IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 6, DECEMBER 2011

1195

Adaptive Context-Tree-Based Statistical Filtering
for Raster Map Image Denoising
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Abstract—TFiltering of raster map images is chosen as a case
study of a more general class of palette-indexed images for the
denoising problem of images with a discrete number of output
colors. Statistical features of local context are analyzed to avoid
damage to pixel-level patterns, which is frequently caused by
conventional filters. We apply a universal statistical filter using
context-tree modeling via a selective context expansion cap-
turing those pixel combinations that are present in the image.
The selective context expansion makes it possible to use a much
larger spatial neighborhood, with a feasible time and memory
complexity, than fixed-size templates. We improve the existing
context-tree approaches in two aspects: Firstly, in order to cir-
cumvent the context contamination problem, a context-merging
strategy is applied where multiple similar contexts are considered
in the conditional probability estimation procedure. Secondly, we
study a specific continuous-input-finite-output problem in which
the map images are corrupted by additive Gaussian noise. Perfor-
mance comparisons with competitive filters demonstrate that the
proposed algorithm provides robust noise filtering performance
and good structure preservation in all test cases without any a
priori information on the statistical properties of the noise.

Index Terms—Context-tree modeling, raster map image, statis-
tical filtering.

I. INTRODUCTION

EOGRAPHICAL map images are classified into two for-

mats: raster and vector. Vector format is suitable for large
databases, providing excellent flexibility for display and com-
pact storage size. A raster image, on the other hand, is encoded
in a regular grid of pixel colors in which each color represents a
different class of semantic map object. It consists of pixel-level
detailed structures and sharp edges but lacks smooth color tran-
sitions that are typical for photographic images. It does not re-
quire any additional image processing and is suitable for de-
livery to multimedia applications as such.
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Raster maps are an important source of geospatial informa-
tion due to popularized geographic information systems. A large
number of topographic maps have been collected during the last
century, and they contain geographic features that can be used in
the verification of map-image-guided navigation applications.
Advances in digital information technology have brought the
conversion of these older physical documents into digitized rep-
resentations. However, the digitization of maps may incur addi-
tional noise and errors in the digital versions. Aging of paper
archived for a long period also leads to additional random color
variations. This kind of image degradation results in mismatch
and false recognition of important semantic map objects. Image
denoising is therefore needed for accurate conversion of these
older maps into raster format. This preprocess can be crucial for
the later raster map analysis step, when extracting the semantic
content (roads, contours, river) on a map [31]-[34]. Image de-
noising can also be applied as a preprocessing when converting
a raster map into a vector format.

A great variety of noise removal techniques have been
investigated for color image processing. However, most noise
removal algorithms are developed for only one type of noise
model specifically. For instance, to eliminate impulsive noise,
a number of denoising algorithms have been developed by
first identifying the potential noisy pixels in the color image
and then employing a class of vector median filters over those
detected noisy pixels. Noisy pixels can be detected either by
classifying each pixel directly in RGB color space [1] or by
setting some statistical rules in terms of the variation in the
local neighborhood [2], [3]. However, these approaches need
a training dataset or prior knowledge for constructing the
statistical rules. A multi-layer approach was recently proposed
[4] to solve the problem in the binary domain.

For additive Gaussian noise, a number of state-of-the-art de-
noising algorithms have been proposed by selecting an optimal
linear combination of a few basis elements in pixel-wise or
block-wise order. These pioneer denoising techniques include
wavelet denoising [5], non-local means [6], dictionary-based
method (K-SVD) [7], block-matching and 3-D filtering [8],
Markov random fields, and active random fields [9], [10]. How-
ever, they are limited to the case when the true signal can be
approximated by a linear combination of a few basis elements,
and therefore, they are designed for denoising continuous tone
images and do not apply well for palette-indexed images.

Raster map images contain a number of complicated spatial
structures such as one-pixel thin lines, textured areas, dashed
and dotted lines, text, and symbols. The problem of false fil-
tering exists with most filters designed for photographic im-
agery when processing these kinds of spatial structures. This is
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Fig. 1. Examples of complicated structures that are treated as noise by most
filters.

because these filters consider local intensity variation as noise
but ignore repeated patterns in the entire image. On the other
hand, high variance regions including written text, symbols, and
textured background lack uniformity but their presence is vital
for the readability of the map. Examples of such structures are
shown in Fig. 1.

A pioneer work in the art of statistical filtering is the so-called
discrete universal denoising (DUDE) [11] in design of a filter
for binary data with a known noise channel, which comprises
two steps: counting statistics for all context patterns encoun-
tered (analysis step), and denoising by utilizing the conditional
probability in a local context (denoising step). This method is
applicable in denoising of binary images if the error probability
6 can be reliably estimated. Namely, if the conditional proba-
bility of the current pixel z in its context P(I(z) |c) is lower
than 26(1 — ¢), it is considered as noise and replaced by its com-
plementary value.

This kind of context-based approach can be extended to the
denoising problem with an unknown channel using the min-max
criterion [12]. In contrast to the previous algorithms [1]-[10]
that incorporate a prior model, statistical filtering is based on
an unsupervised learning paradigm. Patterns that are frequently
presented in the image are detected and considered as impor-
tant image structures that should be preserved. On the contrary,
pixels that appear seldom in their context are treated as noise and
can be filtered out. This allows filtering with preservation of bor-
ders and regular structures regardless of their size and variance.

However, the memory allocation for learning the patterns
grows exponentially with the number of pixels within the
pattern (context), which makes it of limited use in practice.
Moreover, the conditional probability estimation becomes inac-
curate for those contexts with rare appearance, which is known
as the context dilution problem. To circumvent this problem,
context-tree modeling [13], [14], [19] has been applied by
pruning redundant nodes of the context tree. This can be done
according to different criteria, such as fixed frequency [13],
maximum likelihood [15], or the coding cost of the model [14],
[16]. Adaptive context selection has also been extended for
denoising gray-scale images [17] by using a minimum descrip-
tion length (MDL) guided criterion aimed at finding an optimal
balance between the variance and bias of the errors in fitting a
2-D piecewise autoregressive (PAR) model to input images.

In this paper, we propose a new adaptive context-tree-based
statistical filtering algorithm for raster map images. In contrast

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 6, DECEMBER 2011

to the existing context-tree-based methods, we achieve two sig-
nificant improvements described below.

Firstly, although the context-tree-based algorithms are effi-
cient for the images with a smaller number of noisy pixels, the
contexts themselves will embrace a significant number of noisy
pixels when noise level is increased in the image. Including
noisy pixels (outliers) in the surrounding contexts will make
it difficult to estimate a good conditional probability distribu-
tion for context models. We call this the context contamination
problem, when the contexts themselves contain a number of out-
liers. For those infrequently appearing contaminated contexts,
we present a context-merging strategy in order to improve con-
ditional probability estimation. In our method, multiple similar
contexts are considered jointly in the conditional probability es-
timation procedure.

Secondly, we extend the algorithm to deal with map images
with additive Gaussian noise or mixed Gaussian-impulsive
noise. The extended method iteratively conducts a fusion
procedure according to the probability distribution of pixels’
intensity in the RGB space as well as their conditional proba-
bilities of contexts.

The rest of the paper is organized as follows. The proposed
method is introduced in Section II, experimental results are
reported in Section III, and finally, conclusions are drawn
in Section IV. A preliminary version of this paper has been
presented at ICME [30].

II. PROPOSED METHOD

For concreteness, a noise-free map image can be formulated
as follows: A clean map image X has M colors (size of color
palette) such that the alphabet A = {1,2,..., M} includes all

possible index values in the image. For any pixel z € X with
index value I (), its corresponding color in RGB space is

X(x) =mMyz) = [ml(z)(r)mI(z)(g)va(m)(b)] (1)

according to the color palette CP = {m;,my,...,my,}. Im-
pulsive noise is often produced in the transmission of the clean
image signal I(z) over an M-ary Symmetric Channel with tran-
sition matrix IT:

. 1-6,
169 ={ajai -y,

where I1(4, ) denotes the probability of output index j when
the input index is 7, and § is the noise level. The performance of
denoising impulsive noise can be evaluated using the following
measures:

1) Error rate: the percentage of different pixel values between
the noise-free and filtered images.

2) False acceptance rate (FA): the percentage of noise to sur-
vive after filtering (efficiency of noise removal).

3) False rejection rate (FR): the probability of an original
(clean) image pixel being filtered (amount of corruption
imposed by the filter).

Since the clean image X is also an RGB image, the corre-

sponding noisy image Y can be produced by adding the same

i=j
i#] @
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Fig. 2. Part of the context tree (first two levels) and its context template.
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Fig. 3. Examples of context distribution: the pixels in the left and middle con-
texts are filtered using the dominant color whereas no filtering is done for the
pixel in the context on the right.

additive Gaussian noise with variance o to each color channel
independently:

Y (z) = X(z) + €, where e ~ N (0, 0°T) 3)

where Y (z) and X(x) are the RGB color vectors of pixel x.
The quality of denoising of the image with Gaussian noise can
be evaluated by:

1) PSNR: Peak signal-to-noise ratio in RGB color space.

2) SSIM: Structural similarity index [21].

A. Context-Based Statistical Filter

Suppose that the clean image X contains M colors and M
is small. A context ¢ = {x1,...,2;} can be defined as a set
of k pixels. A sample 20-pixel context template is shown in
Fig. 2(left), where the current pixel x is marked with “x”. For
simplicity, a context c of pixel x is denoted as = € c. The con-
text ¢ can be associated with a vector ne = (nc(1),...,nc(M))
called a vector of statistics for the current pixel z, where n(7)
is the count statistics of index value ¢. After the vectors of sta-
tistics have been collected for every context of the image, the
conditional probability of every pixel appearing in its context is
estimated as

ne(d)
M
Z ne(i)

For simplicity, we denote the conditional probability in the con-
text ¢ as P(I(z)|c).

Statistical filtering can be performed in a two-pass procedure,
of which the first pass is the estimation of conditional prob-
abilities (statistical context modeling) and the second pass is
the filtering of the noisy pixels. The main idea of the statis-
tical filter follows an assumption that the image signal originates
from a universal source. Hence, if the conditional probability
P(I(z)|c) in context c is less than a predefined value, the cur-
rent pixel can be treated as noise and then replaced by the most
probable color in the context. Three examples of contexts and
their corresponding statistical distributions are demonstrated in
Fig. 3. Domination of the most probable color can be observed

P(I(z)=jlzec)= 4
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in the first two examples (left and middle) but not in the last ex-
ample (right).

B. Context-Tree Modeling

In practical implementation, we optimize memory alloca-
tion using context-tree modeling. The classical context-tree
modeling technique has been widely used in the field of data
compression with a time complexity of O(kN), where N is the
length of the data sequence and k is the depth of the context
tree. The tree is built by estimating the count statistics via a
sequential traversal of the image pixel by pixel. Each node
of the context tree represents a single context by storing the
count statistics of each color appearing for the current pixel
relative to this context. Since not all possible contexts are
present in the image, memory is allocated only for the actual
pixel combinations appearing in the image. In our implemen-
tation, the spanning of the tree is terminated if the frequency
of the context on a given node becomes less than a predefined
threshold value T'. According to our experiments, there are
only 50000-100 000 contexts for a 20-pixel context template
in a 16 color map image, which is far below 162°. An example
of context-tree modeling is shown in Fig. 2, where each node
represents a single context including the count statistics of each
color for the current pixel in respect to the context. An example
of the context distribution is shown in Fig. 3.

C. Statistical Filtering by Context-Tree Modeling

Context-tree modeling has been extensively studied in the
problem of image compression [28], [29]. In image compres-
sion, all pixels must be encoded regardless of the reliability of
their contexts. Moreover, one can keep track of the compression
performance. Poor probability estimates only lead to a longer
code length and thus a large file size. Optimal pruning of a con-
text tree can be done on each node in order to achieve the highest
overall compression performance. For instance, a dynamic pro-
gramming pruning technique was proposed to improve context
selection in [14], whereas universal context modeling was em-
ployed in [18].

However, conditional probability estimation plays a crucial
role in image denoising. Wrongly estimated conditional prob-
ability can cause either a lack of detection of a noisy pixel
by the algorithm or changing of a clean pixel, causing new
noise. In contrast to image compression, several challenges exist
when applying statistical context modeling for image denoising.
Firstly, the distribution of noise is seldom known, and therefore,
it is hard to estimate in practice. Secondly, the contexts them-
selves may include a significant number of noisy pixels and lead
to a so-called context contamination problem. If the neighbor-
hood pixels were contaminated by erroneous colors, the partic-
ular context would appear infrequently in the image. This causes
an inaccurate estimation of the conditional probability distribu-
tion. Thirdly, a proper decision rule for the filtering is not trivial
to design.

For the improvement of the statistical filter, we will discuss
the following three design problems:

a) how to determine the decision rule for filtering;

b) how to calculate the conditional probability of the infre-

quent contexts;

c) how to estimate the noise level of the image.
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a) Decision Rule for Pixel Denoising: Suppose we have
a map image with impulsive noise generated by transmitting a
clean image X over an M-ary Symmetric Channel. The optimal
decision rule in DUDE [11] is essentially a MAP estimator,
which is

ax  P(I(z)|c) )]

o = are I(:r)en{ll ..... M}

where c is the context of the pixel z. In image filtering, the
current pixel  will be replaced by wug, which is the index value
of the highest probability if the decision rule in (6) is met:!

(M —1)2(1-6) _
mml(w) =20l)
(M —1) B
_ mp([(w) =ug|c) <1,

z0=1,2,...,M. (6)

b) Improve Conditional Probability Estimation by a
Context-Merging Strategy: Although DUDE follows a
so-called “asymptotic optimality” property, it requires an
infinite sequence of data source for estimating all the condi-
tional distributions of contexts, which is not realistic in practice.
In particular, when the context of the pixel is contaminated by
erroneous colors, the context can appear infrequently and its
associated conditional probability would be far from its true
distribution. In order to alleviate this problem, context-tree
modeling is used by terminating the tree spanning if the fre-
quency of the context becomes less than a given threshold
T. In Fig. 5(left), the number of noisy pixels in the context is
compared between a fixed-template context and the context-tree
modeling. No more than two noisy pixels are observed in most
contexts regardless of the noise level.

A pruning step is added to remove those contexts as in [13]
and [19] if the frequency of a context is less than a predefined
threshold T'. After pruning, the statistics of its parent node are
used for the probability estimation instead. The main challenge
for the pruning is that the tree is constructed in a fixed order, and
the noisy pixels may appear anywhere in the tree, not just in the
leaf nodes. Thus, a clean pixel may also be removed from the
context in many cases.

To this end, we will present a context-merging strategy for
those infrequent contexts that are expected to be contaminated.
For each context c, we first construct a set of sub-contexts:

S(c) = {zilz: = {c/zi}}iy (7
by removing the ¢th element from the original context c, where
i =1,...,k, and z; is the sub-context. Without loss of gener-

IThis decision rule is designed for the count statistics collected on the noisy
image. For a clean image, the decision rule is P(I(2) = @ |c) < 6/(M —
1),20 = 1,2,..., M instead.
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Fig. 4. Example of context-merging strategy. A more reliable context distribu-
tion (93, 167, 661, 13, 37) is obtained instead of the estimation (4, 30, 25, 1,
2) obtained by the pruning operation. Colors with low probability (yellow and
white) are replaced by the dominant color (brown).

ality, we sum up all the vectors of statistics of the sub-contexts
as the estimated distribution of the original context c if the fre-
quency of the context is lower than 7'. See (8) at the bottom of
the page. The idea of this context-merging strategy is that the
sub-context will appear much more frequently in the image if
the noisy pixel is removed from the context. On the contrary,
removing a clean pixel will not change the statistics much. For
example, in Fig. 4 it is difficult to conclude anything from the
original context as it is so infrequent. However, by analyzing the
statistics of the sub-contexts we can see that the black pixel is
the noisy one and should be removed. After this context-merging
operation, only noise-free sub-contexts become dominant in the
summation of all the sub-context distributions, which serves as
a good estimation of the conditional probability for the context
model.

The effect of the context-merging strategy is evaluated in
Fig. 5(middle and right) when the contexts contain different
numbers of noisy pixels. We can observe that the proposed
context-merging strategy achieves a lower error rate and false
acceptance rate compared to the previous context-pruning
method. Even after the context-merging process, some sub-con-
texts are still corrupted by one noisy pixel but they have become
frequent enough to be useful. Those contexts can be consid-
ered statistically significant for the filtering and they mostly
appear in the background region. That is why the proposed
context-merging strategy retains its efficiency even when two
noisy pixels appear in the context.

Performance comparisons are also made for three approaches
in Fig. 6(left): a fixed-template context algorithm with different
context sizes k, a context-pruning algorithm with different
thresholds 7', and a context-merging algorithm with different
thresholds 7. We can observe that a lower false acceptance
rate is achieved at the cost of an increased false rejection rate
when a greater T is used. In other words, more noisy pixels are
filtered out with a trade-off that more clean pixels are replaced
by a wrong color. Moreover, it is observed in Fig. 6(middle)

M

Px(I(z)=z|z€c) = P(I(z) = zo|x € S(c)), if Z;nc(i)<T )

P(I(x) =zo|z € c),

otherwise



CHEN et al.: ADAPTIVE CONTEXT-TREE-BASED STATISTICAL FILTERING FOR RASTER MAP IMAGE DENOISING 1199
. 20 : - -
Fixed Context, § = 0.05 Pruning, § = 0.05 60 Pruning, § = 0.05 / 03
50 Context Tree Modeling, § = 0.05 Context Merging, 3 = 0.05 Context Merging, § = 0.05
*  Fixed Context, § = 0.1 *  Pruning, § = 0.1 < 0. ® Pruning, § = 0.1 I
9 — © — Context Tree Modeling, § = 0.1 L © — Context Merging, § = 0.1 < Context Merging, § = 0.1
=~ 407 ¥ = = ' o
S N S 5 4
© / = o .
5 2 S
g 30 . . x 10 / 8 30
) \ = <
o N : g P e . -
p— »n ¢ 5 &
o 5 / (1. M v P
il . I 7 ’ - — 10 &
& s I} & V o~
0- ; - % =0 0 . : = 0 ; 1 £
0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4

Number of noise pixels in the context

Number of noise pixels in the context

Number of noise pixels in the context

Fig. 5. Comparison of the denoising performance when different numbers of noisy pixels are included in the context. The numbers of noisy pixels in the context
are compared for a fixed-template context and context-tree modeling, respectively (left). The error rate (middle) and false acceptance rate (right) are also evaluated,

respectively. Image #1-26 is used is this example with 7' = 128.
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Fig. 6. False acceptance rate (FA), false rejection rate (FR), and error rate are evaluated on different conditional probability estimation algorithms for filtering
impulsive noise. The performances are compared by selecting different thresholds 7" (left), different iterations (middle), and different noise levels (right). Image
#2-05 is used as the test image by adding 5% impulsive noise (left and middle), while 7" = 128 and k = 8 are used in the middle and on the right.

that further image degradation is not caused even after running
several iterations of the proposed statistical filtering algorithm.2
Image denoising performance is evaluated with different noise
levels in Fig. 6(right).

The computational complexity of the merging process is cal-
culated as follows: for each infrequent context, the statistical
distributions of M? (M is the size of the color palette) sim-
ilar contexts are identified by tree traversal on the constructed
context tree whereas the conditional probability estimation is
calculated by summing up all the statistical distributions of the
sub-contexts. Suppose that we have an infrequent context ¢ with
k elements; the time complexity of the tree traversal is

k

> (k=) + (i — 1)M) = O(k*M).

i=1

C))

c) Noise Level Estimation: In order to improve the fil-
tering robustness under different noise levels, an estimation of
noise level ¢ is needed. It can be estimated either in terms of the
min-max criterion [12] or by using image context metrics [22].
However, those solutions conduct the noise estimation in terms
of the filtering results for each noise level, which is computa-
tionally expensive. A more practical estimate of § in [23] is the

2The denoising result of the previous iteration is only used for context pixels.
The conditional probability estimation is still based on the noisy input.

minimized conditional probability in the contexts with “suffi-
cient frequency”. In a similar manner, the noise level ¢ is esti-
mated here on the noisy image directly as

5=1- P(I(y)| <)

max (10)
Vy,p(c)>10~2

where P(c) is the probability of context c. The performance of

the proposed noise level estimation is evaluated on 65 test im-

ages, and the results are summarized in Fig. 7. We can observe

that the noise level estimation algorithm is reasonably accurate

for all tested noise levels.

D. Filtering Additive Gaussian Noise

For completeness, we study the statistical filtering in case of
additive Gaussian noise as well. In this case, filtering of raster
map images can be considered as a continuous-input-finite-
output problem. For a noisy image Y, the problem is defined
as finding a denoised palette-indexed image Z with M colors,
which needs an estimation for the color palette. Since the size
of the color palette is limited for raster map images, color quan-
tization [20], [24], [25] can be efficiently applied if the color
components are well separable [see Fig. 8, (left)]. In the fol-
lowing, several approaches to this problem are addressed.

a) Color Palette Estimation: The nature of the color
palette estimation problem is shown in Fig. 8, where five
source colors exist in the map image. Some of the colors are
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Fig. 8. Distribution in RGB color space for two map images corrupted by
Gaussian noise with ¢ = 25.

Definitions:
Y: Noisy image
Z: Denoised image
I(Z): Index value of image Z
CP = (m;, m,, ..., my,) color palette where
m; = [m(r), m{g), m(b)], Vz € Z,1(z) € {l,.. M},
Input: Y
1(Z), CP < Conduct color quantization according to (13)
4 «— Estimate the variance according to (16)
For T iterations DO:
Given I(Z), update P(I(z)|c) according to (8), for Vz € Z
Update /(Z) by fusion procedure according to (14)
Update CP and ¢ according to (15) and (16)
End-For

Output: Z, CP.

Fig. 9. Pseudo code for filtering Gaussian noise.

located near the borders of the RGB color cube. In the noisy
images, the colors are spread to form a Gaussian distribution
around the source colors. Colors near the border have been
truncated, causing the distributions to be one-sided Gaussians.
In k-means clustering, this would cause inaccurate estimation
of the representative color. We therefore apply a k-medians al-
gorithm where the median value is used (for each color channel
separately) to estimate the palette color instead of the mean.

b) Size of the Color Palette M : In color quantization, the
size of the color palette can be determined by using a variety of
criteria [26] such as the F-test ratio, Bayesian information cri-
terion (BIC), and minimum description length (MDL). For sim-
plicity, we assume that the additive Gaussian noise model shares
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Quantized image

Filtering after one iteration

Filtering after five iterations

Fig. 10. Filtering example (fragment from Image #1-26) of the fusion process
for additive Gaussian noise.
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Fig. 11. PSNR and SSIM of the proposed fusion process under different noise

levels (#1-26). PSNR and SSIM at iteration 0 are the results of the pre-quanti-
zation step.

the same covariance matrix oI (I is a unit matrix) for each RGB
color component and the possible size of the color palette for
raster map images is limited to 2—16. This is the operative range
for which we expect the algorithm to work well. Accordingly,
the size of the color palette is determined as follows:

M=arg  Bine /) (an
1 m 3 m
f(m) = 0_2 Z Z gij — )2 Z’I’L (4
=1 7j=1 1=1
(12)

where n (1) is the frequency of the colors on each component for
the color palette, and o;; is the variance of the 7th component in
color channel j.

c¢) Iterative Fusion Process With Conditional Probability
in Context: After color quantization, RGB color space is parti-
tioned into several regions, in which each color vector Y (y) is
represented by its centroid:

min (I

I(y)zargI(J nin

)—mi|), veY.
(13)
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Fig. 12. Workflow of the proposed adaptive context-based method.

Since some color components can overlap (Fig. 8, right), mis-

classification is inevitable in color quantization (see the quan-

tized image in Fig. 10). To overcome this problem, a novel it-

erative fusion algorithm is proposed by calculating the distance

from a pixel to its color component in the color palette and the

conditional probability relative to its context is then applied:
min

(y)e{1,....M}

(—logz 9 (Y(y) |muqy))

— logy P(I(y) | <))

— Y () = my||”
202

I =
(v) arg

9(Y(y) [mp)) = exp (14)
where ¢ is the variance of the additive Gaussian noise and y is
the current pixel in the noisy image Y. This fusion filter can be
considered as a specific form of the energy function in a Markov
random field [27], which is derived by replacing the neighbor-
hood similarity with conditional probability in the context.

After the fusion process, the color palette and the estimated
noise variance o are re-estimated as

m; = median({Y(y) |y € Y, I(y) = i}) (15)
1
7= 3] 2 1Y) - my |’ (16)

YyeEY

The fusion and the estimation processes are performed itera-
tively. The pseudo code of the algorithm is described in Fig. 9,
and an example of the fusion result is shown in Fig. 10.
Performance comparisons (PSNR and SSIM) are made for
different noise levels in Fig. 11. It is observed that the proposed
fusion process is effective and very robust for different noise
levels. To sum up, the workflow of the proposed adaptive con-
text-tree-based statistical filtering is summarized in Fig. 12.

E. Process Noisy Image With Mixture Noise

To denoise an image with mixed Gaussian-impulsive noise,
a straightforward approach is to apply two filters successively:
one for impulsive noise and another one for Gaussian noise, re-
spectively. For example, a fuzzy peer group [35] combines a sta-
tistical method for impulsive noise detection with replacement
by an averaging operation to smooth out Gaussian noise.

In a similar manner, the proposed statistical filtering can be
extended to the problem of denoising the mixed noise, as out-
lined in Fig. 13. The proposed extension combines both the case
of the statistical filtering for impulsive noise and the case of
the fusion process for additive Gaussian noise. Namely, if the
DUDE decision rule is met, the current pixel is identified as

Definitions:
Y: Noisy image
Z: Denoised image
I(Z): Index value of image Z
CP=(m,, my, ..., my,) color palette where
m; = [m(r), m{g), m(b)), Vz € Z,1(z) e{l,.., M},
Input: Y
I(Z), CP « Conduct color quantization according to (13)
0,0 « Estimate the noise level according to (10) and (16)
For T iterations DO:
Given I(Z), update P(I(z)|c) according to (8), Vz € Z
IF DUDE decision rule (6) is met
Update /(z) by the color with maximum conditional probability
Else
Update /(z) by fusion procedure according to (14), Vz € Z
End
Update CP, ¢, and o according to (10), (15), and (16)
End-For

Output: Z, CP.

Fig. 13. Pseudo code for filtering mixture noise.

impulsive noise and then replaced by the color with the max-
imum conditional probability. Otherwise, the fusion process is
applied.

E Computational Analysis

In general, the context-tree construction leads to a time com-
plexity of O(kN), where k is the size of the context and N is
the number of the pixels in the image. Any context can have
a maximum of NM /T child nodes, where M is the size of
the color palette and 7' is the frequency threshold for context
merging. In context merging, since the time complexity of every
merging process is O(k2M) in (9), the total time complexity of
the context-merging process is O(k*> M - N M /T'). Additionally,
the noise estimation procedure has a time complexity of O(M)
in which all contexts with a frequency higher than p(c) = 0.01
are extracted by the tree traversal process. The DUDE decision
rule is applied to determine whether or not a pixel is filtered.
As the conditional probability of all contexts is pre-calculated,
the filtering procedure has a time complexity of O(N). As a re-
sult, the total time complexity for denoising impulsive noise is
O(k*M? - N/T).

For filtering additive Gaussian noise, the clustering-based
color quantization step has a time complexity of O(MN).
Context-tree construction and context merging have the same
complexity as in impulsive noise filtering. In the fusion proce-
dure, the cost function of (14) needs to be calculated on each
pixel for all the colors in the color palette, and thus, it leads to
a time complexity of O(M N). The total time complexity of
denoising additive Gaussian noise is therefore O(k2M?-N/T).
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Fig. 14. Sample images from the test set: #1-26, #2-05, #3-03, #4-04, #5-01, and #5-02.

TABLE 1
TIME COMPLEXITY OF THE PROPOSED ALGORITHM

Impulsive noise Additive Gaussian noise

Step Complexity | Step Complexity

Context tree O(kN) Color O(MN)

modeling quantization

Context-merging O(°M?-NIT) | Context tree O(kN)
modeling

Noise level O(M) Context-merging | O(K°M-NIT)

estimation

Statistical O(N) Fusion procedure | O(MN)

filtering

Total O(K°M?-NIT) | Total O(K°M-NIT)

In case of the mixed noise, either the DUDE decision rule-
based statistical filtering or the fusion process is applied, and no
additional cost is incurred. The time complexities are summa-
rized in Table I.

III. EXPERIMENTS

We evaluate the proposed adaptive context-based statistical
filtering algorithm (ACS) on a set of map images chosen from
the Finnish National Land Survey (http://cs.joensuu.fi/sipu/im-
ages/mapset.zip); see Table II and Fig. 14. The images have
different types (topographic, roadmap) and scales. To test the
performance, we artificially distort the images with impulsive
noise, with additive Gaussian noise, and with mixed Gaussian-
impulsive noise.

A. Parameter Adjustment

In order to choose the appropriate adjustment of the denoising
parameters, we analyzed the performance with different se-
lections of parameters. These include the threshold 7' for the
context merging, the number of iterations of filtering impulsive
noise, and the number of iterations of the fusion procedure.

TABLE II
DESCRIPTIONS OF THE TEST IMAGES
Number : Number
Scale 2 Image size

of images of colors
Testset | 1:8000 50 1024 x 1024 5
Te;tzse‘ 1:20 000 5 1024 x 1024 5
TS| 1800 000 4 1024 x 1024 9
Testset | 1100 000 4 1024 x 1024 10
TS| 12250 000 2 800 x 800 16

TABLE IIT

COMPARISONS OF THE ERROR RATE (TEST SET #1) WHEN CONDITIONAL
PROBABILITY ESTIMATION OF A LOCAL CONTEXT IS PERFORMED
SEPARATELY OR JOINTLY ON THE WHOLE SET

Error Rate (%)
Single image Whole test set
0=0.01 0.21 0.18
0=0.05 0.65 0.58
0=0.10 1.31 1.16
0=0.20 3.35 3.01

First, we investigate how to select the threshold 7. The best
selection of T' depends on both the number of colors and the
noise level of the input image. When the number of colors in-
creases, a larger 1" should be selected but the exact value of the
threshold was found not to be critical for the performance of the
algorithm. In our experiments, we set 7' = 128 for test sets #1
and #2 and T = 256 for test sets #3-5.

From our experiment, an appropriate selection of the number
of iterations in the filtering of impulsive noise can be adopted
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TABLE 1V
ERROR RATE, FALSE ACCEPTANCE RATE, AND FALSE REJECTION RATE FOR FILTERING IMPULSIVE NOISE

Error rate (%) False acceptance rate (%) False rejection rate (%)
AVM | PGF | CT | DUDE [ ACS | AVM | PGF | CT | DUDE | ACS | AVM | PGF | CT | DUDE | ACS
6=0.05 | Set#l | 8.65 | 1.40 | 1.04 [ 094 | 0.65 | 457 | 269 | 156 | 13.0 | 733 | 6.70 | 0.06 | 0.27 | 0.30 | 0.30
Set#2 | 4.19 | 1.26 | 0.99 | 0.99 0.78 | 9.89 | 247 | 147 | 16.5 10.2 | 3.89 | 0.02 | 027 | 0.17 | 0.28
Set#3 | 11.8 | 3.26 | 2.41 2.09 1.59 | 47.1 | 49.3 | 239 | 369 27.5 | 9.89 | 0.83 | 1.28 | 0.26 | 0.22
Set#4 | 6.55 | 1.21 | 1.42 1.34 | 082 | 12.1 [ 204 | 105 | 214 11.8 | 625 | 020 | 094 | 0.28 | 0.24
Set#5 | 927 | 6.02 | 436 | 2.66 2.02 | 43.6 | 399|259 | 483 346 | 746 | 423 | 323 | 0.25 0.30
6=0.10 | Set#l | 109 | 3.56 | 7.83 1.95 1.31 | 463 | 349 | 77.7 | 145 8.05 | 6.95 | 0.07 | 0.07 | 0.55 0.56
Set#2 | 5.06 | 3.07 | 5.01 2.14 1.57 | 11.1 | 30.5 | 49.0 | 182 10.7 | 439 | 0.03 | 0.13 | 035 0.55
Set#3 | 14.1 | 596 | 428 | 4.14 | 3.14 | 48.1 | 52.6 | 33.1 | 36.5 262 | 103 | 0.78 | 1.07 | 0.55 0.58
Set#4 | 7.14 | 245 | 2.63 | 2.66 151 | 129 [ 225|177 | 214 10.8 | 6.50 | 0.22 [ 0.96 | 0.57 | 0.48
Set#5 | 11.4 | 794 | 589 | 5.01 3.85 | 44.7 | 42.0 | 29.8 | 449 31.5 | 7.67 | 416 | 3.23 | 0.58 0.78
6=020 | Set#l | 157 | 109 | 199 | 5.04 | 335 | 483 | 543 [ 995 | 21.0 1.7 | 7.59 | 0.10 | 2e-3 1.05 1.28
Set#2 | 7.47 | 9.20 | 19.5 | 5.31 349 | 149 | 158 | 976 | 232 133 | 5.62 | 0.03 | 9¢-3 | 0.82 1.05
Set#3 | 193 | 12.5 | 15.6 | 9.63 6.84 | 51.1 | 59.8 | 76.7 | 44.1 284 | 114 | 0.74 | 0.31 1.01 1.45
Set#4 | 8.65 | 6.07 | 12.1 | 6.67 | 3.39 | 15.0 | 29.1 | 58.8 | 29.3 13.0 | 7.05 | 0.30 | 0.44 1.02 | 0.98
Set#5 | 16.1 | 12.8 | 104 | 104 | 7.79 | 475 | 474 | 412 | 480 | 31.8 | 825 | 4.09 | 2.68 1.02 1.80
TABLE V
PSNR AND SSIM FOR FILTERING ADDITIVE GAUSSIAN NOISE
PSNR SSIM
GSM | NLM | BM3D | ARF | ACS | GSM | NLM | BM3D | ARF | ACS
=15 | Set#l | 26.8 | 269 29.1 26.2 | 59.4 | 0.956 | 0.963 | 0.987 | 0.949 | 0.999
Set#2 | 27.1 | 249 29.9 252 | 70.1 | 0.944 | 0.938 | 0.952 | 0.939 | 0.999
Set#3 | 26.3 | 23.8 25.6 | 24.5 | 40.8 | 0.957 | 0.946 | 0.948 | 0.946 | 0.998
Set#4 | 27.1 | 259 27.1 252 | 51.5 | 0.941 | 0.931 | 0.945 | 0.933 | 0.999
Set#5 | 26.3 | 26.0 27.1 26.2 | 28.5 | 0.881 | 0.886 | 0911 | 0.872 | 0.952
0 =25 | Set#l | 244 | 249 262 | 242 | 47.1 | 0943 | 0.944 | 0.978 | 0.942 | 0.999
Set#2 | 24.0 | 23.5 26.5 233 | 59.2 | 0.919 | 0.918 | 0.941 | 0.924 | 0.999
Set#3 | 23.7 | 22.4 23.7 23.0 | 27.0 | 0.919 | 0.904 | 0.928 | 0.929 | 0.975
Set#4 | 24.6 | 24.1 25.5 23.8 | 334 | 0.874 | 0.881 | 0.923 | 0.902 | 0.988
Set#5 | 25.1 | 24.3 26.1 25.1 | 27.7 | 0.846 | 0.827 | 0.899 | 0.860 | 0.926
=35 | Set#l | 22.2 | 22.7 239 | 223 | 42.7 | 0.898 | 0.912 | 0.964 | 0.919 | 0.998
Set#2 | 21.6 | 21.6 23.9 21.5 | 484 | 0.869 | 0.893 | 0.926 | 0.893 | 0.999
Set#3 | 21.1 | 20.7 21.6 | 21.3 | 25.7 | 0.823 | 0.857 | 0.859 | 0.860 | 0.968
Set#4 | 21.5 | 22.0 22.9 21.8 | 31.3 | 0.717 | 0.821 | 0.783 | 0.771 | 0.979
Set#5 | 22.1 | 22.6 239 | 22.0 | 254 | 0.700 | 0.766 | 0.796 | 0.766 | 0.912
s 50 > ; :
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Fig. 15. Performance comparison with different noise levels (Image #01-26 is
used).

as follows: two iterations are conducted for images of impul-
sive noise with noise levels smaller than 10% and three itera-
tions are conducted for images with noise levels greater than
10%. For denoising additive Gaussian noise, five iterations pro-
vide a good compromise between denoising performance and

Fig. 16. Worst case example of the denoising result for image #05-01: noisy
image (left) and the denoised image (right). Noise has been eliminated; text
and other details are preserved. However, due to the sub-optimal color palette
estimation, the light blue and white colors have been merged, which leads to the
loss of essential information.

computational complexity (see Fig. 11). For denoising mixed
Gaussian-impulsive noise, five iterations of the fusion process
are conducted for Gaussian noise denoising, and two iterations
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Fig. 17. Visual performance comparison.

of DUDE decision rule-based statistical filtering are performed
for detecting and denoising impulsive noise.

Test set #1 consists of 50 topographic images of size
1024 x 1024, which all use the same types of notations to rep-
resent topographic information and include the same patterns.
We therefore test whether the denoising performance will im-
prove when the conditional probability estimation is estimated
on the entire test set using the same conditional probability
of each context for all the images. From our experiments, the
algorithm performance improves by 10% compared with the

case of conditional probability estimation on a single image
(see Table III). To sum up, if the type of image is known,
the context modeling can be trained and better performance
is achieved. Nevertheless, this approach is not used in the
following experiments.

B. Objective Evaluation

a) Impulsive Noise: First, we compare the proposed al-
gorithm with four alternative filters: adaptive vector median
(AVM) [2], fast peer group filter (PGF) [3], context-tree filter
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TABLE VI
PSNR AND SSIM FOR FILTERING MIXED NOISE
PSNR SSIM
PGF | BM3D | BM3D | FPGA | ACS | PGF | BM3D | BM3D | FPGA | ACS
+PGF +PGF

0=0.03,0=15 | Set#l | 21.4 | 202 22.5 22.0 | 25.6 | 0.769 | 0.786 | 0.940 | 0.901 | 0.977
Set#2 | 21.3 19.8 2201 229 | 23.7 10772 | 0.759 | 0.906 | 0.891 | 0.978

Set#3 | 21.4 | 20.9 22.0 23.0 | 254 | 0.779 | 0.798 | 0.902 | 0.906 | 0.970

Set#4 | 22.7 | 21.9 23.8 254 | 25.8 | 0.710 | 0.800 | 0.898 | 0.860 | 0.967

Set#5 | 21.4 | 223 23.7 24.8 | 259 [ 0.652 | 0.739 | 0.868 | 0.821 | 0.945

0=0.05,6=25 | Set#l | 18.0 17.7 19.8 19.5 | 23.6 | 0.635 | 0.685 | 0.867 | 0.788 | 0.966
Set#2 | 18.1 17.2 19.4 19.5 | 21.7 | 0.669 | 0.670 | 0.830 | 0.750 | 0.967

Set#3 | 17.9 18.5 19.7 20.7 | 23.0 | 0.654 | 0.707 | 0.817 | 0.785 | 0.952

Set#4 | 19.0 19.1 21.3 214 | 244 | 0598 | 0.666 | 0.780 | 0.716 | 0.961

Set#5 | 18.3 19.9 21.9 21.5 | 22.7 [ 0523 | 0.640 | 0.774 | 0.673 | 0.914

0=0.10,6=35 | Set#l | 14.8 143 16.3 164 | 20.3 | 0.499 | 0.514 | 0.649 | 0.649 | 0.925
Set#2 | 15.0 13.7 16.1 16.1 18.7 | 0.572 | 0.532 | 0.654 | 0.637 | 0.929

Set#3 | 15.3 15.3 16.6 17.6 | 19.6 | 0.544 | 0.558 | 0.625 | 0.672 | 0.895

Set#4 | 16.4 15.2 17.6 18.1 21.5 [ 0.505 | 0.479 | 0.564 [ 0.594 | 0.920

Set#5 | 16.2 16.3 18.4 185 | 19.8 | 0.425 | 0.474 | 0.547 | 0.551 | 0.895

(CT) [13], [19], and discrete universal denoising (DUDE) [11],
[14] by using images corrupted by impulsive noise. The per-
formance is measured by the error rate (%), false acceptance
rate (%), and false rejection rate (%) (see Table IV). Exper-
iments show that the algorithms based on statistical filtering
(CT, DUDE, ACS) achieve better noise reduction performance
(lower false acceptance rate) and better preservation of image
details than the best of the conventional filters (AVM, PGF).
This is because raster map images consist of pixel-level detailed
structures, sharp edges, and repetitive patterns whereas those
traditional algorithms are based on a priori assumption that the
images have smooth color transitions.

The context-tree filter with a predefined filtering threshold
lacks robustness in denoising images with different noise levels.
However, both the noise estimation and DUDE decision rule
have been exploited here to achieve robust performance in the
proposed statistical filter. Since the conditional probability esti-
mation is further improved by the context-merging strategy, the
proposed algorithm achieves better performance than DUDE,
which has been the best solution for universal discrete denoising
problems so far.

b) Additive Gaussian Noise: Four state-of-the-art fil-
ters for denoising Gaussian noise are also evaluated: wavelet
denoising using Gaussian scale mixtures (BLS-GSM) [5],
non-local means (NLM) [6], block matching and 3-D filtering
(BM3D) [8], and active random fields (ARF) [10]. Their per-
formance comparisons are summarized in Table V using the
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) and are visually demonstrated in Fig. 17. It can
be observed that the proposed method achieves both visually
and numerically better results than the comparative filters. The
difference is remarkable for test sets #1—4. This is because the
comparative algorithms are designed with a priori assumption
of smooth color transitions in the images. Moreover, raster map
images have a very limited output and this is not considered in
those algorithms.

We also compared the performances between the images with
different noise levels as shown in Fig. 15. It can be observed that
the proposed algorithm is also robust to the noise level. How-
ever, the performance is less impressive for image #05-01 than
for the other images. This is because most color components
become more overlapped and those color components lack sep-
aration in color space when its number increases. In the color
palette estimation of Section II-D, those overlapped color com-
ponents are merged into the same output color. This problem
is demonstrated in Fig. 16 for #05-01, in which the number of
output colors is reduced to nine, and it degrades the denoising
performance.

c¢) Mixed Noise: We compare the performance using
images with mixed Gaussian-impulsive noise against PGF,3
BMB3D, and Fuzzy Peer Group Averaging (FPGA). An addi-
tional experiment was carried out by using BM3D as a first
step for denoising Gaussian noise followed by PGF as a second
step for denoising impulsive noise. The results are reported in
Table VI and Fig. 17. Both the numerical results and visual
examinations show that the proposed algorithm is superior to
all the comparative algorithms in denoising images with mixed
Gaussian-impulsive noise.

d) Real-World Examples: We performed additional tests
by printing and re-scanning two selected images from set #1 and
#2; see Fig. 17 for scanning image. The resulting images have
slightly different colors than their original ones and Gaussian
type of noise and blurred contours also appear. Among the other
filters, PGF cannot remove the Gaussian-type of noise in these
real examples, and BM3D causes blurring effect around the con-
tours. The proposed method (ACS) preserves the larger struc-
tures in Set #2 very well but some of the noisy thin structures
are broken. For the image from set #1, thin structures are mostly
well restored. No false colors or blurring effects appear in the
output image either, but discontinuation of thin contours appears
at places.

3DUDE and the CT algorithm can only be used for discrete denoising prob-
lems and cannot be applied when the input is a continuous-tone image.
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IV. CONCLUSION

We have proposed a statistical filtering algorithm dealing
with map images distorted by impulsive noise, additive
Gaussian noise, and mixed Gaussian-impulsive noise. The
proposed filter incorporates an information fusion process
which exploits both the color distribution in RGB space and the
conditional probabilities of a given pixel in a local context. It
operates with no prior knowledge of the properties of the noise
and aims at maximal preservation of repetitive structures of
the image. This is an essential property for raster map images
and is expected to generalize to other types of palette-indexed
imagery as well. It can also be viewed as a pioneer study to
attack distortion caused by unknown noise types. Experiments
with different noise types and spatial image resolutions show
that the proposed filter provides robust and reliable filtering
performance and good structure preservation ability.

We also investigate the context contamination problem in
conditional probability estimation in statistical filtering and a
context-merging strategy is proposed to improve the estimation
accuracy for those infrequent contexts.

The proposed algorithm can also be used for other types of
color palette images such as engineering drawings, schemes,
comic books, and similar art imagery. Raster map images have
the typical properties (sharp edges and repeated patterns) that
also exist in other kind of images, and were therefore selected
here as a typical but challenging case study for evaluating the
efficiency of the proposed algorithm.

Future work can be done to extend the proposed filtering
method to continuous-tone images in addition to color indexed
images. More theoretical analysis is needed on how to select the
optimal threshold in context merging.
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