Constructing a High-Dimensional kNN-Graph Using
a Z-Order Curve

SAMI SIERANOJA and PASI FRANTI, University of Eastern Finland

Although many fast methods exist for constructing a kNN-graph for low-dimensional data, it is still an open
question how to do it efficiently for high-dimensional data. We present a new method to construct an approx-
imate kNN-graph for medium- to high-dimensional data. Our method uses one-dimensional mapping with a
Z-order curve to construct an initial graph and then continues to improve this using neighborhood propaga-
tion. Experiments show that the method is faster than the compared methods with five different benchmark
datasets, the dimensionality of which ranges from 14 to 784. Compared to a brute-force approach, the method
provides a speedup between 12.7:1 and 414.2:1 depending on the dataset. We also show that errors in the ap-
proximate kNN-graph originate more likely from outlier points; and, it can be detected during runtime, which
points are likely to have errors in their neighbors.

CCS Concepts: « Theory of computation — Nearest neighbor algorithms; - Mathematics of comput-
ing — Graph algorithms; « Information systems — Nearest-neighbor search;

Additional Key Words and Phrases: kKNN-graph, graph construction, nearest neighbor, Z-order curve, space-
filling curves, neighborhood propagation

ACM Reference format:

Sami Sieranoja and Pasi Franti. 2018. Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve.
F. Exp. Algorithmics 23, 1, Article 1.9 (October 2018), 21 pages.

https://doi.org/10.1145/3274656

1 INTRODUCTION

Given a set of N points X = {x1,x3 ..., xn} in some D-dimensional space S, the k-nearest neighbor
problem (kNN) is to find the k points in X that are closest to a given query point g € S according
to some distance metric d. A search for the kNN for all points in X yields a directed graph called
kNN-graph where the vertices correspond to points in the dataset and edges connect each point
to its k-nearest points in the dataset.

Constructing a kNN-graph is important for a wide range of applications including classification
[39], agglomerative clustering [16], k-nearest neighbor search [21], dimensionality reduction [3],
outlier detection [22], and computer graphics [10]. For many of these applications, constructing
the graph is a major bottleneck [16, 38].

The trivial brute-force algorithm constructs a kNN-graph in O(N?) time by calculating distances
between all pairs of points and selecting the k-smallest distances for every point. This can be
practical for small datasets consisting of up to tens of thousands of points, especially when utilizing

Authors’ addresses: S. Sieranoja and P. Franti; emails: {samisi, franti}@cs.uef.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1084-6654/2018/10-ART1.9 $15.00

https://doi.org/10.1145/3274656

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

https://doi.org/10.1145/3274656
mailto:permissions@acm.org
https://doi.org/10.1145/3274656

1.9:2 S. Sieranoja and P. Franti

parallel computing capabilities of modern GPUs [19]. However, for larger datasets, consisting of
millions of points, the brute-force algorithm becomes too slow.

Fast methods such as k-d trees [17] and space-filling curves [10] can construct an exact kNN-
graph for low-dimensional datasets in O(N - log(N)) time. However, with high-dimensional data,
these methods fail to provide speed-up over the brute-force method. Recent research has, therefore,
focused on constructing approximate kNN-graphs [9, 12, 16, 18, 35, 38].

Most approximate methods [9, 35, 38] work by dividing the data into smaller groups and then
using a brute-force method for each group. Chen [9] and Wang [35] do this by projecting to prin-
cipal axis and hierarchically splitting by the projection. Zhang uses locality sensitive hashing with
random linear projection [38]. A complementary approach called neighborhood propagation is
used in all recent methods [9, 35, 38] but with different variations. The key idea is to consider the
neighbors of neighbors, and update the current kNN list whenever a closer neighbor candidate
is found. The method by Dong [12] starts from a random graph and improves it iteratively by
neighborhood propagation as long as a better graph is found.

In this article, we propose a novel two-stage method to construct an approximate kNN-graph.
The first step uses a Z-order curve to construct an initial, roughly 20-50% accurate graph. This step
is similar to the Z-order sliding window method used by Connor et al. [10] for a low-dimensional
exact kNN-graph, but we adapt it to high-dimensional data by using a novel fast neighborhood
preserving dimensionality reduction method. The second step improves this approximate graph
by using neighborhood propagation [12] jointly with the Z-order curve. The method is targeted
especially for high-dimensional data.

We compare the method against NN-Descent [12], KGRAPH,! Recursive Lanczos Bisection [9],
LSH [38], and Multiple PCA divide-and-conquer [35]. Experimental results with 14 to 784-
dimensional data show that our method provides better speed/quality ratio than the compared
methods when using Euclidean distance metric and other Minkowski distances between p = 0.1
to 10.

The new contributions can be summarized as:

—First time to apply space-filling curves to generate approximate kNN-graph.

—Introduce a new variant of z-curve, which allows us to use z-values also in high-dimensional
spaces (Algorithm 3).

— We propose a novel interleaving of the Z-order search and neighborhood propagation that
is less sensitive to the choice of parameters than the existing methods (Algorithm 2).

—We demonstrate that the errors in approximate kNN-graphs originate more often from out-
liers. This observation has potential to reduce the errors of any approximate kNN-graph
-method by focusing more extensive search on outlier points (Section 4.6).

—We introduce a new metric to calculate the proximity preserving quality Q of one-
dimensional mappings (Section 2.3). This Q-value correlates with the accuracy of the re-
sulting kNN graph. Optimizing the Q-value of the projection could potentially improve any
methods that use space-filling curves.

The rest of the article is organized as follows. In Section 2, we briefly discuss the effect of di-
mensionality and the choice of distance measure. We then present space-filling curves and neigh-
borhood propagation, which are the basic building blocks of our method. The new method and
its design choices are then introduced in Section 3. Experimental comparisons are presented in
Section 4, and finally, conclusions are drawn in Section 5.

Thttp://kgraph.org/.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

http://kgraph.org/

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:3

Z-order curve Hilbert curve

AN A VA —

-\\;\l_
)
SN

LA
9%
4
(

N [|
- . I |

Fig. 1. Hilbert curve and the Z-order curve are the two most commonly used space-filling curves in computer
science.

2 BACKGROUND AND RELATED WORK
2.1 Effect of Dimensionality

There have been a great deal of theoretical studies analyzing the effect of dimensionality for the
nearest neighbor search [1, 4, 24], which is a subproblem of kNN-graph construction and is gener-
ally thought to share the same issues regarding dimensionality. These studies have noted especially
two major issues regarding the rise of dimensionality: (1) the quality issue and (2) the performance
issue.

In the quality issue, an increase in dimensionality makes all points almost equidistant from
the query point when using typical distance functions such as L, distance. This gives rise to the
question if the concept of nearest neighbor is meaningful in high dimensions [4] or if other non-
conventional distance functions would be more useful [1].

In the performance issue, computational requirements of known exact nearest neighbor search
methods increase exponentially in D [25], and, therefore, are not practical for most high-
dimensional real life datasets.

In this work, we focus on providing solutions for the performance issue.

2.2 Measuring Distance

We use Euclidean distance as primary distance measure but consider also other types of Minkowski
distance, which is defined as follows:

D 1/p
d (x,y) = (Z Jxi — y#’) (1)
i=1

Value p = 2 corresponds to Euclidean distance (L;) and value p = 1 to Manhattan distance(L,).
According to Aggarwal [1], fractional values (0 < p < 1) are better suited for high-dimensional
data. Still, the Euclidean distance is more widely used, and, for example, the SIFT features [28] are
specifically developed for it.

2.3 Space-Filling Curves

A space-filling curve is a way of mapping a discrete multidimensional space into one-dimensional
space [29] (see Figure 1). It imposes a linear order for points in multidimensional space. This order

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:4 S. Sieranoja and P. Franti

interleaved bits |
(3,5) = (0115, 1015) — 01 10 115 = 27
1 2D vector Z-value T

Fig. 2. Z-value calculation for a two-dimensional vector.

is used to preserve the proximity of points so that points that are near each other in the multidi-
mensional space can be found by searching locally along the curve.

Space-filling curves have been used for many types of problems that include the notion of dis-
tance between points. Such problems include range search [31, 34], searching for nearest neighbor
[14], KNN [37], and constructing an exact kNN-graph [10]. Space-filling curves have also been
used in image compression [11], bandwidth reduction [5], representation of quadtrees [20], and as
an indexing method for faster disk reads [13].

Proximity Preserving Qualities. The popularity of space-filling curves in computer science is pri-
marily due to their proximity preserving qualities. This means that points that are close to each
other in some multidimensional space are also likely to be close to each other on the curve. This
quality has also been called clustering property [7] and distance preserving quality [14]. These terms
are usually used without formal definition, although some definitions have also been given in the
context of search and sorting [23, 36].

We give the following definition for the proximity preserving quality, which is inspired by the
definition given for locality sensitive hash functions in Ref. [25]. The definition is not limited to
space-filling curves and can also be applied to other one-dimensional mappings. Let P denote
probability, d distance function in the multidimensional space, and s a mapping of point x to the
curve. Proximity preserving quality is then defined as:

Q = P(d(q.x) < d(q,Y)) Yg.x,yex Is(q) = s(x)| < Is(q) — s(v)] @)

In other words, for Q > 0.5, if q is closer to x than y on the curve s, g is also more likely to be
closer to x in the multidimensional space. The mapping s is considered more proximity preserving
the closer the value Q is to 1.

To calculate this value, in practice, one would need to loop over all O(N?) possible 3-tuples
(g, x,y) € X* (or use random sampling), and count the cases where the point x or y that is farther
from q in absolute distance is also farther along the curve:

0= 1 Z {1 (d(g,x) — d(q,y))(Is(q) — s(x)| = Is(q) —s(y)]) > 0

3 0 else.
N (g.x,y)eX? e

®)

Z-order Curve. The Z-order curve (Figure 1) is a type of space-filling curve, a function which maps
multidimensional points to one dimension by interlacing the bits of the binary representation of
the vector components (see Figure 2). This one-dimensional value is referred to as Z-value. When
multidimensional points are ordered by their Z-values this order is called Z-order. The Z-order has
been discovered independently by several authors, including Morton [30], Tropf and Herzog [34],
and Orenstein [31].

The calculation of a Z-value is shown in Figure 2. The vector components are first converted
to binary representation. The bits of the binary representation are then interleaved. Finally, the
resulting binary string is interpreted as an integer number, which we refer to as Z-value. For
example, the two-dimensional vector (3,5) can be converted to either Z-value 27 or 39 depending
on the order of dimensions in the bit interleaving.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:5

2.4 Neighborhood Propagation

Neighborhood propagation is a method to construct (by starting from a random graph) or improve
an approximate kNN-graph by comparing each point of a graph with its neighbors’ neighbors. It
is based on the observation that if a point y is a neighbor of x and point z is a neighbor of y, then
z is also likely to be a neighbor of x.

Neighborhood propagation has been used in many different methods to construct the kNN-
graph [9, 12, 35, 38]. The Nearest Neighbor Descent (NN-Descent) [12] algorithm constructs the
kNN-graph solely by using neighborhood propagation. Other methods use neighborhood propa-
gation only as a post processing step to improve the quality of graph after the main algorithm.
Chen et al. [9] uses neighborhood propagation to refine the graph after their divide-and-conquer
method. Wang et al. [35] uses multiple random divide-and-conquer and Zhang et al. [38] uses
locality sensitive hashing (LSH) before neighborhood propagation.

The basic principle is shown in Algorithm 1. The algorithm takes as parameter a set of points X
and an initial approximation for the kNN of each point. The initial approximation can consist of just
random points chosen from X or it can be output from another non-exact kNN-graph algorithm.

The algorithm iteratively improves the quality of the graph. In each iteration, the neighbors of
neighbors are tested for each point x € X. If any of them are closer than the furthest of the current
neighbors, the neighbor list is updated accordingly. The algorithm is iterated until a specified stop
condition is met. For example, it can be run just for a fixed number of iterations [38] or as long as
the method is able to improve the graph [12].

ALGORITHM 1: PropagateNeighborhood

procedure PROPAGATENEIGHBORHOOD(X, kNN) — kNN
repeat
for all x € X do
for all Neighbor € kNN (x) do
for all y € kNN (Neighbor) do
UPDATENEIGHBORLIST(x, y, KNN)
UPDATENEIGHBORLIST(y, X, KNN)
end for
end for
end for
until stop condition met
return kNN
end procedure

Since each point has k? neighbors of neighbors, the propagation requires O(k?N) distance cal-
culations per iteration. Assuming that the time complexity of a distance calculation is linear with
respect to the number of dimensions D, the total time complexity of the method is O(k*NID),
where [is the number of iterations.

3 Z-ORDER NEIGHBORHOOD PROPAGATION

In this chapter, we present our method called Z-order neighborhood propagation (ZNP) for
constructing the k-NN graph (see Algorithm 2). It has two parts: First, an initial rough approxi-
mation is constructed by repeating a sliding window search for multiple Z-order projections (see
Figure 3). Second, the graph is improved further by alternately running neighborhood propagation
(NN-Descent algorithm) and the first method of Z-order sliding window search. Our method is
targeted for high-dimensional datasets and the L, distance metric.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:6 S. Sieranoja and P. Franti

Iteration 1: Exact results for 45% of points.

Iteration 2: Exact results for 76% of points.

T el
<A
v

Iteration 3: Exact results for 93% of points.

0\./. >0

A
v

e

=
1%

Fig. 3. 2NN-graph construction using three iterations of ZNP algorithm with parameter W = 2 and without
NN-Descent. Three Z-curves (left) and the resulting, gradually improved 2NN graph (right) are shown. White
circles represent points with only correct neighbors and black rectangles represent points with some incorrect

neighbors.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:7

The motivation for this approach is that, by using only the Z-order search, a rough approxi-
mation (around 10-50% recall rate) of the graph can be achieved very fast. However, when con-
tinuing the search further, the quality improves slowly. Conversely, the NN-Descent algorithm
gives usually very bad results on the first 1-3 iterations, mainly because it starts from a random
kNN-graph. But after that, the quality improves very quickly. Therefore, it makes sense to combine
these two approaches so that we first execute search along the Z-order curve and then continue
with the NN-Descent algorithm. However, the NN-Descent algorithm will at some point converge
to a state where no new neighbors are found. For this reason, we run the Z-order search and NN-
Descent alternately so that new neighbors found by the Z-order search can be further propagated
to neighboring points using the NN-Descent algorithm.

The Z-order curve was chosen as basis of our method over other alternatives such as Hilbert
curve. Most space-filling curve-based methods use either the Z-order or Hilbert curves because
they have the best proximity preserving qualities [27, 37].

Some sources claim that the Hilbert curve has better proximity preserving quality than the Z-
order curve [8, 14], but it is unclear whether these results generalize to higher dimensions. We
chose the the Z-order curve mainly because its simplicity, which allows fast implementation also
in high dimensions (with little effort).

3.1 Calculation of Z-value

Different methods for Z-value generation have been compared in Ref. [33] and by J. Baert.? We
use the lookup table-method, which we implemented for an arbitrary number of dimensions and
varying bit-lengths.

Other methods using space-filling curves for kNN-graph construction are limited to a low num-
ber of dimensions [10]. Applying space-filling curves for higher number of dimensions can be prob-
lematic. One of the problems in using the Z-order curve is that the space and time constraints grow
linearly with D. This is because the Z-values are calculated by interleaving the bits of the binary
representations of all vector dimensions. For example, a dataset with dimensionality D = 1, 000,
bit-length b = 32 bits per dimension, and size of N = 1,000,000 points, the Z-values would need
to be represented by D - b = 32,000 bit integers. Calculating, storing, and comparing such large
integers would become a bottleneck in the algorithm.

For example, memory needed for generating and sorting D-dimensional Z-values would be N -
D - b/8 = 4GB. Storing the Z-values for all points is not necessary for sorting, but calculating them
every time a comparison is made by the sorting algorithm would increase the number of Z-value
calculations from N to roughly N - log(N) (number of comparisons in sorting). Consequently,
this would increase the running time of the algorithm, especially for high-dimensional data where
Z-value calculations are more time-consuming.

3.2 Dimensionality Reduction

We introduce, next, a simple but effective linear dimensionality reduction technique to avoid the
aforementioned problems with high dimensionality (see Algorithm 3). It is inspired by the mean-
distance ordered partial search (MPS) method introduced in Ref. [32], which was used to construct
the kNN-graph in Ref. [16]. It is also related to Johnson-Lindenstraus transform (JLT) [2] with
the main difference that JLT aims to preserve the distance between points in the projected space,
whereas we are concerned only on preserving the neighbor connections.

2Baert, J., “Morton encoding/decoding through bit interleaving,” October 2013. Retrieved from http://www.forceflow.be/
2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

http://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
http://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/

1.9:8 S. Sieranoja and P. Franti

We reduce dimensionality of data points from D to D, before projecting to Z-order curve. We
divide the dimensions into D, random subsets with roughly equal sizes and then construct new
subvectors corresponding to the subsets of the dimensions. Each subvector is mapped to one di-
mension by projecting them to the diagonal axis. The one-dimensional mappings of the subvectors
are combined to one D, dimensional vector for which a Z-value is calculated in the normal way
of bit interleaving,.

For example, given a six-dimensional (D = 6) vector x = (5,4,7,0,3,2), D, = 3 and permuta-
tion of dimensions DP = (4,5, 6, 1, 2,3) coordinates of point x would be first reordered to x" =
(0,3,2,5,4,7) and then mapped to a three-dimensional vector (0 +3,2+5,4+7) =(3,7,11) =
(00112,01115, 1011,). After that, the bits of this vector (0011;,0111;,1011;) are interleaved to pro-
duce a Z-value of 001010111111, = 703.

For multiple precision arithmetic we use Boost.Multiprecision C++ library. We use 1024-bit un-
signed int data type (uint1024_t) to represent the Z-values. This allows us to use 32-bit integers

ALGORITHM 2: ZNP

Inputs:
Dataset of points X
Number of nearest neighbors k
Minimum graph change ¢ € [0, 1]
NN-Descent start parameter (graph maturity) y € [0, 1]
Dimensionality of the Z-order curve D,
Width of sliding window W.

Output: kNN graph.

1: procedure ZNP(X, k, 8,y,D,, W)

2: repeat

3: c—0 > Number of successful updates to kNN
4: S « ProjecTTo1D(X, D;);

5: X « Sort so that Vxj € X, S[j] < S[j +1] > Sort based on Z-values
6: for all x; € X do > Scan points using a sliding window
7: for ally € {xj41,...,xj1w} do

8: d «<DISTANCE(x},)

9: ¢ < c+UPDATENEIGHBORLIST(X}, y, d, KNN)
10: ¢ < c+UPDATENEIGHBORLIST(y, X, d, KNN)
11: end for
12: end for
13: if ¢/Nk <y then
14: ¢ < ¢ + NN-DEscenT(kNN) > One iteration of NN-Descent
15: end if

16: until ¢/Nk < §

17: end procedure

18:

19: procedure UPDATENEIGHBORLIST(x, y, d, KNN)

20: update « 0

21: if d < max{dy|(y,dy) € kNN(x)} or size(kNN(x)) < k then

22: Insert (y, d) into kNN(x)

23: Remove item with largest distance from kNN(x) if size(kNN(x)) > k
24: update « 1

25: end if

26: return update
27: end procedure

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:9

to represent vector components and to calculate Z-values for up to 32 dimensional points without
using dimensionality reduction (32 X 32 = 1,024).

ALGORITHM 3: ProjectTo1D

Inputs:
Dataset of points X
Dimensionality of the Z-order curve D,
Output:
One-dimensional projection S
1: procedure ProjecTTo1D(X, D;)
2: h < Random vector of size D
3 X « Scale X to positive integer values
4 DP « (0,...,D—1) > Create random permutation of dimensions
5: DP « SHUFFLE(DP)
6
7
8
9

parfori < 0,N — 1 do
x « Zero vector of size D,

forj«— 0,D—-1do > Reduce dimensionality from D to D,
x[j mod D;] += X[i][DP[j]] + A[/]
10: end for
11: S[i] « z_value(x)
12: end parfor

13: return S
14: end procedure

3.3 Neighborhood Propagation

In our method, we use the original NN-Descent algorithm [12] for neighborhood propagation, with
one small difference. We do not use the actual value k of the graph in the operation, because NN-
Descent requires O(k*N) distance calculations per iteration, and this quadratic time complexity
makes the algorithm impractical for higher values of k. Instead, we choose another value Kppges
using the rule kypges = \/j_k, where j is a small number. So, for fixed j = 10, for example, k = 10 =
Kpndes = 10, and k = 100 = kypdes = 32.

To clarify, we do not use all neighbors, but only the nearest k4.5 neighbors. In this way, the
time complexity per iteration can be kept linear for k, at O(Kyndes°N) = O(kjN). This way of
limiting k is also apparently somewhat related to the operation of KGRAPH,! a newer version of
NN-Descent, although this feature is not clearly documented.

Several previous algorithms [9, 12, 35, 38] use some variant of neighborhood propagation. In all
of them, one algorithm is first used to initialize the graph and neighborhood propagation is then
used to refine it. However, without increasing the value k, neighborhood propagation will always
converge at some point to a situation where no improvements on the graph can be made. For this
reason, we apply neighborhood propagation (NN-Descent algorithm) alternately with the Z-order
search. In this way, new neighbors found by Z-order search can be propagated to neighboring
points using the NN-Descent search, and the search can be continued beyond the convergence
point of the NN-Descent algorithm.

3.4 Parallelization
The Z-order search has three bottlenecks in the order of time consumption:
—The sliding window

— Z-value calculation
—Sorting of Z-values

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:10 S. Sieranoja and P. Franti

All of these steps can be easily parallelized. The main bottleneck, the sliding window (line 6 in
Algorithm 2) can be parallelized by dividing the (sorted) dataset into equal parts for multiple non-
overlapping sliding windows, one for each thread. This avoids the problem of concurrent memory
write access to the graph.

The z-value calculation (line 6 in Algorithm 3) can be trivially parallelized by using a parfor
statement. Sorting the z-values (line 5 in Algorithm 2) can be done in parallel using standard
libraries.

For the number of threads n, parallel efficiency is commonly defined as the time taken by single
thread Ty divided by n times the time taken by parallel threads T,:

L 0
nT,

According to our experiments with the Sift1M dataset and n = 4 threads, parallelizing these
three steps in our implementation using OpenMP leads to parallel efficiency of 83%. In other words,
if single thread took 100 seconds, the parallel version would require 30 seconds.

We expect the method to be efficient also for GPUs. The main bottleneck of the sliding window
is only slightly more complex than the brute-force method, and it can be divided into sub-problems
similarly as brute force, which is easy to parallelize [19].

Parallel efficiency =

4 EXPERIMENTS

This section presents the methodology and results for our experiments. We compare the perfor-
mance of our ZNP method to seven existing algorithms on Euclidean distance metric and five data
sets, the dimensionality of which ranges from 14 to 784. We use recall rate to measure the quality
of the kNN-graph and program execution time to measure speed. Additionally, in Section 4.6, we
analyze which kind of points cause inaccuracies in the graphs. In Section 4.7, we study the effect
of our dimensionality reduction method on the quality of results.

4.1 Evaluated Algorithms

We compare our ZNP algorithm against seven different algorithms, shown in the following table.

ZNP Z-order neighborhood propagation, without NN-Descent (proposed)

ZNP* Z-order neighborhood propagation, including NN-Descent (proposed)

NNDES Nearest Neighbor Descent (NN-Descent) [12]

KGRAPH Newer version of NN-Descent with additional optimizations

RLB Recursive Lanczos Bisection, variant glue [9]

MPS-limited A limited version [15] of mean-distance-ordered partial codebook search
(MPS) [32]

PCADIV Multiple random divide-and-conquer using PCA [35]

LSH Locality Sensitive Hashing [38]

Bruteforce A naive algorithm that calculates all N(N — 1)/2 possible distances

For our ZNP algorithm, we used the configuration parameters D, = 32, W = 2k, and § = 0.0001.
The algorithm was run once with NN-Descent disabled (y = 0, denoted as ZNP) and another time
with NN-Descent enabled (y = 0.3), denoted as ZNP*). Time and recall values are reported for
each iteration. We have made our implementation also available for others.

Shttp://www.uef fi/web/machine-learning/software.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

http://www.uef.fi/web/machine-learning/software

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:11

NNDES [12] has sampling factor A € [0, 1] and the parameter § € [0, 1]. The program stops when
the last iteration yielded less than § changes on the graph. Increasing § increases the number of
iterations. The NNDES algorithm was run for A = 1 and § = 0.00001. Performance is reported for
each iteration, starting from the second. For NN-Descent benchmarks, we used the implementation
made available by the authors.*

KGRAPH! is a newer version of the NN-Descent algorithm with some additional features and
optimizations. Namely, according to the documentation,® the actual neighborhood size M is not
fixed to k but varies depending on data point while staying below an upper limit L. To set suitable
parameter L, we used the recommended L = k + 50.

The RLB algorithm [9] has two variants: glue for higher speed but lower quality and over-
lap for higher quality and lower speed. We use only the variant glue. We use the imple-
mentation previously made available by the authors,® although no longer online. The RLB al-
gorithm has quality control parameter overlap size for which we used the following values
(0.05,0.10, 1.5, 0.20,0.25, 0.30). Increasing the overlap size increases both recall rate and program
execution time.

MPS-limited is an approximate version of mean-distance-ordered partial codebook search (MPS)
[32], first used for kNN-graph construction in Ref. [15]. It has parameter W to limit the maximum
number of distance calculations for each point, and, consequently, time complexity O(NW). We
run the algorithm for varying values of W € {100, 500, 1000, 5000, 10000, 20000}.

Brute-force algorithm single core running times and quality were extrapolated based on a sam-
ple of 100,000,000 distance calculations. An actual brute-force algorithm for ground truth genera-
tion was run on parallel threads.

Locality Sensitive Hashing (LSH) [38] calculates hash-values for each point and uses a random
linear projection to map the hash bucket values to one dimension. Based on this value, the points
are divided into equal size blocks and a brute-force algorithm is applied for each block. The process
is repeated for m different projections and then single step neighborhood propagation is used
to improve the graph. The authors recommend a block size 100, but we used a value of 200 as
this provided better results, especially in the case of k = 100. We vary the number of projections
m € {1,2,3,4,5,6,7,8,9,10, 15, 20, 25}. For this method, we used our own implementation as we
found no sources available. We use FALCONN’ implementation for the hash function.

Multiple PCA random divide-and-conquer (PCADIV) [35] hierarchically divides the dataset into
smaller subsets until the size is smaller than 500, and then runs brute-force algorithm for each
part. This process is repeated m times until effective rate r,,, < 0.05 is reached. The approximate
graph is then improved using a variant of neighborhood propagation that expands the search to
the nearest unvisited point. The propagation is iterated by the maximum number of steps T €
{0, 50, 100, 500, 1000, 2000, 4000}. For this method, we used our own implementation as we found
no sources available.

4.2 Measurements

We measure recall rate and program execution time to evaluate the performance of the algorithms.
Recall rate, or accuracy, measures the quality of the approximate kKNN-graph G’ in relation to
accurate graph G by taking the number of common edges (neighbors) relative to the number of all

*https://code.google.com/p/nndes/.
Shttps://github.com/aaalgo/kgraph/blob/master/doc/params.md.
Shttp://www.mcs.anl.gov/~jiechen/software/knn.tar.gz.
"https://falconn-lib.org/.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

https://code.google.com/p/nndes/
https://github.com/aaalgo/kgraph/blob/master/doc/params.md
http://www.mcs.anl.gov/protect $
elax sim $jiechen/software/knn.tar.gz
https://falconn-lib.org/

1.9:12 S. Sieranoja and P. Franti

Table 1. Summary of Datasets and Time
Taken by Brute Force (k = 10)

Dataset N D time

MNIST 10,000 | 784 337s
Shape 28,775 | 544 295s
Audio 54,387 | 192 401s
Corel 662,317 14 9,018s
Sift1M 1,000,000 | 128 | 100,846s

Brute force times for Euclidean distance, except
(slower) Minkowski for MNIST.

edges [9, 12]:

, |E(G) NE(G)]
recall(G’, G) EQ)| (5)
The recall rate ranges from 0 to 1 where value 1 means that the results are equal and 0 that the
results are completely different. Instead of recall rate, one could also report error rate = 1 — recall.
Program execution time is measured as single thread execution time. The time needed to load
the dataset and save the results to file is excluded because it mostly depends on the system I/O
performance and does not reflect the efficiency of the algorithm.

4.3 Datasets

We use five different datasets: Shape, Audio, Corel, Sift1M, and MNIST. These first three datasets
were used in Ref. [12] and can be found on the web.? Sift1M was first used in Ref. [6] and can be
found on the web.” MNIST was first used in Ref. [26] and is available online.!’

The Corel dataset consists of features from 68,040 different images, each divided into 10 seg-
ments, thus, providing a total of 680,400 data objects. Fach segment consists of 14 different
features.

The Shape dataset contains 28,775 3-D shape models collected from various sources. Features
were extracted from each 3-D model.

The Audio dataset contains features from the DARPA TIMIT collection. It was created by break-
ing recordings of 6,300 English sentences into smaller segments and extracting features from them.
Each segment is treated as an individual object.

Sift1M dataset contains one million Scale-invariant feature transform (SIFT)[28] image feature
vectors of dimensionality 128.

MNIST data contains the raw image files of 10,000 handwritten digits in 28x28 resolution. The
grayscale value of each pixel is interpreted as a dimension, which makes the data 784-dimensional.

4.4 Empirical Process

We run the algorithms for two different values of k € 10, 100. We expect this range to be repre-
sentative of most practical applications. For comparison, k = 50 was the highest value used in
Ref. [35] and k = 100 in Ref. [39]. For the MNIST dataset, we also vary the parameter p for
Minkowski distance.

8https://code.google.com/p/nndes/downloads/list.
“Downloaded from http://corpus-texmex.irisa.fr/.
Ohttp://yann.lecun.com/exdb/mnist.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

https://code.google.com/p/nndes/downloads/list
http://corpus-texmex.irisa.fr/
http://yann.lecun.com/exdb/mnist

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:13

Table 2. Time Taken to Reach 80% Accuracy Level

p=0.1 p=1 p=2 p=10.0

Dataset Method Time | Accuracy | Time | Accuracy | Time | Accuracy | Time | Accuracy

ZNP* 107s 85.4% 21s 91.7% 20s 92.1% 86s 92.3%

ZNP 446s 80.1% 37s 80.0% 36s 80.4% 171s 80.4%
MNIST NNDES 122s 83.4% 47s 92.8% 49s 93.8% 165s 93.8%

PCADIV 278s 91.4% 37s 83.3% 36s 85.6% 160s 85.0%

KGRAPH 147s 84.1% 34s 85.6% 36s 85.9% 118s 86.2%

bruteforce 1361s 80.0% 271s 80.0% 270s 80.0% 1358s 80.0%
ZNP* speedup from bruteforce | 12.7:1 12.9:1 13.5:1 15.8:1

Varying parameter p for Minkowski distance (Lg.1, L1, Lz, L1o metrics).

All experiments were run on a computer equipped with 8-Core 4.0GHz AMD FX-8350 CPU with
8MB of L2 cache and 8GB of RAM. The computer was running 64-bit Ubuntu Linux 16.04. Code
compilation for all tested algorithms was done using gcc version 5.4.1 with -O3 optimization.

All algorithms were run on a single thread, with parallelization disabled. SSE2 vectorized dis-
tance functions were disabled and simpler implementations used instead.

The Recursive Lanczos Bisection-algorithm was run only for datasets Shape and Audio. For
other datasets, the program didn’t finish because of high memory consumption (over 6GB of
RAM).

4.5 Time Versus Quality Tradeoff

The results are presented in graphical plots in Figures 4 and 5 and Table 2. The results for RLB are
missing in cases where the program did not give results with any overlap values. The Minkowski
experiments were run only for the best algorithms selected based on the results in Figure 4.

From Figure 4, it can be seen that the ZNP algorithm provides best results with k = 10. With
the Corel dataset, ZNP reaches a 90% accuracy level taking only 73% of the time of the second best
method (PCADIV).

For k = 100, the PCADIV is somewhat faster with all datasets, although ZNP is still the second
or third best method. One explanation is that PCADIV uses a different type of neighborhood prop-
agation method, which expands to the nearest unvisited point. We suspect that it requires higher
connectivity of the graph, and increasing the k-value usually increases graph connectivity. It may
also be that the default parameters suggested by the authors are more suitable for the k = 100
case.

All methods seem to perform in a similar way regardless of the distance metric Lg 1, L1, Lo, L1o.
The ZNP* method is the best in all tests where the metric was varied, although the performance
gain is somewhat smaller with the L, ; distance.

ZNP™ converges to near exact (98.0%-99.9%) results in all cases with the same configuration
parameters (W = 2k, y = 0.3) and stop condition (§ = 0.0001), regardless of the choice of k or the
dataset. For comparison, the quality of the NN-Descent algorithm varied much more (78-100%)
when k changed from 10 to 100. This is important for practical situations where the users typically
cannot calculate the recall rate of the end results and need to rely on the recommended parameters.

4.6 Predicting Errors

From the results in Figure 4, it can be seen that the quality versus time performance of the ZNP
method degrades after roughly 90% recall rate, and further iterations provide only minor improve-
ment. For Sift1M dataset and k = 100, ZNP reaches 96.0% accuracy in 1,274 seconds whereas the

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:14

Accuracy (%)

S. Sieranoja and P. Franti

Accuracy (%)

—~ZzNpr 1T 00 -+ ZNP*
| =T2ZNP HE 50 ——ZNP H
~~NNDES | 3 ~-NNDES
—o—kgraph [| & 40 —o—kgraph
-0-MPS a0l -o-MPS ||
-%-RLB -»-RLB
—bruteforce|] 20 — bruteforce ||
->-LSH 10 ->-LSH
—~#—PCADIV —#PCADIV
‘2 ‘3
0
Sha
rk=10 1
3
—ZNPT 1S ——ZNP*
—v-ZNP He -v-ZNP I
~-NNDES | 3 —~NNDES
—o—kgraph || & —o—-kgraph
-o-MPS H -o-MPS H
-%-RLB -»-RLB
—bruteforce | —bruteforce ||
->-LSH i ->-LSH
—#*-PCADIV —*-PCADIV
10° 10° 10°

100 100
Corel
90 90-k=100
80 80- 1
70 700 1
£ 0 & oo .
> >
8 50 —-ZNP* || 8 sof [==znpr
3 -v—ZNP 3 ——ZNP
g 4 —~-NNDES [| & 40 ——NNDES
30 = kgraéph o 30 = kgrz;ph H
-0-MP o -0-MP
204 —bruteforce|] 20 .- N —bruteforce ||
10 -b-LSH 10 o ->-LSH
~+PCADIV __— |+Pcani
0 3 > ' v
10 10 10
Time (seconds)
100 ‘ ‘ 1007
Sift1M Sift1M
90-k=10 901-k=100
80- 1 sof
700 1 70b
£ 0 {E 6o
> >
§ 50 ——7ZNP* 8 500
3 -v—-ZNP 3 ——7NP*
g 4 —~-NNDES [| & 40 —~—2ZNP
30 —o—kgraph 4 30 ——~NNDES ||
-o-MPS —o—kgraph
20 —bruteforce|| 20 ~0-MPS i
10 ->-LSH i 10 : ot —bruteforce ||
! ——PCADIV g--0-=2> |PCADIV
0 0 o N i ° 16‘ 10°

Time (seconds)

Time (seconds)

Fig. 4. Results: Time versus quality tradeoff.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve

MNIST MNIST
90rk=10, p=0.1 90rk=10, p=1.0
80 80
701 70F
£ cor 18 60l
> >
8 50 {8 50
3 3
g 4 ——ZNP* 18 41 ——ZNP*
30 -vZNP 30 =v-ZNP
——NNDES ——-NNDES
201 —=—kgraph 207 —o—kgraph
10, —bruteforcel] 1oy —bruteforce |
4 ——PCADIV —~*PCADIV
i 0 e

10°
Time (seconds)

MNIST
90rk=10, p=2.0

10°

£ ool |2
3)
& 50 18 50r
3 3
2 401 —a—-7ZNP* g 40 - 7N P+
300 -vZNP 30} =v-ZNP
——NNDES ——NNDES
201 —a—kgraph 200 —a—kgraph
104 —bruteforce 104 —bruteforce ||
—#-PCADIV —#PCADIV

10 10%
Time (seconds)

90/ k=10, p=10.0

MNIST

10’
Time (seconds)

10

10 10°
Time (seconds)

10

1.9:15

Fig. 5. Results: Time versus quality tradeoff for 784-dimensional MNIST dataset. Varying Minkowski dis-
tance parameter p.

final result of 99.3% takes 5,393 seconds in total. The same phenomenon happens also with other

algorithms [35, 38]. The reason for this diminishing improvement has so far not been studied. We

next provide some insight to this problem by analyzing which kind of points cause inaccuracies.
We calculate two statistical properties of every point:

1
Cohesion : Pn_yn(¥) = 7z > [KNN(x) ULNN(@)| (6)
ykNN(x)
' | B 1 ifx € kKNN(y)
Inlierness : Py-nn(X) = x Z {o else g

y€kNN(x)

Cohesion measures the probability that a neighbor’s neighbor of point x is among the neigh-
bors of x. This relates to the neighborhood propagation method, which constructs a kNN-graph
by testing the neighbors of neighbors of every point. Therefore, this method is dependent on a
reasonable probability for Py-nn.

Inlierness measures the probability that x is among the neighbors of its neighbor. In other words,
it is the number of mutual neighbors of x relative to k. This measure also relates to node inde-
gree number measure previously used for outlier detection in Ref. [22]. The difference is that we
disregard edges from non-neighbors and normalize to [0, 1] range. Still, we consider both inlierness
and cohesion to indicate how likely a point is an outlier.

We study next how the errors are distributed in the graph provided by ZNP and KGRAPH for the
datasets Audio and Sift1M, using neighborhood size k = 10. We divide the points into two equal

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:16 S. Sieranoja and P. Franti

size classes based on their cohesion: points whose cohesion score is higher than median cohesion
(condensed) and others (sparse). Another categorization is made based on their inlierness: points
whose inlierness score is higher than the media score (inliers) and others (outliers).

We then study how the errors in the graph are distributed among the high and low classes.
Since their sizes are equal, the number of errors is expected to be distributed 50%-50% between
the classes. Figure 6 reveals that this is not the case. Only when there are lots of errors in the graph,
they are equally distributed. However, the less there are errors, the more often they appear in the
outlier class. For example, with 99% accurate KGRAPH results for the Audio dataset, there are 5,551
errors in total, of which 4,847 (88%) are within the outlier class. The phenomenon is similar with
the cohesion measure.

From the results, we conclude that both sparsity and outlierness of the point highly correlate
with the probability of whether it has errors. This has two consequences:

—It is expected that many of the approximation errors appear with the outlier points, which
are less important for many applications.

—The cohesion and inlierness scores could be used to indicate how much longer the neigh-
borhood propagation should be continued. For points with higher score, the search could
be terminated earlier.

4.7 Effect of Dimensionality Reduction on Z-order Search

In Section 3.2, we introduced a dimensionality reduction method to be used with the Z-order curve.
Here, we study how this dimensionality reduction affects the performance of the ZNP algorithm.
We vary target dimensionality D, from two to full dimensionality of the data and record the cor-
responding accuracy of the graph. The results are shown in Figure 7.

Window width of W = 20 was used in these experiments. The algorithm was run separately for
(a) only one iteration and (b) five iterations. The experiments were repeated 10 times for each D,
while other parameters remained constant.

From the results, we can see that the recall rate decreases rapidly when D, < 10, so sufficiently
large D, is needed to provide good results. However, when D, is increased beyond the selected
value of 32, the results improve only marginally. Additionally, when D, grows, the program exe-
cution time also grows.

It can also be seen from Figure 7 that there is a moderate amount of variation in the quality
of results between program runs. The variations originate from three kinds of randomization in
the algorithm: (1) random shifting of points, (2) random division to subvectors in dimensionality
reduction, and (3) random ordering of dimensions in bit interleaving.

4.8 Proximity Preserving Qualities of the Z-order

In Equation (3), we introduced a formal definition for the proximity preserving quality (Q). Here,
we test how well the Z-order curve preserves the proximity of points on the datasets Shape, Audio,
Corel, and Sift1M when using Euclidean distance. We take a subset of the first D dimensions of
each dataset, and then project it to one dimension using Algorithm 3. We measure the quality Q
for the curve using 100,000 random samples and 100 different projections. The mean and standard
deviations of Q are reported in Figure 8.

The results show that Q decreases with dimensions but remains better than random change
p = 0.5. The proximity preserving quality depends both on the data and the dimensions. The Q
value is higher for the Shape dataset than for Sift1M, despite Shape having higher dimensionality.
Proximity preserving quality also correlates with the accuracy of the kNN graph. For example, the

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:17

ZNP KGRAPH
100 = =

Cohesion Cohesion
Audio Audio

;\? 80 Sparse ;\? 80 Sparse

] 2 60

© ©

G G

»~ 40 =~ 40

e e

E™ 1™

W o9 W oo

% 40 5 6 70 8 9 20 40 60 80
Accuracy (%) Accuracy (%)
100 - .
Cohesion Cohesion
80 SiftlM SiftlM

;\'o‘ Sparse :\'o‘ Sparse

2 60 2

© ©

£ G LR £ e LR LD
[7] [7]

o o

= =

w w

20 40 60 80 20 40 60 80
Accuracy (%) Accuracy (%)

Inlierness Inlierness
Audio Audio

g Outliers g Outliers

o o

= =

< ©

< £ -

o 7]

= -

° o

= £

w w

40 50 60 70 80 90 20 40 60 80
Accuracy (%) Accuracy (%)

Inlierness Inlierness
SiftlM SiftlM

;\? Outliers ;\? Outliers

(] (4]

S S

© ©

£ O e CEE e ECT £ R e CEE e ECT

» 7]

S S

o o

= =

w w

20 40 60 80 20 40

60 80
Accuracy (%) Accuracy (%)

Fig. 6. The error distributions are shown for the results of ZNP (left) and KGRAPH (right). We use two mea-
surements: inlierness and cohesion, and divide the points into two equal-size classes based on measurement
scores. The share of errors for these classes is shown on the y-axis. The accuracy of the graph is shown on
the x-axis.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:18 S. Sieranoja and P. Franti

w
a

Audio

5 iterations

5 iterations

w
S

50

IS
S
n
a

N
=}

Selected D,

One iteration

Accuracy (%)
Accuracy (%)

One iteration

w
=)

l/

50 100 150 200 250D 300 350 400 450 500
z

Corel

200 Sift1M |

60+

5 iterations

5 iterations

501

Selected D,

IS
S
T

Selected D,

Accuracy (%)
8
Accuracy (%)

©
T

20k One iteration One iteration

Y

1 . . . I
2 4 6 [? 10 12 14 20 40 GOD 80 100 120
z z

=)

Fig. 7. The effect of dimensionality reduction (D;) on recall rate of the ZNP algorithm illustrated for each
dataset. Run for (a) one iteration and (b) five iterations. The area around the mean illustrates the standard
deviation of the 10 repeats. The fixed D, value used in other experiments is shown as a dashed line.

Corel dataset has the highest Q values, and the proposed Z-order search also performed best for
this dataset (see Figure 4).

4.9 Space Complexity

In all of the compared algorithms, the data and the graph take a majority of the memory con-
sumption. The space complexity is O(Nk + Nd), and there should not be any signicant differences
between the algorithms. In practice, KGRAPH consumes 51% more memory than the proposed
method in the case of Sift1M data, but it is not clear whether the difference is due to the algo-
rithms or their implementations.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced a new method called ZNP for constructing a kNN-graph by using
a combination of space-filling curves and neighborhood propagation. We compared it with five
other methods using 14- to 784-dimensional datasets and different Minkowski distance metrics.
ZNP performed well, especially for a smaller neighborhood size (k = 10) and for the 14-
dimensional Corel dataset consisting of 662,317 points, using the L, metric. In this case, it reached
90% quality level using only 73% of the time taken by the second best method PCADIV. ZNP per-
forms well with even higher dimensional datasets. For the 784-dimensional MNIST data and L,
metric, it reached a 90% quality level using only 45% of the time required by the second best

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:19

Trp g
'TCorel ' Audio:
095} 0.95r
0.9+
0.85f Selected D,

0‘52 4 6 8 10 12 14 05 20 40 60 80 100 120 140 160 180
D D
! 1
Sift1M
0.95
0.9 Selected D,

0.651
Selected D,
0.6r
0.55¢
05 . . L . L)
100 200 300 400 500 20 40 60 80 100 120
D D

Fig. 8. The proximity preserving quality (Q) of the Z-order projection calculated on four datasets. We take
a subset of the data with first D dimensions before projecting to the curve and vary D between 2 and the
original dimensionality of the data. We use parameter D, = min{D, 32} (see Algorithm 3). The gray area
around the mean illustrates standard deviation of the 100 repeats.

method NNDES. With high neighborhood size (k = 100), the method PCADIV performed best in
most cases. However, it was not clear if the differences between high and low neighborhood sizes
was due to fundamental differences in the performance of the methods, or if the recommended
default parameters just worked better in different situations.

We showed that errors in approximate kKNN-graphs produced by our method and KGRAPH are
not randomly distributed, but they appear more likely for outlier points. This outlier estimation
was performed during runtime, without using ground truth. Therefore, it could also be used for
improving search methods in future studies by, for example, running a more extensive search for
outlier points.

REFERENCES

[1] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. 2001. On the surprising behavior of distance metrics
in high dimensional spaces. In Proceedings of the 8th International Conference on Database Theory (ICDT’01). Springer-
Verlag, London, UK, 422-434.

[2] Nir Ailon and Bernard Chazelle. 2009. The fast Johnson-Lindenstrauss transform and approximate nearest neighbors.
SIAM J. Comput. 39, 1 (2009), 302-322.

[3] Mikhail Belkin and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation 15, 6 (2003), 1373-1396.

[4] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999. When is nearest neighbor meaningful?
In International Conference on Database Theory. Springer, 217-235.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

1.9:20 S. Sieranoja and P. Franti

(5]
(6]
(7]
(8]
(9]

(10]
(1]
[12]
[13]
[14]
[15]
(16]
(17]
(18]
(19]
[20]
[21]
[22]
(23]
[24]

[25]

[26]
[27]
(28]
[29]
[30]

(31]

Theodore Bially. 1969. Space-filling curves: Their generation and their application to bandwidth reduction. IEEE
Transactions on Information Theory 15, 6 (1969), 658—664.

Jonathan Brandt. 2010. Transform coding for fast approximate nearest neighbor search in high dimensions. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 1815-1822.

Hue-Ling Chen and Chang. 2011. All-nearest-neighbors finding based on the Hilbert curve. Expert Systems with
Applications 38, 6 (2011), 7462-7475.

Hue-Ling Chen and Ye-In Chang. 2005. Neighbor-finding based on space-filling curves. Information Systems 30, 3
(May 2005), 205-226.

Jie Chen, Haw-ren Fang, and Yousef Saad. 2009. Fast approximate k NN graph construction for high dimensional data
via recursive Lanczos bisection. The Journal of Machine Learning Research 10 (Sep. 2009), 1989-2012. http://www.jmlr.
org/papers/v10/.

Michael Connor and Piyush Kumar. 2010. Fast construction of k-nearest neighbor graphs for point clouds. IEEE
Transactions on Visualization and Computer Graphics 16, 4 (2010), 599-608.

Revital Dafner, Daniel Cohen-Or, and Yossi Matias. 2000. Context-based space filling curves. In Computer Graphics
Forum, Vol. 19. Wiley Online Library, 209-218.

Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th International Conference on World Wide Web. ACM, 577-586.

Christos Faloutsos and Yi Rong. 1991. DOT: A spatial access method using fractals. In Proceedings of the 7th Interna-
tional Conference on Data Engineering. IEEE Computer Society, Washington, D.C., 152-159.

Christos Faloutsos and Shari Roseman. 1989. Fractals for secondary key retrieval. In Proceedings of the 8th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’89). ACM, New York, NY, 247-252.
Pasi Franti, Olli Virmajoki, and Ville Hautamaki. 2003. Fast PNN-based clustering using k-nearest neighbor graph. In
Proceedings of the IEEE International Conference on Data Mining (ICDM’03). IEEE, 525-528.

Pasi Franti, Olli Virmajoki, and Ville Hautdmaki. 2006. Fast agglomerative clustering using a k-nearest neighbor
graph. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 11 (2006), 1875-1881.

Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software (TOMS) 3, 3 (Sept. 1977), 209-226.

Cong Fu and Deng Cai. 2016. EFANNA: An extremely fast approximate nearest neighbor search algorithm based on
kNN graph. CoRR abs/1609.07228 (2016).

Vincent Garcia, Eric Debreuve, and Michel Barlaud. 2008. Fast k nearest neighbor search using GPU. In Proceedings
of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 1-6.
Irene Gargantini. 1982. An effective way to represent quadtrees. Commun. ACM 25, 12 (Dec. 1982), 905-910.

Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011. Fast approximate nearest-neighbor
search with k-nearest neighbor graph. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence,
Vol. 22. 1312.

Ville Hautaméki, Ismo Kéarkkéinen, and Pasi Franti. 2004. Outlier detection using k-nearest neighbour graph. In ICPR
(3). 430-433.

Herman Haverkort. 2010. Recursive tilings and space-filling curves with little fragmentation. arXiv preprint
arXiv:1002.1843 (2010).

Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. 2000. What is the nearest neighbor in high dimen-
sional spaces? In Proceedings of the 26th VLDB Conference, Cario, Egypt.

Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards removing the curse of dimension-
ality. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC’98). ACM, New York, NY,
604-613.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 11 (1998), 2278-2324.

Swanwa Liao, Mario A. Lopez, and Scott T. Leutenegger. 2001. High dimensional similarity search with space filling
curves. In Proceedings of the 17th International Conference on Data Engineering (ICDE’01). 615-622.

David G. Lowe. 1999. Object recognition from local scale-invariant features. In Proceedings of the 7th IEEE International
Conference on Computer Vision, Vol. 2. IEEE, 1150-1157.

Mohamed F. Mokbel and Walid G. Aref. 2011. Irregularity in high-dimensional space-filling curves. Distributed and
Parallel Databases 29, 3 (2011), 217-238.

Guy M. Morton. 1966. A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing. International
Business Machines Company.

Jack A. Orenstein and Tim H. Merrett. 1984. A class of data structures for associative searching. In Proceedings of the
3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. ACM, 181-190.

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

http://www.jmlr.org/papers/v10/
http://www.jmlr.org/papers/v10/

Constructing a High-Dimensional kNN-Graph Using a Z-Order Curve 1.9:21

(32]
(33]
(34]
(35]
(36]
(37]
(38]

(39]

S.-W.Ra and J. K. Kim. 1993. A fast mean-distance-ordered partial codebook search algorithm for image vector quan-
tization. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 40, 9 (1993), 576-579.
Rajeev Raman and David S. Wise. 2008. Converting to and from dilated integers. IEEE Trans. Comput. 57, 4 (2008),
567-573.

Herbert Tropf and H. Herzog. 1981. Multidimensional range search in dynamically balanced trees. ANGEWANDTE
INFO. 2 (1981), 71-77.

Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li. 2012. Scalable k-NN graph construc-
tion for visual descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 1106-1113.

Jens-Michael Wierum. 2002. Logarithmic path-length in space-filling curves. In CCCG. 22-26.

Bin Yao, Feifei Li, and Piyush Kumar. 2010. K nearest neighbor queries and kNN-joins in large relational databases
(almost) for free. In Proceedings of the 2010 IEEE 26th International Conference on Data Engineering (ICDE). IEEE, 4-15.
Yan-Ming Zhang, Kaizhu Huang, Guanggang Geng, and Cheng-Lin Liu. 2013. Fast kNN graph construction with
locality sensitive hashing. In Machine Learning and Knowledge Discovery in Databases. Springer, 660-674.

Xiaojin Zhu, John Lafferty, and Ronald Rosenfeld. 2005. Semi-supervised Learning with Graphs. Ph.D. Dissertation.
Carnegie Mellon University, Language Technologies Institute, School of Computer Science.

Received March 2017; revised March 2018; accepted August 2018

ACM Journal of Experimental Algorithmics, Vol. 23, No. 1, Article 1.9. Publication date: October 2018.

