
Pattern Analysis & Applications (1999)2:285–291
 1999 Springer-Verlag London Limited

Vectorising and Feature-Based Filtering for
Line-Drawing Image Compression

P. Fränti1, E. I. Ageenko1 and A. Kolesnikov2

1Department of Computer Science, University of Joensuu, Joensuu, Finland; 2Institute of Automation and
Electrometry, Russian Academy of Sciences, Novosibirsk, Russia

Abstract: A three-stage method for compressing bi-level line-drawing images is proposed. In the first stage, the raster image is vectorised
using a combination skeletonising and line tracing algorithm. A feature image is then reconstructed from the vector elements extracted.
In the second stage, the original image is processed by a feature-based filter for removing noise in the objects out-line. This improves
image quality and compression performance. In the final stage, the filtered raster image is compressed using a standard compression
technique, JBIG. For a set of test images, the method achieves a compression ratio of 40:1, in comparison to 33:1 of JBIG.

Keywords: Filtering; JBIG; Line-drawing images; Near-lossless compression; Preprocessing; Vectorising

1. INTRODUCTION

Lossless compression of bi-level images has been well studied
in the literature, and several standards already exist [1]. In
JBIG the image is coded pixel-by-pixel using a context-based
probability model and arithmetic coding [2]. The combination
of already coded neighbouring pixels defines the context. In
each context, the probability distribution of the black and
white pixels is adaptively determined, and the pixel is then
coded by binary arithmetic coder, namely the QM-coder [3].

JBIG achieves compression ratios from 10 to 50 for a
typical A4-sized image. The pixelwise dependencies are well
used, and there is not much room for improvement. Remark-
able improvement has been achieved only by specialising to
some known image types and exploiting global dependencies.
For example, the methods in Witten et al [4] and Howard
[5] include pattern matching techniques to extract symbols
from text images. The compressed file consists of bitmaps
of the library symbols coded by a JBIG-style compressor,
the location of the extracted marks as offsets, and a pixelwise
coding of the matched symbols using a two-layer context
template.

One way to improve compression is to preprocess the
image by filtering for noise removal. Filtering reduces irregu-

Received: 25 November 1998
Received in revised form: 1 April 1999
Accepted: 12 April 1999

larities in the image caused by noise, and in this way makes
the image more compressible without affecting the image
quality. Noise appears in the image as randomly scattered
noise pixels (additive noise), and as content-dependent noise
distorting the contours of printed objects (lines, characters)
by making them ragged. The noise level may be low enough
not to significantly detract from the subjective quality, but
it introduces unnecessary details that decrease the com-
pression performance.

Several methods have been considered for image pre-
processing by analysing the local pixel neighbourhood
defined by a filtering template [6–8]. These filters (logical
smoothing, variations of median filtering, isolated pixel
removal and morphological filters [9]) use a set of rules to
accept or reject the pixel, such as predefined masks or a
quantitative description of the local neighbouring area.
Recent research in mathematical morphology has shown
that morphological filtering can be used as an efficient tool
for pattern restoration in an environment with a lot of
additive noise [10–12]. Such approaches, however, are not
necessarily suitable for filtering content-dependent quantis-
ation noise. Another problem is that the filtering may
destroy fine image structures carrying crucial information if
the amount of filtering is not controlled.

We study content-based noise removal for line-drawing
images such as engineering drawings, cartographic maps,
architectural and urban plans and circuits (radio electrical
and topological) by using global spatial dependencies. This



286 P. Fränti, E. I. Ageenko and A. Kolesnikov

kind of image consists mainly of straight-line elements.
Global information is gathered from the image by extracting
line features, which are used in the filtering. The quality of
the filtering is controlled by allowing only isolated groups
of noise pixels to be changed. Objects that are not recog-
nised by the feature extraction process are left untouched.
The filtering is applied as part of an image compression
system; the compression remains near-lossless because any
uncontrolled loss in the image quality cannot appear.

We propose a three-stage compression method as outlined
in Fig. 1. In the first stage (vectorising), vector elements are
extracted from the image using raster-to-vector conversion.
An equal size feature image is created from the extracted
line segments to approximate the input image. In the second
stage (filtering), the original raster image is preprocessed by
a feature-based filtering for improving image quality. The
feature image is used as a semantic model of the image
consisting of non-local information about the image that
cannot be used by using local spatial filters. In the third
stage (compression), the filtered image is compressed by JBIG.
The feature file is used only in the compression phase, and
it therefore does not need to be stored in the compressed file.

Feature extraction and filtering are considered as prepro-
cessing steps, and they are invisible in the decompression
phase. The method uses a standard image compression
component, JBIG. The resulting output files are therefore
standard JBIG files, and the decompression is exactly the
same as in JBIG. The method could also be used as a
separate plug-in for various existing compression techniques,
such as ITU Group 3 and Group 4 [13,14], and can thus
be easily integrated into any existing compression method.

The vectorising is an essential part of the new method,
but the method itself is independent of the chosen vectoris-
ing component. The quality of the vectorising affects only
the amount of compression improvement that can be achi-
eved; the quality of the output image is controlled by the
filtering method. The vectorising and filtering parts can be
implemented as optional components, and used only on-
demand. Details of the three stages are discussed in the
following sections.

Fig. 1. Block diagram of the three-stage compression method.

2. FEATURE EXTRACTION USING
VECTORISING

The vectorising process is outlined in Fig. 2. We apply the
method described by Kolesnikov et al [15]. The motivation
is to extract semantic information from the image in the
form of rigid line segments. Each line segment is represented
as its two end-points, and as the width of the line. The
vector features are not stored in the compressed files, but
the vectorising is considered as an intelligent preprocessing
stage. A feature image is reconstructed from the vector

Fig. 2. Block diagram of vectorising.



287Vectorising and Feature-Based Filtering for Line-Drawing Image Compression

representation and used in the filtering. Details of the
vectorising process are described in the following sub-
sections.

2.1. Skeletonising

The black-and-white raster image is first processed by a
Distance Transform (DT) defined by 4-connectivity. We use
the fast and memory efficient implementation of Kolesnikov
and Trichina [17], which processes the image in smaller
fragments. This eliminates the need for two passes over the
image. The resulting distance labelled image is then thinned
using the one-pass algorithm of Arcelli and di Baja [16].
Skeletal pixels are recognised by checking the 3 3 3 neigh-
bourhood of each pixel. The pixels satisfying one of the so-
called ‘multiplicity conditions’ are marked as skeletal pixels.
The result of the algorithm is a width-labelled skeletal
image.

2.2. Extraction of Vector Elements

The vector elements are extracted from the skeletal image
using a fast and simple line-tracing algorithm. The branches
of the skeleton are traced pixel-by-pixel from one delimiter
(line end or crossroad) to another, and stored as chain
codes. The direction for tracing is derived from a precalcu-
lated, two-dimensional Look-Up Table (LUT). The first
index for accessing the LUT is the previous direction, and
the second index is constructed from the 3 3 3 neighbouring
pixel values of the current pixel. The resulting chain code
is then processed to produce a piecewise-linear approxi-
mation of the branch with zero error [18]. The width of
each line segment is calculated as the average width label

Fig. 3. Block diagram of the noise removal procedure.

of the skeletal pixels in the segment. The extracted segments
of the same branch are stored as a chain of vector elements.

2.3. Pruning and Analysis

The extracted vector chains are further analysed for con-
structing larger elements. There are four classes of vector
chains, each described by the two end-points and the width
of the line:
I
Single point: (x1,y1,w1).
I Single vector: (x1,y1,w1), (x2,y2,w2).
I Chain of n vectors: {(xk,yk,wk) u k = 1,. . .,n+1}.
I Ring of n vectors: {(xk,yk,wk) u k = 1,. . .,n+1} where x1 = xn

and y1 = yn.

Vector elements are combined (pruned) from primitives
having a common end-point and the same orientation. Small
gaps between the lines are filled, and false branches are
removed. The remaining vector chains are then classified as
either ‘good’ (linear) or ‘bad’ (noise and non-linear). The
good chains are stored by their coordinate differentials using
a variable-length code.

3. FEATURE-BASED FILTERING

In the second stage, the original image is processed by a
feature-based filter for removing noise near the borders of
the extracted line elements. This improves the image quality
and results in a more compressible raster image. The filtering
is based on a noise removal procedure as shown in Fig. 3.
A mismatched image is constructed from the differences

Fig. 4. Block diagram of the three-stage filtering procedure.



288 P. Fränti, E. I. Ageenko and A. Kolesnikov

between the original and the feature image. Isolated mis-
matched pixels (and pixel groups of up to two pixels) are
detected, and the corresponding pixel values in the original
image are changed. This removes additive noise and
smoothes the edges along the detected line segments.

The noise removal procedure is successful if the feature
image is accurate. The vectorising method, however, does
not always provide the exact width of the lines. The noise
removal procedure is therefore iterated three times, as shown
in Fig. 4. In the first stage, the feature image is applied; in
the second stage the feature image is dilated; and in the
third stage it is eroded before being input into the noise

Fig. 5. Illustration of the three-stage filtering procedure.

removal procedure. This compensates for most of the inac-
curacies in the width detection. See elsewhere [9,11] for
details of the morphological dilation and erosion.

The stepwise process is demonstrated in Fig. 5 for a small
image sample. Most of the noise is detected and removed
in the first phase. However, in some cases there are too
many mismatched pixels grouped together because of an in-
correct estimation of the line width, and therefore no pixels
can be filtered. Even if these inaccuracies have a visually
unpleasant appearance in the feature image, they do not
necessarily prevent effective filtering. For example, the
middle diagonal line in the feature image is too wide in



289Vectorising and Feature-Based Filtering for Line-Drawing Image Compression

some places, and the pixels are therefore not filtered in the
first two stages. The eroded version, however, gives a more
accurate approximation of the line, and more noise pixels
can be detected and filtered in the third stage.

4. CONTEXT-BASED COMPRESSION

We apply sequential JBIG as the compression component,
but basically there are no restrictions on using any other
compression method. For example, the progressive JBIG [2]
or ITU Group 3 or 4 could also be used. In sequential JBIG
the pixels are coded by adaptive arithmetic coding, namely
the QM-coder, on the basis of their probability estimates in
respect to the context-based model. The context is defined
by the combination of already coded neighbouring pixels.
The adaptation process starts from scratch, and statistics are
updated after each pixel is coded. It allows the model to
adapt dynamically to the image during the coding process.
The probability estimation and statistics update are derived
from arithmetic coder renormalisation and implemented as
a state automaton (see Pennebaker and Mitchell [3] for
details).

5. TEST RESULTS

We compare the proposed method with two existing com-
pression standards, JBIG and ITU Group 4. In JBIG we use
the basic implementation with a three-line, ten-pixel context
template with a default position of the adaptive pixel. ITU
Group 4 is the older facsimile standard based on the two-
dimensional READ-code [14]. We compress a set of 28 test
images, divided into four classes: electrical circuits, engineering
drawings, cartographic maps and architectural and urban plans
(see Fig. 6). The images are taken from real-life applications,
and amount to about 43 Mbytes in uncompressed form. The
format of the images varies from A4 to A2 (see Table 1 for
details of the test set). The compression results are summar-
ised in Table 2. The compressed vector file represents the

Fig. 6. Sample test images taken from each category.

result of the vectorising when the chain-coded elements are
compressed by ZIP (a commonly used file compression
method). The vector representation is not space efficient
because it cannot represent small objects efficiently. The
feature-based filtering with JBIG can compress the raster
images using less than half of the size required by the vector
file. The corresponding compression ratios (in total) are
15:1 for the vector file, 33:1 for JBIG and 40:1 for the
proposed method. At the same time, the quality of the
decompressed images is visually the same as the original,
since only isolated groups of mismatch pixels are filtered.
The quality is sometimes even better, because the filtered
pixels are mainly quantisation noise near the borders of
line segments.

The preprocessing slows down the encoding, which is
now about 2.7 times slower than without the preprocessing
(see Fig. 7). The throughput of our prototype software is
about 6.5 kilobytes of raw data per second in a 200 MHz
Pentium processor. Currently, the bottleneck of the method
is the filtering stage, which requires several separate passes.
Although it is a good approach for modular implementation,
the filtering could be implemented as a one-pass procedure,
and essential speed-up would be gained. The vectorising
stage itself is rather quick, requiring only 10% of the total
running time. The decompression, on the other hand, is as
fast (or as slow) as the compression component.

Finally, we consider existing filtering techniques when
adopted for the same near-lossless context. We apply the

Table 1. Statistics of the test set

No. of Total size Smallest Largest
images

Circuits 6 5.8 Mbytes 1480 × 2053 5522 × 4039
Drawings 8 13.2 Mbytes 1765 × 1437 7296 × 4903
Maps 5 12.9 Mbytes 3100 × 3475 6608 × 4677
Plans 9 10.0 Mbytes 1253 × 970 5888 × 5888

TOTAL 28 42.8 Mbytes – –



290 P. Fränti, E. I. Ageenko and A. Kolesnikov

Table 2. Summary of the compression results (in bytes)

Original raster Compressed ITU Group 4 Filtering + JBIG Filtering + JBIG
image vector file Group 4

Circuits 6,092,892 268,953 220,430 193,702 150,119 122,799
Drawings 13,807,484 488,210 413,732 397,028 254,917 231,715
Maps 13,476,580 1,720,864 1,040,105 858,243 706,080 557,402
Plans 10,460,683 429,792 353,375 336,205 206,010 184,447

TOTAL 43,837,639 2,907,819 2,027,642 1,785,178 1,317,126 1,096,363
Ratio – 15.1 21.6 24.6 33.3 40.0

Fig. 7. Relative running times of the different components. Decom-
pression time is virtually equal to the compression time (white slice).

traditional Median filter [13], and a combination of three
morphological filters: opening, closing and annular filter [11].
The results of the filtering are fed into the noise removal
process shown in Fig. 3 to allow only isolated groups of
noise pixels to be filtered. In this way, the compression
method remains near-lossless. The compression improvement
due to these filtering methods are summarised in Fig. 8.

Fig. 8. Comparison of the various filtering methods when plugged-
in with the two compression standards. The numbers are the relative
reduction in file size when compressing the entire image set.

6. CONCLUSIONS

A three-stage compression method for compressing bi-level
line-drawing images has been proposed. The method uses
feature-based filtering for image preprocessing. The filtering
removes additive and quantisation noise from the original
image, restores image quality, and in this way results in a
better compression performance. The actual compression is
performed by JBIG, but any other existing method could be
used. For a set of test images, the method improves the
compression ratio by about 20% in comparison to JBIG.

A drawback of the method is that the compression phase
is now more complex, and the method needs several passes
over the image. Fortunately, vectorising can be performed
rather quickly. Moreover, the vector features are not stored
in the compressed file, and the process is therefore invisible
in the decompression phase. The method can thus be con-
sidered as a preprocessing step to existing compression tech-
niques, and standard decompression routines can be applied.

The method could be developed further by improving the
quality of the vectorising. The width of the lines was
sometimes mispredicted, resulting in a visually disturbing
feature image. This does not degrade the output image
quality, but it may weaken the compression performance.
This was partially compensated for by the three-stage fil-
tering process, which makes the noise removal less sensitive
to the inaccuracies in the vectorising part.

A mixed vector-raster image representation could also be
used by storing the extracted vector features in the com-
pressed file. The vector information can be used in the
compression by having a two-layer context template with
pixels both from the original and from the feature images.
Such an approach was considered by Fränti et al [19], but
the experiments showed that the overhead from storing
the vector elements usually outweighs the extra benefit in
compression. The vector features, on the other hand, could
also be used in image indexing and retrieval, but this is a
point for future studies.

Acknowledgements

The work of Pasi Fränti was supported by a grant from the
Academy of Finland.



291Vectorising and Feature-Based Filtering for Line-Drawing Image Compression

References

1. Arps RB, Truong TK. Comparison of international standards
for lossless still image compression. Proc IEEE, 1994; 82:889–899

2. JBIG, Progressive Bi-level Image Compression, ISO/IEC Inter-
national Standard 11544, ITU Recommendation T.82, 1993

3. Pennebaker WB, Mitchell JL. JPEG Still Image Data Com-
pression Standard. Van Nostrand Reinhold, 1993

4. Witten IH, Moffat A, Bell TC. Managing Gigabytes: Compress-
ing and Indexing Documents and Images. Van Nostrand Rein-
hold, New York, 1994

5. Howard PG. Text image compression using soft pattern match-
ing. The Computer Journal 1997; 40 (2/3):146–156

6. Ting D, Prasada B. Digital processing techniques for encoding
of graphics. Proc IEEE 1980; 68 (7):757–769

7. Algazi VR, Kelly PL, Estes RR. Compression of binary facsimile
images by preprocessing and color shrinking. IEEE Trans Com-
mun 1990; 38 (9):1592–1598

8. Zhang Q, Danskin JM. Bitmap reconstruction for document
image compression. SPIE Proc Multimedia Storage and
Archiving Systems 1996; Boston, MA, Vol. 2916: 188–199

9. Serra J. Image Analysis and Mathematical Morphology. Aca-
demic Press, London, 1982

10. Schonfeld D, Goutsias J. Optimal morphological pattern resto-
ration from noisy binary images. IEEE Trans Pattern Analysis
and Machine Intelligence 1991; 13 (1):14–29

11. Heijmans HJAM. Morphological Image Operators. Academic
Press, Boston 1994

12. Dougherty ER, Astola J (eds). Nonlinear Filters for Image
Processing, SPIE Optical Engineering Press, 1997

13. CCITT, Standardization of Group 3 Facsimile Apparatus for
Document Transmission, ITU Recommendation T.4, 1980

14. CCITT, Facsimile Coding Schemes and Coding Control Func-
tions for Group 4 Facsimile Apparatus, ITU Recommendation
T.6, 1984

15. Kolesnikov AN, Belekhov VI, Chalenko IO. Vectorization of
raster images. Pattern Recognition and Image Analysis 1996; 6
(4):786–794

16. Arcelli C, di Baja GS. A one-pass two-operation process to
detect the skeletal pixels on the 4-distance transform. IEEE
Trans on Pattern Analysis and Machine Intelligence 1989; 11
(4):411–414

17. Kolesnikov AN, Trichina EV. The parallel algorithm for the
binary images thinning. Optoelectronics, Instrumentation and
Data Processing 1995; (6):7–13

18. Hung SHY, Kasvand T. Linear approximation of quantized thin
lines. In Haralick RM (ed) Pictorial Data Analysis, Springer-
Verlag, Berlin, 1983; 15–28

19. Fränti P, Ageenko EI, Kälviäinen H, Kukkonen S. Compression
of line-drawing images using Hough transform for exploiting
global dependencies, Proc JCIS 1998; 4: 433–436

Pasi Fränti received his MSc and PhD degrees in computer science in 1991 and
1994, respectively, from the University of Turku, Finland, where he was from
1992 to 1995. Currently he is a researcher funded by the Academy of Finland
with the University of Joensuu. His primary research interests are in image
compression, vector quantisation and clustering algorithms.

Eugene I. Ageenko received his MSc degree in applied mathematics from Moscow
State University, Uljanovsk, Russia in 1995. Currently, he is a doctoral student
in the Department of Computer Science, University of Joensuu, Finland, where
he is involved in research on document image compression.

Alexander Kolesnikov received his MSc degree in physics in 1976 from Novosi-
birsk State University, Russia. Currently he is a senior research scientist in the
Institute of Automatics and Electrometry, Russian Academy of Sciences, Novosi-
birsk, Russia. His primary research interests are in signal and image processing,
image compression and medical imaging.

Correspondence and offprint requests to: P. Fränti, Department of Computer
Science, University of Joensuu, Box 111, FIN-80101 Joensuu, Finland


