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Abstract
Tour planning is an important part of location-based applications. A tour planner provides an optimized path through places of
interests (targets) by minimizing the tour length or by applying some other constraints. It is usually formulated as a travelling
salesman problem (TSP) or vehicle routing problem (VRP). In the present study, we focus on how to choose the best starting
location in case of an open-loop TSP. We consider three different strategies for selecting the starting location and compare their
effectiveness with regard to optimizing tour length. If all targets are visible, most humans tend to start on the convex hull or from
the furthest point. However, there are also cases where not all targets are visible beforehand, and the only information given is the
bounding box. An optimum tour then typically starts from the corner or the shorter side of the box. Humans also have a strong
preference to start from a corner. A good strategy can result in the shortest tour, while a bad strategy can even add 20% to the total
tour length.
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Introduction

The increasing popularity of sharing personal contents includ-
ing photos, videos, and locations via social media has
triggered an increasing interest in multiple recommendation
systems. This interest has spawned an area of research that
plays a vital role in building smart tourism. A survey by
Borràs et al. (2014) reveals different web- and mobile-based
tourism recommendation systems whereas Gavalas et al.
(2014) focused mainly on comparing mobile-based recom-
mendation systems. These studies consider two challenges:
(1) how to collect the content from social media, i.e., the
places of interest (POI) for tourism, and (2) how to plan tours
between the collected POIs. In this work, we focus on the
second challenge by studying human problem-solving skills
when applied to tour planning.

Automatic recommendation systems aim at providing tours
by considering context awareness, personalization, and
suitability for a tourist trip. Yu and Chang (2009) and Lim
et al. (2018) provided personalized tours based on the interest,

need, and preference of the individual user. Majid et al. (2013)
studied recommendation systems utilizing the Flickr image
database. While the TripPlanner software (Chen et al. 2015)
adds the users’ preferred venues iteratively to a candidate tour,
eCOMPASS (Gavalas et al. 2015) favors public transit aiming
to minimize the environmental impact. Both systems can be
used for real-time tour planning. Keler andMazimpaka (2016)
provide safety routing by avoiding areas within a city that are
considered dangerous.

Several studies have also focused on optimizing tours using
explicit criteria. De Choudhury et al. (2010) recommended
trips based on popularity within a restricted time budget.
Gionis et al. (2014) provided tour recommendations based
on fixed start and end points while accounting for a specific
time or distance budget. Bolzoni et al. (2014) proposed
clustering-based tour planning. Mor and Dalyot (2018) stud-
ied how to calculate distance-optimized walking tours using a
bi-dimensional nearest neighbor (NN) algorithm based on
geo-tagged photos from social media. Li et al. (2017) com-
bined both travel time and ride comfort in their tour planner.
All these approaches considered the travel planning as an
orienteering problem (Vansteenwegen et al. 2011).

Classical orienteering explores the navigational skill of
participants. Mopsi orienteering (O-Mopsi) is a mobile ori-
enteering game (Fränti et al. 2017) where the targets are
real-world objects such as POIs in a smart tourism system.
Unlike classical orienteering, O-Mopsi does not have a pre-
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defined visiting order of the targets. Consequently, finding
the optimal tour corresponds to solving an open-loop trav-
elling salesman problem, which has been shown to be a
non-deterministic polynomial-time (NP) hard problem
(Papadimitriou 1977). This means that large-scale instances
cannot be solved by a computer in a reasonable amount of
time. However, small-scale instances can make a good puz-
zle for humans to solve. Other popular puzzle games that
are computationally hard are Sudoku (Ercsey-Ravasz and
Toroczkai 2012) and Minesweeper (Scott et al. 2011).

In practice, O-Mopsi players rarely manage to find the
optimum order but proceed by making heuristic choices.
The most typical heuristic is to go to the nearest unvisited
target until all targets have been visited. However, the effect

of using this approach is demonstrated in Fig. 1. If a player
starts at the leftmost target and follows this greedy nearest
target (NT) strategy, he/she would end up travelling 1 km
more than the optimum tour. Our experiments with O-Mopsi
games revealed that the greedy strategy in combination with a
random starting location can produce tours that are from
0.06% (best) to 109% (worst) longer than the optimum (me-
dian gap is 20%).

Another challenge for O-Mopsi players is that before the
game starts, they can only see the area (bounding box) con-
taining the targets but their exact locations are not visible
(Fig. 2). Therefore, they cannot plan their route beforehand,
and after the game has started, any time spent on planning is
added to the actual travelling time. This makes the planning
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Fig. 1 The tour length for a greedy nearest target strategy is 25% longer than the optimum tour length for the game named Helsinki downtown
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Fig. 2 O-Mopsi screenshots taken before and after starting to play
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even more challenging. An experienced player can do the
planning while moving but for most players, it is a compro-
mise of how much time to spend on planning and how much
for the actual movement. This encourages players to develop
different strategies for solving the order of visiting the targets
fast.

One important decision that players can make before
starting the game is to select their starting location. Although
the players do not know the actual locations of the targets, they
can speculate. Firstly, it makes no sense to start the gamewhile
you are far away from the game area; secondly, players can
make educated guesses about the target locations as the
bounding box essentially reveals the partial locations of at
least four targets: the longitudes of the left- and rightmost
targets and the latitudes of the top- and bottommost targets;
thirdly, the shape of the bounding box can provide hints about
the layout of the optimum tour. The player can, therefore,
move to the best strategic starting position before pressing
the game’s start button (Fig. 3).

In this paper, we study different strategies for selecting the
best starting point of an open-loop travelling salesman
problem and study how human players perform in this. We
statistically evaluate the goodness of various starting
locations. We present three strategies to make the choice and
compare their performances in terms of gap, aspect ratio, and
how frequently they result in the optimum tour.

Human Performance

Most research has studied human performance in solving the
TSP with varying problem size and the number of points on
the convex hull. Researchers have also focused on designing
algorithms that best match human performance.

Linear Relationship

Human skills in solving the TSP have been widely studied.
MacGregor and Chu (2011) reported that humans can outper-
form simple TSP algorithms for relatively small TSP instances.
Graham et al. (2000) showed that the time needed by a human
to solve a TSP is linearly proportional to the size of the problem
and that the gap to the optimal solution grows very slowly with
the number of targets. Dry et al. (2006) made similar observa-
tions and found that the average time needed by a human to
solve TSPs was linearly or near-linearly related to its size.
Vickers et al. (2003a) showed that human performance wors-
ened when more points were located on the convex hull.

Modeling Human Behavior

Several researchers have tried to model the human capacity
for problem-solving. MacGregor et al. (1999) compared three
heuristics and found that the convex hull heuristic was the best
fit for human approaches to solving the TSP. They suggested
that people solve problems using a global-to-local perceptual
process. According to this concept, they proposed an algo-
rithm (MacGregor et al. 2000). Graham et al. (2000) found
that none of the five algorithms they studied was an adequate
model of the mental process involved in human TSP solving.
Instead, they proposed a hierarchical algorithm, which is clos-
er to the psychological process of the human problem solver.
Pizlo et al. (2006) later refined this algorithm and showed that
it produces solutions that came very close to those produced
by humans.

Van Rooij et al. (2003) postulated the crossing avoidance
hypothesis. They claimed that humans are intuitively aware
that a tour with crossing trajectories is not optimal. Therefore,

Fig. 3 Challenge of the choosing starting position: situation before the playing starts (left) and the optimum order (right)

Fig. 4 Most likely orientation of an optimum tour: starting and ending at
the opposite (shorter) sides of the bounding box
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humans typically avoid crossing trajectories in their optimal
tour planning for the TSP. The same authors also claimed that
there was a lack of evidence to support the convex hull hy-
pothesis of MacGregor et al. (1999, 2000). Nevertheless,
MacGregor et al. (2004) re-stated that the convex hull hypoth-
esis provides a stronger correlation with human performances
than the crossing avoidance hypothesis.

In a detailed analysis of both the global-to-local and
local-to-global approaches, Vickers et al. (2003a, 2003b)

observed that humans typically prefer to solve a TSP
through the local-to-global approach such as the nearest
neighbor technique. Their results are also applicable to
the open-loop scenario. However, they found no evidence
that humans would prefer the convex hull approach in the
open-loop case. Graham et al. (2000) pointed out that the
applicability of the convex hull approach was limited to
the closed-loop TSP and did not extend to the open-loop
problem.

Fig. 5 Effect of the three strategies on the tour length for “SciFest 2014 short” game (Fränti et al. 2017)
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Fig. 6 The game area is the bounding box, which is segmented by a grid into 25 cells named as a corner, long and short edge, and middle
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Fig. 7 Solving the optimum order in the closed-loop case (left) and the open-loop case (right)
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Convex Hull

This heuristic constructs a convex hull of all unvisited points. At
each step, the next point is chosen such that the path never

crosses this convex hull. This process is repeated until all the
points have been visited. Macgregor et al. (2006) concluded that
the convex hull approachwas closer to human performance than
either of two other heuristics they examined (crossing avoidance
and nearest neighbor). They only used rather simple heuristics
yielding results that were inferior to results produced by humans.
While path length captures an important aspect of the solution, it
merely reflects the goodness of the algorithm and is not
indicative of human behavior. Macgregor et al. (2006) also mea-
sured the similarity of the paths by counting how many arcs the
solutions shared. It shows that the convex hull correlated better
to human behavior than to the plain nearest neighbor heuristic.
In addition, this heuristic is somewhat non-human and it would
be surprising if humans were constructing convex hulls in their
head while solving the problems. It would be more human-like
to apply the nearest neighbor heuristic with some level of addi-
tional intelligence to avoid crossings and “dead ends.” Wiener

Middle

Long edge Short edge

Kowloon Park

Kylmäoja Long

Helsinki 
Downtown Ranta-Mutala mini

Corner

Fig. 8 Examples of terminal points being in the corner, edge, and middle

Fig. 9 Probability (%) that the optimum terminal point is in the different
grid locations

Comput Brain Behav



et al. (2009) claimed that human performance is better than a
pure nearest neighbor strategy. Therefore, the algorithm that
correlates best with human behavior is still unknown.

In the following, we will merely focus on how to select the
start point. Studies in this are very sparse in literature.
Furthermore, players also need to plan based on the bounding
box instead of the convex hull or nearest neighbor.

Where to Start?

MacGregor (2012) studied the human tendency to select the
starting point based on two strategies: boundary targets or
interior targets of the convex hull shape of the set of targets.
Results showed that humans preferred (71%) to start on a
boundary. With respect to the shape of the bounding box, in
our analysis, we, therefore, consider the three following strat-
egies to choose the starting point:

& in the middle
& in a corner
& at the short side of the box

Starting from the middle is the safest choice as it is very
likely that there are some targets nearby. However, the opti-
mum tour rarely starts from the center as it would form a
spiral-shaped route. It is much more likely for the optimal
route to start from a side (or corner) of the bounding box
and finish at the opposite side (corner) (Fig. 4). Corners or
sides of the bounding box are therefore expected to be a better
starting point. Intuitively, it seems more likely that the opti-
mum tour should also run along the direction of the long side
of the bounding box than along the direction of the short side.
This property leads to our third strategy.

Figure 5 demonstrates the situation with “SciFest 2014
short” game with 10 targets where optimum tours are con-
structed from three fixed start points. By starting on a short
side, the tour is shortened by 12% compared to starting in the
middle and by 7% compared to starting from a corner.

Game Area

We use the 147 O-Mopsi datasets1 (Fränti et al. 2017) to study
the effect of choosing different starting points on route length.
The game area is defined as the bounding box containing all
targets of a game. We then divide this area into a regular 5 × 5
square grid. In accordance with the three starting point selec-
tion strategies, each grid cell is categorized as either a middle,
corner, long edge, or short edge cell (Fig. 6).

If the aspect ratio (AR) (the ratio of game area width to
height) is less than 1, the game area is rotated by 90° to ensure
that the horizontal edge always corresponds to the long edge.
AR is used as an additional indicator as the starting point of
the optimum route is likely to lie on the short side if the game
area is narrow (high AR values).

Table 1 Probability of a terminal point being located in a given cell

Cells Probability

A priori Observed

Any corner 4 16% 46%

Any short side 6 24% 30%

Middle 9 36% 7%

Fig. 10 Finding the optimum
order using Concorde with using
the fixed starting point. The green
dot is the player-selected start
location, and red is the phantom
node that is connected to the two
terminal nodes
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Solving the Optimum Tour

To solve the optimum route, we use the Concorde solver
(Applegate et al. 2011) with two modifications. While the
Concorde solver is designed for closed-loop cases, our scenar-
ios consist of open-loop TSPs where the start and end points
(terminal points) are different (Fig. 7). We remedy this by
adding an equidistant (zero distance) phantom node to all targets
as per Papadimitriou (1977). After solving the closed-loop so-
lution, we remove this phantom node to obtain the correspond-
ing open-loop solution. The two nodes connected to the

phantom node are the terminal nodes for the open-loop prob-
lem. It is rather straightforward to show that this provides the
optimum solution for the open-loop case, too.

We find the terminal points of the optimum tours of O-
Mopsi games. Figure 8 shows a few selected examples where
the terminal points lie in the corner, along with the long and
short edge, and in the middle. The probability for each cell to
contain a terminal point of the optimum tour is given in Fig. 9.
The observed (specific to our dataset) probabilities are com-
pared against a priori probabilities (i.e., if the terminal points
were randomly distributed) in Table 1.We find that corners are

1.4 km

Op�mum order

Overhead

Player’s route

1.65 km
18% gap

Worst cell to 
choose start

Op�mum order 
from player’s start

Overhead 
= 200 m1.6 km

Fig. 11 Effect of the starting location chosen by the player. The reference result of the optimum solution is also given when starting from the player start
location. The worst possible starting location is also shown (right)

Bird’s distance Road distance Real life

Fig. 12 Cases when bird’s distance gives more realistic estimation (above), and when road network gives more realistic estimation (below) of the
distance travelled in real life
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most likely to contain a terminal point (46%), whereas the
short sides are almost twice as likely to contain a terminal
point compared to the long sides (30% vs 17%). Clearly, mid-
dle cells are least likely to contain a terminal point (7%) al-
though they represent the categories with the largest number
of cells.

One can start playing from any point of the game area,
which might not be a target, and it usually happens in practice.
Thus, the second modification we applied to the standard
Concorde approach is to create an additional node that repre-
sents a player’s start location. This allows us to calculate the
optimum order from any location, not only starting from one of
the targets. To force the solver to use this additional node as one
of the terminal points, we add a large constant (twice the lon-
gest pairwise distance between any two targets) to all distances
from this location, except to the distance to the phantom node
which remains zero. This forces the solver to use these large
distances exactly once and connect it to the phantom node,
thereby ensuring that it is a terminal node. The final result is
the optimum solution with the fixed start point (Fig. 10).

We then use the Concorde solver to evaluate different start
locations as follows. We consider the center of each 5 × 5 grid
cell as a potential starting location. This gives 25 different
choices: 9 in the middle, 4 at corners, 6 at the long edge, and
6 at the short edge. By finding the optimum tour for each of
these 25 starting locations and comparing the result against
overall optimum, we can determine the best starting grid cell
that yields the shortest tour for a given game. Similarly, the
starting point grid cell that results in the longest tour is labeled
the worst (Fig. 11).

Effect of the Road Network

Using bird’s (haversine) distance to measure the distance be-
tween targets underestimates the actual walking distances

along urban roads and footpaths. Alternatives like
OpenStreetMap (OSM) could be used to compute the shortest
path while taking street layout into account and obtain more
realistic distance estimates, particularly in urban areas. This
may not be applicable to situations where games are set ex-
clusively in parks or campus areas where players can take
shortcuts that do not correspond to the road network
(Fig. 12). In practice, neither approach is perfect, and both
have a strong correlation to players’ preferences and choices.
Nevertheless, the bird’s distance correlates slightly higher
(0.95) with distances traversed by players than distances ob-
tained using the road network (0.93). For these reasons, we
use the bird’s distance in this study.

Computer Performance

For our study, we use the O-Mopsi dataset (Fränti et al. 2017)
as summarized in Table 2. The games have been manually
created all over the world. Most games are set in Finland,
predominantly in the Joensuu area, with an average game
length of 3.5 km and an average number of targets of 12.

Location of the Terminal Points

From Table 1, we already know that corners are the most
probable zone to have terminal points. Now, we want to have
an insight into this probability depending on the variation of
the aspect ratios. From Table 3, we observe that for games
with high AR or low AR, corners have the highest probability,
followed by short edges, long edges, and lastly middle cells.
However, unlike high and low AR games, in the case of the
square-shaped game area (AR ≈ 1), there is no significant dif-
ference in probabilities between edges and middle cells.

In order to examine the layout of the optimum tour through
the grid cells, we extend the classification of the layout of the
optimum tour as shown in Fig. 13. In this figure, only those
patterns are shown that are found in the dataset. For instance,
pattern like middle-to-middle, for instance, never occurs in
any of the games. Other rare patterns include long edge to
middle (1%), short edge to middle (4%), and corner to middle
(5%). While almost half the games have an optimum solution
with a corner to opposite side/to opposite corner pattern
(45%), the overwhelming majority (92%) spans between cor-
ner and edge terminal points.

Table 2 Datasets used in this study

Dataset Type Distance Instances Sizes

O-Mopsia Open loop Haversine Total Low AR< 0.8 Medium AR= 0.8–1.2 High AR> 1.2 4–27
147 43 49 55

a http://cs.uef.fi/o-mopsi/datasets/

Table 3 Probabilities of strategies for different game area aspect ratios
(AR)

Low
AR< 0.8 (%)

Medium
AR= 0.8–1.2 (%)

High
AR> 1.2 (%)

Corner 48 46 45

Short edge 31 21 37

Long edge 17 23 16

Middle 4 10 2

Comput Brain Behav
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Table 4 illustrates that the optimum tour usually extends
from one corner to the opposite edge or corner for games with
high and lowAR. Hence, for these games, the optimum tour is
often like the example in Fig. 4. For more square games, no
clear trend emerges; all types of orientation are almost equally
probable. So, by seeing the square game area, it is more diffi-
cult for the player to guess the probable optimum tour orien-
tation, whereas for low AR or high AR game area, there are
more hints to make an educated guess.

Player’s Start Position

Here, we include an extra location to the targets of a game to
simulate a player’s playing. We consider each 25 grid cells as
a potential starting location for a player, and with respect to the
tour length, we find the best one among them. Overall opti-
mum tour tends to have terminal points at the corners. It is
therefore expected that the best start position among the 25
grid cells is very likely to be there.

Corner to same side corner

Corner to opposite long edge

Corner to opposite corner

Corner to opposite short edge Corner to adjacent long edge

Corner to adjacent short edge

Short edge to short edge

Long edge to short edge

Corner to…
• opposite corner
• opposite short edge
• opposite long edge

45%

Corner to…
• same side corner
• adjacent long edge
• adjacent short edge

30%

Short edge to…
• short edge
• long edge

17%
Fig. 13 Extended classification (above) of the start point locations, and their share among all O-Mopsi games (below). Only the most common patterns
are shown

Table 4 Game expansion with
varying widths of game areas Low

AR< 0.8 (%)

Medium

AR= 0.8–1.2 (%)

High

AR> 1.2 (%)

Corner to opposite corner/edges 58 29 50

Corner to same corner/adjacent edges 12 29 20

Short edge to other edges 23 20 25

Others 7 22 5
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By calculating the probabilities of grid cells to be the worst
starting position, we observe that corners are also the most
likely (45%) the worst start location. Thus, it is possible that
for a particular game layout one corner may be the best
starting location while another corner may be the worst. If a

player is unlucky, then he/she could choose the worst corner.
Evidently, corners are risky locations to start. Apart from cor-
ners, also the long edge (32%) and middle (17%) are likely to
contain the worst starting position, while the short edge is the
least likely (6%) to contain the worst starting position.

In order to examine how bad the worst location is, we
calculate the gap (%). On average, the worst starting lo-
cations resulted in a 16% longer tour than the best start
with no significant dependence on AR (18% for low, 14%
for medium, and 16% for high AR). However, medium
AR games have the lowest gap value. Therefore, for
square games, the difference between the worst and the
best start is the least noticeable, which makes these games
tougher to predict the best start.

Table 5 Comparing different starting point selection strategies

Probability to find best (%) Gap to best (%)

Random 3 8

Middle 9 9

Any corner 32 7

Any short edge 23 6

Table 6 Results of the human experiments both for the visible and for
the blind tasks. Rounds means tasks completed. Solved means number of
times optimal solution found. Gap means average gap of the tour length

and the optimal tour. Hull means number of times started on the convex
hull. Furthest means number of times started from the furthest point.
Corner means number of times started from the corner

Top group

Visible Blind

Rounds Solved Gap Hull Furthest Rounds Solved Gap Corner

90 78 0.3% 100% 58% 86 31 3.6% 93%
90 77 0.3% 99% 51% 90 35 2.9% 99%
90 75 0.4% 97% 42% 90 40 3.0% 100%
90 77 0.4% 98% 39% 90 37 3.1% 97%
65 53 0.5% 100% 55% 89 35 3.2% 95%
90 74 0.5% 99% 49% 90 33 3.5% 95%
90 76 0.5% 98% 42% 90 39 2.9% 98%
89 70 0.5% 93% 35% 90 27 4.0% 56%
90 78 0.7% 93% 42% 90 42 2.7% 100%
90 67 0.7% 98% 40% 90 38 2.9% 91%
90 63 0.8% 90% 29% 90 30 3.4% 83%
90 68 0.8% 99% 37% 90 43 2.9% 98%
90 66 0.8% 98% 49% 90 23 3.8% 88%
90 63 0.9% 97% 44% 90 41 2.8% 93%
89 64 0.9% 100% 55% 90 36 3.4% 79%
90 57 1.0% 99% 34% 90 37 3.3% 100%
90 62 1.0% 92% 31% 90 40 2.6% 100%
90 64 1.0% 91% 44% 90 37 3.3% 99%
90 58 1.1% 99% 44% 90 37 3.1% 83%
90 64 1.1% 91% 44% 90 41 3.0% 98%
90 58 1.6% 96% 20% 90 28 4.1% 74%
90 55 2.3% 90% 36% 90 32 2.9% 100%
Average 0.8% 96% 42% Average 3.2% 92%

Bottom group

Visible Blind

Rounds Solved Gap Hull Furthest Rounds Solved Gap Corner
78 24 3.3% 59% 15% 90 34 3.5% 82%
90 17 4.2% 37% 11% 90 43 3.0% 100%
87 14 5.0% 46% 10% 90 38 2.7% 100%
90 14 5.6% 29% 7% 90 42 2.9% 92%
90 11 5.6% 29% 7% 90 37 3.4% 93%
79 9 5.7% 32% 5% 90 6 6.8% 3%
90 6 5.8% 24% 1% 90 44 2.5% 100%
90 4 6.0% 18% 2% 90 39 2.5% 99%
Average 5.2% 34% 7% Average 3.4% 84%
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In practice, players in real life do not consider such sophis-
ticated start point selection strategies. Instead, they merely
start at a random location—often even outside the game area.
However, this random strategy is very unlikely to result in an
optimum tour (Table 5) and we can conclude that the starting
point selection strategy has a significant effect on finding the
best solution. While starting from a corner has a 32% chance
of success, a randomly selected starting location only results
in an optimum route in 3% of cases. However, the gap is <
10% in all cases and does not vary as much as expected. The
best overall choice is to start on a short side (6% average gap)
while the worst place to start is the middle (9% average gap).

Human Results

Test Setup

Experimental data was collected from volunteers (students)
participating in the Design and Analysis of Algorithms course
at the School of Computing at the University of Eastern
Finland in September 2018 (http://cs.uef.fi/pages/franti/asa).
Two types of game setup were designed: visible (targets are
visible) and blind (only bounding box is visible). In the visible
setup, the students were given 90 instances (one at a time) and
instructed to select the point where they thought the optimal
tour would start. From this starting location, Concorde solver
then computed the optimal tour. We then calculated the gap
between the optimum tour with the student-selected fixed

starting location and the overall optimum tour for the given
target set. In the blind setup, the students saw only the
bounding box but not the individual target locations. In our
analyses, we include results from students who participated in
both tasks (visible and blind) and had completed more than 60
tasks overall.

We sort the results according to performance (average
gap) and subdivide them into two subgroups: top and
bottom (Table 6, Fig. 14). From this result, we observe a
clear jump in performance around the 2–3% gap. Several
other indicators also suggest that the bottom group (8
students) might not have understood the problem well.
The strongest evidence is that they performed better in
the blind task compared to the visible task.

Visible Setup

Most students achieved an average gap of less than 1%. To
further investigate human performance, we calculate two addi-
tional parameters for each game: (i) convex hull and (ii) the
furthest point from the center. We label each point whether it
is on the convex hull or not. MacGregor (2012) suggested that
humans may tend to start from a point on the convex hull. Our
results confirm this. Starting on the convex hull also strongly
correlates with performance. The top group almost always se-
lected starting points on the convex hull (96% of times), while
the bottom group used this strategy less frequently (34%).

Students strongly preferred to choose the furthest point in
the game layout as the starting point. The top group chose it
for 42% of cases. Although only a few students could explic-
itly describe their selection strategy when asked to do so, most
of them told that they chose “most obvious outlier” point as
the starting location. One student described his strategy was
choosing the “leftmost or rightmost point whichever was
further.”

Blind Setup

All students who were in the top group for the visible setup
performed significantly worse in the blind setup. Furthermore,
there is almost no difference in performance between players
and no correlation between the visible and blind performances.
The average gaps are 3.2% (top group) and 3.4% (bottom
group) which is only slightly better than if the start point was

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

Visible

Blind

Top
group

Bottom 
group

Fig. 14 Human performance (gap) in the selection of a start point

Fig. 15 Dependency of the
human performance on the
instance size (targets)
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chosen randomly (4.0%). This indicates that the skills required
for the blind setup have very little in common with the skills
required for the visible setup. Either the skill sets for both var-
iants are completely different, or the blind setup requires more
time to learn the necessary skill.

Here, most players found the computer-preferred cor-
ner point strategy. Top group students applied the corner
strategy in 92% of times. The results also show a clear
correlation between performance and the corner point
strategy. Those players (17) who selected a corner point
> 95% times achieved an average gap of 2.9% whereas
the rest (13) had an average gap of 3.7%. None of the
players seemed to use the short edge or any other strategy.
One player chose the middle point strategy in 91% of
games which resulted in a clear outlier (6.8% gap).

There was no observable correlation between the start point
strategy and the game area aspect ratio.

In conclusion, human solvers were generally unable to dis-
cover any sophisticated strategy with such short experience in
the game. Our expert players (the three authors) used this short
edge strategy slightly more often (35%) but still relied mostly
on the corner point strategy (62%) despite knowing these
strategies beforehand.

Size of Instances

Graham et al. (2000) suggested that human performance de-
creases only slightly when the number of targets increases.

Our results in Fig. 15 are seemingly contradictory;withmore
points, the gap reduces. This could be explained by arguing
that as the number of targets increases, the less important the
choice of the starting point becomes. In our case, the human
role was limited to select only the starting location while the
computer solved the rest. So contrary to solving the entire
TSP, this factor reduces thegap.However, in termsof success
rate, finding the optimal result (0% gap) becomes more dif-
ficult when more points are added. In this sense, our results
are in line with the previous findings in the literature.

Vickers et al. (2003a) showed that humans performed
worse when the game had more points on the convex hull.
We tested this hypothesis as well by dividing the games into
two groups: one with a high number of points on the convex
hull and one with a small number. We did not find any signif-
icant differences between both groups.

Correlation to Study Performance

Finally, we compare human performance against their grades
in the Design and Analysis of Algorithms course. Students
were divided into two groups (high and low) according to their
exam score. We tested two alternative hypotheses. Our prima-
ry hypothesis is that those who performed well in the course
would also perform well in the TSP problem-solving.

We count the number of games solved (in percentage) by
each student to measure their TSP solving skill. The results in
Fig. 16 show that there is a relatively low correlation with the
grade and the TSP performance. There are high grade students
both in the top group and in the bottom group, and surprising-
ly, all drop-outs (0% exam score) are in the top group. If we
ignore the bottom group, we can see that the course perfor-
mance still has significant predicting power. Top eight among

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Exam result

)
%(

devlostnuo
m

A

High grade
Low grade

Visible

Bo�om-group

Top group

Fig. 16 Correlation between human performance and their course grades

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60%
Furthest point chosen

)
%(

devlostnuo
m

A

High grade
Low grade

Visible

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Convex Hull point chosen

)
%(

devlostnuo
m

A

High grade
Low grade

Visible
Fig. 17 Correlation between
human performance and their
strategies

Table 7 Pearson correlation ratios between different factors with the
amount of games solved

Affecting factor All Top group

Convex hull 0.97 0.38

Furthest point 0.93 0.53

Course performance 0.11 0.72
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the students who solved games achieved higher grades in the
course exam as well.

Students preferred points on the convex hull or the furthest
point as the starting location. Next, we check how much these
strategies matter. From Fig. 17, we find that the more often a
student used (knowingly or sub-consciously) the furthest point
and the convex hull strategy, the better was his/her problem-
solving performance. At first sight, the course grade seems to
have almost no effect, but again, if we consider only the top
group, the course performance becomes obvious. Using the
starting point selection strategy has been the most crucial for
determining a student’s group, whether it is a top or a bottom.
However, within the top group, the course performance has the
strongest predicting power. Table 7 summarizes the correlation
ratios between the three factors (furthest point, convex hull,
course performance) with the problem-solving performance.

For the blind variant, the most popular strategy was to
choose any corner. From results, we find out that students
choosing more corner points perform better (see Fig. 18).
However, the correlation between the course scores and the
TSP performance is not high.

Conclusions

We have studied different strategies for selecting a start point
for solving the open-loop travelling salesman problem. The
results showed that games have almost equal chance of having
the best starting point at any grid location, except corners,
which were most often the best choice. At the same time,
corners can also be the worst choice, which makes it also the
riskiest choice. Most human players in our trial used solely the
corner point strategy although the short edge strategy would
have been a slightly better choice.

With visible targets, the choice of human players clearly
correlated with the starting point being on the convex hull or
being the furthest from the center although a few were able to
formulate and particularly argument to justify their choices.
When increasing the number of targets, the player performance
started to slightly degrade when measured by how many times
the optimal solution was found. However, using the gap as the
solemeasure of success can bemisleading. In our case, it would

falsely imply the games become easier with the increasing
number of targets, but this is clearly not the case. The average
gapmerely shows that the performance difference becomes less
significant when the problem size increases.
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