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Mixture of Factor Analyzers Using Priors From
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Abstract—A robust voice conversion function relies on a large
amount of parallel training data, which is difficult to collect in
practice. To tackle the sparse parallel training data problem in
voice conversion, this paper describes a mixture of factor ana-
lyzers method which integrates prior knowledge from non-parallel
speech into the training of conversion function. The experiments
on CMU ARCTIC corpus show that the proposed method im-
proves the quality and similarity of converted speech. With
both objective and subjective evaluations, we show the proposed
method outperforms the baseline GMM method.

Index Terms—Voice conversion, prior knowledge, factor anal-
ysis, mixture of factor analyzers.

I. INTRODUCTION

T HE objective of voice conversion is to manipulate one
speaker’s (source) voice to sound like that of another

(target) without changing the phonetic information. It involves
two processes: training and run-time conversion. During the
training process, a conversion function is estimated to establish
the relationship between the source and target speech features.
In the conversion process, the conversion function is used to
convert source speaker’s voice to that of the target speaker.
Apparently the conversion function has a direct impact on the
quality of the resulting speech.
Many statistical methods have been adopted to implement the

conversion function, such as mapping codebooks [1], artificial
neural networks [2], [3], Gaussian mixture model [4]–[6], and
partial least squares regression [7]. The joint density Gaussian
mixture model (JD-GMM) [4]–[6] is one of the most effective
approaches. Unfortunately, it requires relatively large parallel
training data to avoid over-fitting [8].
There have been reported work on speech [9] and speaker

recognition [10] where researchers leverage on existing speech
corpora from non-target speakers as the prior knowledge to im-
prove their systems’ performance. Following the same idea,
eigenvoice-based conversion [11], and tensor representation of
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speaker space [12] are examples of similar successful attempts
in voice conversion. However, these methods all require a large
amount of parallel data which are difficult to collect in practical
situations.
In speaker verification, the joint factor analysis (JFA)

method [13] decomposes a supervector into speaker indepen-
dent, speaker dependent and channel dependent components,
each of which is represented by a low-dimensional set of
factors. Inspired by such an idea, we argue that similar decom-
position would be useful in voice conversion, where we would
like to separate phonetic and speaker specific components of
speech spectral vectors, and apply factor analysis on the speaker
specific component. The speaker specific component can then
be represented by a low-dimensional set of latent variables
via the factor loadings. To cover the intended speaker space
densely, we adopt mixture of factor analyzers (MFA) [14],
which was previously used to refine covariance of JD-GMM in
voice conversion [15].
The main contribution of this work is a new technique that es-

timates the phonetic component and factor loadings from non-
parallel prior data. In this way, during the training process, we
only estimate a low-dimensional set of speaker identity factors
and a tied covariance matrix instead of a full conversion func-
tion from the source-target parallel utterances. Even though par-
allel utterances are still required for estimating the conversion
function, the use of prior data allows us to obtain a reliable
model from much fewer training samples than those required
by conventional JD-GMM [5].

II. BASELINE JOINT DENSITY GAUSSIAN MIXTURE MODEL

The mainstream joint density Gaussian mixture model (JD-
GMM) conversion method [4] is used as our baseline.
Given parallel training utterances from source and target

speakers, dynamic timewarping (DTW) can be applied to obtain
the aligned feature vector pairs: ,
where and . The
joint probability density of and is modeled by a GMM as
follows:

(1)

where

are the mean vector and covariance matrix, respectively.
Given the component is its prior probability with

. In the training phase, the GMM parameters
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are estimated using
the expectation maximization (EM) algorithm.
In the conversion process, given a source speech feature

vector , the joint density model is used for predicting the
target speaker’s feature vector , where the conver-
sion function is given as follows:

(2)

Here
is

the posterior probability of source vector belonging
to the -th Gaussian component.

III. MIXTURE OF FACTOR ANALYZERS

In JD-GMM, we need to estimate many Gaussian compo-
nents from a large
parallel training corpus for a reliable performance. To overcome
this, we propose to use non-parallel prior data to estimate some
speaker-independent parameters in advance, which are needed
by the conversion.
Given a spectral vector, we assume that it consists of pho-

netic and speaker specific components, which are statistically
independent. We further assume that the speaker specific com-
ponent can be represented by a low-dimensional speaker iden-
tity vector (SIV) via a low-rank factor loading matrix. We use
factor analysis model to represent this idea:

(3)

where is an observed -dimensional spectral vector,
is the speaker-independent phonetic component,

is the speaker specific component in which is the
latent SIV and is the factor loading matrix. is the
noise term.
Factor analysis is a linear single-Gaussian latent variable

model. However, as speech data can not be well represented
by a single Gaussian, we adopt the mixture of factor analyzers
(MFA) model [14]. The likelihood function of the non-parallel
prior data for the model

is:

(4)

(5)

(6)

where is the Gaussian function, represents the number
of speakers, and represents the number of frames from the
-th speaker, represent speaker inde-
pendent phonetic vectors, is the SIV of speaker

Fig. 1. Proposed spectral conversion system.

is the factor loadings of the -th factor analyzer
component with prior probability and .
The proposed spectral conversion framework is presented in

Fig. 1. In off-line process, we use non-parallel prior corpus to
estimate the phonetic component and factor loadings in
Sections III-A and III-B, respectively. Then we adopt and

to jointly estimate the speaker identity vectors
for source and target in Section III-C, and finally derive the con-
version function, which is similar as (2).

A. Speaker-Independent Phonetic Vectors Estimation

In theory, we could estimate all the parameters
at the same time as in [14]. To benefit from a large speaker
independent database [13] and ensure that the phonetic vec-
tors are not affected by the speaker-specific component when
estimating the factor loadings, we use pre-trained GMM to
represent the phonetic space. While a Gaussian component
may not correspond to a phonetic unit exactly, we assume that
a mixture of Gaussian components cover the whole phonetic
space. In this way, the likelihood function for the phonetic
GMM is written
as,

(7)

where is an estimated phonetic vector, and
is the covariance matrix. EM algorithm is used to esti-

mate the parameters . The and in (5) are
replaced by that in (7), and and are fixed when esti-
mating the factor loading matrices .

B. Speaker-Independent Factor Loadings Estimation

Given , we use EM algorithm to estimate the factor
loading matrices in (4), as there are latent variables . The
E-step and M-step are written as follows:
1) E-Step: Calculate the occupation probability and

the expectation of latent variable :

(8)
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(9)

(10)

where and are
the factor loading matrices estimated in previous M-step.
2) M-Step: Estimate the new factor loading matrices :

(11)

We run 10 EM iterations for estimating the factor loading ma-
trices , which are randomly initialized at the beginning.

C. Voice Conversion Using Mixture of Factor Analyzers

Now that we have estimated the factor loadings and
phonetic vectors from non-parallel prior corpora, we can
estimate the conversion function from parallel data

, where , we
concatenate the phonetic vectors as

and the factor loadings as . We

note that the two in are identical and the two in
are also identical. This concatenation will not change the

phonetic mapping when training conversion function. Thus the
joint distribution for the parallel data is written as follows.

(12)

Here is the joint
speaker identity vector where is for source
speaker and is for target speaker, and

is a covariance ma-

trix. A full covariance matrix consists of a large number of
free parameters which need to be estimated. To circumvent
this data sparseness and avoid numerical problem, we use
a tied covariance matrix shared by all the Gaussians in im-
plementation. We dub our method as tied mixture of factor
analyzers (TMFA). The benefit of using factor loadings is that
when estimating speaker specific components, we only need to
estimate a low-dimensional SIV with less training data, as the
factor loadings are estimated in advance. Similar as that for (4),
EM algorithm can be adopted to estimate and under
the maximum likelihood criterion:
1) E-Step: Calculate the occupation probability and

joint speaker identity vector :

(13)

(14)

2) M-Step: Estimate new tied covariance matrix :

(15)

where . In this EM algorithm, we ini-
tialize the tied covariance matrix with global covariance matrix
and initialize as zero vector. We run three EM iterations to
estimate and .
In the conversion process, given , the tied joint-densityMFA

model is adopted to predict the target feature vector
as follows:

where is the occupation probability of belonging to the
-th factor analyzer.

IV. EXPERIMENTS

We conduct conversion tests on CMU ARCTIC corpus for
two speaker pairs: male-to-male (M-M, BDL-to-RMS) and fe-
male-to-female (F-F, SLT-to-CLB). We use 2 to 8 utterances of
each speaker as the training data, and 50 utterances as testing
data. Aurora 4 corpus, which has 83 speakers and each speaker
has around 100 utterances (clean speech), is used as the prior
data to estimate phonetic vectors and factor loadings.
The speech signal is sampled at 16 kHz. Spectral envelope

and fundamental frequency (F0) are extracted by STRAIGHT
[16] at 5 ms step, and the spectral envelope is parameterized as
25-order mel-cepstral coefficients (MCC), including the energy
coefficient, which is not converted. Hence only 24-order coef-
ficients are converted. F0 is converted by equalizing the mean
and variance of the source and target speakers.
The following conversion methods are compared:
1) GMM-full: JD-GMM with full covariance matrices.
2) GMM-cross: JD-GMM with covariance matrices which
have only diagonal and cross-covariance elements [15].

3) TMFA-full: TMFA with full covariance matrices.
4) TMFA-cross: TMFA with covariance matrices which only
have diagonal and cross-covariance elements.

A. Objective Evaluation

The mel-cepstral distortion (MCD) is used as the ob-
jective evaluation measure between a converted target
frame and a original target frame [6]:

where and

are the -th original target and converted MCCs,
respectively. A lower MCD value indicates smaller distortion.
We first compare the conversion method using two training

utterances. Fig. 2 shows the average MCD values of M-M and
F-F spectral conversions as a function of the number of factors
in TMFA. The baseline JD-GMM model has one Gaussian
component, as it gives the lower MCD value than 2 or 4
Gaussian components. There are 128 Gaussians in TMFA with
the number of factors in TMFA varying from 8 to 64. When
more than 24 factors are used, TMFA gives much lower distor-
tion than the baseline JD-GMM does. Another observation is
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Fig. 2. Average mel-cepstral distortion of in terms of number of factors.

Fig. 3. Average MCD in terms of number of training utterances.

that TMFA-cross always outperforms TMFA-full that suggests
the latter suffers from over fitting.
We further train TMFA-cross and GMM-cross with a dif-

ferent amount of parallel training data. The number of factors
is set to be , which is the median number between 24
and 64. The average MCD values of M-M and F-F conversion
are presented in Fig. 3. TMFA outperforms JD-GMM when we
have a limited amount of parallel training data, in particular,
when the number of parallel utterances is less than 7. In gen-
eral, TMFAmodel has fewer parameters and is more robust than
JD-GMMdue to the prior knowledge that it learnt from non-par-
allel prior data.

B. Subjective Evaluation

TMFA-cross with 44 factors is compared with GMM-cross
with 1 mixture in the listening test. The number of training ut-
terances is two. Similarity of the converted speech was first
evaluated in an AB preference test. 8 subjects participated in
the listening test. They were asked to listen to two converted
speech (A and B), and the reference speech, and decide which
converted speech sounded more similar to the reference speech
by choosing one of the followings: 1) A is more similar; 2) B is
more similar; 3) no preference. 10 sentences were evaluated for
each speaker pair. The similarity preference results are shown
in Fig. 4(a). We can see that TMFA technique consistently out-
performs JD-GMM in both test cases.
The AB preference test was also conducted to evaluate the

perceptual quality of the converted speech. Eight subjects lis-
tened to 10 sentence pairs for each speaker pair, and decided
which converted speech they preferred. The quality preference
test results are presented in Fig. 4(b). It shows that TMFA out-
performs JD-GMM perceptually.

Fig. 4. Subjective evaluation results with 95% confidence interval. (a) Simi-
larity results, (b) Overall quality results.

V. CONCLUSION

We proposed a voice conversion technique based on mixture
of factor analyzers, by assuming that a speech spectral vector
consists of independent phonetic and speaker specific compo-
nents. We have shown that the prior knowledge from non-par-
allel data serves well in covering the feature space. With objec-
tive and subjective evaluations, we show our proposed method
outperforms the conventional JD-GMM method.

REFERENCES
[1] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conver-

sion through vector quantization,” in ICASSP, 1988.
[2] M. Narendranath, H. Murthy, S. Rajendran, and B. Yegnanarayana,

“Transformation of formants for voice conversion using artificial
neural networks,” Speech Commun., vol. 16, no. 2, pp. 207–216, 1995.

[3] S. Desai, E. Raghavendra, B. Yegnanarayana, A. Black, and K. Pra-
hallad, “Voice conversion using artificial neural networks,” in ICASSP,
2009.

[4] A. Kain and M. Macon, “Spectral voice conversion for text-to-speech
synthesis,” in ICASSP, 1998.

[5] Y. Stylianou, O. Cappé, and E. Moulines, “Continuous probabilistic
transform for voice conversion,” IEEE Trans. Speech Audio Process.,
vol. 6, no. 2, pp. 131–142, 1998.

[6] T. Toda, A. Black, and K. Tokuda, “Voice conversion based on max-
imum-likelihood estimation of spectral parameter trajectory,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 15, no. 8, pp. 2222–2235,
2007.

[7] E. Helander, T. Virtanen, J. Nurminen, andM. Gabbouj, “Voice conver-
sion using partial least squares regression,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 18, no. 5, pp. 912–921, 2010.

[8] E. Helander, J. Nurminen, and M. Gabbouj, “LSF mapping for voice
conversion with very small training sets,” in ICASSP, 2008.

[9] R. Kuhn, J. Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker
adaptation in eigenvoice space,” IEEE Trans. Speech Audio Process.,
vol. 8, no. 6, pp. 695–707, 2000.

[10] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling
with sparse training data,” IEEE Trans. Speech Audio Process., vol.
13, no. 3, pp. 345–354, 2005.

[11] T. Toda, Y. Ohtani, and K. Shikano, “One-to-many and many-to-one
voice conversion based on eigenvoices,” in ICASSP, 2007.

[12] D. Saito, K. Yamamoto, N. Minematsu, and K. Hirose, “One-to-many
voice conversion based on tensor representation of speaker space,” in
Proc. Interspeech, 2011.

[13] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans.
Audio, Speech, Language Process., vol. 19, no. 4, pp. 788–798, 2011.

[14] Z. Ghahramani and G. Hinton, The EM Algorithm for Mixtures of
Factor Analyzers University of Toronto, Tech. Rep. CRG-TR-96-1,
1996.

[15] Y. Uto, Y. Nankaku, T. Toda, A. Lee, and K. Tokuda, “Voice conver-
sion based on mixtures of factor analyzers,” in Ninth Int. Conf. Spoken
Language Processing, 2006.

[16] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, “Restruc-
turing speech representations using a pitch-adaptive time-frequency
smoothing and an instantaneous-frequency-based f0 extraction: Pos-
sible role of a repetitive structure in sounds,” Speech Commun., vol.
27, no. 3, pp. 187–207, 1999.


