level 

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 40 46 14 46 45 45 46 48 44 46 48

Hamming 41 47 14 48 47 47 48 49 44 46 50

Levenshtein 52 48 7 49 48 48 50 49 44 46 52

Dam-Levenshtein 52 48 6 49 48 48 50 49 44 46 52

Needle-Wunsch 49 43 4 45 34 34 48 42 43 47 51

SW 16 46 -1 46 44 44 49 45 43 46 51

SWG 16 44 -4 44 40 40 47 43 42 47 51

Jaro 51 43 -1 42 39 39 47 43 44 47 49

Jaro-Winkler 46 43 -1 42 39 39 46 43 44 47 49

LCS 47 47 6 48 47 47 50 48 44 46 52

2-Grams 51 49 13 50 50 50 50 52 44 46 52

3-Grams 52 50 14 50 50 50 50 51 44 46 52

Word2Vec 4 34 -5 34 34 34 35 34 36 26 36
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Furthermore, human concentrates on the correctness of a

phrase’s structure, which is not shown in the numerical evaluation.

For example, human gave a lower score for the similarity of the

following phrases, but the measures tend to consider them highly

similar: 

• Out of the Blue – Out the Blue 
• Arcata Pizzeria – At Arcata Pizzeria 
• 3 Degrees – Degrees 

All these factors have a significant impact on the degree of cor-

relation between the measures and the human scores. 

5.4. Correlation to distance 

Two geo-tagged photos taken at the same location are more

likely to have more similar descriptions than those taken at dif-

ferent locations (see Fig. 11 ). Accordingly, for a given input photo,

a good similarity measure should rank the nearby photo similar

more often than a random far-away photo. We performed the fol-

lowing experiment: for every photo, we randomly selected two

other photos of which one must have been taken nearby ( < 20 m).

We counted how many times the nearby photo’s description was

more similar to the original than the random one. The expected

result should be more than 50%, which would be the result if no

relationship exists between the descriptions. The result was also

not expected to reach 100% as not all nearby photos describe the

same object, and likewise, far-away photos might sometime have

similar description, such as a restaurant chain in two locations. 

We used a subset of 10 0 0 Mopsi photos that have a descrip-

tion. The results presented in Table 11 indicate that all measures

correlate positively. The highest counts (normalized by the num-

ber of photos) were in the range of 70%–72%. Levenshtein and

Damerau–Levenshtein provided the best results (both 70%) among

the character-level measures with 8 percentage points of improve-

ment over the exact match. 2-Grams performed slightly better

(70%) than 3-Grams (67%) in this experiment, but not any better

than the character-level candidates. 
The token-level measures (exact match) failed to capture the

imilarity between similar tokens with small artifacts. They would

ive equally high scores to snow hotel versus snow hoteli, and snow

otel versus snow football . The performance of every token-level

easure was improved by at least one soft variant (see Table 11 ).

he only exceptions were the bag-of-tokens measures Euclidean

nd Manhattan, which do not seem to benefit from a soft ver-

ion. The token-level edit distance measure improved by five per-

entage points when using Smith–Waterman or the 2-grams at the

haracter-level. The best result (72%) was obtained when combin-

ng the set-matching methods with SWG and 3-grams. These com-

inations rank the nearby photos similar more often than random

ar-away photos. The only exception here is Simpson, which was

ot among the best-performing measures. 

Despite the soft variants being useful, some combinations

rovided worse results; for example, Simpson-Jaro (59%) and

impson-Jaro-Winkler (60%) performed worse than their exact

ariants Simpson (67%), Jaro (64%), and Jaro-Winkler (64%). 

In general, the soft measures performed better than character-

evel, q-gram, and token-level measures. The best combina-

ion was set-matching methods and the character-level measures

eedleman–Wunsch, SWG, and q-grams. 

Word2Vec performs very well in this application. This is be-

ause photos at the same location have typically different descrip-

ions made by different people, who often use alternative partial

ynonyms such as building, house and architecture , or statue and

culpture or scenery and view . A semantic measure is therefore a

ood fit for this kind of situation. 

.5. Clustering 

We next tested whether the measures are useful for clustering.

rom the Mopsi photos, we manually selected 180 photos and di-

ided them manually into 15 groups, based on their text descrip-

ion, to represent distinct objects. This manual clustering repre-

ents the ground truth (GT) (see Fig. 12 ). 

In testing, we grouped the photos into 15 clusters using an ag-

lomerative clustering algorithm where, at each step, the pair of
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Fig. 11. Nearby photos have more similar descriptions than far-away photos. 

Table 11 

Summary of results (%) for correlation to distance; exact match refers to standard measures; best, good, neutral. 

Token-level 

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 62 65 65 65 65 65 65 65 67 65 65

Hamming 63 67 66 66 66 67 66 66 67 65 65

Levenshtein 70 67 67 67 67 67 67 69 65 65 62

Dam-Levenshtein 70 67 67 67 67 67 66 68 65 64 65

Needle-Wunsch 69 70 65 70 70 70 70 70 67 65 62

SW 62 68 68 69 69 69 69 68 66 65 70

SWG 62 72 69 72 72 72 67 70 65 65 67

Jaro 64 67 59 67 67 67 67 66 65 65 62

Jaro-Winkler 64 67 60 67 67 67 67 67 65 65 61

LCS 67 69 68 69 69 69 70 71 66 66 65

2-Grams 70 71 69 70 70 70 70 70 69 65 70

3-Grams 67 72 70 72 72 72 71 71 69 65 68

Word2Vec 62 73 73 73 73 73 74 67 62 73 73
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lusters that provides maximal improvement in total pairwise sim-

larities within the clusters are merged. We applied each similar-

ty measure to compute the pairwise similarities and compare the

lustering result against the GT. The cluster quality was measured

y the centroid similarity index (CSI) ( Fränti, Rezaei, & Zhao, 2014 );

C

t determines how similar a clustering solution is to the GT solu-

ion. Given two clustering solutions A = { A 1 , A 2 …A K ) and B = { B 1 ,

 2 …B K } of K clusters, the CSI is computed as follows: 

SI = 

∑ K 
i =1 n i j + 

∑ K 
j=1 n ji 

(5) 

2 N 
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Table 12 

Summary of results (%) for clustering; exact match refers to standard measures; best, good, neutral, bad. 

Token-level

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 47 63 74 67 66 66 66 67 58 66 63

Hamming 42 60 69 59 69 69 71 69 58 69 61

Levenshtein 64 63 72 66 62 62 68 69 61 68 63

Dam-Levenshtein 64 58 71 66 70 70 68 72 61 69 63

Needle-Wunsch 53 61 76 59 61 61 67 66 60 70 64

SW 78 62 70 66 70 70 74 75 59 66 70

SWG 72 60 62 63 64 64 73 67 61 65 65

Jaro 59 49 50 49 53 53 63 51 60 69 54

Jaro Winkler 57 48 55 56 54 54 67 52 61 69 57

LCS 67 66 74 67 78 78 74 74 58 67 66

2-Grams 71 69 81 68 74 74 73 73 56 65 67

3-Grams 72 69 75 72 77 77 69 73 60 65 69

Word2Vec 46 60 74 60 61 61 67 58 65 71 57
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Fig. 12. Example of three ground truth clusters. 
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where n ij (respectively n ji ) is the number of objects that cluster

A i (respectively B j ) and its most similar cluster B j (respectively A i )

have in common: n ij = | A i � B j |. It can be calculated efficiently from

the contingency table. Here, N is the total number of objects. 

Random clustering would produce a value of CSI = 28%, so the

expected result of a successful clustering should be higher than

that. Viewing the results presented in Table 12 , we observe that

even the simplest method (exact match) provided CSI = 47%. The

Smith–Waterman character-level measure provided CSI = 78%. The

advantage is that it does not penalize one missing token. For ex-

ample, it considers Marriott and Bristol Marriott hotel as a perfect

match and, therefore, it correctly concludes that these two strings

belong to the same cluster. 

Among the token-level set-matching measures, Simpson (74%)

performed better than any other token-level measure. This is be-

cause it normalizes by the length of the smaller string, which al-

lows it to recognize the Marriott example as a perfect match. 

The performance of all token-level measures was significantly

improved by their soft variants. The percentage of improvement

varies. Dice and Rouge benefit the most, having 12-percentage
oints of improvement when combined with 3-Grams. The Eu-

lidean and Manhattan bag-of-tokens measures seemed not to

enefit much from soft variants. The performance of the remaining

easures improved by five to eight percentage points when com-

ined with q-grams, Smith–Waterman, and LCS. The better perfor-

ance of the soft variants can be explained by the fact that photo

escriptions are often short (two tokens on average) with a higher

robability of typing errors when using a small phone’s keyboard,

hich is challenging to type on accurately, especially when in a

urry. Two such examples are Lighttower (Light tower) and Bib-

iotechue Nationale (Biblioteque Nationale). 

In summary, soft measures outperformed character, q-gram and

oken-level measures in text clustering. The best clustering result

81%) was achieved when combining Simpson with 2-Grams. Us-

ng q-grams at the character level seem to benefit all token-level

easures, but the combination with set-matching methods (Simp-

on, Dice, and Rouge) yielded the best results. 

Word2Vec does not perform so well here mainly because of the

ulti-language text descriptions that it cannot handle. As a result,

verything written in non-English language will be grouped into

ne cluster regardless of the meaning of the words. 

.6. Names matching 

The quality of a measure can also be determined by its abil-

ty to find matching entries in databases created from different

ources. We used match data sets and followed the testing pro-

edure proposed in Cohen et al. (2003) . Paired entries from two

ifferent databases belonging to the same set (domain) were com-

ared and considered a match if their corresponding ID keys were

dentical. 

In testing, we calculated the similarity score between the pairs.

e sorted all the pairs according to the calculated similarity

cores, as illustrated in Table 13 . In an ideal case, all matches

hould have higher similarity scores and, as a result, appear in the

orted list before all the mismatch cases. We calculated precision
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Table 13 

Selected examples of pairs and their similarity scores. Red color indicates pairs that describe different entries 

and are therefore labelled as mismatches. The F -score for this ranking is 80%. 

Similarity% String 1 String 2 Key 1 Key 2 

100 Hyperstudio Hyperstudio hyperstudio hyperstudio 

90.7 Mario Teaches Typing Mario Teaches Typing 2 mariotype foobar 

74.9 Green Eggs and Ham Green Eggs and Ham by Dr. Seuss greeneggs greeneggs 

69.2 Fisher Price’s Pirate Ship Pirate Ship pirateship pirateship 

69.1 Let’s Color Let’s Learn Shapes & Colors none foobar 

58.7 Catz Catz, Your Computer Petz catz catz 

Table 14 

Maximum F -score (%) for the measure on matching problem; exact match refers to standard measures; best, good, neutral, bad. 

Token-level 

Set-matching Bag-of-tokens Seq.

Ch/Q Bra-Ban Simpson Jacc Dice Rouge Mon-Elk Cos Eucl Manh Edit

Exact match 13 80 78 80 80 80 81 80 66 79 74

Hamming 16 75 75 78 78 78 79 78 65 79 72

Levenshtein 68 72 59 79 79 79 86 83 61 79 77

Dam-Levenshtein 68 72 59 80 80 80 86 82 61 79 77

Needle-Wunsch 58 69 56 80 80 79 85 84 57 80 70

SW 73 63 21 62 62 61 84 62 59 80 72

SWG 74 59 21 60 60 60 84 62 57 80 71

Jaro 60 30 6 17 17 17 86 20 60 80 64

Jaro Winkler 59 30 6 17 17 17 85 19 61 80 64

LCS 65 75 69 81 81 81 86 83 62 80 77

2-Grams 76 80 78 86 86 86 87 83 64 78 79

3-Grams 77 82 83 87 87 87 87 84 65 78 80

Word2Vec 3 74 69 81 81 81 77 64 86 84 74
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c  
nd recall as: 

precision = 

c ( i ) 

i 
(6) 

ecall = 

c ( i ) 

m 

(7) 

Where c ( i ) is the number of correct matching pairs ranked be-

ore position i , and m is total number of correct matches. We, then

omputed the F-score of the ranking as: 

 − score = 

2 × precision × recall 

precision + recall 
(8) 

The results are summarized in Table 14 as averages of all do-

ains. As can be observed, Smith–Waterman (73%) and SWG (74%)

erformed better than any other character-level measure. Q-grams

erformed slightly better (76% and 77%) than character-level candi-

ates. Token-level measures performed better than character-level

nd q-gram measures by often providing 80% in the F-score. 

The soft variants were less effective in this experiment. The ma-

ority of combinations led to either no improvement or even worse

esults; only Monge–Elkan benefitted from almost all soft versions

10 out of 11 variants). While the best result (87%) was obtained by

ombining 3-grams with the set-matching methods Jaccard, Dice,

nd Rouge and with Monge–Elkan, it seems that the soft version of

he measures is generally not useful for this type of data set. This

s because the data is well maintained, having no typing errors.
herefore, two entries with slightly different words such as Silicon

alley Group, Inc and Silicon Valley Research Inc are really different

ompanies, but the soft variants would wrongly consider them as

imilar. 

Some combinations with Word2Vec perform reasonably well,

amely the Euclidean and Manhattan token level measures. How-

ver, the results are still worse than that of the q-grams. 

In general, 3-grams were the most useful soft variant for this

ata as they benefitted 8 out of 10 token-level measures. The

est results were achieved when 3-grams were combined with the

et-matching methods Jaccard, Dice, and Rouge and with Monge–

lkan. This indicates that q-grams is a proper choice as a character-

evel measure regardless of the text type. 

. Conclusions 

We have introduced a novel framework for a generic similar-

ty measure. The framework has extensively tested and applied in

our different applications. We also have reviewed and performed a

ystematic comparison of 143 similarity measures for various text

ypes. We provide an open-source Java toolkit using unique adapt-

ble components. It supports both the crisp and soft variants of all

tudied measures. The toolkit is easily available for researchers to

erify the results and extend to other application. From the exper-

ments, we learned several lessons as summarized below. 

First, the crisp token-level measures perform better than the

haracter-level measures when the order of the words varies. For
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Table 15 

Summary of the results in respect to the applications considered. 

Char level Both combined Token level Word2Vec 

Text manipulation: 

Most methods ( + ) 

LCS oversensitive ( −) 

Q-grams oversensitive ( −) 

Most methods ( + ) Oversensitive ( −) 

Oversensitive ( −) 

Human intuition: 

Most methods ( + ) 

Q-grams ( + ) 

Smith–Waterman/Gotoh ( −) 

Most token level + Q-grams ( + ) 

Edit distance + Any char level ( + ) 

Simpson + Any char level ( −) 

Edit distance ( + ) 

Simpson ( −) 

Correlation to distance: 

Most methods ( + / −) 

Damerau/Levenshtein ( + ) 

2-grams ( + ) 

Most token level + Q-grams ( + ) 

Euclidean/ Manhattan/Edit ( + / −) 

Most methods ( + / −) 

Mostly best ( + ) 

Clustering: 

Smith–Waterman/Gotoh ( + ) 

Q-grams ( + ) 

Hamming ( −) 

Most token level + Q-grams ( + ) 

Bran-Ban worse ( −) 

Simpson ( + ) 

Names matching: 

Hamming ( −) Most token level + Q-grams ( + ) 

Monge–Elkan + Most char level ( + ) 

Most token level + Jaro /Winkler ( −) 
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example, Café Manta and Manta Café would not be matched by

character-level measures. However, the crisp variants start to per-

form poorly when even a single character is changed. Humans pay

less attention to this kind of typographic errors. This is the main

reason why the soft token-level measures performed better than

their crisp variants. For example, the strings gray color and colour

grey should be considered similar not only based on their semantic

meaning but also syntactically. The crisp versions however, fail to

recognize their similarity. 

Thus, the main lesson is that the performance of all token-level

measures was significantly improved by their soft variants. Overall,

humans perfectly recognized the text with up to 20% of character

changes, depending on the text. 

The semantic measure Word2Vec, behaves poorly in most

cases because even a single character change leads to the out-of-

vocabulary situation. Further, words that were not included in the

training material also lead to a failure. The correlation between

the location and the photos descriptions is a positive exception be-

cause of the frequent use of synonyms by people when annotating

photos describing the same location. 

It is arguable that Word2Vec could produce better results if it

was trained using a similar dataset as in the experiments. For ex-

ample, the clustering dataset consists of mixed words of Finnish

and English, which should be good for Word2Vec if trained accord-

ingly. This also reveals the main deficiency of machine learning ap-

proaches: the need for application specific training data. 

The performance of all measures also varies depending on the

datasets. In case of well-maintained databases, the soft variants of

the token-level measures do not provide additional benefits be-

cause the data having no typing errors. On the contrary, they can

even slightly weaken the performance. For casual text containing

errors, the soft variants are needed. Q-gram provides a good com-

promise, as they are also independent on the order of the words.

In our experiments, they always performed close to the best token-

level measures. 

Based on the experiments, none of the measures can be clas-

sified as universal, i.e. working perfectly for all applications (see

Table 15 ). However, among all tested combinations, the soft token-

level measures based on set-matching methods and using q-grams

at character-level provided good results in all experiments. These

combinations are all novel: 

• Dice (token-level) with 2-grams or 3-grams (character level) 
• Rouge (token-level) with 2-grams or 3-grams (character level) 
• Monge-Elkan (token-level) with LCS (character level) 

There still remains a gap between the syntactic measures and

uman judgments caused by the lack of semantic analysis. In sev-

ral cases, humans focus on the meaning of the words and they

an conclude that the word Ventuno is more important than the

ord Pizzeria in the string Ventuno Pizzeria . If one of these two

ords were missing, humans give more weight on Ventuno because

t identifies the service. 

One limitation of the proposed framework is that it is designed

ainly for text string consisting of natural language. It can be ap-

lied, into a certain extent, also to applications like bioinformatics.

owever, we have excluded measures utilizing application-specific

eatures like reverse distance ( Bulteau, Fertin, & Komusiewicz, 2014 )

nd string kernels ( Leslie, Eskin, & Noble, 2002 ) used in machine

earning applications. Nevertheless, the results can still be highly

elevant in bioinformatics. In fact, it would be an interesting re-

earch problem to see whether it would create a new state-of-the-

rt in that application area as well, possibly combining with the

tring reversing idea. 

Another limitation is that, although the framework is general, it

s an open question to what extent the results generalize to longer

ext like patent documents and to other applications. The DNA se-

uences would be worth to consider in the future. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.eswa.2019.03.048 . 
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