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Abstract 

This paper presents a novel method for voice activity detection (VAD) by combining decisions of 
different VAD. To evaluate the proposed technique we include several well known industrial methods to 
compute VAD decisions on three data sets of varying complexity. We use the outputs of these methods as 
an input for our decision-level fusion algorithm to produce new VAD labeling and compare them to the 
original results. Our experiments indicate that the fusion is useful especially when low speech miss rate is 
desired. The best results were obtained on the most challenging Lab dataset, with low false alarm rate and 
comparable miss rate. 

1. Introduction 

Voice activity detection (VAD) is a classification task that aims at partitioning a given speech sample into 
speech and non-speech segments. It has an important role in various modern speech processing methods 
and telecom standards [1]. While being a relatively well studied problem, acceptable solution that works 
in different acoustic conditions is yet to be found. 

A large number of VADs have already been proposed. The simplest methods use features such as zero 
crossing rate, frame energy or spectral entropy to distinguish non-speech frames from speech frames. 
Other more sophisticated methods use statistical methods to model background noise characteristics and 
utilize them in decision making [2-4]. However, different methods tend to work inconsistently in varying 
acoustic conditions or noise levels. For example, the G729 standard [5] method works usually well in 
moderate noise conditions but provides unacceptable speech detection accuracy with increased noise 
level. Another example is AMR [6] that works best in very low SNR noise conditions but its conservative 
behavior degrades its non-speech detection accuracy [9]. Thus, it seems natural to ask whether such 
complementary information in different methods can be utilized for high-accuracy voice activity 
detection by fusion. Even though a few studies have been done to combine different features to improve 
VAD accuracy [13], we are unaware of comprehensive study of decision-level combination of different 
VAD algorithms. In this paper, we propose to use majority voting over short-term temporal contexts to 
combine different VAD methods. Our base method pool consists of the following methods found in 
various industrial standards: ITU G729B [5], ETSI AMR option 1 and 2 [6], ETSI AFE [7], emerging 
Silk codec used in Skype [8] and a simple energy method [14].  In the experiments, we compare these 
different VAD methods and their fusion on three independent data sets. The first data set (NIST05), a 
subset of the NIST 2005 speaker recognition evaluation (SRE) corpus, is representative data in telephone-
based speaker recognition. The second data set (Bus stop) consists of speech data found in a speech user 
interface application. Finally, the third data set (Lab) consists of data recorded using low-quality 
microphone in far-field recording setting, and it emulates wiretapping material found in forensics. 
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2. Base classifiers: the individual VADs 

2.1. Energy VAD 

The energy VAD is representative method of a simple non-realtime speech detector used often in speech 
technology research [14]. We first compute the energies of all frames in a given speech utterance. The 
detection threshold is then set to 30 dB below the maximum frame energy and, additionally, minimum 
absolute energy threshold of -55 dB is used for rejecting frames with very low energy. These thresholds 
were originally determined to maximize speaker recognition accuracy on the telephony NIST 2005 and 
2006 speaker recognition evaluation corpora  [15]. 

2.2. G729 

As an extension to G729, ITU has also published Annex B in order to support discontinuous transmission 
(DTX) by means of VAD. The G729 VAD operates on 10ms frames and uses background noise model 
and the following four parameters for decision making [1, 5]: 

 a full-band energy difference between input signal and noise model 

 a low-band energy difference between input signal and noise model 

 a spectral distortion 

 a zero crossing rate difference between input signal and noise model 

The algorithm has shown to be robust in moderate noise conditions but yields low speech detection rate 
with increasing noise level [9] 

2.3. AMR 

AMR option 1 decomposes signal into nine subbands using filterbanks with emphasis on higher 
frequency bands. For each subband, it calculates energy and signal-to-noise ratio (SNR) estimates. The 
sum of SNRs is then compared with adaptive threshold to make a VAD decision, followed by a hangover 
scheme [1, 6]. AMR option 2 is similar to option 1 but it uses FFT instead of filterbanks, has 16 
subbands, and adapts background noise energy for every band during nonspeech frames [1, 6]. In general, 
AMR works well in varying noise conditions. However, its conservative behavior degrades its non-speech 
detection accuracy [9].  

2.4. AFE 

ETSI advanced feature extraction (AFE) algorithm uses simple energy-based voice activity detection with 
forgetting factor for updating noise estimate [7]. AFE first computes logarithmic energy of 80 samples of 
the input signal. It is used to compute mean energy and later these two energy values are used to estimate 
frame as silence or speech [7].  

2.5. Silk 

Silk is a speech codec developed by Skype [8] for voice over IP communications. It uses VAD algorithm 
to support discontinuous transmission (DTX) mode where silent frames are dropped from transmission 
channel. Silk uses a sequence of half-band filterbanks to split the signal in four subbands. For every 
frame, the signal energy and signal-to-noise ratio (SNR) per subband are computed. VAD decision is then 
made based on the average SNR and a weighted average of the subband energies [8].  

3. Decision-level combination of the base VADs 

Most of the standard VADs - as reviewed in the previous section - produce hard decisions (speech / non-
speech labels) and therefore, decision-level combination of VADs is the most natural choice. Selecting an 
appropriate decision fusion is a research topic in itself [12]. However, to our knowledge, fusion 
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techniques have not been yet widely applied to voice activity detection problem. There are only a few 
attempts to utilize decision fusion from different classifiers. In [13] the authors propose two 
complementary systems whose outputs are merged using fusion. The first system uses non-Gaussianity 
score feature based on normal probability testing and the second system a histogram distance score 
feature to detect changes in the signal through template-based similarity measure between adjacent frames 
[13].  

The reason why decision-level combination of VADs has received little attention is because the industrial 
VADs are mainly used in real-time applications. Having several classifiers running at the same time can 
be a computationall burden. However, fusion technique has potential uses in non real-time applications 
like forensic data analysis, voice search and other speech processing tasks that do not require real-time 
operation. 

For our experiments we select two basic strategies: majority voting and temporal context voting. We 
describe these algorithms in more details in the following subsections. 

3.1. Majority Voting 

The idea of majority voting is simple: for each frame we collect decisions from N base VADs and then 
classify each frame as majority of methods report. Basically the more methods vote for certain 
classification more likely it will be the correct one. 

3.2. Including Temporal Context to Majority Voting 

As speech-to-non-speech changes occur slowly compared to usual frame duration of about 15 ms, it is 
useful to smooth results by utilizing contextual information [11]. This is often implemented using a 
hangover scheme [11], which is a state transition machine that helps in correcting mislabeled data. For 
example, in the VAD output 00100100000, the two isolated ones are most likely mislabeled than short 
speech segments.  

A hangover scheme is usually experimentally determined using method-dependent ad hoc rules. The goal 
in the proposed temporal context voting is the same as in hangover – to correct erroneous frame decisions 
– except that we now combine temporal information from several VADs. This is done by extending 
majority voting over a context of C frames. Thus, with N base VADs, majority voting is carried out on the 
concatenated decision vector of N x C binary decisions. With the context size C=1, it reduces back to 
simple frame-level majority voting rule as a special case. 

As an example consider N=3 with giving the following frame-level decisions: 

VAD1    0 1 1 0 0 0 ... 

VAD2    0 1 0 1 0 1 ... 

VAD3    0 0 1 1 1 0 ... 
The decision function (for context size C=3) for the second and third frames on these vectors is the 
following: 

Fusion(2) = round( (0+0+0 + 1+1+0 + 1+0+1) / 9) = 0 

Fusion(3) = round( (1+1+0 + 1+0+1 + 0+1+1) / 9) = 1. 

4. Experimental Setup 

4.1. Data Sets 

In  the experiments, we use the datasets listed in Table 1. 
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The first dataset is a subset of the NIST 2005 speaker recognition evaluation (SRE) corpus, consisting of 
conversational telephone-quality speech with 8 kHz sampling rate [10]. We have selected this corpus to 
evaluate algorithms on telephone quality speech material. NIST SRE corpora are commonly used for 
evaluating speaker verification algorithms where VAD plays an important role.  

The second data set, Bus stop, consists of timetable system dialogues recorded in 8 kHz sampling rate. 
The data mainly contains human speech commands that are mainly very short, as well as synthesized 
speech that provides rather long explanations about bus schedules. This data is a good example of a 
typical speech dialogue application [16]. 

The third dataset, Lab, consists of a one long continuous recording from the lounge of our laboratory in 
44.1 kHz, using a low-quality Labtec PC microphone not specifically designed for far-field recordings. 
People are often passing our laboratory lounge, which causes false alarms due to, for instance, opening 
and closing the doors. In addition, our pantry is located in the same facility, so other background sounds 
include, for instance, sounds from a water tap and microwave oven. The distance of the microphone to the 
speakers is several meters and the signal-to-noise ratio of these recordings is very low. The goal of this 
material is to simulate wiretapping material found in forensics or audio surveillance applications, where it 
is not always practical to install a high-quality microphone to facility being monitored. Due to the 
massive amount of data in such application – imagine continuous recording for several days in a row – a 
VAD plays an important role in helping the forensic investigator to rapidly locate speech segments. 

 NIST 2005 Bus stop Lab 
Recording equipment Telephone Telephone Labtec PC Microphone 
Total amount of data 12 h 23 min 2h 48min 4 h 12 min 

Amount of speech 49% 80% 7% 

Table 1. Data sets used in the experiments and their properties 

4.2. Measuring VAD Accuracy 

We measure VAD accuracy in terms of miss rate (MR) and false alarm rate (FAR) defined as percentage 
of all actual speech or silence frames that were misclassified as silence or speech respectively. 

%100*
TPFN

FN
MR


                (1) 

%100*
TNFP

FP
FAR


  (2) 

Here, TP (true positive) and TN (true negative) are the number of real speech and non-speech frames in 
the evaluation dataset and FN (false negative) and FP (false positive) are the number of misclassified 
speech and non-speech frames, respectively. Low miss rate for algorithm corresponds to its ability to 
correctly identify speech frames, whereas low false acceptance rate corresponds to better non-speech 
detection properties of the algorithm.   

5. Results and Discussion 

We first utilize the NIST05 data set for selecting the best combination of VADs. The miss and false alarm 
rates are shown in Table 2 for different selection of base VADs and the context size C. 
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Combined VADs C=1 C=3 C=5 C=7 C=9 C=11 
G729, AMR1, AMR2 23.5 14.4 12.9 12.1 11.4 10.9 
G729, AMR1, SILK 23.5 13.4 11.1 9.62 8.60 7.81 
G729, AMR2, SILK 21.3 11.6 9.95 8.78 7.91 7.24 
SILK, AMR1, AMR2 22.1 13.8 11.6 10.2 9.18 8.38 

 

Table 2. Miss rates (%) for NIST05 with varying context size (C, frames) and base VAD pool. 

Combined VADs C=1 C=3 C=5 C=7 C=9 C=11 
G729, AMR1, AMR2 38.2 54.1 57.3 59.8 61.8 63.6 
G729, AMR1, SILK 39.1 61.4 66.3 70.2 73.2 75.7 
G729, AMR2,  SILK 44.5 65.4 69.5 72.7 75.2 77.4 
SILK, AMR1, AMR2 42.4 65.3 71.6 75.9 79.2 81.7 

Table 3. FAR (%) for NIST05 with varying context size (C, frames) and base VAD pool. 

Combining G729, AMR2 and SILK produces the best miss rate using context of C=11 frames, whereas 
combining G729, AMR1 and AMR2 produces the smallest false alarm rate with a simple majority voting 
(context size C=1).  

In the following, we evaluate how these two combination strategies generalize to our other datasets. Table 
4 summarizes the miss rates for the combination of G729, AMR2 and Silk with context of C=11 frames 
(later referred as Fusion 1). Table 5, in turn, shows the result for combination of G729, AMR1 and AMR2 
with simple majority voting, e.g. C=1 (later referred as Fusion 2). We also show corresponding MR and 
FAR for both fusion methods to evaluate how these methods affect both metrics. 

Corpus Energy G.729 AMR1 AMR2 Silk AFE Fusion 1 Fusion 
2 

NIST05 63.9 22.1 25.0 19.1 20.0 17.0 7.24 23.5 
Bus stop 33.3 12.5 9.26 11.5 14.7 9.97 1.01 16.0 

Lab 70.9 67.8 63.8 46.6 37.2 33.0 9.7 59.3 

Table 4. Miss rates (%) comparison for all methods 

Corpus Energy G.729 AMR1 AMR2 Silk AFE Fusion 1 Fusion 
2 

NIST05 14.9 40.0 34.4 46.8 50.3 55.5 77.4 38.2 
Bus stop 26.6 59.3 48.0 46.8 62.8 43.3 94.7 36.7 

Lab 30.8 10.8 8.5 12.2 37.2 27.3 80.0 9.47 

Table 5. False alarm rates (%) comparison for all methods 

5.1. Discussion 

The first fusion strategy (Fusion 1) achieves very low miss rates but increases false alarm rates unusably 
high. The second fusion strategy with a simple frame-level majority voting (Fusion 2), on the other hand, 
yields comparable accuracy to the base VADs; it gives the second smallest false alarm rates on the Bus 
stop and Lab data sets, and third smallest false alarm rate on the NIST '05 data. The miss rates, in turn, 
are the 5th on NIST '05 and Bus stop and 4th on Lab. Overall, the most promising results are obtained on 
the extremely noisy Lab data set. 
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6. Conclusion 

In this paper we studied decision-level combination of several well-known voice activity detectors. 
According to our experiments, simple majority voting gives comparable or better accuracy compared to 
standard VADs. Using temporal information was not found successful in our experiments. The best 
results were obtained on the most challenging Lab dataset, with low false alarm rate and comparable miss 
rate. Accuracy might be further improved by trainable fusion such as weighted voting, so that accuracies 
of the individual VADs are taken into account. This is left as a future work. 
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