
Pattern Recognition, Vol. 31, No. 8, pp. 1139—1148, 1998
(1998 Pattern Recognition Society. Published by Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0031-3203/98 $19.00#0.00

PII: S0031-3203(97)00127-1

TABU SEARCH ALGORITHM FOR CODEBOOK GENERATION
IN VECTOR QUANTIZATION

PASI FRA® NTI,s,* JUHA KIVIJA® RVIt and OLLI NEVALAINENt

sDepartment of Computer Science, University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland
tTurku Centre for Computer Science (TUCS), Department of Computer Science, University of Turku,

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

(Received 22 October 1996; in revised form 22 September 1997)

Abstract—A tabu search algorithm is proposed for the codebook generation in vector quantization. The
key question is the definition of neighboring solution. Making random modifications to the current
solution alone is not sufficient. The proposed algorithm first makes non-local changes to the codebook
which is then fine-tuned by the generalized Lloyd algorithm (GLA). For a set of gray-scale images, the new
algorithm was better than GLA alone, and its results were comparable to simulated annealing. For binary
images, the tabu search approach gave the best MSE-values. (1998 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.

Vector quantization Codebook generation Clustering problem Tabu search
Image compression

1. INTRODUCTION

In the present paper we study the codebook generation
in vector quantization (»Q). The aim is to find a set of
representative vectors (called codevectors, or code-
book) for a given training set minimizing the average
distortion between the training set and the codebook.
It is assumed that the vectors are mapped to their
nearest representative in the codebook with respect to
a distortion function.

Iterative algorithms are applicable to the problem.
A common property of these algorithms is that they
try several possible solutions (codebooks) to the prob-
lem and at each step a new solution is generated by
making modifications to the current one. For
example, the well-known generalized ¸loyd algorithm
(GLA)(1,2) (also referred as k-means algorithm due to
McQueen(3)) starts with an initial solution, which can
be chosen arbitrarily. The solution is then improved
iteratively using two optimality criteria in turn until
a local minimum is reached. This localized search strat-
egy is based on a greedy heuristic where the optimiza-
tion function is never allowed to increase. Thus, the
algorithm will get stuck to the first local minimum,
although it may be far from the global optimum.

¹abu search(4) is an alternative approach to the
localized search described above. It includes the fol-
lowing potential improvements:

z The new solution is chosen among several candi-
dates.

*Author to whom correspondence should be addressed.
Tel.: 13 251 3104; fax: 13 251 329; e-mail: franti@cs.joensuu.fi.

z The search is allowed to make suboptimal moves.
z The use of tabu list prevents local loops.

The use of several candidates directs the search to-
wards the highest improvement in the optimization
function value. Making suboptimal moves, on the
other hand, allows the search to continue past local
minima. Tabu search algorithm also uses so-called
tabu list to prevent the search from returning to solu-
tions that have been visited recently. This forces the
search in new directions instead of stucking in a local
minimum and its neighborhood.

The codebook generation resembles the clustering
problem, where the objects of clustering are K-dimen-
sional training vectors in an Euclidean space. The aim
of the VQ-algorithm, however, is to create a code-
book; the clusters are of secondary importance. Tabu
search approach for the clustering problem was pro-
posed in reference.(5) This algorithm has several draw-
backs when applied to the codebook generation in
VQ. Some of them originate from the different nature
of the source data. The number of the objects, the
dimensions of the source data and the number of
clusters to be created are all significantly larger in VQ
than in most clustering applications.

Here we consider the following training set types:
(1) 4]4 pixel blocks taken from gray-scale images
(8 bits per pixel), see Fig. 1; (2) the same blocks after
quantization into two levels according to the mean
value of the block; and (3) 4]4 blocks taken from
binary images (the eight standard CCITT test images).
The training sets are summarized in Table 1. This
kind of data are typical in image compression.(6~8)

The number of codevectors to be formed is fixed to
256 in the present study.

1139

Fig. 1. Training set images.

Table 1. Training sets and their statistics

Training set Bits No. vectors
No. different

vectors

Bridge 8 4096 4096
Camera 8 4096 4095
Couple 8 4096 3934
¸ena 8 16,384 16,384
Bridge2 1 4096 2813
Camera2 1 4096 3172
Couple2 1 4096 2119
CCI¹¹ 1 2,052,864 5987

The huge size of the search space makes the code-
book generation problem less of a combinatorial
nature. Therefore, an algorithm applicable to this
kind of data has to contain more deterministic reason-
ing to direct the search than randomizing alone. Fur-
thermore, it seems unlikely that the use of tabu list
would have a major effect on the algorithm because
the generation of new candidates is heavily based on
randomizing (also due to the size of the search space).
Because of these matters the algorithm proposed in
reference (5) needs major revisions when brought into
the context of vector quantization.

In the present paper we propose a new tabu search
algorithm for the codebook generation problem with
the following ideas:

z Distance weighted algorithm for modifying the par-
titions.

z Codebook-based problem setup instead of par-
titioning-based.

z Inclusion of GLA iterations.
z Approximate tabu matching criterion.

These improvements contribute also to the more gen-
eral clustering problem. The rest of the paper is organ-
ized as follows. We start in Section 2 by defining basic
concepts of the problem and by giving a brief sum-
mary of the previous related research. The tabu search
algorithm and its parameters are discussed in Section
3 and then compared with the existing algorithms in
Section 4. Test results appear for both image coding
and standard cluster analysis data sets. Finally, con-
clusions are drawn in Section 5.

2. BACKGROUND

Let us consider training vectors in a K-dimensional
Euclidean space. Denote the number of vectors in the
training set by N. Vector quantization partitions the
input space into M non-overlapping regions called
partitions or clusters so that the input space is com-
pletely covered. A representative codevector is as-
signed to each partition. The aim of the codebook
construction is to minimize the average distance (dis-
tortion) between the training vectors and their repre-
sentatives. The question of the proper choice for the
training set is not issued here. The motivation is
merely to select the best possible codebook for a given
training set regardless the way it has been chosen. The
distance between two vectors X and ½ is defined by

d(X, ½)"S
K
+
i/1

(X
i
!½

i
)2 . (1)

The average distortion of the codebook is calculated
by mean square error (MSE):

MSE"

1

KN

N
+
i/1

d (X
i
, f (X

i
))2 (2)

where f (X) is a mapping function from training vector
X to its representative codevector. Thus, the mapping
function f (X) defines a partitioning of the training set.
All test results given in the following will be MSE-
values (per pixel) in case of gray-scale images (Bridge,
Couple, Camera, ¸ena). For the binary images
(Bridge2, Couple2, Camera2, CCI¹¹) the distortion is
expressed by the average number of distorted pixels
per 4]4-block (varying from 0 to 16). This equals to
K)MSE.

A solution of the codebook generation problem can
be defined by the pair (partitioning, codebook). A par-
titioning describes a mapping from the training set to
a codebook, and the codebook describes the code-
vectors. These two depend on each other in an inter-
esting way: if one of them is given, the optimal
solution to the other one can be uniquely constructed.
This is formalized in the following two optimality
criteria:(1)

z Nearest neighbor condition: For a given codebook,
the optimal partitioning of the training set can be

1140 P. FRA® NTI et al.

Fig. 2. Sketch of a tabu search algorithm.

obtained by mapping each training vector to its
nearest codevector in the codebook in respect to the
distortion function.

z Centroid condition: For a given partition, the opti-
mal codevector is the centroid (average vector) of
the vectors within the partition.

The nearest-neighbor condition clearly defines the
optimal partitioning. It can be easily constructed by
mapping each training vector to the codevector that
minimizes equation (2). This is computationally ex-
pensive operation which takes O (NM) time. The cen-
troid calculation, on the other hand, only takes O(N)
time.

Generalized ¸loyd algorithm (G¸A)(2) applies the
two optimality criteria in turn. In the partitioning step
the training set is partitioned according to the existing
codebook. The optimal partitioning is obtained by
mapping each training vector to the nearest code-
vector as defined in equation (1). In the codebook step,
a new codebook is constructed by calculating the
centroids of the partitions defined in the partitioning
step. The two optimality criteria guarantee that the
new solution is always equal to or better than the
previous one. The process is iterated until no im-
provement is achieved, or the number of iterations
reaches a predefined limit.

GLA uses a greedy heuristic where the optimization
function is never allowed to increase. Simulated an-
nealing (SA) tries to remove this restriction by
a stochastic relaxation technique. At each step ran-
dom noise is added to codevectors,(9) or to training
vectors(10) so that the algorithm can jump over local
minima. The amount of noise is gradually decreased
at each iteration step and eventually, when the noise
has been completely eliminated, the algorithm will
converge to a local minimum, which hopefully is
a good solution to the problem.

3. TABU SEARCH ALGORITHM

Tabu search (TS) is an alternative approach to
GLA in the sense that suboptimal moves are allowed,
whereas GLA proceeds using the nearest neighbor
and centroid conditions as optimality criteria. In
other words, the new solution does not need to be

better than the previous one. Tabu search algorithm
also uses tabu list to force the search for expanding
into new directions instead of local minima. Tabu list
includes ¹ previously visited solutions. The new
solution in each iteration round is always the best
non-tabu candidate solution. In the case where all
candidates are in tabu list the current solution does
not change but a new set of S candidates will be
generated.

A tabu search algorithm is formalized in Fig. 2. The
initial solution is chosen randomly. We also studied
the algorithm starting with codebooks generated by
GLA as an initial solution. The tabu search was
seldom able to improve them, thus the random initia-
lization seems to be a better choice. The distortion
function e is here due to equation (2).

In the tabu search algorithm for the clustering
problem in reference (5) the initial solution is chosen
randomly. New candidate solutions are generated by
modifying the partitions in a random fashion; each
training vector is moved from its original partition to
another randomly chosen partition with a probability
P. In principle, this algorithm can also be applied to
the codebook generation problem if the centroid con-
dition is applied for selecting the codevectors. How-
ever, the algorithm is impractical for the codebook
generation due to the nature of the data in vector
quantization. A typical VQ data set has the following
properties:

z A large number of objects (training vectors) in the
source data (N).

z High dimensionality of the data set (K).
z Relatively large number of clusters to be formed

(M).

These facts make the search space significantly larger
than in typical clustering applications and an algo-
rithm applicable to this kind of data has to contain
more deterministic reasoning to direct the search than
randomizing alone. These matters will be considered
in the following sections.

3.1. Representation of a solution

The two optimality criteria (nearest-neighbor con-
dition and centroid condition) imply two alternative

Tabu search algorithm 1141

Fig. 3. Representation of a training set and a codebook.

approaches to codebook generation algorithms:

z codebook-based (CB),
z partitioning-based (PB).

In the codebook-based variant a solution is described
by a codebook. The codevectors are represented by an
M-length array of K-dimensional vectors (see Fig. 3).
This is a natural way to describe the problem in the
context of VQ. After all, the aim of the algorithm is to
create a codebook; the partitions are of secondary
importance. The partitioning (the mapping function),
however, is needed when evaluating the distortion
values of the solutions and it is calculated using the
nearest neighbor condition.

In the partitioning-based variant a solution is de-
scribed by a partitioning. It is expressed as an N-
length array of integers in the range [1,M]
defining mapping from the training set to the code-
book (see Fig. 3). The actual codebook is calculated
from the partitioning using the centroid condition.
The partitioning-based variant is commonly used in
the clustering algorithms because the aim is to cluster
the data with no regard to the representatives of the
clusters (such as codevectors in VQ). It was also ad-
opted in reference (5).

The search space is of the size MN"2N -0'M in the
PB-variant and 2bKM in the CB-variant. The former is
the number of ways N training vectors can be clus-
tered into at most M distinctive clusters. The latter
originates from the number of ways a codebook of
size M consisting of K-dimensional vectors can be
constructed (b is the number of bits per pixel in a
vector element). With the typical parameters in our
test data (b"8, K"16, N"4096, M"256) the size
of the search space is thus order of 109864. This is
significantly larger than the size of the search space

used in reference (5): 1012 with parameters N"40,
M"2.

3.2. Selection of the parameter values

The four main parameters of the tabu search algo-
rithm are: probability threshold for the changes, the
number of iterations, the number of candidate solu-
tions and the size of tabu list.

The probability threshold (P) defines the amount of
changes to be generated to the current solution in
order to create new candidates. The best choice of
P depends on the problem size, i.e. the training set
size, codebook size and dimensionality of the source
data. Our experiments indicate that P"5% (used in
reference (5)) is adequate for very small test data
(N"500, M"16, K"2), (see Fig. 4) but is too large
for our applications. A reasonable value for larger
training sets (Table 1) seems to be as low as P"0.5%.

The number of iterations (I) and the number of
candidates generated in each iteration round (S) to-
gether induce the total number of trial solutions (IS).
By modifying the ratio of these two parameters the
nature of the search can be adjusted either towards
depth-first search (increasing I and decreasing S) or
towards breadth-first search (vice versa). Neither of
these two approaches had the edge over the other in
our experiments; the quality of the final solution
seems to be relatively independent of I and S as long
as IS remains constant. Here we set the values I"500
and S"20.

In general, a small tabu list size (¹) is usually
sufficient. After all, the size of tabu list is limited by the
number of iteration rounds because only one solution
per iteration round is included in tabu list. Here we
use ¹"20.

1142 P. FRA® NTI et al.

Fig. 4. Codebooks generated by different variants of the tabu search algorithm and by GLA. The small
dots are the training vectors and the large ones are the codevectors. The partition boundaries (»oronoi

diagram) have been calculated using the nearest-neighbor condition.

3.3. Definition of neighboring solution

The key question in the tabu search is the definition
of the neighborhood of a solution, i.e. the way new
candidates are generated. In the PB-variant, the
simplest method is to make random changes to the
current solution, as proposed in reference (5). A draw-
back of random changes is that a great number of
useless solutions will be generated. In fact, the main
effect of transferring a training vector to another ran-
domly chosen cluster is that the centroid of the new
cluster will be shifted towards the transferred vector.
In general, the resulting codevectors are arbitrarily
located with respect to each other, and they tend to
concentrate around the centroid of the training set
leaving the border areas sparsely occupied.

The search can be made more efficient if the new
cluster for a training vector is chosen considering the
distances to different clusters: the closer the cluster,
the more likely it will be chosen. Here we apply the

weighting function

w
i
"

1

d
i

, (3)

where d
i
is the distance between the processed training

vector and the corresponding codevector of the candi-
date cluster. The probability of selecting the ith cluster
to be chosen is

p
i
"

w
i

+
j
w
j

(4)

In the CB-variant the randomizing can be imple-
mented by the following methods:

z Adding noise to codevectors.
z Swapping codevector.

The first method (adopted from simulated anneal-
ing) has the problem that the changes are local.
In the swapping method, a codevector is replaced

Tabu search algorithm 1143

(with probability P) by a randomly chosen training
vector. The weighting function (4) could also be ap-
plied, but we prefer equal weighting in order to permit
more radical, non-local changes in the codebook.

Both the CB-variant and the PB-variant (with
a weighting function) outperform the original ran-
domizing algorithm. Unfortunately, the results are
still far from good, see Fig. 4 for an artificial training
set in two-dimensional space. Thus, additional refine-
ments are needed in the tabu search algorithm.

3.4. Inclusion of GLA iterations

The most effective modification proposed here is
the inclusion of GLA iterations. This means that each
candidate solution is improved by feeding it to GLA
which outputs the nearest local minimum. In a sense,
the tabu search algorithm first makes non-local
changes to the codebook which is then fine-tuned by
GLA.

This modification has at least three potential im-
provements: (1) the search space is greatly reduced;
(2) only reasonable solutions will ever be considered;
and (3) tabu list may become effective after all. The
first two hypotheses are confirmed by the results
shown in Fig. 5. GLA iterations give better results
much faster. In fact, even the worst candidate is better
than any of the candidates without GLA. The third
hypothesis will be studied in the next section.

The main drawback of GLA is that the running
time is (approximately) multiplied by the number of
GLA iterations applied for each candidate solution.
Fortunately, it is not necessary to iterate each candi-
date codebook until it reaches a local minimum. In-
stead, the number of GLA iterations can be limited to
a very few, (see Table 2). In the further tests the
number of GLA iterations will be fixed to 2. More-
over, additional experiments revealed that the
application of GLA outweighs the drawbacks of
PB-variants and their results become competitive
as well.

Fig. 5. Distortion of best (solid lines) and worst candidates
(broken lines) vs the number of iterations (for Bridge). CB-

variant with swapping is applied.

Table 2. Distortion of codebooks (Bridge) with various
number of GLA iterations. The results are averages of five

test runs

GLA
iterations

Distortion
(MSE)

Running time
(h :min)

0 206.46 7 : 08
1 167.20 12 : 23
2 165.53 17 : 56
4 164.91 27 : 29
8 164.94 38 : 00
R 164.87 66 : 31

3.5. The use of tabu list

It is not evident that tabu list has a significant effect
on the algorithm’s overall performance. In fact, it is
not even certain that tabu list is needed at all. Since
the generation of new candidates is based on ran-
domizing (and also due to the size of the search space)
it is unlikely that the search will get stuck into a local
minimum anyway. Experiments indeed show that
tabu list is not utilized in the tabu search variants with
standard parameter settings. The application of two
GLA iterations does not remarkably change the situ-
ation for gray-scale images. For binary images, on the
other hand, the search space is reduced enough so that
tabu list becomes effective.

In order to make a stronger influence on the search
the use of tabu list is intensified as follows. A candi-
date solution is declared tabu if an identical solution
is found in tabu list. Instead of exact matches, we
introduce an approximate tabu matching which allows
a small error marginal, i.e. a candidate solution is
declared tabu if it is ‘‘close enough’’ to any solution in
tabu list. This inaccuracy improves the use of tabu list
in cases where two solutions are effectively the same
but only insignificant differences appear in the exact
figures. The distance between two codebooks C

1
and

C
2
is defined by the average distortion (2) of mappings

C
1
PC

2
and C

2
PC

1
. The best solution of every

second iteration round (on average) is now declared
tabu, with a threshold value of 0.5 (MSE units) for
gray-scale images, and 0.005 for binary images.

In general, the approximate tabu matching had
only marginal effect on the MSE-values. For binary
images it slightly improved the results, but for gray-
scale images the results got slightly worse. Overall,
tabu list is of little use in the proposed algorithm. On
average, the results are equally good with and without
tabu list.

4. COMPARISON WITH EXISTING ALGORITHMS

The computational complexity of different tabu
search variants is summarized in Table 3. For each
candidate solution we have to calculate both the par-
titioning (partitioning step) and the codevectors
(codebook step) in order to obtain the fitness value of
a solution. The calculation of optimal partitioning

1144 P. FRA® NTI et al.

Table 3. The time complexity of the tabu search variants for
one candidate solution (*P"0.005)

PB-variants

Random Distance
weighted CB-variant

Partitioning step O(PN)* O(PNM)* O (NM)
Codebook step O (N) O (N) O (PM)*
GLA iterations O (GNM) O (GNM) O (GNM)
Total — with GLA O (GNM) O (GNM) O (GNM)
Total — w/o GLA O (N) O(PNM)* O (NM)

and optimal codebook take O(NM) and O(N) times
respectively, see Section 2.

In the CB-variant, the codebook step is replaced by
making random changes to the codebook. This takes
only O(M) time. Unfortunately the overall time com-
plexity remains still O(NM) due to the partitioning.
The PB-variant with random changes performs the
partitioning in O(N) time which is also the overall
time complexity of the algorithm. In the other PB-
variant (with distance weighted changes) we have to
calculate for each training vector the distances to all
codevectors in order to obtain the weights. Fortunate-
ly, only P)N training vectors will be processed
(P"0.5%) keeping the actual running time reaso-
nable.

If GLA iterations are included, the time complexity
of each variant is increased by O(GNM), where G is
the number of GLA iterations applied. As proposed in
Section 3.4, the number of iterations can be limited to
only two without causing any dramatic effects on the
quality of the final solution.

To sum up, the time complexity of the CB-variant is
of the same order with and without GLA iterations
(assuming G"2). For the PB-variants, this is not the
case. With random changes the algorithm is clearly
faster, but the experiments have shown that this algo-
rithm is practically useless without GLA iterations.
The PB-variant with distance weighted changes is
also much faster without GLA. However, it is able to
produce reasonable results only for smaller problem
sizes. Thus, a potential tabu search algorithm (TS)
must contain GLA iterations if applied to the training
sets of Table 1.

So far we have considered only the time for a single
candidate solution. There are, however, IS solutions
(I"500, S"20) to be generated in overall. This
makes the above variants much slower than the other
algorithms in our comparison. The performance of
the tabu search algorithm is next compared with the
following algorithms:

z GLA"Generalized Lloyd algorithm.(2)
z SA"Simulated annealing.(9)
z SOM"Self-organizing maps.(11)
z PNN"Pairwise nearest neighbor algorithm.(12)

In the simulated annealing a random noise vector
is applied with a uniform probability distribution

function in the range [!t, t]. A logarithmic temper-
ature schedule decreases the temperature t by 1%
after each iteration step. The initial temperature t

0
is

50 for gray-scale images, and 1 for binary images. The
inclusion of noise is stopped when t falls below 0.5;
smaller temperature values have no effect because the
pixel values are always rounded to the nearest integer.
The time complexity of one SA iteration, O(NM), is
equal to that of GLA but the total number of iter-
ations is greater for SA. Both algorithms use a ran-
dom codebook as a starting point.

A neural network approach to the codebook gen-
eration is considered in reference (11) by applying
self-organizing maps (SOM). The neurons in the net-
work (connected with a 1-D or 2-D structure) corres-
pond to the codevectors and they are initialized by
random values. The training set is then processed by
finding the nearest codevector for each training
vector. The best matched codevector and its neigbor-
ing vectors (according to the network structure) are
updated using a weight function. After processing the
training set by a predefined number of times, the
neighborhood size is shrunk and the entire process is
restarted. The process stops when the neighborhood
shrinks below zero. In our implementation, we use
1-D network structure, the initial neighborhood size is
set to 10, and the training set is iterated 5000 times.

Pairwise nearest-neighbor (PNN) algorithm starts
by initializing a codebook of size N where the code-
book contains all the training vectors. Two codevec-
tors (partitions) are combined and replaced by the
centroid of the training vectors of the combined parti-
tion. The vectors to be combined are the ones that
increase the distortion least. This step is repeated until
the size of the codebook has decreased to M. There
are two versions of the PNN algorithm: the O(N3)-
time algorithm, and the fast PNN which takes
O(N) logN) time. We use the former one.

The quality of codebooks generated by various
algorithms are shown in Table 4. The two TS algo-
rithms are the PB-variant with distance weighted
changes (TS-PB), and the CB-variant with swapping
method (TS-CB). Both of them include two GLA
iterations. The number of iterations was 500. Both TS
variants were always better than pure GLA for the
gray-scale images, and comparable to SA and PNN.
From these, SA gives slightly lower MSE-values than
the tabu search. In the case of binary images the best
methods seem to be the TS variants, whereas for
CCITT data also SOM reached the same result as TS.
The total running times (min:s) of the algorithms
(GLA, SA, PNN, SOM, TS-PB, TS-CB,) were (0:38,
13:03, 67:00, 5600:00, 739:00, 1076:00) on a Pen-
tium/90 computer for Bridge.

The efficiency of the algorithms is next compared
by calculating the distortion of the best codebook as
a function of running time spent. GLA and SA were
repeated, each time starting from a new random code-
book. The number of runs performed during an 18 h
time period was 1700 for GLA and 80 for SA. The

Tabu search algorithm 1145

Table 4. Performance comparisons of various algorithms. The results are averages of five test runs

TS-PB TS-CB GLA SOM SA PNN

Bridge 165.85 164.23 179.68 176.47 162.45 169.15
Camera 73.31 71.87 122.61 105.80 70.65 70.90
Couple 26.51 25.53 40.36 33.57 25.15 25.91
¸ena 56.64 54.80 59.73 59.83 54.40 56.44
Bridge2 1.28 1.27 1.48 1.39 1.52 1.33
Camera2 1.56 1.53 1.76 1.69 1.78 1.61
Couple2 0.90 0.89 1.06 1.15 1.12 0.95
CCI¹¹ 0.17 0.17 0.24 0.17 0.40 0.18

Fig. 7. Performance comparison for standard data sets SS1 and SS2. The values are the relative differences
of the MSE-values when compared to the results of SA.

Fig. 6. The distortion of the best codebook found vs. run-
ning time (Bridge).

variations in their results, however, are too small to
produce any remarkable improvement when the algo-
rithms are repeated (see Fig. 6.) The corresponding
number of iterations for TS-CB and TS-PB were 500
and 730. It is possible that TS-CB might reach the
same level as SA (and probably beyond) if consider-
ably more computing resources were used.

Finally, we tested the algorithms for the standard
clustering test problems SS1 and SS2 of Späth,(13) see
pp. 91—92 and 103—104 correspondingly. The data
sets contain 89 postal zones in Bavaria (Germany)
and their attributes are:

z SS1: surface area (km2), population and density of
population.

z SS2: the number of self-employed people, civil ser-
vants, clerks and manual workers.

In order to cluster the objects according to these
attributes their values must be scaled. We used the
following scaling:

x@"
x!min(x

i
)

max(x
i
)!min(x

i
)
, (5)

where x is the data value before and x@ after scaling.
The number of clusters varies from 2 to 32. Thus, the
problem size becomes (N"89, M"2,2, 32, K"3)
for SS1 and (N"89, M"2,2, 32, K"4) for SS2.
The parameter setups were the same as for the gray-
scale images. Both GLA and SA were repeated 100
times and the best result was observed for each cluster
size. This time the repetition improved significantly
the results of GLA. SA, on the other hand, is more
robust and its average result is not far from the best
found. The best results are summarized in Fig. 7.

For all cluster sizes (except M"32) the results of
TS-CB and SA are precisely equal. This implies that
both algorithms (sometimes also GLA) have possibly
found the global optimum. In addition to this, the
results for the largest cluster size differ only in the
second decimal. In general, the conclusions made for
gray-scale images hold rather well for SS1 and SS2,
too. For example, the application of GLA iterations is
vital and the use of tabu list is of little help. Moreover,
the original partitioning-based variant (without GLA)
with random modifications is inefficient.

5. CONCLUSIONS

A tabu search algorithm for the codebook genera-
tion problem in VQ was proposed. The key question

1146 P. FRA® NTI et al.

is the definition of neighboring solution. Two different
approaches were studied: a codebook- and a par-
titioning-based. The most effective modification, how-
ever, was the inclusion of GLA iterations. In a sense,
the tabu search algorithm first makes non-local
changes to the codebook which is then fine-tuned by
GLA. The inclusion of GLA iterations reduces the
search space so that only reasonable solutions will
ever be considered. The use of tabu list was of second-
ary importance.

In general, the results of the proposed algorithm
were promising. The MSE-values were 20% lower
than those of GLA on average. For gray-scale images,
simulated annealing was slightly better (2—5%), but in
the case of binary images the tabu search gave clearly
better results. The main drawback of the algorithm is
the high running time. If time is a critical factor, GLA
and other faster methods (fast PNN for instance) are
more attractive alternatives.

It was also noted that all tested algorithms were
relatively robust to the random initialization. In case
of image data, none of the algorithms was able to
make remarkable improvement by repeating the
search from a new starting point. This gives a slight
edge to the tabu search approach since it did not
converge. Thus, better results can be reached by in-
creasing the computing resources.

6. SUMMARY

In the present paper we study the codebook genera-
tion of vector quantization (»Q). The aim is to find
a set of representative vectors (called codevectors, or
codebook) for a given training set minimizing the aver-
age distortion. The codebook generation resembles
the clustering problem, where the objects of clustering
are K-dimensional training vectors in an Euclidean
space. The aim of the algorithm, however, is to create
a codebook; the clusters are of secondary importance.
Iterative algorithms, such as generalized ¸loyd algo-
rithm (GLA), are applicable to the problem. The local-
ized search strategy in GLA is based on a greedy
heuristic where the minimization function is never
allowed to increase. Thus, the algorithm will get stuck
to the first local minimum found.

¹abu search is an alternative approach with the
following potential improvements: (1) the next solu-
tion is chosen among several candidates, (2) the search
is allowed to make suboptimal moves, and (3) the use
of tabu list. The use of several candidates directs the
search towards the highest improvement in the optim-
ization function value. Suboptimal moves, on the
other hand, allow the search to continue past local
minima. The use of tabu list prevents the search from
returning to solutions that have been recently visited.
This forces the search into new directions instead of
the local minima and their neighborhoods.

In the present paper we propose a tabu search
algorithm for the codebook generation problem.

A similar algorithm has been recently proposed for
the clustering problem.(5) The problem size, however,
is significantly larger in VQ which makes the code-
book generation problem less of a combinational na-
ture. Therefore, an algorithm applicable to this kind
of data has to include more deterministic reasoning to
direct the search than randomizing alone, as in refer-
ence.(5)

The key question is the definition of neighboring
solution. A simple randomizing algorithm generates
new candidates by replacing a set of codevectors by
randomly chosen training vectors. Significant im-
provement is achieved if each candidate solution is fed
to GLA which outputs the nearest local minimum. In
a sense, the tabu search algorithm first makes non-
local changes to the codebook which is then fine-
tuned by GLA. The inclusion of GLA iterations
reduces the search space so that only reasonable
solutions will ever be considered.

The greatest deficiency of the tabu search algorithm
is high running time. The total number of candidate
solutions generated is much higher than that of GLA.
However, the result of the tabu search keeps improv-
ing within the iterations, unlike in GLA, where the
search gets trapped into the first local minimum. The
results of the proposed algorithm are 20% better than
those of GLA, and comparable to simulated annealing.
For binary images, the proposed algorithm gives the
best MSE-values.

Acknowledgements—The work of Pasi Fränti was supported
by a grant of the Academy of Finland.

REFERENCES

1. A. Gersho and R. M. Gray, »ector Quantization and
Signal Compression. Kluwer Academic Publishers,
Dordrecht (1992).

2. Y. Linde, A. Buzo and R. M. Gray, An algorithm for
vector quantizer design, IEEE ¹rans. Commun. 28,
84—95 (1980).

3. J. B. McQueen, Some methods of classification and
analysis of multivariate observations, Proc. 5th Berkeley
Symp. Mathemat. Statist. Probability, vol. 1, pp. 281—296.
Univ. of California, Berkeley, U.S.A. (1967).

4. F. Glover and M. Laguna, Tabu search, in Modern
Heuristic ¹echniques for Combinatorial Problems,
R. C. Reeves, ed., pp. 70—150. McGraw-Hill, Berkshire
(1995).

5. K. Al-Sultan, A tabu search approach to the cluster-
ing problem, Pattern Recognition 28, 1443—1451
(1995).

6. P. Fränti, T. Kaukoranta and O. Nevalainen, On
the design of a hierarchical BTC-VQ compression sys-
tem, Signal Processing: Image Commun. 8, 551—562
(1996).

7. N. M. Nasrabadi and R. A. King, Image coding using
vector quantization: a review, IEEE ¹rans. Commun. 36,
957—971 (1988).

8. X. Wu and Y. Fang, Fast bintree-structured image coder
for high quality subjective quality, Proc. Data Compres-
sion Conf., Snowbird, Utah, pp. 284—293 (1994).

9. K. Zeger and A. Gersho, Stochastic relaxation algorithm
for improved vector quantiser design, Electron. ¸ett. 25,
896—898 (1989).

Tabu search algorithm 1147

About the Author—PASI FRA® NTI was born in Vaasa, Finland, November 1967. He received the M.Sc. and
Ph.D. degrees in Computer Science from the University of Turku, Finland, in 1991 and 1994, respectively.
From 1992 to 1995 he was with the University of Turku. Currently he is a researcher funded by the
Academy of Finland. His primary research interests are in image processing, compression and vector
quantization

About the Author—JUHA KIVIJA® RVI was born in Salo, Finland, August 1973. He received his M.Sc.
degree in computer science from the University of Turku, Finland, in 1998. Currently, he is a doctoral
student in the Department of Computer Science, University of Turku, Finland. His research interests are in
vector quantization and clustering techniques.

About the Author—OLLI NEVALAINEN was born in Kankaanpää, Finland, April 1945. He received the
M.Sc. and Ph.D. degrees in 1969, and 1976, respectively. From 1972 to 1979, he was a lecturer in the
Department of Computer Science, University of Turku, Finland. Since 1976 he is an Associate Professor in
the same department. He lectures in the areas of data structures, algorithm design and analysis, compiler
construction and operating systems. His research interests are in the broad field of algorithm design,
including image compression, scheduling algorithms and production planning.

10. J. Vaisey and A. Gersho, Simulated annealing and
codebook design, Proc. ICASSP, pp. 1176—1179
(1988).

11. N. M. Nasrabadi and Y. Feng, Vector quantization of
images based upon the Kohonen self-organization fea-
ture maps, Neural Networks 1, 518 (1988).

12. W. H. Equitz, A new vector quantization clustering
algorithm, IEEE ¹rans. Acoustics Speech Signal Process.
37, 1568—1575 (1989).

13. H. Späth, Cluster Analysis Algorithms for Data Reduction
and Classification of Objects. Ellis Horwood Limited,
West Sussex, U.K. (1980).

1148 P. FRA® NTI et al.

