
XNN Graph

Pasi Fränti1(&), Radu Mariescu-Istodor1, and Caiming Zhong2

1 University of Eastern Finland, Joensuu, Finland
franti@cs.uef.fi

2 Ningbo University, Ningbo, China

Abstract. K-nearest neighbor graph (KNN) is a widely used tool in several
pattern recognition applications but it has drawbacks. Firstly, the choice of k can
have significant impact on the result because it has to be fixed beforehand, and it
does not adapt to the local density of the neighborhood. Secondly, KNN does
not guarantee connectivity of the graph. We introduce an alternative data
structure called XNN, which has variable number of neighbors and guarantees
connectivity. We demonstrate that the graph provides improvement over KNN
in several applications including clustering, classification and data analysis.

Keywords: KNN � Neighborhood graph � Data modeling

1 Introduction

Neighborhood graphs are widely used in data mining, machine learning and computer
vision to model the data. Few applications examples are listed below.

• KNN classifier
• Manifold learning
• 3D object matching
• Clustering
• Outlier detection
• Traveling salesman problem
• Word similarity in web mining

Two popular definitions are ɛ-neighborhood and k–nearest neighbor (KNN) graph
[1]. In the first one, two points are neighbors if they are within a distance ɛ of each
other. KNN neighborhood of a point is defined as its k nearest other data points in the
data space. In the corresponding graph, all neighboring points are connected. The
ɛ–neighborhood graph is undirected whereas KNN is directed graph.

The first problem, both in KNN and also ɛ-neighborhood, is how to select
parameters ɛ and k. The larger the neighborhood, the better the local structures can be
captured but the more complex the graph and the higher the processing time. An upper
limit is when k equals to the size of the data (k = N), which leads to a complete graph.
Having fixed value of k, there can be unnecessary long edges in sparse areas that do not
capture anything essential about the local structure.

The second problem is that these definitions do not guarantee connectivity of the
graph. In Fig. 1, an isolated component is created, which leads to wrong clustering

© Springer International Publishing AG 2016
A. Robles-Kelly et al. (Eds.): S+SSPR 2016, LNCS 10029, pp. 207–217, 2016.
DOI: 10.1007/978-3-319-49055-7_19

result. With this data the problem can be solved by setting k = 4 at the cost of increased
complexity. However, with higher dimensional data the value must usually be set to
k = 20 or even higher. This overwhelms the computation.

In general, there is no good way to set k automatically, and it does not adapt to the
local density. According to [2], k has to be chosen rather high, order of N rather than
logN. In [3] this neighborhood was reduced by eliminating edges to nodes that were
reached via alternative shorter detour via a third node. But it does not solve the
connectivity and requires large k to start with. Despite these drawbacks, KNN has
become popular – mainly because lack of better alternatives.

In this paper, we introduce a new neighborhood graph called XNN. The key idea is
to model the local structures in the same way as KNN, but instead of having a fixed
value of k, the size of neighborhood is variable and depends on the data locally. In a
dense area, there would be more edges than in sparse areas so that both the local
structures are captured and the connectivity of the graph is guaranteed.

2 Neighborhood Graphs

Besides KNN, another commonly used structure is minimum spanning tree (MST),
which guarantees connectivity. However, it is optimized for minimizing the sum of all
distances and may lead to complicated chains that do not capture the real structure of
the data. MST contains only one edge per data point, on average. This corresponds to
1NN-graph by the size. It is enough to keep the graph connected but not able to capture
more complex local properties such as density, or estimate clustering structure.

Good heuristic was proposed in [4] to use 2 × MST. Once the first MST is created,
another MST is constructed from the remaining unused edges and the union of the two
MSTs makes the neighborhood graph. Intuitively, kind of second choices are selected,

Isolated
component

Fig. 1. Example part of 3NN graph where connectivity is broken.

208 P. Fränti et al.

similarly as the 2nd nearest in 2NN-graph. This doubles the total number of edges in the
graph, and can significantly improve the graph. The idea generalizes to any number of
k by repeating the MST algorithm k.

The main advantage of k-MST is that it guarantees connectivity. However, it is still
possible that important connections are missed leading to wrong analysis of the data
because the connectivity may come via long chains that do not capture the local
structure of the data. A good neighborhood graph would have the benefit of MST to
keep the graph connected, but at the same time, having more edges to capture the
structures both in sparse and dense areas. The choice of the value k remains an open
problem also with k-MST.

Another well known structure is so-called Delaunay triangulation. It is based on
Voronoi diagram, which is directly related to the partition concept in clustering.
Clusters that share the same Voronoi vertex are considered as neighbors. The benefit is
that the entire data space will be partitioned and the resulting graph will be naturally
connected.

Slightly more practical variant is so-called Gabriel graph [5]. It is an old invention
but deserves much more attention that it has gained because of two properties shown in
[6]: (1) it includes MST as sub graph, and thus guarantees connectivity; (2) it is sub
graph of the Delaunay, shares most of its properties but more practical. Elliptical
variant was introduced in [7], and an additional density criterion considered in [8].

Both Delaunay and Gabriel graphs suffers the problem that the number of neigh-
bors becomes too high when dimension increases. Another problem is the high time
complexity of the graph construction. Delaunay has exponential dependency on the
dimensionality, O(Nd/2), whereas Gabriel graph takes O(N3). These problems have been
studied but general solution is still an open problem [9, 10].

3 X-Nearest Neighborh Graph

The resulting graph should have the following properties:

• Number of neighbors should be decided automatically.
• It should be small, preferably close to a constant.
• The graph will be connected.
• Constructing the graph can be done efficiently.

We define XNN graph as any sub-graph of Gabriel graph that retains connectivity,
i.e. there are no isolated sub-graphs. We consider three alternatives:

• Full XNN
• Hierarchically-built XNN
• k-limited XNN

We give next their definitions and study their properties with data size, cluster
overlap and dimension. Some other design alternatives for this principal idea are also
discussed.

XNN Graph 209

3.1 Full XNN

Input is a set of N data points {x1, x2, …, xN} each consisting of d attributes. The points
are often in a metric space so that the distance between any two points can be cal-
culated. However, the idea generalizes to similarity measures as well.

Gabriel graph (GG) is defined for points in Euclidean space as follows. Any two
points a and b are neighbors if the following holds for all other points c:

ab2\ac2 þ bc2 ð1Þ

where ab, ac and bc are the distances of the particular points. We use this definition as
the basis for the Full XNN as well. It generalizes to other distance measures that are in
the range of [0,1] since the only numerical operation is the squared function. In
specific, if the data is in Euclidean space then Full XNN equals to GG.

Alternative rule is to calculate the middle point between a and b, which we denote
as m. If there exists another point c that is nearer to m than a and b, then this point must
be within the circle. Thus, points a and b are neighbors only if they satisfy the
following condition:

ab\2mc ð2Þ

where m is the middle point (average of a and b) and c is the nearest point to m. The
full graph can be found by the brute force algorithm:

This formulation is slightly simpler than (1) and no squaring is needed. However, it
may not work for non-numerical data because it requires that we can calculate average
of any two data points. For instance, taking average of strings “science” and “engi-
neering” is not trivially defined.

If we have similarities instead of distances, we can convert them to distances by
inversion: d = 1/(s + ε) where s2[0,1] is a similarity and ε = 0.001 is a small constant
to avoid infinite. This leads to the following rule:

ab�2\ac�2 þ bc�2 , ab2 � bc2 þ ab2 � ac2
ac2 � bc2 [1 ð3Þ

The main bottleneck of the full graph is that it takes O(N3) time to compute.
Another drawback is that there will be excessive number of neighbors in higher
dimensional data.

210 P. Fränti et al.

3.2 Properties

We study next the number of neighbors with the following parameters: data size,
dimensionality and overlap. We use the G2 data sets shown in Fig. 2.

Figure 3 shows that there is a mild tendency to have more neighbours when data
has higher overlap (therefore more dense) but this effect happens only in higher
dimensions. For 8-d data there is hardly any visible difference but for 32-d data the
number of neighbours almost doubles when the clusters completely overlap compared
to when they are separate.

The same effect happens when we vary the sub-sample size. For 32-d data, dou-
bling the density (data size) doubles the size of the neighbourhood. The biggest effect,
however, comes from the dimensionality, see Fig. 4. The number of neighbours is
moderate up to 8-d but then increases quickly and reaches complete graph (1000
neighbours) at latest 256-d. If the clusters are well separated (30 % overlap), it becomes
complete graph within the cluster (500 neighbours).

Fig. 2. Series of data sets G2-D-O where D is the dimensionality varying from 2 to 1024, and
O is the overlap parameter varying from 0 to 100. Data size is N = 2048. http://cs.uef.fi/sipu/
data/

Fig. 3. Average number of neighbors for G2 with increasing overlap (left) and increasing data
size (right). Results are for 10 % subsample (left) and overlap is 10 % (right)

XNN Graph 211

http://cs.uef.fi/sipu/data/
http://cs.uef.fi/sipu/data/

To sum up, for higher dimensional data we need to limit the size of neighbourhood
to keep the graph useful.

3.3 Hierarchical XNN

Hierarchical variant is in Algorithm 2. The idea is to build the graph from clusters
instead of data points. We start with only one cluster including all data points. New
clusters are then iteratively created by splitting one existing cluster into two. This
corresponds to divisive clustering algorithm. However, we do not stop at a certain
number of clusters but continue the process until each point belongs to its own cluster.
The splitting is done by taking two random points and by applying a few iterations of
k–means within the cluster.

During the process, the clusters are represented by their centroids, and the distance
between two clusters is calculated between them. The rule (2) is applied. If the centroid
cannot be calculated from the data, then average distance (or similarity) between every
pair of points in the two clusters and apply the rule (3):

1
aj j � bj j �

X

i2a;j2b
sij ð4Þ

At each dividing step, the XNN links are updated with two main principles. First, a
link is always created between a and b. Second, the existing links to the previous
cluster ab will be kept. These rules guarantee that if the graph was connected before the
split, it will be connected after the split also. The first question is to which one the
existing links should be linked to: a or b. We choose the nearest.

The second question is whether the neighbor should be connected to both. Consider
the situation in Fig. 5. Greedy choice would be to choose only the nearest cluster (c-b,
d-b). This would lead to a spanning tree: only one new link is created at every split, and
there are N-1 splits in total. Result is a connected graph without redundant links, thus,
spanning tree. The other extreme would be to accept both, and link all c-a, c-b, d-a d-
b. However, this would lead to a complete graph, which is neither what we want.

Fig. 4. Average number of neighbors with increasing dimension for G2. Three overlaps of
30 %, 50 % and 70 % were tested for 1 to 256 dimensions. Susample size of 1000 is used.

212 P. Fränti et al.

Our choice is to accept the second link if the neighbor rule applies. In principle, this
can lead to Full XNN, but in practice, the split can have side-effects to other clusters,
too. For example, new cluster may break the neighborhood of other clusters. Or vice
versa, other clusters may interfere with the neighborhood of a, b, c and d. However,
taking these side-effects into account would get the time complexity back to O(N3),
which would be too much. We therefore choose to ignore these and settle with
approximation. Some links of the Full XNN may therefore be missed, and some extra
links may appear. But the key property remains: the graph is connected.

The split is implemented by local k-means. We select two random points in the
cluster and iterate k-means 10 times within the cluster. This may not lead to optimal
clustering but as it is merely a tool in the process it does not matter that much.

K-means requires 2�10�n = O(n) steps. Since the cluster sizes are progressively
decreasing this sums up to O(N�log2N) according to [11]. Updating the neighbor links
depends on the number of links (X), and on the number of clusters:

X �
XN

i¼1

i ¼ X � N2 ð5Þ

The overall complexity is O(N�log2N) + O(XN2). If we further limited the neighbor
rule by considering neighbor of neighbors, it would lead to O(N�log2N) + O(X2N2).

Fig. 5. Example of the hierarhical variant before and after the 4th split. Both a and b retain the
connection to c, but only b retains the connection to d.

XNN Graph 213

3.4 k-Limited XNN

The hierarchical variant improves the speed of creating the graph, but not necessarily
the problem of having too many neighbors. We therefore modify it by having addi-
tional global constraint, k, to guide how many neighbors we expect to get. Considering
the example in Fig. 5, we link every neighbor of ab to:

• The one which is closer (a or b)
• The remaining neighbors we start by taking the closest so that their total number

won’t increase 2k.

Since a and b are linked together, they have one neighbor each already. Thus,
2(k–1) more links can still be chosen. Table 1 summarizes the actual numbers for the
two variants. We can see that the Full XNN can have rather high number of neighbors
with 16-dimensional data. The k-limited variant, on the other hand, keeps the size of
neighbors always moderate.

4 Applications

We next demonstrate the graph into three applications:

• Path-based clustering
• KNN classifier
• Traveling salesmen problem.

Path-based clustering [12] measures the distance of points in the dataset by finding
the minimum path between two points. The cost of a path is defined as the maximum
edge in the path. It can be calculated in Euclidean space or using neighborhood
structure such as minimum spanning tree. Robust Path-based clustering method [13]
uses KNN but it is an open question when to use small or large value of k. With some
data the choice can be critical as shown in Fig. 6.

Table 1. Average number of neighbors in the Full XNN and the k–limited (k = 10) variants.
(Numbers in parentheses were run for smaller 10 % sub-sampled data)

Dataset Dim Full Hierarchical k-limited

Bridge 16 68.8 48 6.5
House 3 14.4 22 7.9
Miss America 16 345 94 6.8
Birch1 2 4.0 (3.4) (3.4)
Birch2 2 (3.7) (3.4) (3.4)
Birch3 2 (3.9) (3.4) (3.3)
S1 2 3.8 3.4 3.3
S2 2 3.9 3.4 3.4
S3 2 3.9 3.4 3.4
S4 2 3.9 3.4 3.4

214 P. Fränti et al.

Second test studied whether XNN has potential for solving traveling salesman
problem. We analyzed known optimal solutions of several 2-d problem instances in
TSPLIB. We counted how many times the same edges were in the optimal solution and
also in the neighborhood graph constructed by KNN, k-MST and XNN. Results of
KNN and k-MST were obtained by varying k, whereas XNN provides only one result.
The aim would be to have as many correct edges in the graph as possible (to allow
good optimization), but few other edges (to keep the complexity low). The results in
Fig. 7 indicate that XNN has better precision/total ratio.

We have checked common edges between the optimal TSP and XNN on several
datasets from TSPLIB, the result is: for some datasets, the total edges of XNN is kN,
where k is a small number (about 2–3), but the kN edges contain the majority of the
optimal TSP edges. This observation indicates that if we search the solution of TSP in
XNN graph but not the complete graph, the efficiency could be high (Table 2).

0 %

20 %

40 %

60 %

80 %

100 %

0 10 20 30 40

k

C
lu

st
er

in
g

qu
al

ity

XNN = 93%

KNN

Flames

Fig. 6. Clustering quality of Flames by Path-based algorithm [13] measured by Pair set index
[14].

70 %

75 %

80 %

85 %

90 %

95 %

100 %

1 2 3 4 5 6 7 8 9

k

KNN

k-MST

XNN

TSPLib

97%

k=2.2

Fig. 7. The number of optimal edges captured by three graphs. The value of XNN is plotted at
the location of the average number of neighbors (k = 2.2).

XNN Graph 215

The third application is classical KNN classifier. Figure 8 shows that the accuracy
depends on k: with Breast, better results are obtained simply by increasing k, whereas
with Ionosphere optimal result is between k = 20–25. In both cases, XNN classifier
finds the same or better result without parameter tuning. Due to its simplicity, it could
be worth further studies for example with distance weighted KNN [15].

5 Conclusion

New neighborhood graph called XNN is proposed. It is a compromise between fixed
size nearest neighborhood graph of KNN, and a much more extensive spatial neigh-
borhood of Gabriel graph. Its main advantages are that it is connected (no isolated
components) and that the size of neighborhood is automatically selected for each point
separately. Promising results were achieved in three example applications.

Table 2. Number of edges of XNN graph, and how many are in optimal TSP path.

Dataset Points Edges Common
N Total Per node Total Per point

eil101 101 229 2.3 98 97 %
a280 280 750 2.7 280 100 %
RAT575 575 1213 2.1 552 96 %
PR1002 1002 2060 2.0 957 96 %
PR2392 2392 5127 2.1 2306 96 %

Breast

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

k

XNN = 21.6

Ionosphere

0
2
4
6
8

10
12
14
16

0 5 10 15 20 25 30 35 40

k

XNN = 10.8

Pima

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

k

XNN = 21.6

Liver

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

k

XNN = 14.1

Fig. 8. Classification errors (%) of KNN (blue) and XNN (red); the lower the better. The result
of KNN depends on k but XNN has only one value because it has no parameters.

216 P. Fränti et al.

References

1. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1),
21–27 (1967)

2. Maier, M., Hein, M., von Luxburg, U.: Optimal construction of kk-nearest-neighbor graphs
for identifying noisy clusters. Theoret. Comput. Sci. 410(19), 1749–1764 (2009)

3. Aoyama, K., Saito, K., Sawada, H., Ueda, N.: Fast approximate similarity search based on
degree-reduced neighborhood graphs. In: ACM SIGKDD, San Diego, USA, pp. 1055–1063
(2011)

4. Yang, L.: Building k edge-disjoint spanning trees of minimum total length for isometric data
embedding. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1680–1683 (2005)

5. Gabriel, K.R., Sokal, R.R.: New statistical approach to geographic variation analysis. Syst.
Zool. 18, 259–278 (1969)

6. Matula, D.W., Sokal, R.R.: Properties of Gabriel graphs relevant to geographic variation
research and the clustering of points in the plane. Geogr. Anal. 12(3), 205–222 (1980)

7. Park, J.C., Shin, H., Choi, B.K.: Elliptic gabriel graph for finding neighbors in a point set and
its application to normal vector estimation. Comput. Aided Des. 38, 619–626 (2006)

8. Inkaya, T., Kayaligil, S., Özdemirel, N.E.: An adaptive neighborhood construction algorithm
based on density and connectivity. Pattern Recogn. Lett. 52, 17–24 (2015)

9. Cignoni, P., Montani, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay
triangulation algorithm in E^d. Comput. Aided Des. 30(5), 333–341 (1998)

10. Rezafinddramana, O., Rayat, F., Venturin, G.: Incremental Delaunay triangulation
construction for clustering. In: International Conference on Pattern Recognition, ICPR,
Stockholm, Sweden, pp. 1354–1359 (2014)

11. Fränti, P., Kaukoranta, T., Nevalainen, O.: On the splitting method for VQ codebook
generation. Opt. Eng. 36(11), 3043–3051 (1997)

12. Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 513–518 (2003)

13. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–
203 (2008)

14. Rezaei, M., Fränti, P.: Set-matching methods for external cluster validity. IEEE Trans.
Knowl. Data Eng. 28(8), 2173–2186 (2016)

15. Gou, J., Du, L., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor classifier.
J. Inf. Comput. Sci. 9(6), 1429–1436 (2012)

XNN Graph 217

	XNN Graph
	Abstract
	1 Introduction
	2 Neighborhood Graphs
	3 X-Nearest Neighborh Graph
	3.1 Full XNN
	3.2 Properties
	3.3 Hierarchical XNN
	3.4 k-Limited XNN

	4 Applications
	5 Conclusion
	References

