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Direct Optimization of the Detection Cost for
I-vector based Spoken Language Recognition

Aleksandr Sizov, Kong Aik Lee, Senior Member, IEEE, and Tomi Kinnunen, Member, IEEE

Abstract—We explore a method to boost discriminative ca-
pabilities of Probabilistic Linear Discriminant Analysis (PLDA)
model without losing its generative advantages. We show a
sequential projection and training steps leading to a classifier
that operates in the original i-vector space but is discriminatively
trained in a low-dimensional PLDA latent subspace. We use
extended Baum-Welch technique to optimize the model with
respect to two objective functions for discriminative training.
One of them is the well-known Maximum Mutual Information
(MMI) objective, while the other one is a new objective that we
propose to approximate the language detection cost. We evaluate
the performance on NIST Language Recognition Evaluation
(LRE) 2015 and our development dataset comprised of the
utterances from previous LREs. We improve the detection cost
by 10% and 6% relative compared to our fine-tuned generative
and discriminative baselines, and by 10% over the best of our
previously reported results. The proposed approximation method
of the cost function and PLDA subspace training are applicable
for a broad range of tasks.

Index Terms—discriminative training, language detection, fac-
tor analysis, language identification, PLDA

I. INTRODUCTION

SPOKEN language recognition is a task to determine the
language spoken in a given speech utterance [1]. From

here on we will omit the term “spoken” and refer to it as just
language recognition. It is important to distinguish two related
subtasks, language detection and language identification. The
former is the task to verify whether a given speech utterance
contains the hypothesized language, while language identifi-
cation aims at recognizing a language from a predefined set.
If there is a possibility to encounter an unknown language, it
is called an open-set task, otherwise it is a closed-set task.

Language recognition relies on extraction and modeling of
language cues [1]. The cues can be subdivided into high-level
phonotactic and low-level acoustic-phonetic (spectral) ones. In
the phonotactic approach, a phone recognizer transcribes input
utterances to phone sequences. This is typically followed by
an n-gram model [2], where the frequency and order of phones
specific to each language are modeled. Over the recent years,
spectral features have been established as a basis for state-of-
the-art language recognition. Their modeling framework has
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also evolved considerably: from GMM-UBM systems [3] to
GMM-SVM [4] and GMM-MMI [5], followed by state-of-the-
art total variability (TV) approach [6].

The TV approach has stimulated the development of a series
of a back-end classifiers that use low-dimensional i-vectors [6]
as an input. The i-vector is a fixed-length representation of
a speech utterance of arbitrary duration. Because it contains
both speaker, language and channel information, it requires
an appropriate classifier to extract and emphasize the relevant
factors, while suppressing the irrelevant ones. One of the most
useful classifiers for such purpose is probabilistic linear dis-
criminant analysis (PLDA) classifier [7], [8]. PLDA combines
an intuitive formulation with an efficient learning algorithm
and shows state-of-the-art results for speaker recognition. Of
course, the choice of i-vector back-ends for language recog-
nition is not limited to PLDA. Simple Gaussian classifier [9],
[10], logistic regression [11], cosine scoring [12] and support
vector machines [13] have all been successfully applied during
recent language recognition evaluations (LRE) [14], [15],
especially for LRE’11 [14].

A lot of the i-vector based methods were initially devel-
oped for speaker recognition and then adopted for language
recognition. The key difference between these two is that
speaker recognition, used mainly in security, surveillance,
and forensics, is almost always an open-set task with a
dynamically changing user base. Language recognition tasks,
in contrast, involve usually a small number of languages that
are known in advance. An example would be telephone-based
call service agents to improve customer service. Such closed-
set constraint enables language recognition applications to
benefit from discriminative methods [1], [16], as they optimize
the model parameters using the data from both target and
competing classes [17]. Motivated by its success in speech
recognition [18], it was first shown in [5] that a Gaussian
mixture model trained with maximum likelihood criterion
could be refined using MMI discriminative criterion. And more
recently, in [10] MMI training was shown to be effective for
modeling i-vectors.

In this study, we formulate PLDA scoring as a language
prior estimation problem and unify conventional by-the-book
solution [7], i-vector averaging [19] and minimum-divergence
estimation [20] under a common framework. Our initial exper-
iments indicated that direct discriminative optimization in the
original i-vector space results in both severe over-fitting and
slow optimization. Motivated to tackle this problem, in this
study we show that the over-fitting problem can be addressed
by performing MMI training on the language priors in the low-
dimensional latent subspace of the PLDA, and subsequently
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“lifting” the parameters back to the original i-vector space.
Further, as an alternative to the MMI cost, we propose a new
objective function that directly minimizes an approximated
version of the primary language detection cost. Like the MMI
objective function, it uses similar optimization approach, based
on extended Baum-Welch equations [17], [21]. Unlike the MMI
objective function, however, it takes into account only the
misclassified samples and confusable samples close to the
decision boundary. To validate our theoretical contribution, we
carry out experiments on the latest NIST LRE’15 dataset.

We are aware of an earlier attempt to discriminatively
optimize detection cost function for language recognition [22].
That method is based on phonotactic parallel phoneme recog-
nizer vector space modeling (PPR-VSM) paradigm [16] and
operates in pair-wise SVM score space. The most important
difference is that the method in [22] forms detection log-
likelihood ratios (LLR) by pair-wise GMMs explicitly mod-
eling the target and non-target hypotheses for each language.
We do not need the latter models because after our classifiers
provide a likelihood for each test sample and each language,
LLR is computed in a straightforward and mathematically
strict manner (2).

A preliminary report of our study appears in [8]. The
present article presents a more unified and self-contained
formulation of a discriminative cost optimization and two
different approaches using i-vector duration information in the
system. Furthermore, we consider different adaptation scopes
and covariance matrix tying scopes for all classifiers and
extend experiments to an additional dataset.

II. LANGUAGE DETECTION

We first give a brief introduction to i-vector focusing on
its use for language detection task. We then introduce a
general formulation of language detection cost function as
the performance metric suitable for multi-cluster and open-set
language detection task.

A. Language detection in i-vector space

I-vector is a way to represent a speech utterance, regardless
of its duration, as a single, fixed-dimensional vector [6].
Specifically, it is a Maximum a Posteriori (MAP) estimate
of a latent variable in a multi-Gaussian factor analysis model
based on a special Gaussian mixture model (GMM), known as
the universal background model (UBM). Formally, an i-vector
ϕ is inferred as follows:

ϕ = arg max
x

 J∏
j=1

Hj∏
h=1

N
(
oh

∣∣µj + Tjx,Σj

)N (x|0, I) ,

(1)
where {oh}

Hj

h=1 is a set of acoustic feature vectors for a given
utterance aligned to the j-th mixture component, {µj ,Σj}Jj=1

are the mean vectors and covariance matrices of the UBM with
J components, and {Tj}Jj=1 are blocks of the total variability
matrix T. Different from speaker recognition, it is important
to use speech utterances from multiple languages to train both
the UBM and the total variability matrix.

I-vector can be viewed as a compressed representation of the
GMM mean supervector. The low dimensionality of i-vectors
allows simple and effective models to be used. Indeed, it was
found in [9] that each language could simply be modeled as
a Gaussian in the i-vector space. For language detection, we
evaluate the log-likelihood ratio score of language Li (i ∈ C)
for a given test i-vector ϕn:

llr(Li|ϕn) = log
p(ϕn|Li)

1
|C|−1

∑
j∈C
j 6=i

p(ϕn|Lj)
. (2)

Here, C consists of all languages considered in the detec-
tion task. In a closed-set scenario, C = {L1,L2, . . . ,LM}
represents M explicitly specified languages. In an open-set
scenario, out-of-set languages are treated as one “none-of-the-
above” language in the cluster C.

B. Language detection cost

Let M be the number of languages and let Φi = {ϕn}
Ni

n=1

denote the collection of the training i-vectors of language
Li, and N =

∑M
i=1Ni be the total number of i-vectors.

Considering a general case, where closely related languages
are grouped into clusters (e.g., different dialects of Arabic),
we introduce the notation Ck to indicate the k-th language
cluster and {Ck}Kk=1 as a collection of language clusters. In
particular, the set Ck contains the indices of languages that
belong to the k-th cluster. For K = 1, the formulation reduces
to the ordinary language detection task.

The primary objective of language detection [1], as defined
by NIST [15], is to minimize the average detection cost func-
tion, DCFavg, which has the following form for each cluster
Ck:

DCFavg
k =

1

2|Ck|

∑
i∈Ck

FRR(Li) +
1

|Ck| − 1

∑
(i,j)∈Ck×Ck
i 6=j

FAR(Li,Lj)

 .

(3)
Here, FRR(·) and FAR(·) are the false rejection and false
acceptance rates, respectively. To compute them, we compare
the language detection scores against a threshold θ and apply
an indicator function I(·), as follows:

FRR(Li) =
1

Ni

∑
ϕn∈Φi

I{llr(Li|ϕn) < θ}, (4)

FAR(Li,Lj) =
1

Ni

∑
ϕn∈Φi

I{llr(Lj |ϕn) > θ}. (5)

Note that in (3), the costs for making both types of errors
are assumed equal. We also assume that a target class has
an equal probability with a non-target class. With this, the
detection threshold θ can be set to 0 in (4) and (5).

III. USING PLDA FOR LANGUAGE DETECTION

In this section, we provide details for PLDA model [7] and
present a unified approach to three different scoring methods,
that we will later use in Section IV for discriminative training.
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A. Probabilistic LDA

Probabilistic LDA [7] is a Gaussian model with a structured
covariance to split apart channel and language variability. In
this study, we advocate using simplified PLDA [23]. The
reader may refer to [24] for further discussion of other variants
of PLDA. The simplified PLDA, takes the following form:

ϕn = µ+ Vyi + εn , (6)

where ϕn is an i-vector from language Li, µ is the global
mean vector, V is the factor loading matrix, yi is the language-
dependent latent variable, and εn ∼ N

(
εn
∣∣0,Λ−1

)
models

the residual.
The prior imposed on the latent variable yi determines the

resulting PLDA distribution. In this paper, we constrain it to
be a Gaussian:

yi ∼ N (yi|mi,Gi) . (7)

Using (7) in (6) and integrating out the latent variable yi, we
arrive at

p(ϕn|Li) =

∫
N
(
ϕn

∣∣µ+ Vyi,Λ
−1
)
N (yi|mi,Gi) dyi

= N
(
ϕn

∣∣µ+ Vmi,VG−1
i V> + Λ−1

)
, (8)

which is a Gaussian distribution with mean µ + Vmi and
covariance VG−1

i V> + Λ−1, where mi and Gi depend on
the language Li, while the parameters {µ,V,Λ} are shared
across the languages. Assuming a standard Gaussian prior on
yi, where mi = 0 and Gi = I, (7) reduces to the standard
PLDA

p(ϕn) = N
(
ϕn

∣∣µ,VV> + Λ−1
)
. (9)

It is computationally more efficient [25], [20] to evaluate
the likelihood ratio

l(ϕn|Li) =
p(ϕn|Li)

p(ϕn)
(10)

between language-specific and default PLDA whereby com-
mon terms will be canceled out. Notice that using either (8)
or (10) for p(ϕn|Li) in (2) results in the same detection score.

B. Estimating language-specific prior

Equation (8) involves two language-specific terms, mi and
G−1

i , introduced through the prior imposed on yi. We consider
three different approaches to estimating them from a given set
Φi = {ϕn}

Ni
n=1 of training i-vectors for each language. For

the sake of notational simplicity, we use the same notations
{mi,G

−1
i } for all three approaches.

(i) By-the-book scoring: We treat all i-vectors in Φi as
independent sessions. The parameters mi and G−1

i are taken
as the posterior mean and covariance of the latent variable
yi given Φi. This leads to the following mean vector and
covariance estimates:

mi = G−1
i V>Λ

∑
ϕn∈Φi

(ϕn − µ) , (11)

G−1
i = (I +NiV

>ΛV)−1 . (12)

Although this approach gives us a proper posterior estimate,
it generally results in highly peaked distribution for large Ni

in (12) and therefore an overconfident prediction. Using (11)
and (12) in (10), we obtain the so-called by-the-book PLDA
scoring [7].

(ii) I-vector averaging: We first take the average of all i-
vectors in Φi. The parameters mi and G−1

i are then estimated
from the posterior distribution of the latent variable yi given
the average i-vector, as follows:

mi = G−1
i V>Λ

 1

Ni

∑
ϕn∈Φi

ϕn − µ

 , (13)

G−1
i = (I + V>ΛV)−1 . (14)

Due to its simplicity, this approach has been the most widely
used one. Another reason for its success is that the posterior
covariance G−1

i is independent of Ni, thus avoiding the
covariance shrinking issue of the first approach.

(iii) Minimum divergence estimation: Different from that
in (ii), we first infer the posterior distribution p(yij |ϕn) for
each i-vector in Φi. The parameters mi and G−1

i are ob-
tained as the mean vector and covariance matrix of a Gaussian
distribution that gives the minimum sum of KL divergence
from all p(yij |ϕn). As shown in [20], this is given by

mi = (I + V>ΛV)−1V>Λ

 1

Ni

∑
ϕn∈Φi

ϕn − µ

 , (15)

G−1
i = (I + V>ΛV)−1 +

1

Ni

∑
ϕn∈Φi

(φn −mi)(φn −mi)
> ,

(16)

where
φn = (I + V>ΛV)−1V>Λ(ϕn − µ) (17)

is the projection of an i-vector ϕn to the latent space.
Compared to that in (ii), the covariance estimate G−1

i in (16)
has an additional empirical covariance estimate in the latent
subspace.

IV. DISCRIMINATIVE TRAINING FOR PLDA
In this section, we show that a generatively estimated PLDA

model, as presented in Section III, can be re-estimated with
discriminative training. In particular, we advocate the use of
the conventional MMI criterion but also propose to directly
minimize the detection cost in (3). We further show how this
is accomplished in the i-vector space or the latent subspace.

A. Discriminative training of generative model

Central to discriminative training is a cost function that
takes into account a functional dependence between the input
features and the output labels without explicitly modeling
input data [26]. In our case, the elementary building block
of the cost function is the log-posterior class probability:

log p(Li|ϕn) = log
p(ϕn|Li)∑

j∈C
p(ϕn|Lj)

, (18)

where C is a set of language (or class) indices. We follow the
general methodology from [21] that relies on so-called weak-
sense auxiliary functions for optimization. It is easy to show
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that the following function is a weak-sense auxiliary function
for (18):

log p(ϕn|Li)−
∑
j∈C

q(ϕn|Lj)∑
h∈C

q(ϕn|Lh)
log p(ϕn|Lj) , (19)

where {q(ϕn|L·)} is set of Gaussian distributions with pa-
rameters from the previous iteration of the training algorithm.

For the case of maximum mutual information (MMI) train-
ing [21], we aim at maximizing the posterior probability of
the correct class given the training data across all classes, as
follows:

QMMI =
∑
i∈C

∑
ϕn∈Φi

log p(Li|ϕn) =
∑
i∈C

∑
ϕn∈Φi

log
p(ϕn|Li)∑

j∈C
p(ϕn|Lj)

.

(20)
The default MMI objective (20) assumes that all the languages
have an equal prior probability. In our implementation, as
detailed below, we found that balancing the classes by the
amount of their training data points is beneficial.

We maximize the balanced version of (20) via the Extended
Baum-Welch equations [21] which amounts to the iterative
computation of the following normalized zero-, first-, and
second-order sufficient statistics per language, followed by
Gaussian parameter updates:

s0
i =

1

Ni

∑
ϕn∈Φi

1−
∑
j∈C

1

Nj

∑
ϕn∈Φj

p(Li|ϕn) , (21)

s1
i =

1

Ni

∑
ϕn∈Φi

ϕn −
∑
j∈C

1

Nj

∑
ϕn∈Φj

p(Li|ϕn)ϕn ,

S2
i =

1

Ni

∑
ϕn∈Φi

ϕnϕ
>
n −

∑
j∈C

1

Nj

∑
ϕn∈Φj

p(Li|ϕn)ϕnϕ
>
n .

To ensure that the covariance matrices are positive definite,
we smooth the sufficient statistics with a positive coefficient
λ. Its value also affects the convergence speed of the algo-
rithm. In our experiments, we linearly increase λ after each
iteration [21]. Further, to prevent over-fitting, we regularize
our equations with τ data points that have zero mean and unit
covariance. Notice that in the balanced MMI version — where
the weight of each class is 1— coefficient τ corresponds to
percentage rather than raw counts.

s0
i ← s0

i + λ+ τ , (22)

s1
i ← s1

i + λµi , (23)

S2
i ← S2

i + λ(µiµ
>
i + Σi) + τI . (24)

Afterwards, the parameter updates are as follows

µi =
s1
i

s0
i

, (25)

Σi =
S2
i − µis

1>

i − s1
iµ
>
i + s0

iµiµ
>
i

s0
i

. (26)

B. Direct optimization of detection cost

We notice that the posterior probabilities used in MMI
objective function (20) have essentially the same structure as
the log-likelihood ratios (2) used in cluster cost function. This
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Fig. 1. Hinge loss approximation for a) false rejection and b) false acceptance
errors as defined in (4) and (5) respectively.

makes it possible to apply MMI-like optimization to directly
maximize the primary cost function (3). The main difficulty
in doing so is that (3) relies on 0-1 classification loss that
is discrete and non-differentiable. To address this issue, we
approximate the 0-1 loss in (4)–(5) with its continuous convex
upper-bound in a form of a hinge function [27] (see Fig. 1),
as follows:

I(x < 0) ≈ ξ(−x), (27)
I(x > 0) ≈ ξ(x) , (28)

where ξ(x) = max(x+ 1, 0) . Initially, we considered a more
general case of ξ(x) = max(αx+ 1, 0) but it had a minimal
influence on the performance, so we present a simpler model
here.

Thus, the approximated cost function for cluster Ck takes
the form

Qavg
k =

1

2|Ck|
∑
i∈Ck

1

Ni

∑
ϕn∈Φi

{ξ(−llr(Li|ϕn))

+
1

|Ck| − 1

∑
j∈Ck
j 6=i

ξ(llr(Lj |ϕn))}, (29)

where llr(·) comes from (2). Let us agglomerate all i-vectors
that result in a non-zero ξ(·) values into sets Ψij :

Ψij =

{
ϕn ∈ Φi :

{
llr(Lj |ϕn) < 1, i = j

llr(Lj |ϕn) > −1, i 6= j

}
. (30)

Because we aim at minimizing the detecion cost but maximiz-
ing the objective function, we reverse the signs in (29). We
then substitute x+1 instead of ξ(x) for all non-zero values and
remove all the constant terms. The revised objective function
is as follows:

Q̂avg
k =

∑
i∈C

1

Ni

 ∑
ϕn∈Ψii

llr(Li|ϕn)

− 1

|C| − 1

∑
j∈C
j 6=i

∑
ϕn∈Ψij

llr(Lj |ϕn)

 . (31)
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Fig. 2. a) A schematic illustration of a discriminative training in a Probabilistic LDA latent subspace. Each point corresponds to an i-vector and each color to
a language. b) Two-dimensional projection of Chinese language cluster training set. Each point corresponds to an i-vector in a 20-dimensional Probabilistic
LDA latent subspace. We used an accelerated version of t-SNE algorithm [28] to produce the picture. Both pictures are best viewed in color.

As in the case of MMI, we first compute a weak-sense
auxiliary function (19) for each llr(L·|ϕn) defined in (2), as
follows:

log p(ϕn|Li)−
∑
j∈C
j 6=i

q(ϕn|Lj)∑
h∈C
h6=i

q(ϕn|Lh)
log p(ϕn|Lj) . (32)

Here, {q(ϕn|L·)} is a set of Gaussian distributions with
fixed parameters that, typically, correspond to the parameters
from the previous iteration of the training algorithm. After
that, we replace all llr(L·|ϕn) terms in (31) with the weak-
sense auxiliary functions from (32) and iteratively maximize
the resultant sum with the help of Extended Baum-Welch
equations [21]. The sufficient statistics of each language are
computed as follows:

s0
i =
|C| − 1

Ni

∑
ϕn∈Ψii

1 +
∑
j∈C

1

Nj

∑
h∈C
h6=j
h 6=i

∑
ϕn∈Ψjh

γ−hni

−
∑
j∈C
j 6=i

1

Nj

(|C| − 1)
∑

ϕn∈Ψjj

γ−jni +
∑

ϕn∈Ψji

1

 , (33)

s1
i =
|C| − 1

Ni

∑
ϕn∈Ψii

ϕn +
∑
j∈C

1

Nj

∑
h∈C
h6=j
h6=i

∑
ϕn∈Ψjh

γ−hni ϕn

−
∑
j∈C
j 6=i

1

Nj

(|C| − 1)
∑

ϕn∈Ψjj

γ−jni ϕn +
∑

ϕn∈Ψji

ϕn

 , (34)

S2
i =
|C| − 1

Ni

∑
ϕn∈Ψii

ϕnϕ
>
n +

∑
j∈C

1

Nj

∑
h∈C
h 6=j
h6=i

∑
ϕn∈Ψjh

γ−hni ϕnϕ
>
n

−
∑
j∈C
j 6=i

1

Nj

(|C| − 1)
∑

ϕn∈Ψjj

γ−jni ϕnϕ
>
n +

∑
ϕn∈Ψji

ϕnϕ
>
n

 ,
(35)

where
γ−jni =

q(ϕn|Lj)∑
h∈C
h6=i

q(ϕn|Lh)
. (36)

Afterwards, we smooth and regularize the sufficient statis-
tics (22)–(24) and update the parameters (25)–(26) the same
way as in MMI training. Computation of sufficient statistics
and parameter updates are applied iteratively until either a
convergence or a predefined number of iterations is reached.

C. Discriminative training in PLDA latent space

In the above, we apply discriminative training by taking the
already trained language-specific distribution p(ϕn|Li). For
the case of PLDA, if we optimize class mean vectors and class
covariance matrices in the original i-vector space, this would
result in implicit changes for the PLDA parameters for each
language which is undesirable. Thus, we propose to perform
MMI training in the latent subspace consisting of the following
steps:

1) Probabilistic projection to the latent space: project an
i-vector onto the low-dimensional language subspace by
inference of the posterior mean of the latent variable yi.
This projection is given by (17).

2) Minimum divergence estimation: estimate the mean
vector mi and covariance matrix G−1

i using (15)–(16).
3) Discriminative training: retrain the mean vectors and

covariance matrices to optimize for better separation
between classes using either the MMI or the detection
cost.
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Fig. 3. Block diagram of our language detection system. We use bottleneck features for LRE’15 and shifted delta cepstra features for I2R Dev, while all
back-end preprocessing and classifiers for i-vectors are the same.

4) Parameter lifting: Lift the mean vectors and covariance
matrices from the latent space back to the i-vector space.
This is given by (8).

The advantage of performing discriminative training in the
latent subspace is that the PLDA structure, as in (6), is
preserved. In particular, the global mean µ, factor loading
matrix V and residual covariance Λ−1 are preserved while
the language-specific priors are retrained. Fig. 2 illustrates the
4 steps as described above taking a simplified example in a
2-dimensional vector space. Notice also the projection and
lifting procedures are based on the posterior inference and
marginalization defined for factor analysis model.

V. EXPERIMENTAL SETTINGS

A. Corpora

We conducted experiments on the recent LRE’15 and
I2R Dev corpora. The latter was constructed by us in prepa-
ration towards LRE’15 submission. LRE’15 focuses on multi-
cluster closed-set identification task. We constructed I2R Dev
set in a similar manner by reusing samples from previous
LREs, including 96, 03, 05, 07, 09 and 11. A summary of
both datasets is presented in Table I. Note, that for the reasons
explained in Subsection VI-B, the training sets that we present
in this table contain only utterances longer than 15 seconds
for LRE’15 and longer that 3 seconds for I2R Dev. LRE’15
comprises M = 20 target languages partitioned into K = 6
clusters. The official results of NIST LRE’15 revealed that
development and evaluation datasets have a severe mismatch
for all language clusters, especially for French — the majority
of participants obtained Equal Error Rates close to 50%
on this cluster. Therefore, we decided to, firstly, carefully
split (without speaker overlap) the evaluation set into two
disjoint parts: 1/3 for tuning and 2/3 for the final testing.
Secondly, we exclude French cluster from scoring. Since some
of the LRE’15 languages were absent in previous evaluations,
I2R Dev set has a reduced number of languages and clusters
as shown in the table.

B. I-vector extraction and preprocessing

Our main set of i-vectors was prepared by “Fantastic 4”
team [29], [30] during NIST LRE’15. They are based on 40-
dimensional normalized filter bank features with the first and
second order derivatives, followed by a Deep Neural Network
(DNN) with a bottleneck layer [31], [32]. The DNN was
trained on the Switchboard land-line data. It takes 21 stacked
frames as an input (2520 units) and has 6 consecutive hidden
layers with 1024 units and a prefinal bottleneck layer with

TABLE I
SUMMARY OF LRE’15 AND I2R DEV DATASETS.

C
lu

st
er Number of i-vectors

Languages LRE’15 I2R Dev
Train Test Train Test

A
ra

bi
c

Egyptian 13962 5355 237 240
Iraqi 5661 5987 100 1224
Levantine 6599 4516 100 1224
Maghrebi 5568 5504 100 1215
Modern Standard 400 1630 100 1281

C
hi

ne
se

Cantonese 330 14984 730 240
Mandarin 11446 4013 4345 1536
Min 646 5683 93 240
Wu 653 4982 131 240

E
ng

lis
h British 47 5319 — —

General American 14467 4646 4572 1596
Indian 862 4631 1463 1728

Sl
av

. Russain 2175 2039 1080 1803
Polish 4324 3205 100 1443

Fr
en

. West African 315 4605 — —
Haitian Creole 319 19195 — —

Ib
er

ia
n Caribbean Spanish 4310 1541 — —

European Spanish 566 3854 — —
Latin Amer. Spanish 656 4656 — —
Brazilian Portuguese 92 3089 — —

Duration (sec): µ± σ 22± 7 9± 7 20± 10 14± 11

64 units. The output layer has 6111 units corresponding to
6111 senones. The i-vector dimensionality is set to 600. Refer
to [29] for more details (this set of i-vectors was abbreviated
as BNF2 in that paper). To increase i-vector diversity, we
used a simple data augmentation technique for LRE’15, where
long original utterances were processed as a single i-vector
and also cut into several utterances with smaller durations.
For I2R Dev, we used a front-end that represents state-of-the-
art for LRE’11. Namely, the i-vectors were extracted using a
UBM with 512 mixtures trained on shifted delta cepstra (SDC)
features and the T matrix has a rank of 400. All the above
parameter settings were based on empirical observations on
development sets which provided a reasonable compromise
between computational complexity and the amount of training
data.

Fig. 3 presents the pipeline of our language detection
system. To make i-vectors more suitable for Gaussian-based
models [33], we whitened them (using whitening matrix
computed from the training data) and then projected to the unit
sphere. Within class covariance normalization [34] (WCCN)
was not found helpful. Linear discriminant analysis (LDA)
transformation on the raw i-vectors was of some help and
we evaluate its impact in the experiments. We follow the
observation in our previous study [8] that LDA projection
prior to modeling stage is beneficial for Gaussian classifier



7

but detrimental for the PLDA classifier. For each corpus, we
set the LDA subspace to the number of languages a corpus
has to make it comparable with the PLDA latent language
subspace model. Results for a tuning set are presented with
10-fold cross-validation on the training set.

VI. EXPERIMENTS

Unlike the results in our preliminary study [8], where we
excluded the utterances with speech duration of less than one
second from both training and tuning sets, we conduct a more
detailed investigation of this issue in Subsection VI-B. For this
reason, the results of our baseline systems slightly differ from
those reported in the paper.

A. Baseline generative models

Table II compares different scoring approaches for the
simplified PLDA classifier, described in Subsection III-A. It
was trained on all the languages at once (20 for LRE’15 and
13 for I2R Dev). The results for both datasets present a con-
sistent ordering for PLDA scoring methods, with minimum-
divergence scoring to be the best one. Its comparison with
the averaged i-vector scoring tells us that the additional
uncertainty term in the covariance matrix (16) is beneficial
for language identification.

TABLE II
EVALUATION OF THE COST PERFORMANCE (%) FOR SIMPLIFIED PLDA
CLASSIFIER ON THE TUNE SET. THE RESULTS COMPRISE BY-THE-BOOK

(BOOK) (11) – (12), AVERAGED (AVG) I-VECTOR (13) – (14), AND
MINIMUM-DIVERGENCE (MIN-DIV) SCORING (15) – (16).

LRE’15 I2R Dev
book avg min-div book avg min-div

Arabic 23.15 23.81 23.53 7.77 7.45 7.33
Chinese 15.66 17.43 16.59 9.03 8.25 8.29
English 15.21 13.49 13.06 11.25 12.84 12.31
Slavic 6.41 6.63 6.64 3.36 3.71 2.96
Iberian 24.20 24.25 23.67 — — —
Average 16.93 17.12 16.70 7.85 8.06 7.72

B. Use of duration information and calibration of the scores

Duration of a speech utterance is an important character-
istic that directly affects the degree of uncertainty of the i-
vectors [35]. We address this issue in two ways. Firstly, we
study the removal of all training utterances shorter than a
certain duration. This allows us to concentrate only on i-
vectors deemed more reliable. Secondly, following the results
in [36], [37], presented at the post-evaluation workshop, we
apply a scaling of the log-likelihood scores as follows [38]:

log p̂(ϕn|Li) =
αtn
β + tn

log p(ϕn|Li) , (37)

where tn is the speech duration for the n-th utterance and the
parameters α > 0 and β > 0 are optimized the usual way
using logistic regression on a held-out set.

Another popular method is a discriminative calibration of
the scores [39] that also requires optimization of the parame-
ters α′ > 0, β′i via logistic regression on a held-out set:

log p̂(ϕn|Li) = α′ log p(ϕn|Li) + β′i . (38)

10% 15% 20% 25% 30% 35% 40% 45% 50%
14.0

14.5

15.0

15.5

16.0

16.5

co
st

Heldout set without scaling or calibration
Heldout set with scaling
Heldout set with calibration
No heldout set

Fig. 4. Evaluation on the LRE’15 tune set of Gaussian classifier, when the
training set is split into two, with the held-out set used for duration scaling (37)
and calibration (38).

Because a creation of the held-out set splits the training set
in two parts, this might lead to a degraded performance. Fig. 4
explores pros and cons of the held-out set, the duration scaling
and calibration. It shows that the held-out set equal to 10% of
the training set minimally affects the performance (14.71 vs
14.69) while providing sufficient amount of data to train the
duration scaling parameters. Calibration is more demanding
to the amount of training data and in our experiments has
consistently shown worse results compared to the case without
held-out set at all. We will exclude calibration from further
experiments.

Table III presents the results for both methods and their joint
effects for the best PLDA and Gaussian classifiers from the
previous subsection. Excluding the short utterances improves
the results in all cases and we will use it for our subsequent
experiments with the threshold of 15 seconds for LRE’15 and
3 seconds for I2R Dev. A similar finding was reported in [40],
where the authors show that not chunking long utterances at all
improves the performance for Gaussian classifier. Scaling of
the likelihoods works only for the Gaussian classifier and does
not benefit neither PLDA nor discriminative classifiers of the
next Section. We suspect that it is caused by the necessity of
an additional dataset, that reduces the training set. For simple
Gaussian classifier at Fig. 4 such effects are minimal, but more
advanced classifiers extract more information from the data
and, hence, are affected stronger. We will exclude this method
from further experiments.

TABLE III
EVALUATION ON THE LRE’15 / I2R DEV TUNE SETS OF THE BEST

GENERATIVE CLASSIFIERS AND THEIR CORRESPONDING VERSIONS WITH
LIKELIHOOD SCALING (SEE (37)) FOR THE CASES WHEN ONLY THE
UTTERANCES LONGER THAN t SECONDS ARE USED FOR TRAINING.

LDA-Gauss PLDA
t Non-scaled Scaled Non-scaled Scaled
0 15.98 / 7.42 15.69 / 7.67 16.70 / 7.72 16.99 / 7.74
3 15.74 / 7.44 15.25 / 7.95 16.20 / 7.42 16.28 / 7.69
10 15.00 / 8.42 14.50 / 8.60 15.11 / 7.58 15.21 / 7.62
15 14.69 / 8.42 14.19 / 8.60 14.61 / 7.58 14.58 / 7.62
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C. Discriminative models

Optimization. A number of details related to model op-
timization have to be considered, taking NIST I2R Dev
and LRE’15 specificities into account. We modify the basic
learning algorithms [21], [10] as follows:

1) To better match the primary cost function (3) — which
does not penalize for the between-cluster errors and
treats all languages within a cluster equally — we put
more emphasis on performing discriminative training
separately for each cluster and balance the optimization
function by the size of each training class. The latter
also helps to compensate for a data imbalance.

2) We consider five variants for discriminative training:
three for MMI and two for direct cost optimization.
For MMI, we have an optimization done globally (G)
with the covariance matrices shared for all languages
in a cluster (C), we abbreviate it as G/C, unique for
each language (L): (G/L) and the optimization done per
cluster with the covariance matrices unique for each
language (C/L). Since cost optimization is based on
the per cluster scope, we consider just two variants:
with the shared covariance matrices (C/C) and without
sharing (C/L). For each subsystem, the parameters of
discriminative training, namely, τ , λ and the number of
iterations, were individually optimized on the tuning set,
while the results are presented on an unseen test set.

3) We regularize the model parameters by the standard
normal distribution.

D. The role of PLDA subspace

To analyze the effects of PLDA latent subspace, we fix
the optimization algorithm to be MMI G/C (we select the
best method among MMI for consistency with our preliminary
study [8]) and compare the results with classification in LDA
space. Fig. 5 presents an extended analysis for LRE’15. We
split the evaluation data into 7 duration groups, as specified
by NIST, and add the best system of our preliminary study.
Table IV presents the corresponding results for I2R Dev.

Both visuals show that while discriminative fine-tuning in
LDA space of an already well optimized generative baseline
seldom brings noticeable improvements, the same fine-tuning
in PLDA latent subspace brings significant improvements. The
effects are more prominent for longer test utterances.

TABLE IV
COMPARISON BETWEEN CLASSIFIERS OPERATING IN LDA AND PLDA

LATENT SPACES FOR I2R DEV ON TEST DATA, GIVEN THE SAME
DISCRIMINATIVE OPTIMIZATION METHOD.

LDA-Gauss PLDA
Generative MMI Generative MMI

Arabic 26.50 25.56 25.49 25.32
Chinese 17.08 17.33 16.48 16.70
English 12.94 12.63 12.65 12.12
Slavic 18.59 19.44 21.11 19.55
Average 18.78 18.74 18.93 18.43

E. Comparison between MMI and direct cost optimization

Table V shows the performance of the best methods for both
MMI and direct cost optimization. We observe the following:
• Performance in PLDA subspace is consistently better than

in LDA subspace for all discriminative methods and all
language clusters. We observe the relative improvement
of 5% for MMI and of 9% for direct cost optimization.
While the relative improvement over the baseline in LDA
case is 3.7%, it goes up to 10.0% in PLDA case.

• Synergy of PLDA latent subspace and direct cost opti-
mization brings the best results we were able to achieve.
It outperforms both MMI optimization in PLDA subspace
(column 5) and direct cost optimization in LDA subspace
(column 3) for all language clusters except Arabic.

TABLE V
COMPARISON BETWEEN CLASSIFIERS OPERATING IN LDA AND PLDA
LATENT SPACES FOR LRE’15 ON TEST DATA, FOR THE BEST MMI AND

DIRECT COST OPTIMIZERS.

LDA-Gauss PLDA
Discriminative None MMI Cost None MMI Cost
Arabic 20.80 19.91 20.61 19.67 18.75 19.21
Chinese 15.13 15.01 14.92 15.38 13.59 13.15
English 9.80 10.20 9.89 11.70 9.37 8.84
Slavic 4.57 4.46 4.53 4.31 4.25 4.23
Iberian 21.73 19.83 21.79 21.47 20.00 19.81
Average 14.41 13.88 14.35 14.50 13.19 13.05

VII. CONCLUSION

We have proposed a chain of data transformations that aims
at training the classifiers in a discriminative low-dimensional
PLDA subspace and propagating the trained parameters back
to the original total variability space. We have experimented
with both generative and discriminative training in that sub-
space. This approach consistently outperforms training in a
standard LDA space for all language clusters. It brings 5%
relative improvement for MMI optimization and 9% for direct
cost optimization. We have also designed a new objective func-
tion, which is an approximation to the primary cost of NIST
LRE’15, and have shown how to discriminatively optimize
it. The combination of PLDA latent subspace and direct cost
optimization led to 9% relative improvement over the best
generative system and 10% relative improvement over our best
discriminative system reported earlier [8]. We extended our
previous study by integrating duration information into the
system and parameter tying within language clusters.
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