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ABSTRACT

Clustering is one of the common fundamental problems in the fields of
pattern recognition, machine learning and data mining. Although many
clustering algorithms exist in the literature, new ones are constantly
being proposed, because a unified algorithm which can deal with all
kinds of data sets does not exist. As a result, users have to select the
most suitable algorithm from many candidates to achieve accurate
results. However, users often have no a priori knowledge about their
datasets. This is a dilemma for users, as the algorithm can only be
selected with prior knowledge.

To alleviate the dilemma to some extent, clustering algorithms
capable of handling diversified data sets are proposed. The proposed
algorithms focus on graph-based data representation and clustering
components in their own design.

For the graph-based representation, a minimum spanning tree (MST)
and its extensions are employed, because they may imply the structure
of the data. Distance measure is a crucial component of a clustering
algorithm, and a suitable distance measure can reveal hidden
information about the cluster structure. The mechanism is another
important component that determines how the information described
by the data representations or distance measures is used for cluster
analysis.

This thesis has four main contributions. The first one is a new
dissimilarity measure and a divisive hierarchical clustering algorithm
utilizing this measure. The second one is a clustering method based on
two rounds of MSTs, employed to represent the data and to disclose the
cluster structures. The third one is a split-and-merge based clustering
method which takes advantage of multiple rounds of MSTs to split the
data set into a number of subsets, and then combines the similar ones.
The last contribution is a fast and approximate MST algorithm
applicable for large data sets in a Euclidean space.

Keywords: cluster analysis, similarity measure, data representation, clustering
mechanism, algorithm selection
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1 Introduction

Clustering (or cluster analysis) is one of the most common problems in
pattern recognition and machine learning. The goal, without any a
priori knowledge, is to partition a data set into different groups so that
the data points within a group are similar while those among different
groups are dissimilar. In the more than 50 years since one of the
classical clustering algorithms K-means was proposed [1], researchers
have been being interested in the study of clustering, and new
algorithms have been being presented continuously in the literature.

An essential problem of pattern recognition is to classify the objects
to be analyzed. If the analysis is based on a priori knowledge about the
objects, it is called classification, otherwise, clustering. For example, for a
given set of images of human facial expressions, each has been labeled
as happy, angry, or sad. For a new unlabeled image of the same type,
one can determine its label according to the labeled image set. This
process is classification. If the set of images have no labels available, the
process of classifying these images into subsets is clustering.

The purpose of machine learning is to design algorithms that enable
computers to learn how to make decisions. When the algorithms work
with empirical data, the learning process is called supervised learning,
while when no empirical data is available, the learning is called
unsupervised learning.

1.1 CONCEPT OF CLUSTERING

So far, there has been no standard definition of a cluster. Although Jain
and Dubes have given a functional definition in [2], a cluster is a group
of similar objects, they point out that even for an identical data set,
different users probably have different motivations, and therefore, it is
difficult to give an operational definition.

Everitt [3] describes a cluster from the following three viewpoints:
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1. A cluster is a set of entities that are alike, and entities from

different clusters are not alike.

2. A cluster is an aggregation of points in the test space such that the

distance between any two points in the cluster is less than the

distance between any point in the cluster and any point outside of
the cluster.

3. Clusters may be described as connected regions of a multi-

dimensional space containing a relatively high density of points,

separated from other such regions by a region containing a relatively
low density of points.

The last two definitions are more operational than the first one. Since
one cannot universally and operationally define a cluster, there exist a
diversity of clustering algorithms in the literature.

The formulization of the clustering problem can be described as
follows. For a given data set, X={x,...Xi...,xn}, where xj is the jt
attribute of data point x;, clustering is used to find a partition of X,
C={Cy,...,C,...,Cx}, where K<N, such that:

1.Ci#d,i=1,--,K

2. [JLG=X

3.CinC=3,i,j=1--,Kand i#j.

A partition that satisfies the above three conditions is called a hard
partition, and each data point belongs to one and only one cluster. A
hard partition is usually generated by a traditional clustering approach,
while a fuzzy clustering approach extends the notion of a hard partition
by introducing a membership matrix U, of which an element uj
indicates that to what extent xi belonging to Cx [4]. In this dissertation
we only focus our study on hard partitions.

In general, the design of a clustering algorithm consists of the
components shown in Figure 1.1.

The feature extraction component determines the features of the data
from which the distance or similarity between a pair of data points is
computed. The data representation component transforms the data into
a form that can discover the hidden information of the cluster structure.
The distance measure component defines the similarity of any pair of
data points, while the clustering mechanism component partitions the
data set into subsets with the measure. The cluster validity index is
employed to evaluate the partition and the result interpretation unit
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translates the clustering into knowledge. This dissertation mainly
focuses on data representation, distance measure and clustering
mechanism.

Data set
Feature Data Distance
Extraction » Representation Measure
Knowledge v
Results Cluster Clustering
4—| Interpreta- [« Validity Index [« Mechanism
tion

Figure 1.1 Components of cluster analysis
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Figure 1.2. Number of papers indexed by Web of Science with keyword clustering from 1994 to
2012. The three searched databases were Science Citation Index Expanded, Social Sciences

Citation Index and Arts & Humanities Citation Index.

1.2 CATEGORIES OF CLUSTERING ALGORITHMS
Clustering algorithms have been increasing continuously in the

literature during the last two decades. In Figure 1.2, the annual
numbers of published papers indexed by Web of Science are displayed.
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These indicate that cluster analysis is an important research topic.
These algorithms can be categorized roughly into two groups:
hierarchical clustering and partitional clustering [4].

Hierarchical clustering algorithms can be further divided into
divisive [4-8] and agglomerative [9-12]. A divisive algorithm begins by
taking the whole data set as a cluster, repeatedly selecting a cluster and
bisecting it until the number of clusters is as defined. An agglomerative
algorithm performs the clustering in the opposite way: It considers one
data point as a cluster, and iteratively combines two clusters until the
specified number of clusters is achieved.

Partitional clustering can be based on sum-of-squared error, a graph or
a model. A typical sum-of-squared error based clustering is K-means. It
randomly selects K data points as the initial cluster centers, repeatedly
assigns each data point to its nearest center to form K clusters and re-
computes the cluster centers until the centers are fixed. Graph-based
algorithms represent the data set as a graph, where a vertex denotes a
data point and the weight of an edge denotes the similarity between the
two points connected by the edge. Then a graph cut, such as normalized
cut, is applied to cut the graph into sub-graphs, and one sub-graph is a
cluster. Well-known algorithms of this kind are [13-15]. Model-based
clustering describes the data set with some mathematical models [16-
18], for example, Gaussian distributions.

1.3 APPLICATIONS OF CLUSTERING

In computer science, some data analysis tasks, such as image
segmentation [19, 20], speaker diarization [21, 22] and text analysis [23,
24], involve clustering. Image segmentation is a fundamental problem
in computer vision where the task is to partition an image into several
homogeneous regions. If a region is viewed as a cluster, then the
segmentation is a clustering. An image segmentation example is shown
in Figure 1.3. In speaker diarization, the task is to cluster speech
segments coming from the same speaker. Text clustering is used to
categorize documents into different groups according to their content.
For example, the results of a search engine on a given keyword can be
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clustered so that users are given the overview of the results. Figure 1.4
shows the visualization of the search results [25].

Clustering is frequently used in biology and medicine; for example,
gene expression data analysis [26-28], protein structure analysis [29, 30],
gene function prediction [31, 32], protein function prediction [33], and
diagnosis and treatment of diseases [34, 35]. The clustering of gene
expression data can be categorized into three groups:

Figure 1.3. Application of clustering on image segmentation. The left two are the original

images, and the right two are the corresponding segmentations.
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Figure 1.4. Visualization of clustering a search result given the keyword Armstrong.
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1. If genes are taken as the data points and samples (conditions for
measuring the genes) are viewed as the features of the data points, then
clustering of the genes can discover those with a similar expression
pattern;

2. If the samples are taken as the data points and the genes are
viewed as the features, then clustering of the samples can discover the
phenotype;

3. Simultaneous clustering of the genes and the samples can discover
the genes involved in regulation and the association conditions.

VxInsight Cluster

b b L e - o ow B

Figure 1.5. Application of clustering on gene expression data.

In Figure 1.5, a heat map based clustering on gene expression data is
shown [36].

Also, clustering has long been employed in astronomy. The earliest
related studies date back to theses published by the Royal Astronomical
Society more than a hundred years ago. The main applications consist
of the separation of stars and galaxies [37], the morphology of galaxy
clustering [38] and young stellar clusters [39].
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Other applications include analysis of commercial data, such as
market structure analysis [40, 41], financial time series analysis [42, 43]
and complex networks [44, 45].

1.4 STRUCTURE OF THE THESIS

The rest of the thesis is organized as follows: In Chapter 2 distance
measures are discussed and a new divisive clustering is introduced.
Data representation for clustering is discussed and an MST-based
(minimum spanning tree based) clustering algorithm is introduced in
Chapter 3. Chapter 4 analyzes the clustering mechanism and presents a
split-and-merge based clustering algorithm. Chapter 5 describes a fast
and approximate MST algorithm. The contributions of the thesis are
summarized in Chapter 6 and conclusions are drawn in Chapter 7.

Dissertations in Forestry and Natural Sciences No 114 7
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2 Distance Measure

2.1 TYPICAL DISTANCE MEASURES

In pattern recognition and machine learning, a distance measure, or
alternatively a similarity/dissimilarity measure, is used to measure how
similar is a pair of data points. In supervised and semi-supervised

learning, the distance measure can be learned from labeled examples.

For example, Weinberger and Saul showed how to learn a Mahalanobis
distance metric for K nearest neighbor (KNN) classification from
labeled examples [46]. In clustering, however, no labeled example is

available, and the selection of a suitable distance measure is crucial for

a clustering. Most typical measures are shown in Table 2.1.

Table 2.1 Classical Distance/Similarity Measures

Distance Formulation

Description

Euclidean 172

d 2
D(xi,xj) = Z|xu — le|
=1

d is the dimensionality. It
is the most used
measure.

Minkowski p p\?
D(xi,xj) = Z|xu—x]‘1|

1=1

It is the extension of
Euclidean distance. If
O<p<1, it is called

fractional distance,
which is more
meaningful than

Euclidean  for  high
dimensional data [47].

Manhattan D(xi,x;) = Zd: |Xi1 - le|-
=1

It is also called City
Block, and is the special
case of p=1 of Minkowski
distance. It is wusually
used in subspace
clustering [48].
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Distance Formulation Description

Mahalanobis D(x, %) = \/(Xi—Xj)TS_l(Xi—Xj) It is the weighted
Euclidean distance [49],
namely, each feature has
a different contribution
to the distance, and S is
the covariance matrix of
the data set distribution.

Pearson D(xi,xj)=1-ri, It is widely used in gene
Correlation ; expression analysis.
Z(xﬂ-if)(xﬂ-ij) Euclidean distance is

1ij = —=L , | sensitive to the average

d .
\/ Z (xi-Xi)? (xi-X)) gene expression level,
I=1 while Pearson
Correlation is  more

_ 13
Xi = yl Z Xil robust [50].
1=1
Cosine S(x x) Xi' X; Cosine distance is
(xz,x])—”m”"xj” usually applied to text

clustering [51].

In addition, in the literature, some new distance measures have been
proposed for clustering, such as point symmetry distance [52] and path-
based distance (which is also called minimax distance) [53-56]. For
manifold learning, other distances such as geodesic distance have been
used.

2.2 POINT SYMMETRY DISTANCE

For data set X={xi,...,X;...,.xn}, point symmetry distance is defined as
[52]:

D(xi,c¢)= min "(Xi —c)+(x1— C)” (2.1)
1<I<N Ii (||Xi - C” + ||x1 B C”)

10 Dissertations in Forestry and Natural Sciences No 114
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where, ¢ is a reference point (for example, the center of a cluster),
D(xi,c) denotes the distance between xi and c. The idea of the distance
is to detect whether a symmetrical point of xi with respect to ¢ exits. If
the answer is yes, then D(xi,c)=0. In K-means, Euclidean distance
measure is used to compute the distance between a data point to a
cluster center. If Euclidean distance is replaced by the point symmetry
distance, a partition of xi will be determined by the closest symmetrical
point of xi with respect to the cluster centers. The point symmetry
distance is demonstrated in Figure 2.1.

Figure 2.1. Example of point symmetry distance. In data set X={x1, x2, x3, xa} the symmetry
point of x1 in respect of cluster center €, say x1", does not exist, while the nearest point of x1" is

x4, and then the Euclidean distance between xa and x4’ is the numerator in Equation 2.1.

The motivation of the point symmetry distance is based on the
following observation [52]: In the real world, many objects are
symmetrical, for instance, a human face, a cube, and so forth.
Consequently, a cluster generally possesses symmetry. Su and Chou [52]
combined the point symmetry distance with K-means and achieved
good results on face detection.

However, the point symmetry distance has a drawback: Data points
from different clusters may have small distances, which will lead to bad
partitions (see Figure 2.2). Bandyopadhyay and Saha [53] improved the
point symmetry distance as follows:

D(x;,c) =@

x De(xi,€) (2.2)

where di and d> are distances to the nearest and the second nearest
points of xi with respect to ¢, and D. is the Euclidean distance of xi and
¢. The purpose of introducing di1 and dzinto Equation 2.2 is to avoid
zero distance, while D. indicates that xi prefers to select a center
relatively near.

Dissertations in Forestry and Natural Sciences No 114 11
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Figure 2.2. A drawback of the point symmetry distance. Although X1 can find Xa via Xr*

according to the center of €1, it can also find X4’ via X1 according to the center of C2.

From the design of the point symmetry distance and its improved
version, one may perceive that the distance measure might disclose the
hidden symmetry properties of points in the same cluster, which can
benefit the clustering.

2.3 PATH-BASED DISTANCE

Path-based distance was proposed and successfully used to clustering
by Fischer [54]. Then Chang and Yeung extended the distance in [55].

Suppose G(V,E) is a complete graph of X ={xy,---,xi,---,xn}, the N
vertices correspond to the data points, and the pairwise edge weights
correspond to the Euclidean distances. The path-based distance
between xi and x; is defined as:

D= min(maxd(pli] pli + 1)) 2.3)
where Pj is the set of all paths from xi to xj on G(V,E), and d(p[i], p[i +1])
is the Euclidean distance of ith edge of path p. Figure 2.3 shows an
example. Suppose that three paths exist between vertices x; and x;,
and the maximum edge weights in the three paths are 5 7 and 6,
respectively. Then the distance between xi; and x; is Di=min(5,6,7)=5.

The distance possesses transitivity, as illustrated in the two examples
in Figure 2.4, and each has two clusters. According to Euclidean
distance, x1 is near to xs and xz is near to xs, but according to path-
based distance, x1 is near to x4+ and x2 is near to x¢. Intuitively, the
two data sets can be well analyzed by a neighbor discriminant criterion:

12 Dissertations in Forestry and Natural Sciences No 114
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“My neighbor’s neighbor can be also my neighbor” [56], namely, the
relationship of neighborhood is transitive. The path-based distance has
this transitivity.

. Pathl 4
s f,,. L .R 3
P 2 Path2 5 3
X; .\\ 9 L /’ X;

3 //
e 3

—___ Path3 S/
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Figure 2.3. An example of path-based distance.
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Figure 2.4. Transitivity of path-based distance.

The transitivity property is the main advantage of the distance.
However, it is sensitive to outliers. As a result, clustering based on the
path-based distance is fragile to outliers as can be seen in Figure 2.5.

Chang and Yeung [55] improved the path-based distance to be more
robust to outliers. When computing the Euclidean distance of two
points, they incorporated the density information to alleviate the effect
of outliers. The improved path-based distance is defined as:

D'ij= min[max wj (2.4)
peby \ 1si<pl - p[1]p[1 +1]
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where p[i] is the density of xi and is computed from its K nearest
neighbors, d(p[i], p[i +1]) is the Euclidean distance between xi and xi+1.
Ifxi has a sparse neighborhood, then p[i] is small and the path-based
distance from xi is great.

Figure 2.5. Left is a data set, which consists of two clusters (two circles) and some outliers
represented by “A”. Right is a clustering using the path-based distance. The clustering cannot

discover the cluster structure because of the outliers.

In summary, the two distances discussed above have been reported
to produce satisfactory results on some data sets. These measures can
disclose hidden information for clustering that is ignored by other
measures.

2.4 FURTHEST REFERENCE POINT BASED DISTANCE

In this section, we discuss a new distance called furthest reference point
based distance (FRPD) and a divisive clustering algorithm derived from
this distance.

FRPD is based on the following observation: Data points in the same
cluster have similar distances to a reference point, which is defined as
the furthest point from the center of the cluster to be partitioned, while
those in different clusters may have different distances to the same
reference point. An example of FRPD-based partition is illustrated in
Figure 2.6.
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Figure 2.6. FRPD-based partition.

In Figure 2.6, data point 7 is the furthest point from the center M of
the data set, and it is therefore selected as the reference point. Suppose
that d» denotes the distance of the reference r to point i (1<i<8). The
distance sequence is, in ascending order, <d:7,drs,dre,drs,drs,dr1,drs,dr2> .
From the sequence, we determine the pair <d:s,drs > as the neighbor
pair of which the difference |dri5'dri6 is the largest. Therefore, the
sequence is cut into two parts from this pair: <dw7,drs,dre>
and <dss,drs,dn,drs,dr2> . The data set is partitioned correspondingly
into two groups: {7,8,6} and {5, 3, 1, 4, 2}.

However, the partition process does not always work. For example,
when the furthest reference point is on or near to the perpendicular of
two centers, the wanted partition is not achieved. Surprisingly, this is

related to the detection of outliers.

Center (M) and its  Distances to the

Data points furthest point furthest point Cut
4. 2@ 4. 29
1. 3. 1. S.M
° I |
5 9 6~ 9
1 Y LY
®e ®e
8 8

Figure 2.7. The reference point is an outlier.

In Figure 2.7, the data set consists of two clusters and an outlier. The
ordered sequence is <dr, dms, drw, dis, dr, di7, dis, dr>, where < d, drs> has
the largest difference. Accordingly, the reference point 9 is cut off.
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2.5 DIVFRP: ADIVISIVE CLUSTERING ALGORITHM

By employing the furthest reference based distance, a divisive
clustering algorithm (DA) has been introduced in [P1] consisting of the
following steps:

1. Select a cluster to be partitioned,

2. Partition the selected cluster.

When applied repeatedly, the final clustering result is obtained. For
the first step, three design alternatives exist: 1) completely partition
every cluster; 2) partition the cluster with the most data points; 3)
partition the cluster with the highest variance. The first alternative is
simple but it ignores the results of the sequence of partitioning. The
second alternative tries to balance the sizes of clusters but it ignores the
density information of a cluster, which is taken into consideration in the
third alternative. The third alternative was, therefore, selected in DA.

In the second step, the distances to the furthest reference point are
used to partition the data set. The idea is shown in Figure 2.6 and 2.7.

After the data set is partitioned, the optimal K is determined.

2.5.1 Divisive Algorithm

Suppose CS={Ci:0<i<M -1} is a set of clusters. DA will find a
cluster and bi-partition it. Before describing DA formally, some
definitions are given as follows.

Definition 2.1 Let rp(Ci)be the furthest point to the mean of Ci,
namely the reference point in Ci, as in

rp(Ci) = arg max Z ||x - ,U(Ci)” (2.5)
xeCi
where p(Ci)= 1/|Ci|zx€0x .

Definition 2.2 Let Rank(Ci) be an ordered list and:

Rank(Ci) = <near_ref(Ci) o Rank(Ci— {near_ref(Ci)})> (2.6)

where o is concatenate operator, near_ref(Ci) is the nearest point to the
reference pointin Ci as in

near_ref(Ci) = arg r?elcn"x - rp(Ci)" (2.7)
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Definition 2.3 Assume Rank(Ci)=<X1,xz,---,xm>, Ci is to be split into
Cin and Ci, where |Ci|=7’li, Ci1=<X1,X2,"'Xj>, Ci2=<Xj+1,Xj+2,---xm> and
1<j <ni. The dissimilarity function g(Ci1,Ci2) is defined as

Xj— rp(Ci)” (2.8)

This dissimilarity definition can be compared with the distance
(dissimilarity) definition of single-linkage algorithm as in

Xi — Xj” (2.9)

g(Ci1,Ciz) = ||Xj 11— I'p(Ci)” -

dist(Ci,Cj)= min

xieCi,x jeCj

Because single-linkage is an agglomerative algorithm, the pair of
clusters with minimum distance, dist(Ci,Cj), are merged at each step.

Whereas DA is a divisive one, the bi-partitioned pair (Ci1,Ci2) of cluster
Ci should maximize the dissimilarity function g(Ci,Ci2).

Definition 2.4 Let next_split(CS) be the cluster with the maximum
deviation with respect to its centroid:

next_split(CS) =arg rgg@(”dev(G)” (2.10)
where dev(Ci) =1/ |Ci|zxe CI_”x— ,u(Cf)”. So next_split(CS) is the cluster to

be split at next step.

Definition 2.5 Let D(Ci) be a set consisting of the differences
between elements of all neighboring pairs in Rank(Ci):

D(Ci) ={d : d = |next(x) - rp(C:)| ~|jx —rp(C:)|} (2.11)
where x is a component in Rank(Ci), next(x) is the next component to
x in Rank(Ci).

Definition 2.6 Let b(Ci) be the point in Ci with the maximum
difference in D(Ci):

b(C)=arg rileac?<(||next(x) —rp(Ci)| —[x = rp(Cy)|) (2.12)
The cluster C: is finally bi-partitioned into C: and C2 as in:
C1={x:xeCiax—rp(Cy)| < [b(C) - rp(Ci)[} (2.13)
C2=Ci—C1

The divisive algorithm (DA) is formally stated as follows.

Step 1. The cluster to be split is determined by Eq. (2.10):
Ci=next_split(CS). The first cluster to be split is the
initial data set which includes all points.
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Step 2. Partition Ci into two clusters with Egs. (2.11)-(2.13).
Step 3. Repeat Step 1 And 2 until each cluster has only one
object.

Note that recording the partition process is for the later analysis of
the number of clusters K.

2.5.2 Determine the number of clusters

We classify the splits into two categories: essential and inessential. The
split in Figure 2.6 is essential, but the split in Figure 2.7 is inessential
because only an outlier is detected with the split. The number of the
essential splits equals the number of clusters minus 1. To determine an
essential split, we analyze the change of sum-of-error peaks.

We observed that peaks generally become lower with the split
process going on. Under this circumstance, sliding averages are
employed to detect the peaks.

Definition 2.7 Let (i) be the sum-of-error after ith bipartition:

1

J(i) = > Je(C) (2.14)

j=0
where 0<i<N -1, J«(C)) is an effective error of each cluster defined as

Ja(C) = Y |x = (G| (2.15)

xeCi

Definition 2.8 Let Diff be a list that consists of the differences
between neighboring sum-of-errors:

Diff =(d,dz,-dh) (2.16)
where 1<i<N -1, di= Jo(i —1) - J(i).

Figure 2.8a illustrates the bipartitions (only first two) of the data set
in Figure. 2.7. Figure 2.8b shows J(i) of each bipartitions. It seems
difficult to perceive some information to detect the number of clusters
K only from Figure 2.8b. But in Figure 2.8c two points A and B, which
correspond to J«(0)-J«(1) and J«(1)-]«(2), respectively, are very different
from the remaining points, because the first two bipartitions lead to
large decreases of J..

Definition 2.9 Let P = <pq, py, ..., pj, ..., pr1> be a peak list, pje{di: di is
an element of Diff}.
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Figure 2.8. Illustration of the clustering process. (a) The bipartition process of data set in Figure
2.7; (b) the eight Js for total eight bipartitions; (c) the differences of neighboring Jes, the points A
and B are two potential peaks; and (d) the graph of function f.

Note that if pj1and p; in P correspond to du and d» in Diff, respectively,
then v > u holds. The following fact exists: If the peak list P has ¢
elements, the number of clusters should be t ++1.

The task of this phase is to construct the peak list P. Suppose that an
element of Diff, say dj, is selected as an element of P, say pm, if the
following holds:

dj > Aavgd(m) (2.17)

where A is a parameter; avgd(m) is the average of the elements
between de and d; in Diff, d. corresponds to the prior peak in P, namely,
pm1. Two exceptions exist. When dj is next to d. in Diff, i.e.j=e+1, no
elements exist between d. and dj; when pw is first element in P, i.e. m=0,
d. does not exist. To remedy this, the previous average avgd(m-1) is
used instead of avgd(m) in Eq. (2.17) for the former exception and the
global average for the latter. Consequently, the sliding average is
defined as:

j-1
,; z dr:ifm#0andj>e+1
j—e—=1/40
avgd(m)=<avgd(m—-1) :ifm=#0andj=e+1 (2.18)

Ly
—>>dr  :ifm=0
N-14
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The window width of the sliding average is not fixed. In Figure 2.8¢c,
when we consider point A and determine whether it is a peak, we will
compare its value with global average since currently the peak list P is
empty and no sliding average is available.

Definition 2.10 Let LBD(S) be a list of binary relations of (4, f(41))
defined as

LBD(S) = ((min(2), f(min(2))» LBD(S ~ {min(2)})) (2.19)

The list LBD(S) collects all binary relations of (4,f(4)) in an
ascending order with respect to 1. We then consider how to eliminate

the spurious clusters and consequently discover optimal cluster
number K from the list LBD(S) .

Definition 2.11 Let SC be a set that consists of the K’ clusters, Q(SC)=
<qo,q1,---,qi,---,q1<'-1> be an ordered list, where gi (0<i<K'-1) is the
product of the cluster number and the sum-of-error with respect to a
cluster in SC, Q(SC) is defined:

Q(SC)=<rcgisrg(|0|x]ce(Cf))OQ(SC—{arnggisrg(|Ci|X]ce(Cf))})> (2.20)

The criterion of identifying spurious cluster is given as follows.
Suppose m spurious clusters exist in SC. Because a spurious cluster
comprises a small number of objects and has a small effective error, the
m spurious clusters are corresponding to the first m elements in Q(SC),
namely, qo,q1,---,qn-1. The element gw -1 must satisfy:

1. qm > afm-1,

2. If the cluster Cw1 in SC is corresponding to gm1 in Q(SC), then
maXCleSC|Ci|>ﬂ|Cm—1 , where ¢ and g are two real number
parameters.

The first condition indicates a relative change ratio of the normal
cluster and the spurious cluster near the boundary. The second one is
an absolute constraint on spurious clusters. When we apply the
criterion to SC, the spurious clusters are detected, but this is not final
result since there may exist a number of candidates of K. As we know, a
candidate of K and the corresponding set SC is decided by A. We
repeatedly increase A by the step of o and apply the criterion until it
converges. For a candidate of K, K'i, suppose that si spurious clusters
are detected from K'i clusters in terms of the criterion, the next
candidate of K'is K'i+1, then the convergence is defined as:
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1. According to the criterion of identifying spurious cluster, no
spurious cluster in SC is detected, i.e. si=0, or

2. After the spurious clusters being removed from SC, the number
of normal clusters is equal to or greater than the next candidate
of K, ie, Ki—-si2K'i+1 or

3. Candidate K'i+1 does not exist, i.e. K'i is the last candidate of K.

For the first situation, all clusters in SC have relatively consistent
object number and J. For the second situation, if K'i—si <K'i+1, some of
spurious clusters still exist in the K'i+1 clusters, and we must continue
to consider the candidate K'i+1; otherwise, all of spurious clusters are
excluded from K'i+1 clusters, and it is meaningless to consider K'i+1
for removing spurious clusters. The last situation is obvious. Based on
the definition of convergence, the spurious clusters detection
mechanism (SCD) is formally presented as follows.

Repeat
1. Scan the list LBD(S) from the left to the right. Find out
the pair of 4, 4i and A; , which satisfy:
(1) f(Ai)=f(4j), subject to i<j, f(Ai)>f(Ai-1) and
FQA) < F(Ai);
(2) Al>y,where Al=A1;—Ai;
2. Construct the set SC which consists of K' clusters, and
Q(SC), where K'= f(Ai)= f(4));
3. Determine the spurious clusters according to the
spurious cluster criterion;
Until convergence.

2.6 SUMMARY

In summary, distance measure is a crucial component in a clustering
algorithm. First the typical distance measures were discussed and some
new ones were introduced, and then the furthest reference point based
distance and an efficient divisive clustering algorithm were proposed.
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3 Graph-based Data
Representation

3.1 HIDDEN INFORMATION FOR CLUSTERING

In machine learning and pattern recognition communities, researchers
make great efforts to discover effective data representations, because
such a representation may unveil some hidden information in the data
set. Taking advantage of them can improve the performance of a
clustering algorithm. In the previous chapter, it was verified that a
novel distance measure might disclose hidden information for
clustering and lead to a successful clustering algorithm. In this chapter,
the argument will be discussed from the viewpoint of data
representations.

Clustering ensemble combines multiple clustering results into a
consolidated, stable and effective clustering [57-59]. In general, the
relationship of data points and clusters forms a binary cluster-association
matrix (BM), see Figure 3.1. Jlam-On et al. [60-62] exploited the hidden
information from BM further, and improved the performance of the
ensemble algorithms. An entry in the BM denotes that, if a point
belongs to a cluster, it is a hard relationship, namely, either “yes” or
“no”. This means that some potential relations are ignored. lam-On et
al. improved the situation.

Two partitions of a data set
consisting of 5 data poins Label-assignment  Pairwise similarity ~ Binary clusrter-association

| X[ %o | %3 | %4 | %5 dlalalalc
|GG X4 1n2zfoo x([1]ofof1]o0
|GG Xs o (12|12 [ 1{0o]ofofn
x| Cy| Xg 2| o |0 [1]0|1]0
% |G| C X 112 X0 1[0]0]|1
x| Cr| € X5 xs[0]O|1]0]|1

Figure 3.1. The typical information wused in a clustering ensemble [61].
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Cluster network Improved cluster network RA matrix
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Figure 3.2. Mining the hidden information [61].

First, Jam-On et al. defined a cluster network (see Figure 3.2), where
the weight of two clusters Ci and C: is:

|C1f\C2|
WIG.G)= |C1UC2|

(3.1)

Then, the edges with zero weight were improved. If two clusters
have no common data points, there will be no edge connecting the
corresponding vertices directly. However, these vertices can be
indirectly connected via other vertices, meaning that the connectivity of
the vertices is transmittable. In the left of Figure 3.2, Ci and C; are

connected by Cf, and the evidence of the association between Ci and
C, is Er=min(W(C,,C}), W(C,,C}))=0.33 , and simultaneously, C,
and C, are connected via C;, the other association evidence being

E2=min(W(C,,C2), W(C,,C>))=0.25. The total evidence is Ei + E2=

1

0.58. The weight of the edge between C; and C, is (E1+ E2)/ Emax DC,

where Emaxis the largest association evidence of all the vertex pairs
without direct connection for normalizing the weight and, DC €[0,1] is
the confidence level of accepting two non-identical clusters as being
similar and here is 0.9. With this method, the dotted edges are
generated (see the middle of Figure 3.2). Therefore the BM is refined
and called refined association (RA) matrix (see the right of Figure 3.2).
[am-On et al. [61] proposed also an alternative method to produce
the matrix, but the details are omitted here. The work in [61] shows that
discovering and using hidden information can be an effective way to
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design a clustering algorithm. In the next section graph-based data
representations, which can also disclose some hidden information, will
be discussed.

3.2 GRAPH-BASED DATA REPRESENTATIONS

In a clustering algorithm, generally the data set is partitioned according
to the similarities of the data points and an objective function. But when
the clusters are of different sizes, shapes and densities, the similarities
are not enough to produce a satisfactory clustering result. If we transfer
the data beforehand into a representation that can describe the intrinsic
structure of the data set, the performance of the clustering might be
improved. In this chapter, the graph data representation based on K
rounds of MSTs are discussed, and a new clustering algorithm using
this representation is proposed.

3.2.1 Data representation based on KNN graph

For each data point, if it is connected to its KNN, the so-called KNN
graph will be achieved, see Figure 3.3. A variant of this graph is
obtained if each point is connected to those from which the distances to
the point are not greater than a given value ¢, and the variant is call ¢ -
NN.

A KNN graph can be applied to classification, since the local data
points may have similar class conditional probability [63]. It can also be
used for clustering, as the local data points may reside in the same
cluster. However, when the data set is high dimensional, the locality of
KNN no longer holds. This can make the KNN-based methods useless.
The use of KNN in high dimensional space has been studied [64, 65].

3.2.2 Clustering based on the KNN graph

Chameleon [66] is a clustering algorithm based on a KNN graph, see
Figure. 3.4. It takes advantage of the three properties of a KNN graph.
(1) Two data points far away from each other may reside in two
disconnected sub-graphs, respectively, see Figure 3.5. Even if two
points are in the same sub-graph, they may be separated in the
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following partition steps. (2) A KNN graph discloses the densities of
different regions. In the top-right of Figure 3.3, the densities of point A
and B are different. The density can be expressed as the radius of the
nearest neighbors, for example, the distance from the point to the
furthest nearest neighbor. (3) Partitioning a KNN graph is
computationally efficient compared to the corresponding complete
graph. In fact, the first two properties mentioned above are derived
from the hidden information captured by a KNN graph: A point and its
nearest neighbor may be in the same cluster.

A data point is connected to

its 4 nearest neighbors
21
205 L] 205
20 L] 0

195

165 o 1855

A data point is connected to the neighbors
whose distances to the point are less than 1.5  ¢-NN graph when £=15

1
n

05
05

0
195
195

19
£=1.5
185

18

. 175

17

L 165 o
165 - 7 a 9 10 n

Figure 3.3. KNN and & -NN.

Chameleon first constructs a KNN graph of the data set, and applies
hMetis [67] to partition the graph into clusters. It then defines the
relative interconnectivity between two clusters and relative closeness
within a cluster, and repeatedly merges clusters until the specified
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number of clusters is achieved. The algorithm can detect clusters with
arbitrary shapes.

K-nearest Neighbor Graph Final Clusters
Data Set 2 " e B
__ Constructa o /cr_% ?,o & :: X s ,. - d@\% %
— | Sparse Graph < I{| /eé% Partition the Graph I ;{; off Merge Partitions oty 15 o
J—— TdF = ¥ s B (]3/.(; o - = “QZ‘ \
—_— ) ("% Q:Q
: 4 g

Figure 3.4 Framework of Chameleon. It consists of three steps: constructing the KNN graph of
the data set; partitioning the graph; combining the sub-graphs.

Original Data 1NN 2NN
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Figure 3.5 In a INNgraph, points A and B are in different sub-graphs. In a 2NN graph, points
A and B are in different sub-graphs. In a 3NN graph, points A and B are in the same graph.

3.2.3 MST based data representation

For a given weighted undirected graph G=(V,E), a spanning tree
ST =(V',E')is a tree that contains all the vertices of the graph. An MST

is a spanning tree with the smallest total weight, an example of an MST
is shown in Figure 3.6 [68].

Figure 3.6 The bolded edges forms an MST of the graph.

Similar to a KNN graph, an MST can depict the intrinsic structure of
the data set. This can be explained with the following relationship:
INN c MST < KNN. When K=1, all edges of the KNN are included in
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the MST; when K increases, all edges of the MST are included in the
KNN [69]. MST has been applied to clustering in [13, 70].

To apply MSTs to clustering, Zahn proposed several typical cluster
problems [13], which are illustrated in Figure 3.7. Edge ab is defined as
inconsistent if its weight is much greater than both the average weights
of the edges connected to a and b. For well-separated data sets, for
example those on the left and right at the bottom of Figure 3.7, one can
obtain partitions by determining the inconsistent edges and removing
them from the MST.
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Figure 3.7 Typical cluster problems [13].

For data sets that are not well-separated, for instance those in the
top-right of Figure 3.7, Zahn defined the diameter (path with the most
number of edges) of the MST, and proposed an approach for clustering
with the diameter.

In fact, both the inconsistent edge and the diameter of an MST
describe the intrinsic structure of the data set via the MST. In other
words, the two concepts can discover the hidden structure of the data
set.

Clustering algorithms exist based on other data representations in
the literature, such as clustering based on the relative neighbor graph
[71], multipartite graphs [72], and so on.

3.3 K-MST-BASED GRAPH

Besides inconsistent edges and diameters, an MST possesses more
useful information. For example, K"-order minimum spanning tree (K-
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MST) is an interesting representation for disclosing more information. It
was first discussed in [73]. It is defined here as follows.

Definition 3.1 Suppose that edge set Ti= fus(V,E) denotes a
minimum spanning tree of graph G(V,E), the K h-order MST is defined
as:

K-1
Te= fus(V,E-JT)) (3.2)
j=1
where fust:(V,E)—> T is a mapping from G(V,E) to an MST. The above
definition is not strict. For example, if T1 has a vertex v and its degree is
|V| —1, then it is isolated in graph G(V,E-T1). This is because T1 contains
all edges connected to v even if G(V,E) is a complete graph. An edge
connected to v in G(V,E-T1) does not exist, therefore in T> v is isolated.
We solve this problem by selecting the longest edge of v, as isolation
means v is unreachable, and the longest edge approaches the case more
than the others.
Definition 3.2 KMST is a graph which is consists of K MSTs:

KMST=J" T (3.3)

KMST is also written as Gmst(X, K). We will discuss clustering based
on K-MSTs in the next section and on KMST in the next chapter.

3.4 CLUSTERING BASED ON K-MSTS

3.4.1 Motivation

Although a lot of clustering algorithms have been proposed in the
literature, each of them favors certain kinds of data sets. It means that a
user needs to select a suitable algorithm and parameters for a specific
data set. However, the user normally has no a priori knowledge about
their data sets. This is the dilemma of clustering. Two techniques to
alleviate this dilemma to some extent are clustering ensemble [59, 74, 75]
and multi-objective clustering [76]. However, the clustering results of
ensemble methods are generally not unique, while multi-objective
clustering methods are too complex.
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In [P3], a clustering method based on K-MST was proposed. The
method employs K-MST as the data representation and deals with two
kinds of typical data sets.

3.4.2 Typical cluster problems

Zahn in [13] described some typical cluster problems illustrated in
Figure 3.7, and proposed different MST-based approaches to deal with
those cluster problems.

Compactness Connectedness Spatial separation
AN 3%, . o
<y o y * o

4 S e

[ e

*35 “egde s

°

Figure 3.8 Hand and Knowles [76] proposed three clustering criteria.

Traditional clustering algorithms can be roughly categorized into
hierarchical, partitioning, density-based and model-based [77].
Different from this taxonomy, Handl and Knowles [76] grouped them
into three classes by the objective functions which are illustrated in
Figure 3.8: (1) algorithms based on compactness such as K-means and
average-linkage, which minimize the deviation of the intra-clusters; (2)
algorithms based on connectedness such as path-based clustering [53-55]
and single-linkage [94], which maximize the connectedness of the intra-
clusters; and (3) algorithms based on spatial separation, usually
combined with other objectives.

In this thesis, the cluster problems are classified into two groups:
separated problem and touching problem. The former can be further
divided into distance separated problem and density separated
problem. More detailed definitions can be found in [P3]. In Figure 3.9a,
the two classes have similar shape, size and density. Since the distance
of a point pair in the same cluster is less than that of a point pair in
different clusters, the data set is said to be distance separated. So are the
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data sets in Figure 3.9b—e. The data set in Figure 3.9f is density
separated, while those in Figure 3.9g-h are touching.

a . b ... | e.e, |d

2
oy
Jed’s

.....

Figure 3.9 Typical cluster problems. (a)—(e) distance separated cluster problems; (f) density
separated cluster problem; (g) and (h) touching cluster problems.

3.4.3 Clustering algorithm for separated problems

A clustering algorithm based on K-MST is proposed to simultaneously
deal with both distance and density separated problems. For separated
problems, the data set is first represented as a graph, which consists of
T:1 and T2, and one may partition the two trees to achieve the clusters.
The main idea is to design the weight of an edge in the graph, and then
iteratively remove the edges of the biggest weight until a partition of
the graph is obtained. The weight of an edge is defined as in [P3]:

ab is the edge of the biggest weightin T1 ac is the edge of the biggest weight in T2
H W
Graph consists of T1 and T2 Top 20 heavy edges are labelled

Figure 3.10 Distance separated data set in Figure 3.9c is partitioned. The removal of the first
two heavy edges leads to a partition, and the two edges come from T1 and Tz, respectively. In the
labeled 20 edges, 17 come from T2 and 3 from T1.
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Definition 3.3 Let Gmst(X)=(V,Emst) be a two-round-MST based
graph, es € Emst and a,b eV, w(ew) be the weight of ews as in

p(ew) —min(avg(E.—{ew}),avg(Ev —{ew})) (3.4)

wlew) = plea)

where E.={eij| (eii € Emst) A(i=av j=a)}, Ev={eijl (e € Emt) A(1=bVv j=D)},
avg(E)=(1/|E|) x
Definition 3.4 Let Rank(Ewst) be a list of edges ordered descendingly

p(e) and p(e) is the Euclidean distance of edge e.

ecE

by corresponding weights as in
Rank(Ens) = (topweight(Enst) o Rank(Ens — {topweight(Ens)})) (3.5)

where topweight(Ewmst) =arg maxe. < e.(w(e)), o is a concatenate operator.

Edge removing scheme: The edge with large weight has the priority to
be removed, namely edges are removed in the order of Rank(Ems).
Since every removal of edge may lead to a graph cut (excluding the first
removal), we must determine whether or not a new graph cut is
achieved after each removal. The determination could be made by
traversing the graph with either breadth-first search algorithm or
depth-first search algorithm.

However, the partition may be invalid, and this can be determined
by a criterion: If the number of the removed edges from T1 is almost
equal to that from Tz, then the partition is valid, otherwise, invalid.

A distance separated example is shown in Figure 3.10. First, the two
longest edges ab and ac are removed and a partition is achieved. Even if
one removes 18 more edges, no new partition is produced. In the 20
removed edges, the majority come from To.

A density separated example is shown in Figure 3.11. After the
longest nine edges are removed, where five edges come from 11 and
four edges from T, a partition is produced.

Definition 3.5 Let Egur be a set of removed edges when a graph cut
on a two-round-MST based graph is achieved, if the following holds:

min(|Egew N T1

Ecen M T2]) o

4

E (3.6)
geut

RatiO(Egcut) =
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where 1 is a threshold, then the graph cut is valid, otherwise it is
invalid. If the first graph cut is valid, the cluster is said to be separated,
otherwise, non-separated.

Although the above approach can detect the separated clusters, it
cannot deal with the touch cluster problems in [P3]. Another K-MST
based clustering method for this kind of data set is proposed. For a
touching cluster problem, a touching region exists in the neighbor
boundaries of two clusters, which is called neck here. T1 and T> are
analyzed simultaneously to detect the neck.

Ty, where ab, eg, hi, kI, no are edges T2, where cd, ef, hj, km are edges
between the clusters

between the clusters

o * .-x’I v

o g Mg A &
PG H E
e, Pee ey

/S AN
« *— 9o & o,

Top 20 heavy edges, of which 15 ones

are from T

Figure 3.11 Density separated data set in Figure 3.9f is partitioned.

In Figure 3.12, cutl and cut3 produce two partitions on T1 and Tz,
respectively. The two partitions are quite similar: only two data points
(a and ¢) are inconsistent. The intuition behind this is that both cutl and
cut3 remove an edge from the neck. Similar phenomenon can be
observed from cut2 and cut3, where only two data points (b and c) are
inconsistent.
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The details of the above two algorithms and the analysis of their
performance and properties can be found in [P3].

Original data T1 of the data set T2 of the data set
-~ « T T T
‘:} \‘ '/L rﬂ N ’.l r_‘,". o e
ﬁ Lo, Ploe
1 S S
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A partitionon T1 Another partition on T1 A partition on T2
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Figure 3.12 Clustering on a touching problem

3.5 SUMMARY

In this chapter, the design of a clustering algorithm from the point of
view of hidden information was discussed. While different data
representations can effectively discover the hidden information, graph-
based data representations and corresponding clustering approaches
were introduced, and a novel clustering method based on K-MST was
presented.

34 Dissertations in Forestry and Natural Sciences No 114



4 Graph-based Split-and-
Merge Algorithm

4.1 MECHANISM FOR CLUSTERING

In this chapter a KMST graph-based approach, which employs the split-
and-merge mechanism, is introduced. In this thesis, a clustering
mechanism refers to some operations and a convergence condition,
which are repeatedly applied until a stable status is obtained. The
clustering mechanism can be a crucial factor in the effectiveness of a
clustering algorithm. Before introducing the split-and-merge based
clustering, the mechanism of two well-known algorithms, K-means [1]
and Affinity Propagation [78], are briefly analyzed.

4.1.1 Mechanism of K-means

Although K-means has been around for more than 50 years, it is still
extensively employed because of its simplicity, effectiveness and
efficiency. Among the top ten data mining algorithms, K-means is
ranked number two [79].

The main idea is very simple. Initially, K data points are randomly
selected as the cluster centers, and the following operations are then
repeatedly performed until all the centers are fixed:

1) Assign each point to its nearest centers to form a partition;

2) Re-compute the center of each cluster.

In this process, a key component is ignored: what distance measure
is used? A common choice is Euclidean distance. However, if K-means
employs other measures, such as point symmetry distance [52], it can
become more effective for special data sets.

The mechanism contained in K-means is very intuitive: The
operations are the assignment of data points to the nearest center and
update of the centers and the convergence condition is that all the
centers remain unchanged. The criterion of assigning a point to its
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nearest center embodies the basic idea of clustering: The data points in
the same cluster are close, while those in different clusters are far away
from each other. This can be formulized to minimize the sum of the
squared errors (SSE):

SSE =i2(x,>i<">)1“(x,>i“‘>) (4.1)
k=1 ieCk
where X is the mean of the ki cluster, and K is the number of clusters.
The process of updating the centers and re-assigning the data points in
terms of new centers reduces the SSE. This is because if a data point in
Cr exists so that the following condition is satisfied:

Nk

(xi—xXP) (xi —x®) > (x XENT (xi = x*) (4.2)
ne—1 ne +1

then x; can be moved from Cr to Cr and SSE will be reduced [80].

In Figure 4.1, the process of convergence of K-means on a sample
data set is illustrated. The partition gradually approaches the expected
result and SSE is reduced.
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7 7 7
+F +F - LA LA
=) v v v v
EX dfww + EX &vér + EX d’vab + EX d’ﬁ + EX 6’#
_%#V = o D" o o D" o o 5%’00“ v q*_@%ov v
o [+] [+]
o ] - 9 @
Iteration #35 Iteration #6 Iteration #7 Convergence
v _ v v 7 5 v + vV
o + o E v v
+ N i v T
o 7 v ¥ LA w
Ca e L oW VT @ TR
2 % © ° é% v ) o T v o v T v
© + & O_F ®6 & [ (p [+]
o B o G 5 A &Fe_
- % 8 % ) %,

Figure 4.1 An example of K-means. “+” denotes the centers.

Although K-means is prone to converging at local optima, the
mechanism contained in it is a good paradigm for designing a
clustering algorithm.

4.1.2 Mechanism of Affinity Propagation

Similar to K-means [1], Affinity Propagation (AP) [78] is another
clustering algorithm based on cluster representatives, even if K-means
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uses the term mean while the later uses the term exemplar. The main idea
of AP is that, initially, every data point is an exemplar, and all the

exemplars are then iteratively refined by exchanging messages between
the data points until the good exemplars emerge. Before we introduce
the mechanism of AP, the following terms are defined:

< Similarity matrix S=[s(i,k)]nxn:

2

S(i,k):{—”xz'—Xk , ifi#k (4.3)

median({s(7,)}), ifi=k,j#i

When i=k, s(k,k) denotes a preferred value at which k is taken
as an exemplar, and is defined as the median of all the point
pairs.

Responsibility matrix R=[r(i,k)]v«~, r(i,k) is a message sent
from a data point i to a candidate exemplar k, which indicates
the suitability of point k as the exemplar of the point i:

r(i, k) < s(i, k) — kgr}%{a(i, k') + (i, k')} (4.4)

Availability matrix A=[a(i,k)]nx~n , a(i,k) is a message sent
from point k to i, which indicates its suitability in point i
selecting point k as its exemplar:

min{0,r(k, k) + Z max{0, (i’ k)}}, if i =k

a(i, k) «— .i’s.t.i'E{i,k} . (4.5)
Z max{0,r(i’, k)}, ifi=k

i's.t.i'#k

Then, the exemplar of xi is:

arg max(a(i, k) +r(i, k)) (4.6)

The mechanism of AP can be described as:

LS

Initialize similarity matrix S in terms of (4.3), a(i,k)=0, r(i,k)=0;

Update a(i, k) and r(i,k) according to (4.4) and (4.5), respectively;
Compute the exemplar of each data point;

Repeat Steps 2 and 3 until the exemplars remain unchanged in a
specified number of consecutive iterations or the specified
maximum number of iterations is reached.
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The iteration process of the above mechanism is shown in Figure 4.2.
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Figure 4.2 From initialization to convergence, six iterations are performed. The arrows

indicate the directions of the passed messages.

Compared with K-means, AP contains a more complex mechanism,
especially in the way in which the exemplars are produced.

4.1.3 Mechanism of split-and-merge

In general, for a given data set, data points within a local small region
are also in the same cluster. This is the spirit of the split-and-merge
mechanism based clustering, which is described as:

1. The data set is split into a number of sufficiently small subsets so
that the data points in the same subset are as homogenous as
possible.

2. Repeatedly combine the neighbor subsets with a certain merge
criterion until the specified number of clusters is obtained.

Clustering algorithms based on the above mechanism decompose a
complex problem into simpler ones, thus they are effective on
complicated data sets.

Chameleon [66] and CSM [81] are two typical split-and-merge based
clustering algorithms. Chameleon constructs a k-nearest-neighbor
graph of the data set first, and uses hMetis [67], a graph-partitioning
algorithm, to partition the graph into subclusters so that the edge cut is
minimized. It then defines a cluster similarity, which consists of two
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factors of relative interconnectivity and relative closeness, and merges
the most similar subcluster pair repeatedly.

CSM applies K-means to partition the data set into a number of
subclusters, and defines cluster cohesion to measure the cluster
similarity and merges the subclusters. Both methods can deal with
complex cluster problems.

4.2 GRAPH-BASED SPLIT-AND-MERGE CLUSTERING

In [P4], a clustering based on a split-and-merge mechanism, which
employs KMST both in the split and merge stages, is proposed. The
algorithm is composed of three stages, illustrated in Figure 4.3.

In the first stage, an MST of the data set X is constructed. According
to this MST, X is pruned into X’ so that the leaf nodes in the MST are
removed. This is because the leaf nodes usually have negative
contributions to the clustering. Three rounds of MSTs are then
performed to produce a graph, Gmst(X",3).

Stage 1: Construct 3-MST graph Stage 2: Split Stage 3: Merge

Dataset X Pruned dataset X' 3-MST graph Split subsets  Adjusted partitions Merge of X' Final result
Figure 4.3 Overview of the graph-based split-and-merge clustering.

In the split stage, initial cluster centers are generated from Gumst(X",3),
and K-means is then applied to the data set to achieve a partition. The
partition is adjusted so that each cluster is a sub-tree of the MST of X'.

In the merge stage, a merge criterion is defined by using the
information accumulated by Gus(X",3), and the clusters in the partition
are combined. At last, the removed leaf nodes are re-assigned to their
nearest clusters. Before describing the algorithm, some definitions are
given as follows.

Definition 4.1 Let X’ be the pruned version of X as in:

X'=X\{vilvie V,degree(v) =1} (4.7)
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where degree(vi) denotes the degree of vertex vi in the MST of X.
Definition 4.2 Let vi be the ith prototype from Gums(X',3)=(V,E),

Vi-i={v1,02,---,0i-1}, Ei-1={(xi;,x)) | (xi,x;))e EA(Xi=vVvXi=0)AveEVi-1},
vi is generated as:

vi=arg max Car({(xi,xj) | (xi,xj) e (E\ Ei-1 A (Xi=vV Xj =0))}) (4.8)

veV\Vi-1
where Car(S) denotes the cardinality.
The above definition determines the vertex with maximum degree as
a prototype. After the data set is partitioned, a main tree in a cluster is
defined and the partition is adjusted by repeatedly combining a non-
main tree with a connected main tree.
Definition 4.3 Let Fi={tytz,---,t,---,t.}, and each t; being a tree. The

main tree of Fi is defined as:
Maintree(F:) = arg r?apx(Car(t/)) (4.9)
where Car(t) denotes the edge number of tree t;.

After X' has been split into K’ subgroups, the merge stage is
performed to obtain the final clusters.
Definition 4.4 Let Pairs be the set of neighboring pairs from X' as in:

Pairs ={(C,G) 1 A(x,x7) €T, (% eC AXx €C)v(x €eCAxgeC))  (410)
where 1# ] .
Definition 4.5 Suppose (Ci,Cj) € Pairs. In Gumst(X',3), let Ener(Ci, C))
be the set of edges across the partitions Ci and C;:
Einer(C;, G) = (3, %) | (0 € G Ax0 €G) v (%0 € G A X0 € G} (4.11)
Definition 4.6 Suppose that (Ci,Cj) € Pairs . In Gmst(X',3) , set
Vi,i={xp| (Xp,%q) € Einter(Ci,Cj) AXp € Ci}, Ei,j is a set of edges within
Ciwhere at least one endpoint is in Vi;
Eij={(%,%)|%,% €CA(x € Vi v Vi) (4.12)
Definition 4.7 Suppose that (Ci,Cj) € Pairs . In Gms(X',3) , the
connection span of Ci with respect to Cj is:
ConnSpani, j = max w(Xy, X) (4.13)
xp,xq€Vi,j

Definition 4.8 Suppose that (Ci,C)) € Pairs. In Gmst(X',3), the inter-
connectivity(IC) of Ci and C;is defined as:

40 Dissertations in Forestry and Natural Sciences No 114



Graph-based Split-and-Merge Algorithm

Einer( G, G)  min(Avg(E: ), Avg(Ei)
@) Avg(Einer(C,G)) (4.14)

max(ConnSpanni, j, ConnSpanj, i)

IC(C,C) =

7

min(|C;

where Avg(E) denotes the average weight of an edge set E.
Definition 4.9 Suppose that (Ci, Cj) € Pairs, Ci is bisected into Ci' and

C?, Cjis bisected into Cjland C?, the intra-similarity(IS) of the pair (Ci, Cj)
is defined as:

1 X\/Avg(E,-mer(c}.,cf))xAvg(Em(cj,cj))
rxr: Avg(EmelC,C))+ Avg(Enal(C, C2))

where r1 and 2 are the numbers of edges of Einr(Ci', Ci2) and Einter(Cj,
Cp), respectively, and Avg(E) denotes the average weight of an edge set
E.

(4.15)

IS(C,C) =

Taking into account the inter-connectivity and the intra-similarity as
a whole, we define the overall merge index as:

The proposed algorithm is described as follows.

Step1.  Construct 3-MST graph
1.1 Construct an MST on X
1.2 Produce X’ by pruning the leaves of the MST
1.3 Create three MSTs on X": T1, T2 and T
14 Compute 3-MST graph based on X:
Gmst(X',3) <~ T1uT2UTs
Step2.  Split the pruned dataset X" into clusters
2.1 Select K" highest degree nodes from Gus(X" ,3) as
initial prototypes
2.2 Apply K-means with the prototypes to produce K’
partitions
2.3 For each of the partitions, find its main tree in T1
2.4 For each of the sub-trees, repeatedly combine it
with another sub-tree until it belongs to a main tree
Step 3.  Merge the partitions into final clusters
3.1 Generate the set of neighboring partition pairs
Pairs
3.2 Foe each pair (Ci,Cj) € Pairs, calculate the merge
criterion R(C;, Cj)
3.3 Repeatedly merge the pair with maximum R()-
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value until K clusters have been obtained.

3.4 Add the pruned leaves to the clustering using T1
Step 4 If the convergence is achieved, stop; otherwise go to

step 1.

4.3 SUMMARY

The mechanism is one of the important factors for devising clustering
algorithms. Both K-means and Affinity Propagation contain well-
designed mechanisms.

The split-and-merge mechanism divides a complicated cluster
problem into a number of small homogeneous clusters, and then
combines similar clusters. We propose an MST-based split-and-merge
algorithm. It takes advantage of the information revealed by KMST,
and incorporates it into the split-and-merge framework.
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5 Fast Approximate MST
Based on K-means

5.1 MOTIVATION AND INTRODUCTION

MST is used in the previous methods, but the construction process will
be time-consuming if the data set is large. This chapter studies a fast
approximate MST so that those methods can deal with large data sets.

For a given undirected and weighted graph, an MST is a spanning
tree whose weights are minimized. Since MSTs can reflect the intrinsic
structure of the data set, they have been extensively employed in image
segmentation [82, 83], clustering [84], classification [85] and manifold
learning [86, 87].

Prim’s algorithm is a typical MST algorithm. Its idea is as follows:
One randomly selects a node and considers it as a tree, then repeatedly
adds an edge that connects one node from the tree to a new node so
that the weight is the minimum. This is repeated until the tree contains
all the nodes. The time complexity is O(ElogV), where E is the number
of edges and V is the number of nodes. If a Fibonacci heap is used to
implement the min-priority queue, the complexity becomes O(E+VlogV)
[66].

Kruskal’s algorithm is another widely used algorithm for solving
MSTs [88]. It sorts edges in ascending order by the weights, and
initially considers each node as a tree. The shortest edges, except those
that lead to a circle, are then used repeatedly to connect the trees until
all the trees are combined into one. Its time complexity is O(ElogV).

However, for a complete graph E=N*(N-1)/2, and therefore
Prim’s and Kruskal’s algorithms require O(NN?) time, which makes them
impractical for large data sets.

In [P5], a fast approximate MST algorithm was proposed. The
algorithm employs the divide-and-conquer strategy that yields time
complexity of O(N'?).
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5.2 RELATED WORK

Related work can be found in the literature [89, 90]. Wang and Wilkes
[89] applied the divide-and-conquer strategy to construct an
approximate MST. However, their final goal was not to figure out an
MST but to detect the longest edges in the early stage of clustering to
improve the clustering efficiency. Initially, the data points were
randomly stored in a list and each point was connected to its
predecessor and successor. Intuitively, the list formed a spanning tree
(ST). To optimize this ST, a hierarchical clustering algorithm was
applied so that the data set was partitioned into a number of subsets.
After the distances between the points in the same subset were
computed, the ST was updated by replacing its longest edge with the
shortest one between the two partitions which were generated by
removing the longest. This procedure was iteratively performed until
the difference of edge weights between two consecutive updates was
less than a threshold.

Lai et al. [90] proposed an approximate MST based on the Hilbert
curve and applied it to clustering. It is a two-stage algorithm. In the
first stage, an approximate MST is constructed with a Hilbert curve. In
the second stage, along with the approximate MST, the densities of data
points are measured, and the data set is partitioned in terms of a given
threshold of density. The procedure of constructing an approximate
MST is an iterative process and each iteration contains a refinement
step, where the number of iterations is d+1 and d is the dimensionality
of the data set. In each iteration, a procedure similar to the Prim’s
algorithm is used to produce the approximate MST. The main
difference is that when the minimum priority queue is maintained, the
algorithm takes into account only the approximate MST in the last
iteration and neighbors of the visited points determined by the sorted
Hilbert table, while Prim’s algorithm takes into account all the
neighbors of visited points. However, the accuracy of Lai et al’s
algorithm depends on the order of the Hilbert curve.
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5.3 PROPOSED FAST AND APPROXIMATE MST

To improve the efficiency of constructing an MST, an intuitive way is to
reduce the redundant computation. When finding the nearest
neighbors of a data point, it is not necessary to scan the whole data set
but only those in its neighborhood. Similarly, when Kruskal’s algorithm
computes an MST from a complete graph, it is not necessary to sort all
of the Nx(N-1)/2 edges but only the (1+a)xN edges with the
smallest weights, where (N-3)/2>a>-1/N.
Motivated by this observation, a divide-and-conquer method was
proposed in [P5] to improve the MST algorithm.
In general, a divide-and-conquer method consists of the following
three steps [66]:
1) Divide: A problem is divided into a number of sub-problems,
which are similar to the original problem, but the scale is smaller.
2) Find a solution: Each sub-problem is solved and the sub-
solutions are achieved.
3) Merge: All of the sub-solutions are combined into the final
solution of the original problem.
According to the above procedure, a two-phase fast and
approximate MST algorithm is devised as follows:
1) Divide-and-conquer:
< Partition the data set into N subsets by K-means

algorithm.

< Construct an MST of each subset using Kruskal’s or Prim’s
algorithm.

< Merge the MSTs of the subsets in terms of a defined merge
criterion.

2) Refinement:
< Repartition the data set by assigning the data points to the
nearest centers, which are selected from the previous cluster
boundaries, so that the data points residing in the neighbor
boundary regions of pairs of neighbor partitions are in the
same cluster.
< Construct the second approximate MST.
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< Combine the two approximate MSTs into a graph, and
apply the traditional MST to the graph to produce a more
accurate approximate MST.

The process is illustrated in Figure 5.1. In the first stage, an
approximate MST is constructed, but its accuracy is not always enough,
because many of data points in the boundary regions are connected
incorrectly, while the fundamental reason is that a neighbor pair in
different subsets is not taken into account when the approximate MST
is generated. To remedy this drawback, the refinement stage is
designed.

Divide-and-conquer stage:
(a) Data set (b) Partitions by K-means (c) MSTs of the subsets (d) Connected MSTs

Refinement stage: |

v
(e) Partitions on borders (f) MSTs of the subsets (g) Connected MSTs (h) Approximate MST

S 4 \D;(A Z
N TO RN W;; ’
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Figure 5.1 Overview of the proposed fast approximate MST algorithm. (a) A given dataset. (b)

The data set is partitioned into JIN subsets by K-means. (c) An exact MST algorithm is applied
to each subset. (d) MSTs of the subsets are connected. (e) The data set is partitioned again so
that the neighboring data points in different subsets of (b) are partitioned into identical
partitions. (f) Exact MST algorithm is used again on the secondary partition. (g) MSTs of the
subsets are connected. (h) A more accurate approximate MST is produced by merging the two

approximate MSTs in (d) and (g) respectively.

In the refinement stage, the data set is repartitioned aiming to group
the data points that are near to each other and in different subsets of the
first stage into the same subset. After the second approximate MST is
obtained, the two MSTs are combined into a graph, which has at most
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2x(N —1) edges. The final approximate MST is achieved by applying a
traditional algorithm to this graph. The details of the proposed
algorithm are in [P5].

5.4 SUMMARY

In this chapter a fast and approximate MST algorithm was studied. The
motivation of this work was to speed up the construction of an MST,
since traditional algorithms have time complexity of O(N?) and can be
impractical for large data sets.

The proposed MST algorithm employs the divide-and-conquer
strategy and its time complexity is O(N'%). Although the algorithm only
produces an approximate MST, the effect of the sub-optimal result is
expected to be insignificant in practical applications, such that
clustering and manifold learning. The proposed algorithm can also be
applied to the algorithms presented in Chapters 3 and 4.
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6 Summary of the
Contributions

6.1 CONTRIBUTIONS OF THE THESIS

[P1]: A dissimilarity measure based on the furthest reference point
and a divisive clustering algorithm (DIVFRP) derived from this
measure were proposed. Taking the dissimilarity measure as its
fundamental component, DIVFRP is computationally efficient
compared to traditional divisive clustering algorithms, such as single-
link, and robust to outliers. Meanwhile, the proposed method can
determine automatically the number of clusters, which is a challenge
and interesting problem in clustering community. This is achieved by
detecting the peaks of SSE but not by employing internal clustering
validity indices, which is a general method in the literature but more
subjective than the former since the estimated results depend on the
internal indices selected. The experimental results of this performance
are shown in Tables 6.1 and 6.2. The numbers of clusters estimated by
the proposed method in the both data sets are more accurate than those
by the others.

[P2]: This is a comment on a paper [91], which proposes a geodesic
distance-based approach to build the neighborhood graph for isometric
embedding. However, there is an error in the method. The local
geodesic distance is estimated with the initial nearest neighbors
determined by Euclidean distance, and in turn, optimizes a
neighborhood graph. This optimization process violates the triangle
inequality theorem. The error is pointed out and discussed in this paper.

[P3]: Generally, a clustering algorithm can deal with only certain
types of data sets. However, data sets often are much different in
cluster sizes, shapes and densities. Therefore, a clustering algorithm
that can analyze all different data sets does not exist. In this paper, a
graph-theoretical clustering method (2-MSTClus) was proposed and an
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attempt was made to make it handle more kinds of data sets. It
employed two rounds of MSTs as the data representation, and as a
result the hidden information on separated and touching cluster
problems is discovered. Since separated and touching cluster problems
are complementary, the proposed clustering method is more universal
than traditional ones. Figures 6.1 and 6.2 and Table 6.3 demonstrate this
performance, where the data sets in the two figures are complex and
synthetic and one in the table is real. The proposed method
outperforms the others on the three data sets. Moreover, the data
representation proposed can be used to other machine learning
problems, such as community detection [95].

[P4]: This paper proposed the split-and-merge strategy based
algorithm (SAM), which uses a graph generated by three rounds of
MST. The main contribution is to represent the data set with the graph,
and exploit the information of the graph in the split and merge
processes so that complex data sets can be dealt with. The graph is used
from two aspects: To partition the data set into subsets with K-means,
the initial cluster centers are determined with the density information
of the graph, which can be used as an initialization method of K-means,
while random selection of cluster centers is a weak point of it. To
design a merge criterion, the density and connection information of the
graph is also used. As a result, complicated data sets can be analyzed.

[P5]: The clustering algorithms proposed in [P3] and [P4] are based
on minimum spanning trees. However, the time complexity to
construct an MST of a complete graph is O(N?), which is slow for large
data sets. We propose a fast and approximate MST algorithm, which
employs divide-and-conquer strategy and works in O(N'®) . From the
experimental results shown in Figure 6.3, we can see that proposed
algorithm is computationally more efficient than Prim's algorithm. In
this divide-and-conquer framework, any other exact or approximate
MST algorithm can be applied to the sub-problems.
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6.2 SUMMARY OF RESULTS

Experiment results of the papers are shown in this section. Table 6.1
provides a comparison of DIVFRP, DBScan and K-means. The
comparison focuses on estimating cluster number K and the clustering
accuracy. Here, DIVFRP, CH index-based DBScan and Silhouette index-
based DBScan achieve the same results. They discover the cluster
number K correctly, and three external indices give values close to the
expected value 1 and outperform K-means results.

In Table 6.2, only DIVFRP estimates the number of clusters correctly.
Silhouette index based DBScan and K-means achieve better results than
CH index based DBScan and K-means.

Table 6.1 Performances of DIVFRP on R15!

Method Estimated K Rand  Jaccard FM
DIVERP [P1] 15 1.00 0.99 0.99
DBScan—CH [92] 15 1.00 0.99 0.99
DBScan-Silhouette [92] 15 1.00 0.99 0.99
K-means—CH [1] 18.7 0.99 0.87 0.93
K-means-Silhouette [1] 18.1 0.99 0.87 0.93

Table 6.2 Performances of DIVFERP on Wine

Method Estimated K Rand  Jaccard FM
DIVERP [P1] 3 0.72 0.42 0.59
DBScan—-CH [92] 6 0.71 0.27 0.44
DBScan-Silhouette [92] 2 0.68 0.46 0.65
K-means—CH [1] 40.6 0.67 0.05 0.16
K-means-Silhouette [1] 2 0.67 0.46 0.65

In Table 6.3, 2-MSTClus is tested on Wine data. It performs better
than all comparative algorithms because there are some outliers in the
data set.

! The data sets can be found from: http://cs.uef.fi/sipu/datasets/.
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Table 6.3 Performances of 2-MSTClus on Wine

Method Rand Adjustedrand Jaccard FM
K-means [1] 0.88 0.73 0.70 0.82
DBScan [92] 0.88 0.74 0.70 0.83
Single-linkage [93] 0.78 0.56 0.59 0.76
Spectral clustering [94] 0.80 0.55 0.53 070
2-MSTClus [P3] 0.93 0.85 0.82 0.90
Original dataset Clustering by K-means Clustering by DBScan

(MinPts=6,Eps=1.5)

Clustering by spectral Clustering by 2-MSTClus
clustering

Figure 6.1 Clustering results on Aggregation data set.

In Figure 6.1, a data with a complex cluster structure is presented. It
consists of seven clusters, and is a composite cluster problem. All of the
four existing algorithms fail on this dataset, and only 2-MSTClus
identifies the seven clusters accurately.

The data set in Figure 6.2 is composed of three sub data sets from
[13]. The left top part is a touching problem; the left bottom one is a
distance-separated problem; and the right one is a density-separated
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problem. For this composite data set, 2-MSTClus can identify the six
clusters, but the other four clustering methods k-means, single-linkage,
DBScan and spectral clustering cannot.

The running time of FMST and Prim's algorithm on the four datasets
is illustrated in the first row of Figure 6.3. From the results, we can see
that FMST is computationally more efficient than Prim's algorithm,
especially for the large datasets ConfLongDemo and MiniBooNE. The
efficiency for MiniBooNE shown in the rightmost of the second and
third row in Figure 6.3, however, deteriorates because of the high
dimensionality.

The edge error rates and weight error rates of the four datasets are
shown in the third row of Figure 6.3. We can see that both the edge
error rate and the weight error rate decrease with the increase of the
data size.

Original dataset Clustering by K-means Clustering by DBScan
(MinPts=4,Eps=1.4)

10 15 20 25 30 35 40 10 15 20 25 30 35 40 10 15 20 25 30 35 40
Clustering by spectral
Clustering by single-linkage clustering

25
20 |

15

10 15 20 25 30 35 40 10 15 20 25 30 35 40 0 15 20 25 30 35 40

Figure 6.2 Clustering results on Compound data set.

For datasets with high dimension, the edge error rates are bigger.
For example, the maximum edge error rates of MNIST are 18.5%, while
those of t4.8k and ConfLongDemo are less than 3.2%. In contrast, the
weight error rates decrease when the dimensionality increases. For
instance, the weight error rates of MNIST are less than 3.9%.
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Figure 6.3 The results of the test on the four datasets?.

2 T48K is from HTTP://glaros.dtc.umn.edu/gkhome/cluto/cluto/download; ConfLongDemo is from
HTTP://archive.ics.uci.edu/ml/; MNIST and MiniBooNE are from HTTP://yann.lecun.com/exdb/mnist.
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7 Conclusions

In this thesis, we focus on graph-based clustering algorithm using a
minimum spanning tree (MST) or K-MST. A fast approximate
algorithm is introduced to construct an MST. The work on graph-based
clustering algorithms is based on the clues provided by the components
in designing a clustering algorithm, such as distance measure, data
representation and mechanism.

A graph-based data representation may have a great effect on the
performance of a clustering algorithm, because graph-based data
representations can disclose more hidden and useful information for
clustering, which cannot be perceived directly from its natural form.
The 2-MSTClus clustering method proposed in this thesis is an example.
This method represents the data set with first and second order MSTs,
respectively. The motivation is to make the clustering more universal so
that it can deal with more types of data sets. Coupled with the
properties of the two rounds of MSTs, the clustering strategy in 2-
MSTClus can achieve this goal.

The other sample that demonstrated the effect of a graph-based data
representation is the algorithm SAM presented in this thesis. It makes
use of the information discovered by a graph, which is composed of
three rounds of MSTs, in its different phases so that complex data sets
can be analyzed.

A proper mechanism is crucial for a clustering algorithm, as it
involves how the information collected by distance measures and
graph-based data representations are used. The split-and-merge
strategy in SAM is a typical mechanism. The split process is designed to
decompose complex structures of the data set, while merge process
attempts to form valid clusters.

A distance measure can determine partially the performance of a
clustering algorithm. A suitable measure can disclose the structure
information of the data set, and make the algorithm more efficient.
DIVFRP takes advantage of the furthest reference point based
dissimilarity measure can detect clusters in spherical shapes, and is
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efficient compared to traditional divisive clustering algorithms, such as
single-link.

In future work, the focus will be on clustering algorithms that can
deal with complex and large data sets, and methods that make a
clustering algorithm more unified. For clustering complex and large
data sets, resampling and ensemble techniques will be considered,
while for the universality, a clustering algorithm selection framework is
being studied.
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1. Introduction

Clustering is an unsupervised classification technique in pattern
analysis (Jain et al., 1999). It is defined to divide a data set into
clusters without any prior knowledge. Objects in a same cluster
are more similar to each other than those in different clusters.
Many clustering methods have been proposed in the literature
(Xu and Wunsch, 2005; Jain et al., 1999). These methods can be
roughly classified into following categories: hierarchical, partitional,
density-based, grid-based and model-based methods. However,
the first two methods are the most significant algorithms in clus-
tering communities. The hierarchical clustering methods can be
further classified into agglomerative methods and divisive meth-
ods. Agglomerative methods start with each object as a cluster,
recursively take two clusters with the most similarity and merge
them into one cluster. Divisive methods, proceeding in the oppo-
site way, start with all objects as one cluster, at each step select
a cluster with a certain criterion (Savaresi et al., 2002) and biparti-
tion the cluster with a dissimilarity measure.

In general, partitional clustering methods work efficiently, but
the clustering qualities are not as good as those of hierarchical

* Corresponding author. Address: School of Electronics and Information Engi-
neering, Tongji University, Shanghai 201804, PR China. Tel.: +86 21 69589867; fax:
+86 21 69589359.
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(C. Zhong).

0167-8655/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2008.07.002

methods. The K-means (MacQueen, 1967) clustering algorithm is
one of well-known partitional approaches. Its time complexity is
O(NKId), where N is the number of objects, K is the number of clus-
ters, I is the number of iterations required for convergence, and d is
the dimensionality of the input space. In practice, K and d are usu-
ally far less than N, it runs in linear time on low-dimensional data.
Even though it is computationally efficient and conceptually sim-
ple, K-means has some drawbacks, such as no guarantee of conver-
gence to the global minimum, the requirement of the number of
clusters as an input parameter provided by users, and sensitivity
to outliers and noise. To remedy these drawbacks, some variants
of K-means have been proposed: PAM (Kaufman and Rousseeuw,
1990), CLARA (Kaufman and Rousseeuw, 1990), and CLARANS
(Ng and Han, 1994).

To the contrary, hierarchical clustering methods can achieve
good clustering results, but only at the cost of intensive computa-
tion. Algorithm single-linkage is a classical agglomerative method
with time complexity of O(N*logN). Although algorithm CURE
(Guha et al., 1998), one improved variant of single-linkage, can
produce good clustering quality, the worst-case time complexity
of CURE is O(N*log,N). Compared to agglomerative methods, divi-
sive methods are more computationally intensive. For biparti-
tioning a cluster C; with n; objects, a divisive method will produce
a global optimal result if all possible 2"~ — 1 bipartitions are con-
sidered. But clearly, the computational cost of the complete enu-
meration is prohibitive. This is the very reason why divisive
methods are seldom applied in practice. Some improved divisive
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methods do not consider unreasonable bipartitions identified by a
pre-defined criterion in order to reduce the computational cost
(Gowda and Ravi, 1995). Chavent et al. (2007) in a monothetic divi-
sive algorithm use a monothetic approach to reduce the number of
admissible bipartitions.

Most traditional clustering methods, such as K-means, DBScan
(Ester et al., 1996), require some user-specified parameters. Gener-
ally, however, the required parameters are unknown to users.
Therefore, automatic clustering methods are expected in practical
applications. Some clustering methods of this kind have been pre-
sented in the literature (Wang et al., 2007; Tseng and Kao, 2005;
Garai and Chaudhuri, 2004; Bandyopadhyay and Maulik, 2001;
Tseng and Yang, 2001). Roughly these methods can be categorized
into two groups: clustering validity index-based methods (Wang
et al., 2007; Tseng and Kao, 2005) and genetic scheme-based meth-
ods (Garai and Chaudhuri, 2004; Bandyopadhyay and Maulik,
2001; Tseng and Yang, 2001). Wang et al. (2007) iteratively apply
the local shrinking-based clustering method with different cluster
number Ks. In the light of CH index and Silhouette index, the qual-
ities of all clustering results are measured. The optimal clustering
result with the best cluster quality is selected. Tseng and Kao
(2005) use Hubert’s I' index to measure a cluster strength after
each adding (or removing) of objects to (or from) the cluster. For
genetic scheme-based clustering methods, it is crucial to define a
reasonable fitness function. Bandyopadhyay and Maulik (2001)
take some validity indices as fitness functions directly. In the
methods of Garai and Chaudhuri (2004) and Tseng and Yang
(2001), although validity indices are not used directly, the fitness
functions are very close to validity indices essentially. So genetic
scheme-based methods, in different extents, are dependent on
the clustering validity indices. However, clustering validity indices
are not a panacea since an index that can deal with different shapes
and densities is not available.

Robustness to outliers is an important property for clustering
algorithms. Clustering algorithms that are vulnerable to outliers
(Patan and Russo, 2002) may use some outlier detection mecha-
nisms (Aggarwal and Yu, 2001; Ramaswamy et al., 2000; Breunig
et al., 2000; Knorr and Ng, 1998) to eliminate the outliers in data
sets before clustering proceeds. However, since this is an extra
task, users prefer to clustering algorithms robust to outliers.

In this paper, we propose an efficient divisive hierarchical clus-
tering algorithm with a novel dissimilarity measure (DIVFRP).
Based on the furthest reference points, the dissimilarity measure
makes the partition process robust to outliers and reduces the
computational cost of partitioning a cluster C; to O(n; logn;). After
a data set being partitioned completely, the algorithm employs a
sliding average of differences between neighboring pairs of sum-
of-errors to detect potential peaks and determine the candidates
of the cluster number. Finally, spurious clusters are removed and
the optimal cluster number K is achieved. Our experiments demon-
strate these performances. The remaining sections are organized as
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follows: algorithm DIVFRP is presented in Section 2. Section 3 pre-
sents experimental results. The performances are studied in Sec-
tion 4. Section 5 concludes the paper.

2. The clustering algorithm

We begin our discussion of the clustering algorithm DIVFRP by
considering the concept of general clustering algorithm.

Let X = {%x1,...,X;,...,Xy} be a data set, where x; = (xi1,Xp, .. .,
Xijy - - - 7xid)T e R®¢ is a feature vector, and x; is a feature. A general
clustering algorithm attempts to partition the data set X into K
clusters: Co,Cq,...,Cx_1 and one outlier Couier Set according to
the similarity or dissimilarity measure of objects. Generally,
Ci#0, GnG =0, X =CoUCiU...UCk_1 U Coutlier, where
i=01,....,K—1,j=0,1,...,K—1, i#.

The algorithm DIVFRP comprises three phases:

1. Partitioning a data set.
2. Detecting the peaks of differences of sum-of-errors.
3. Eliminating spurious clusters.

2.1. Partitioning a data set

2.1.1. The dissimilarity measure based on the furthest reference points

Similarity or dissimilarity measures are essential to a clustering
scheme, because the measures determine how to partition a data
set. In a divisive clustering method, let C; be the cluster to be bipar-
titioned at a step of the partitioning process, g(Cy, Cy) be a dissim-
ilarity function. If the divisive method bipartitions C; into C;; and
Ci, the pair (Ci;,Ciz) will maximize the dissimilarity function g
(Theodoridis and Koutroumbas, 2006). According to this definition
of dissimilarity, we design our dissimilarity measure as follows.

For a data set consisting of two spherical clusters, our dissimi-
larity measure is on the basis of the observation: the distances be-
tween points in a same cluster and a certain reference point are
approximative. We call the distances a representative. For the
two clusters, two representatives exist with respect to a same ref-
erence point. Assume that there exits a point on the line that
passes through the two cluster mean points, and both clusters
are on the same side of the point. Taking the point as the reference
point, one will get the maximum value of the difference between
the two representatives. On the contrary, if the reference point is
on the perpendicular bisector of the line segment that ends at
the two cluster mean points, one will get the minimum value.
However, it is difficult to get the ideal reference point since the
cluster structure is unknown. We settle for the furthest point from
the centroid of the whole data set instead, because it never lies be-
tween the two cluster mean points and two clusters must be on the
same side of it. Fig. 1 illustrates the dissimilarity measure based
the furthest point and how the cluster being split.

1 1 1
o 6 ® S 5 6
2 3 [ ] 7| 2 3 7 3, 7
o %o oo ®0O °
1@ 8@ 1@ e® 4 8
a b c d

Fig. 1. Illustration of the dissimilarity measure and a split. In (a), a data set with two spherical clusters is shown. In (b), the hollow point M is the mean point of the data set;
point 7 is the furthest point to the mean and selected as the reference point. In (c), distances from all points including the reference point to the reference are computed. In (d),
the neighboring pair < dy, d;s > with maximum difference between its two elements is selected as the boundary, with which the cluster is split.
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Fig. 2. Illustration of the reference point as an outlier. In (a), two spherical clusters with an outlier is shown. In (b), the hollow point M is the mean point of the data set; point
9 is the furthest point to the mean and selected as the reference point. In (c), distances from all points to the reference are computed. In (d), the neighboring pair < d,9, d;3 >
with maximum difference between its two elements is selected as the boundary, with which the reference point itself is peeled off.

In Fig. 1b, point 7 is the furthest point to the data set centroid
(hollow point M). So it is selected as the reference point r. Let d,;
stand for the distance between the reference point r and a point i
(1 <i<8), the distances are sorted ascendantly as (d,7,d;s,d:s,
dys,d3,dr,drs,dr). Considering all neighboring pairs in the list,
we observe that the difference between the elements of the neigh-
boring pair (d;s,d;s) is the maximum and select the pair as the
boundary. This is the very dissimilarity measure. In accordance
with the boundary, the list is then split into two parts:
(di7,dis, dis) and (d;s, dy3, di1, dra, dy2). Correspondingly, two clusters
are formed: {7,8,6} and {5,3,1,4,2}.

Note that the dissimilarity measure based the furthest reference
point does not always discern two clusters well. As aforemen-
tioned, when the furthest point is on or close to the perpendicular
bisector of the line segment that takes two cluster mean points as
its two endpoints, respectively, the dissimilarity measure fails to
split the two clusters. Surprisingly, however, the dissimilarity mea-
sure acts as an outlier detector in this situation. This property, dis-
cussed in Section 4, endows our algorithm with robustness to
outliers. In Fig. 2, the sorted list of distances from all of the points
to the reference is (dyo,dss,dss,dss, dr2, dr7,dr1,drs, drs). The neigh-
boring pair (d9,d;s) has the maximum difference and functions
as the boundary. So the reference point 9 is peeled off as an outlier.

Then we formally define the dissimilarity function. Suppose C;
is one of the valid clusters, x € C;, |Ci| = n;.

Definition 1. Let rp(C;) be the furthest point to the mean of C;,
namely the reference point in C;, as in

rp(Ci) =argy_ & — u(Cy)| (1)

xeC;

where ,U(Cz) = ﬁerCix

Definition 2. Let Rank(C;) be an ordered list as in
Rank(C;) = (near_ref(C;) o Rank(C; — {near_ref(C;)})) (2)

where o is concatenate operator, near_ref(C;) is the nearest point to
the reference point in C; as in

near ref(C;) = arg micn | —rp(C)|l (3)
xeCy

Definition 3. Assume Rank(C;) = (%1,X2,...,X;,), C; is to be split
into Cy and Cp, where Ciy = (X1,X2,...,%;), Cp = (X1, Xj52,..., Xn,)
and 1 <j < n. The dissimilarity function g(Cj;, Ciz) is defined as

8(Cin, Cip) = [|X;11 — 1p(Ci)|| — [1% — rp(Cy)]| (4)

This dissimilarity definition can be compared with the distance
(dissimilarity) definition of single-linkage algorithm as in

dist(C;, ;) = _min _ % — x| (3)
i L et |

Because single-linkage is an agglomerative algorithm, the pair of
clusters with minimum distance, dist(C;,C;), are merged at each

step. Whereas the presented method DIVFRP is a divisive algorithm,
the bipartitioned pair (Ci;,Ciz) of cluster C; should maximize the
dissimilarity function g(Ci, C).

2.1.2. The partition algorithm
A divisive clustering problem can be divided into two sub-prob-
lems (Savaresi et al., 2002):

Problem 1. Selecting which cluster must be split.
Problem 2. How to split the selected cluster.

For Problem 1, generally, the following three criteria can be em-
ployed for selecting the cluster to be split at each step (Savaresi
et al.,, 2002):

(1) complete split: every cluster is split;

(2) the cluster with the largest number of objects;

(3) the cluster having maximum variance with respect to its
centroid.

Since every cluster is split, criterion (1) is simple, but it does not
consider the effect of splitting sequence on the quality of the clus-
ters. Criterion (2) attempts to balance the object numbers of the
clusters, but it ignores the “scatter” property. Criterion (3) consid-
ers the “scatter” property well, so we use maximum deviation
which is similar to criterion (3) in DIVFRPs.

Suppose there are totally M clusters at a certain step, namely
Co,Cq,...,Cym_1. One of the clusters will be selected for the further
bipartition.

Definition 4. Let next_split(CS) be the cluster with the maximum
deviation with respect to its centroid, CS={C;: 0 <i< M —1}:

next_split(CS) = arg max |[dev(Cy)| (6)
i€

where dev(Ci) = & . I8 — 1(C)].

So next_split(CS) is the cluster to be split at next step.

An optimal partition will give the maximum value of the
dissimilarity function g (Theodoridis and Koutroumbas, 2006).
Bearing this in mind, we can bipartition a cluster as follows.

Definition 5. Let D(C;) be a set consisting of the differences
between elements of all neighboring pairs in Rank(C;):

D(Ci) = {d : d = ||next(x) — rp(Cy)|| — [|¥ — rp(Ci) |} (7)

where x is a component in Rank(C;), next(x) is the next component
to x in Rank(G;).

Definition 6. Let b(C;) be the point in C; with the maximum differ-
ence in D(G;):

b(Ci) = arg max(|inext(x) — rp(Ci)|| — [|¥ — rp(Ci)) 8)
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The cluster is bipartitioned into C;; and Cj, as in:

Co={x:x€ G A[x—1p(C) < [Ib(Ci) —p(Ci)l[} 9)
C = Ci — Ca (10)

The divisive algorithm (DA) is formally stated as follows.

Divisive algorithm (DA)

Step 1. From Eq. (6), the cluster to be split is determined:
C; = next_split(S). The first cluster to be split is the initial
data set which includes whole points.

Step 2. Partition C; into two clusters with Eqgs. (8)-(10), record the
partition process.

Step 3. If each cluster has only one object, stop; otherwise go to
step 1.

Note that recoding the partition process is for the later
analysis of the optimal K.

2.2. Detecting the peaks of sum-of-error differences

After partitioning the whole data set, we will figure out the
proper clusters. We classify splits into two categories: essential
splits and inessential splits. The split in Fig. 1 is essential, because
two expected clusters are achieved after the split. Correspondingly,
the split in Fig. 2 is inessential, because only an outlier is detected
with the split. Intuitively, the number of the proper essential splits
is equal to the optimal number of clusters minus 1. Accordingly,
the task of finding the optimal number of clusters is equivalent
to that of determining the number of essential splits. By inspecting
the split process, we find that the difference of sum-of-errors be-
tween an essential split and the prior inessential split has a local
maximum. We call the local maximum a peak. Then the problem
of determining the essential splits can be transformed to that of
detecting the peaks.

As what we observed, peaks generally become lower with the
split process going on. Under this circumstance, the sliding aver-
ages are employed to detect the peaks.

Definition 7. Let J.(i) be the sum-of-error after ith bipartition:
i
Je)) =Y Jee(G) (11)
=0

where 0 <i< N -1, J.(G) is an effective error of each cluster de-
fined as

JeelC) = Ix = (G| (12)

xcC;

Definition 8. Let Diff be a list that consists of the differences
between neighboring sum-of-errors:

Diff = (d;,ds, ... d;) (13)

where 1 <i<N-1,di =J.(i— 1) — J.(i).

Fig. 3a illustrates the bipartitions (only first two) of the data set
in Fig. 2. Fig. 3b shows J.(i) of each bipartitions. It seems difficult to
perceive some information to detect cluster number K only from
Fig. 3b. But in Fig. 3¢ two points A,B, which correspond to
Je(0) —Jo(1) and J.(1) — Jo(2), respectively, are very different from
the remaining points, because the first two bipartitions lead to
large decreases of J..

Definition 9. Let P = (py,py,---,D;, - --
d; is an element of Diff}.

Note that if p; ; and p; in P correspond to d, and d, in Diff,
respectively, then v > u holds. Obviously, the following fact exists:

,pe_1) be a peak list, p; € {d;:

Fact 1: If the peak list P has t elements, the optimal cluster num-
ber K should be t + 1.

The task of this phase is to construct the peak list P.
Suppose that an element of Diff, say d;, is selected as an element
of P, say p,,, if the following holds:

d; > savgd(m) (14)

where / is a parameter; avgd(m) is the average of the elements be-
tween d, and d; in Diff, d. corresponds to the prior peak in P, namely,
Pm_1- Two exceptions exist. When d; is next to d. in Diff, i.e.
j=e+1, no elements exist between d. and d;; when p,, is first ele-
ment in P, i.e. m =0, d. does not exist. As remedies, the previous
average avgd(m — 1) is used instead of avgd(m) in Eq. (14) for the
former exception and the global average for the latter. Conse-
quently, the sliding average is defined as

j-1
o1 > dr ¢ if m#0 and j>e+1
f=e+1
avgd(m) = ¢ avgdim—1) : if m#0 and j=e+1 (15)
cifm=0

1 N-1
v oo dr
=

Clearly, the window width of the sliding average is not fixed. In Fig.
3¢, when we consider point A and determine whether it is a peak,
we will compare its value with global average since currently the
peak list P is empty and no sliding average is available.

The parameter / in Eq. (14) is a crucial factor for detecting the
peaks. Different values of 4 lead to different peak lists. However, it
is difficult to select a proper value for the parameter /, because it
would be different for data sets with different density distribu-
tions. Since for a given 4 it is computational simple (the compu-
tational cost is linear to N) to construct a peak list, we can
construct the peak lists greedily with all the possible values of /.
Intuitively, the parameter must be great than 1, and less than the
value which results in the whole data set taken as one cluster.
Being a real number, the / can take a small increment, say g, when
we construct the peak lists iteratively.

Consider a function f : S — T with the Fact 1 in mind. T is a set of
possible values of K, while S is a set of possible values of /. Then
S={:i=w+oxni<f11),w>=1neN}, T={k:1<k<
N,k € N}, w is the initial value of 1 and ¢ is the increment in the
construction of the peak lists. We will discuss the values of the
parameters ¢ and o in Section 3.1. Fig. 3d illustrates the graph of
function f on the same data set.

In general, the function fis monotonically decreasing. When 1 is
small, the element number of the corresponding peak list is large.
When the element number is greater than the optimal K, some of
discovered clusters are spurious.

Definition 10. Let LBD(S) be a list of binary relations of (4,f(%))
defined as

LBD(S) = ((min(4), f(min(4))) o LBD(S — {min(4)})) (16)

The list LBD(S) collects all binary relations of (Z,f(4)) in an ascend-
ing order with respect to . In next subsection, we will consider how
to eliminate the spurious clusters and consequently discover opti-
mal cluster number K from the list LBD(S).

2.3. Eliminating the spurious clusters

By inspecting the list LBD(S), we find that some different s pro-
duce the same number of clusters K. We call this local stability.
Suppose 4; and 4; are the first and the last value, respectively, that
lead to f(4;) = f(%) = K’ in LBD(S). The local stability can be mea-
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Fig. 3. Illustration of the clustering process. (a) The bipartition process of data set in Fig. 2; (b) the eight J.s for total eight bipartitions; (c) the differences of neighboring J.s,

the points A and B are two potential peaks; and (d) the graph of function f.

sured by A2 = 4 — 2. InFig. 3d, f(1.5) = f(2.8) =3,and AL = 1.3.If
the A/ is great than a threshold, say 7, the corresponding K’ is re-
garded as a candidate of K. However, some spurious clusters may
exist for a candidate of K. There are two kinds of spurious clusters.
The one are the clusters consisting of outliers, the other one are the
clusters partitioned from the normal clusters when K’ is great than
the real number K. Compared to a normal cluster, in general, a spu-
rious cluster consists of a small number of objects and has a small
effective error J .. no matter how dense or sparse it is. Under this
observation, we define a criterion to identify the spurious clusters.
Note that after the divisive algorithm (DA) is applied, every ob-
ject is a cluster. Suppose K’ is a candidate of K, the (K’ — 1)th peak
in P corresponds to d; in Diff. When we detect spurious clusters
from K’ clusters, the last N —j — 1 partitioning operations are not
needed. Otherwise, every cluster contains one object, it is mean-
ingless to detect spurious clusters under this situation. For in-
stance, considering K’ =3 in Fig. 3d. The 2th peak in Fig. 3c
corresponds to d, (this is a special case, here j = K' — 1 = 2, gener-
ally j = K' —1). When we determine that if there exist spurious
clusters in the K' =3 clusters which are produced by the first
two bipartition (Fig. 3a), we need the object number and J.. of
the three clusters, but these information is not available after com-
plete partitioning. There are two solutions for this problem. One is
that the last N —j — 1 = 6 partitions are rolled back, the other one
is to record all needed information in the process of bipartitioning.
For the sake of decreasing space complexity, we employ the first
one, that is, the last N —j — 1 partitioning operations are undone.

Definition 11. Let SC be a set that consists of the K’ clusters,
Q(SC) =(q0,91,---+q;,---,qx_1) be an ordered list, where
g; (0<i<K' —1) is the product of the cluster number and the
sum-of-error with respect to a cluster in SC, Q(SC) is defined to be

Q(SC) = (Min(ICil x Jee(C1)) © Q(SC ~ {arg min(ICi  Jo(CO)})
(17)

The criterion of identifying spurious cluster is given as follows. Sup-
pose m spurious clusters exist in SC. Because a spurious cluster
comprises a small number of objects and has a small effective error,
the m spurious clusters are corresponding to the first m elements in
Q(SC), namely, qy,q;,- - -,q,_1- The element q,, ; must satisfy:

1. qm = OCQm—lv
2. If the cluster C,,_; in SC is corresponding to q,,_; in Q(SC), then
maxcesc|Ci| > BICrn-1l,

where o and B are two real number parameters.The criterion
includes the above two conditions, which are similar to the defini-
tion of large or small clusters (He et al., 2003). The first condition
indicates a relative change ratio of the normal cluster and the spu-
rious cluster near the boundary. The second one is an absolute con-
straint on spurious clusters.When we apply the criterion to SC, the
spurious clusters are detected, but this is not final result since
there may exist a number of candidates of K. As we know, a candi-

date of K and the corresponding set SC is decided by 1. We repeat-
edly increase 2 by the step of ¢ and apply the criterion until it
converges. For a candidate of K, K}, suppose that s; spurious clusters
are detected from K; clusters in terms of the criterion, the next can-
didate of K is K}, ,, then the convergence is defined as:

1. according to the criterion of identifying spurious cluster, no
spurious cluster in SC is detected, i.e. s; = 0, or
2. after the spurious clusters being removed from SC, the number
of normal clusters is equal to or greater than the next candidate
of K, ie. K; —s; > Kj,,, or
3. the candidate K}, ; does not exist, i.e. K is the last candidate of K.
For the first situation, all clusters in SC have relatively consistent
object number and J.. For the second situation, if K; —s; <K}, ;,
some of spurious clusters still exist in the Kj,; clusters, and we
must continue to consider the candidate K;, ; ; otherwise, all of spu-
rious clusters are excluded from Kj, ; clusters, and it is meaningless
to consider K, , for removing spurious clusters. The last situation is
obvious. Based on the definition of convergence, the spurious clus-
ters detection mechanism (SCD) is formally presented as follows.
The parameters o, 8,7 will be discussed in Section 3.1.
Spurious clusters detection algorithm (SCD)

Step 1. Scan the list LBD(S) from the left to the right. Find out the
pair of 4, /; and Z;, which satisfy:
(1) f(4) =f(%), subject to i <j, f(4) > f(4-1) and f(}) <

fGjz)s

(2) A2> 7, where ALl =4 — 4;

Step 2. Construct the set SC which consists of K’ clusters, and
Q(SC), where K' = f(i;) = f();

Step 3. Determine the spurious clusters according to the spurious
cluster criterion;

Step 4. If the convergence is achieved, stop; otherwise go to
step 1.

3. Numerical experiments
3.1. Setting parameters

From Eq. (14), the parameter / directly determines the class
number K. Since discovering the number K automatically is one
of our objectives, the proper selected / is vital for us. Greedily,
we inspect all possible values of / to find optimal K. The parameter
 decides the start point of /. It is meaningless to assign /4 a value
less than or equal to 1, because each one object will be a cluster in
this situation. For covering more /s, we can easily set a value to o,
usually a value between 1.2 and 2.0 is selected. In LBD(S), the
parameter ¢ adjusts the interval between the previous / and the
next one, and consequently determines different change rate of
the number K. Generally, if the interval is small, the number K will
change slowly. However, a too small interval will be not helpful to
reflect the change of K but result in time-consuming. The parameter
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o is set to 0.1 in all experiments. Our experiments indicate that if it
is set to a smaller value, for instance 0.05, the clustering result does
not change at all. The parameter 7 is always 0.5. Empirically, the
two parameters o and f are set to 2 and 3, respectively. In (He et
al., 2003), large clusters are defined as those containing 90% of ob-
jects, or the minimum ratio of the object number of a cluster in the
large group to that of a cluster in small group is 5. In our divisive
method, however, the objects in the outer shell of clusters are
peeled off gradually in the process of partition. Only the kernels re-
main. In general, the difference of the object numbers of two ker-
nels is not as large as that of the object numbers of the two
corresponding clusters. So the two parameters are relatively small.
All the parameters remain unchanged in the following four
experiments.

3.2. Comparing DIVFRP with other methods

In this section, two performances of DIVFRP will be compared to
other algorithms. The one is the difference between the discovered
cluster number K and the real K. The other is how the partitions
produced by the algorithms are consistent with the real partitions.
To measure the consistency, three external validity criteria, namely
Fowlkes and Mallows (FM) index, Jaccard coefficient and Rand sta-
tistic, are employed. However, the three external criteria do not
consider the outliers. In order to use the criteria, we redistribute
each object partitioned as an outlier in DIVFRP into the corre-
sponding cluster of which the mean is closest to the object. The
two well-known clustering algorithms DBScan and K-means are
selected for the comparison. To obtain the cluster number K with
the two algorithms, we combine DBScan and K-means with two
relative validity criteria: Calinski-Harabasz (CH) index and Silhou-
ette index. For a same clustering method with the different input
parameters, the best clustering scheme can be determined by the
relative criteria (Halkidi et al., 2002), therefore the optimal cluster
number K is discovered. We can change the input parameters Eps
and MinPts for DBScan and the cluster number K for K-means to
produce the best clustering scheme. Note that DBScan can produce
outliers too. Similarly, the outliers are redistributed into the near-
est clusters for the purpose of comparison.

40
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CH Index is defined as follows

_ Tr(B)/(K—-1)
T Tr(W)/(N —K)

where K is the cluster number and N is the object number, and

ZIC\ (€

CH (18)

- u(C)® (19)

where u(C) = NZH&,

Silhouette index is defined as follows

N Z max( a,7 i) (21)

where K is the cluster number and N is the object number and
1

a=eror O Wweal (22)
yEC V#X;

y—X 23

IEH l#j |Cl‘ }; H l” ( )

where x; € G;, H={h: 1 <h <K, he N}

First we demonstrate the performances of DIVFRP with two
synthetic 2D data sets R15 and D31 (Veenman et al., 2002) of
which the coordinates are transformed linearly and slightly. The
data set R15 which is shown in Fig. 4a has 15 Gaussian clusters
which are arranged in rings, and each cluster contains 40 objects.
Fig. 4b shows the clustering result of DIVFRP with the outliers
redistributed into the nearest clusters. Fig. 5 shows the curve of
the cluster number K and the 2 based on LBD(S). Clearly, only hor-
izontal line segments in the curve may denote the candidates of K,
because a horizontal line segment denotes f(4;) = f(%;) = K, where
(Z,K") and (4;,K’) are the two endpoints of the line segment. In
general, the first candidate of K lies on the knee of the curve. In
Fig. 5, the first horizontal line segment AB is selected to produce
the initial candidate of K, as the length of horizontal line segment
(namely A7) is 12.7 and much greater than y. The K’ determined by

40
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Fig. 4. (a) The original data set of R15 and (b) the clustering result of DIVFRP for R15 with the outliers redistributed into the closest clusters.
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Fig. 5. The curve of / and the cluster number K for the data set R15. The horizontal line segment AB is qualified to produce a candidate of K, and the algorithm SCD converges

at this line segment.

AB is 15. According to the criterion of spurious cluster, no spurious
cluster exists in the corresponding Q(SC). Consequently, the spuri-
ous clusters detection algorithm (SCD) converges after first itera-
tion, and the final cluster number K is 15. Then we consider
DBScan algorithm. To achieve optimal clustering result, we run
DBScan algorithm repeatedly with the change of the parameter
Eps from 0.1 to 10 and the parameter MinPts from 5 to 50. Two
increments for the changes are 0.1 and 1, respectively. For K-means
algorithm, we change the parameter K from 2 to N — 1 with incre-
ment of 1 in all experiments. Even for a same parameter K, the
clustering results of K-means probably are quit different because

Table 1

Performances of applying the methods to R15 data set

Method Estimated K Rand Jaccard FM
DIVFRP 15 0.9991 0.9866 0.9932
DBScan-CH 15 0.9991 0.9866 0.9932
DBScan-Silhouette 15 0.9991 0.9866 0.9932
K-means-CH 18.7 0.9917 0.8728 0.9333
K-means-Silhouette 18.1 0.9908 0.8688 0.9302
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of the initial cluster centers selected randomly. Accordingly, we
consider the average performance of 10 runs of K-means in all
the comparisons. CH index and Silhouette index are computed in
each run of both DBScan and K-means algorithms. The optimal re-
sults have maximum CH index or Silhouette index values. Table 1
provides the comparison of DIVFRP, DBScan and K-means. The
comparison focuses on two performances mentioned above,
namely the cluster number K and partition consistency. Clearly,
DIVFRP, CH index-based DBScan and Silhouette index-based
DBScan achieve same perfect results. They discover the cluster
number K correctly, and three external indices are close to the ex-
pected value 1. However, because K-means algorithm may con-
verge at local minimum, both CH index-based K-means and
Silhouette index-based K-means have unsatisfied results.

The second synthetic data set D31 comprises 31 Gaussian clus-
ters, and each cluster has 100 objects. Fig. 6a shows the original
data set and clustering result of DIVFRP is shown in Fig. 6b. In
Fig. 7, the curve of the cluster number and 4 is shown. AB is the first
horizontal line segment with the length greater than 7. As a result,
the K’ determined by AB is the initial candidate of K. The succeed-
ing horizontal line segments CD and EF are qualified to produce the

b

0 10 20 30 40

Fig. 6. (a) The original data set of D31 and (b) the clustering result of DIVFRP for D31 with the outliers redistributed into the closest clusters.
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Fig. 7. The curve of 2 and the cluster number K for the data set D31. The horizontal line segment AB, CD and EF are qualified to produce the candidates of K. The algorithm SCD

converges at line segment EF.

candidates of K, since the lengths of the two line segments are 1.2
and 54, respectively. We apply SCD to the candidates of K. For the
first K’ = 33 denoted by AB, there are two spurious clusters de-
tected. We move to the line segment CD, the corresponding K’ is
32. Similarly, one spurious cluster is discerned by SCD. Then we
consider the line segment EF with K’ = 31. Since this iteration of
SCD gives no spurious cluster, SCD converges at this line segment,
and accordingly the final number of clusters is 31. As for DBScan,
we set the parameter Eps on D31 from 0.1 to 5.0 with increment
0.1, MinPts from 10 to 40 with increment 1, and run it repeatedly.
From the Table 2, we observe that both DIVFRP and DBScan deter-
mine the cluster number K precisely, but K-means algorithms do
not. Moreover, the three external indices demonstrate that the par-

tition qualities of the two DBScan algorithms are slimly better than
that of DIVFRP, and at the same time the Silhouette index-based
DBScan outperforms CH index-based DBScan slightly.

Next, we experiment on two real data sets IRIS and WINE. The
well-known data set IRIS has three clusters of 50 objects each,
and each object has four attributes. The curve about K and 4, which
is produced by applying DIVFRP to IRIS data set, is displayed in Fig.
8a. Both horizontal line segment AB and CD in the curve have the
length of 1.3 which is greater than 7. Therefore, the two K's de-
noted by AB and CD, respectively, are the two candidates of K. As
SCD identifies one spurious cluster from K’ (K’ = 4) clusters corre-
sponding to AB and no spurious cluster from K’ (K’ = 3) clusters
corresponding to CD, the final cluster number is determined to 3.

Table 2 Table 3
Performances of applying the methods to D31 data set Performances of applying the methods to IRIS data set
Method Estimated K Rand Jaccard FM Method Estimated K Rand Jaccard FM
DIVFRP 31 0.9969 0.9083 0.9520 DIVFRP 3 0.8859 0.7071 0.8284
DBScan-CH 31 0.9970 0.9116 0.9537 DBScan-CH 3 0.8797 0.6958 0.8208
DBScan-Silhouette 31 0.9971 0.9127 0.9543 DBScan-Silhouette 2 0.7762 0.5951 0.7714
K-means-CH 38.9 0.9909 0.7442 0.8541 K-means-CH 2.9 0.7142 0.4768 0.6570
K-means-Silhouette 28.7 0.9803 0.5854 0.7469 K-means-Silhouette 2 0.7636 0.5723 0.7504
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Fig. 8. (a) The curve of /1 and the cluster number K for the data set IRIS. The algorithm SCD converges at line segment CD. (b) The curve of /. and the cluster number K for the

data set WINE. The algorithm SCD converges at line segment EF.
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Table 3 depicts the comparison of the performances of the algo-
rithms. The parameter ranges and increments of DBScan for IRIS
data set are the same as for D31 data set. DIVFRP and CH index
base DBScan achieve similar results and outperform the three

The data set WINE contains the chemical analyses of 178 kinds
of wines from Italy on 13 aspects. The 178 entries are categorized
into three clusters with 48, 59, and 71 entries for each cluster. SCD

Table 4
Performances of applying the methods to WINE data set
Method Estimated K Rand Jaccard FM
DIVFRP 3 0.7225 0.4167 0.5883 L
DBScan-CH 6 0.7078 0.2656 0.4467 remaining methods.
DBScan-Silhouette 2 0.6836 0.4623 0.6474
K-means-CH 40.6 0.6660 0.0453 0.1639
K-means-Silhouette 2 0.6688 0.4638 0.6549
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Fig. 9. The figures illustrate the effect of outliers on DIVFRP and DBScan. In (a), a data set contains two clusters. In (b), the first partition of DIVFRP identifies the two clusters.
In (c), a data set contains five outliers and two clusters. In (d, e) and (g-i), each partition peels off one outlier, while an expected cluster is partitioned in Fig. 9f. In (j), DBScan

detects the two clusters with MinPts = 5 and 0.60

< Eps

MinPts =5 and 1.02 < Eps

<1.20. In (m

), DBScan with MinPts =5 and 1.21

MinPts = 5 and 1.30 < Eps < 1.72. In (p), DBScan with MinPts = 5 and 1.73 < Eps < 2.10.

< 2.10. In (k), the outliers are identified by DBScan with MinPts = 5 and 0.60 <
< Eps < 1.24. In (n), DBScan with MinPts =5 and 1.25 <

< Eps <
< Eps <

< 1.01. In (1), DBScan with
< 1.29. In (o), DBScan with



2076 C. Zhong et al./Pattern Recognition Letters 29 (2008) 2067-2077

converges at the horizontal line segment GH to which the corre-
sponding K’ is 4, see Fig. 8b. Although SCD identifies a spurious
cluster, K' = 4 is the last candidate of K in this data set. In terms
of item three of convergence criterion, SCD converges and the final
estimated number of clusters is K =K' — 1 = 3. In Table 4, only
DIVFRP estimates the cluster number correctly. Silhouette index-
based DBScan and K-means achieve better results than CH index-
based DBScan and K-means.

4. Discussion

From the four experiments, we observe that DIVFRP figures out
the optimum cluster number and achieves good results compared
to validity indices-based DBScan and K-means. In addition, DIVFRP
is robust to outliers.

Outliers in a data set are those random objects that are very dif-
ferent from others and do not belong to any clusters (Lin and Chen,
2005). In general, the presence of outliers may deteriorate the re-
sult of a clustering method. For this kind of clustering methods,
some outlier detection mechanisms can be employed to remove
the outliers before the partition process. However, a clustering
method robust to outliers is more expected. DIVFRP is equipped
with this property. Fig. 9 shows the partition processes of DIVFRP
on two similar data sets. The one data set contains two clusters
only and is shown in Fig. 9a. The other one combines the two clus-
ters with another five outliers and is shown in Fig. 9c. For the data
set in Fig. 9a, one split is enough for partitioning the two clusters
with DIVFRP, see Fig. 9b. When there exist extra five outliers in
the data set, six splits are needed, which are depicted from Fig.
9d to Fig. 9i. Actually, the effect of five splits of the six is to peel
off the five outliers. In other words, the existence of outliers does
not change final clustering result but only leads to more partitions,
and none parameters are involved in the whole partitioning pro-
cess. Note that some adjacent outliers peeled off at one partition
may be regarded as a cluster in the peak detection process. How-
ever, it can be removed as a spurious cluster in SCD. Fig. 9j-p illus-
trates the clustering of DBScan on the same data sets. When no
outliers exist, in Fig. 9j, DBScan can discover the two clusters with
MinPts = 5 and 0.60 < Eps < 2.10. For the data set with five outli-
ers, although DBScan can still discover the two clusters with
MinPts = 5 in Fig. 9k, the range of possible values of Eps is reduced
to [0.60,1.01]. Fig. 91-p shows that when MinPts keeps unchanged,
the remaining values of Eps, [1.02,2.10], result in poor clusters. The
experiments on DBScan indicate that the parameters of DBScan are
sensitive to outliers. Therefore, compared with DBScan, we can say
that DIVFRP is robust to outliers.

Generally, the computational cost of a divisive clustering meth-
od is very expensive, because there are 2"~' —1 possibilities to
bipartition a cluster C; with n; objects in a divisive algorithm. How-
ever, DIVFRP employs furthest reference points to bipartition a
cluster optimally, and does not need to consider the complete enu-
meration of all possible bipartitions. With this property, the com-
putational cost of the partition scheme of DIVFRP is lower than
that of general divisive clustering methods, even some agglomera-
tive methods. For a data set with N objects, for example, the com-
putational cost of DIVFRP is lower than that of single-linkage
(O(N?logN)). Because in DIVFRP, totally there are N — 1 biparti-
tions after every object becomes a cluster, and the computational
cost of each bipartition is O(n; log n;), where n; is the object number
of a cluster to be bipartitioned and it is less than N except the first
bipartition in which n; is N.

However, DIVFRP has some drawbacks. It can only find out clus-
ters in spherical shape. This drawback results from that DIVFRP
uses Euclidean distance and takes the furthest points as reference
points. With different reference point, clusters in different shapes
may be detected. For example, if we take the mean points as refer-

ence points instead of the furthest points, the clusters in ring shape
with close centers can be identified. Another drawback is that
when some valid clusters are quit dense, they may be mis-detected
as spurious clusters. If lots of objects locate at an almost identical
position, their |G| x J..(C;) would be very small, which is employed
to construct Q(SC). In the future work, we will explore and improve
the criterion of detecting spurious cluster to overcome this draw-
back. In addition, similar to classical hierarchical clustering meth-
ods, DIVFRP is also incapable of dealing with large-scale data sets
because of its quadratic computational cost. For high-dimensional
data sets, distance-based clustering algorithms are ineffective (Xu
and Wunsch, 2005). DIVFRP is very a distance-based algorithm,
but we can employ dimensionality reduction methods to prepro-
cess high-dimensional data, and then apply DIVFRP to the dimen-
sionality reduced data sets.

5. Conclusion

In this paper, we present an automatic divisive hierarchical
algorithm based on furthest reference points (DIVFRP). It contains
three phases: partitioning data set, detecting the peaks of sum-of-
error differences and eliminating spurious clusters. In partitioning
data set phase, other than general divisive hierarchical clustering
algorithms, DIVFRP employs a novel dissimilarity function which
takes the furthest points as reference points. With the dissimilarity
function, the computational cost of partitioning data set is less
than O(N? log N). Sliding average is used to detect the peaks in sec-
ond phase. In the third phase, the spurious clusters are removed
and the optimal cluster number K is determined. The experiments
on both artificial and real data sets show that DIVFRP can automat-
ically and precisely detect the number of clusters and achieve a
good clustering quality. In addition, the presence of outliers does
not degrade the quality of clustering results, since DIVFRP can peel
off the outliers bit by bit.
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algorithm.

A geodesic distance-based approach to build the neighborhood graph for isometric embedding is pro-
posed to deal with the highly twisted and folded manifold by Wen et al. [Using locally estimated geodesic
distance to optimize neighborhood graph for isometric data embedding, Pattern Recognition 41 (2008)
2226-2236]. This comment is to identify the error in their example and the ineffectiveness of their

© 2008 Elsevier Ltd. All rights reserved.

Wen et al. recently proposed an approach which deals with highly
twisted and folded manifold for isometric data embedding [1]. The
approach employs locally estimated geodesic distances to optimize
a neighborhood graph which is usually constructed with Euclidean
distances in some isometric embedding methods such as Isomap [2].
Unfortunately, the example given in Ref. [1] is incorrect, and the
algorithm OptimizeNeighborhoodbyGeod(X, k, m, d) is ineffective.
This comment aims at identifying the errors.

In Ref. [1], the initial neighborhood is determined by Euclidean
distance, and then the local geodesic distance is estimated. Fig. 1,
which is corresponding to Fig. 2 in Ref. [1], illustrates the process
of the estimation. Let N(x) be a set of Euclidean distance based
three nearest neighbors of a data point x, then N(x)={x1,x5,x3}, and
N(x1) = {X11,X12,X13}. Let d(x,y) be the Euclidean distance between
data point x and y. As xq is a neighbor of x, and x11 is neighbor of
X1, applying triangle inequality theorem, we have

d(x,x11) <d(x,x1) + d(x1,X17)- (1)
Furthermore, x11 is not a neighbor of x, that implies

d(x,x11)>d(x,%x;), i=1,2,3. (2)
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From (1) and (2), we obtain

d(x,x1) +d(x1,x11)>d(x,%;), i=1,2,3. 3)
That is to say, in Fig. 1, d(x,x1) = 2, d(x1,x11) =5 and d(x,x3) =12
cannot exist simultaneously. Accordingly, x3 cannot be optimized
into x11, and for the same reason, x, cannot be optimized into x1;.

Based on the above analysis, the algorithm OptimizeNeighbor-
hoodbyGeod(X, k, m, d) given in Ref. [1] is ineffective. The algorithm
is as follows.

Algorithm 1. OptimizeNeighborhoodbyGeod(X, k, m, d).

[* X=x; be the high dimensional data set, k be the neighborhood
size, m be the scope for locally estimating geodesic distances, d be
the dimension of the embedding space, and m <k. The output is the
optimized neighborhood set N = {N(x;)} for all points */

(1) Calculate the neighborhood N(x;) for any point x; using
Euclidean distance de, where N(x;) is sorted ascendingly. Let
dg(x;, %) = de(x,-,xj) for the pairs of all points.

(2) Fori=1 to |X|, where |X]| is the number of points in X.
(3) -Forj=1tok

(4) - Select jth point from N(x;), denoted as x;;

(5) -~Forp=1tom

(6) ---Select pth point from N(x;), denoted as Xijp

(7) - fdg(x;, xi)+dg(x;5, xijp ) < dg(x;, x5, ) and x5, & N(x;) and parent
(xijp) € N(Xi)

8 - Delete x;;, from N(x;)

9 - Insert x;;;, into N(x;) ascendingly
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X In the step 1, since dg(x;, x;) = de(x;,x;) for the pairs of all points,

i.e. all the local geodesic distances are initialized to corresponding

2 12 Euclidean distances. According to the analysis on the example, the

condition of step 7 is never satisfied, and the block from steps 8 to
11 is never executed. Consequently, the algorithm is ineffective.
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Fig. 1. Example to optimizing the neighborhood of the point x.

(]0) ~~~~~ dg(xi'xijp) = dg(Xi,X,'j) + dg(xij'xijp)

1y ... Let j =1 and break

(12) ---End

(13) - End

(14) - End

(15) End

(16) N =N(x;) be the optimized neighborhood for all points in X
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Many clustering approaches have been proposed in the literature, but most of them are vulnerable to
the different cluster sizes, shapes and densities. In this paper, we present a graph-theoretical clustering
method which is robust to the difference. Based on the graph composed of two rounds of minimum
spanning trees (MST), the proposed method (2-MSTClus) classifies cluster problems into two groups, i.e.
separated cluster problems and touching cluster problems, and identifies the two groups of cluster prob-
lems automatically. It contains two clustering algorithms which deal with separated clusters and touching
clusters in two phases, respectively. In the first phase, two round minimum spanning trees are employed
to construct a graph and detect separated clusters which cover distance separated and density separated
clusters. In the second phase, touching clusters, which are subgroups produced in the first phase, can be
partitioned by comparing cuts, respectively, on the two round minimum spanning trees. The proposed
method is robust to the varied cluster sizes, shapes and densities, and can discover the number of clusters.
Experimental results on synthetic and real datasets demonstrate the performance of the proposed method.
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1. Introduction

The main goal of clustering is to partition a dataset into clusters
in terms of its intrinsic structure, without resorting to any a priori
knowledge such as the number of clusters, the distribution of the
data elements, etc. Clustering is a powerful tool and has been studied
and applied in many research areas, which include image segmen-
tation [1,2], machine learning, data mining [3], and bioinformatics
[4,5]. Although many clustering methods have been proposed in the
recent decades, there is no universal one that can deal with all cluster
problems, since in the real world clusters may be of arbitrary shapes,
varied densities and unbalanced sizes [6,7]. In addition, Kleinberg
[8] presented an impossibility theorem to indicate that it is difficult
to develop a universal clustering scheme. However, in general, users
have not any a priori knowledge on their datasets, which makes it
a tough task for them to select suitable clustering methods. This is
the dilemma of clustering.
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Two techniques have been proposed and studied to alleviate the
dilemma partially, i.e. clustering ensemble [9-11] and multiobjec-
tive clustering [12]. The basic idea of a clustering ensemble is to
use different data representation, apply different clustering methods
with varied parameters, collect multiple clustering results, and dis-
cover a cluster with better quality [13]. Fred and Jain [13] proposed
a co-association matrix to depict and combine the different cluster-
ing results by exploring the idea of evidence accumulation. Topchy
et al. [10] proposed a probabilistic model of consensus with a finite
mixture of multinomial distributions in a space of clusterings, and
used the EM algorithm to find the combined partitions. Taking ad-
vantage of correlation clustering [14], Gionis et al. [11] presented a
clustering aggregation framework, which can find a new clustering
that minimizes the total number of disagreements with all the given
clusterings. Being different from a clustering ensemble which is lim-
ited to the posteriori integration of the solutions returned by the
individual algorithms, multiobjective clustering considers the mul-
tiple clustering objective functions simultaneously, and trades off
solutions during the clustering process [12]. Compared with the in-
dividual clustering approach, both clustering ensembles and multi-
objective clustering can produce more robust partitions and higher
cluster qualities. In addition, some of other clustering methods can
automatically cope with arbitrary shaped and non-homogeneous
clusters [15].
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Recently more attention has been paid to graph-based cluster-
ing methods. Being an intuitive and effective data representation
approach, graphs have been employed in some clustering methods
[16-25]. Obviously, the tasks of these kinds of methods include con-
structing a suitable graph and partitioning the graph effectively. Most
graph-based clustering methods construct the graphs using k nearest
neighbors [16,17]. Karypis et al. in CHAMELEON [16] represented a
dataset with k nearest neighbor graph, and used relative interconnec-
tivity and relative closeness to partition the graph and merge the par-
titions so that it can detect arbitrary shaped and connected clusters.
This varies from data representation of CHAMELEON, in which a ver-
tex denotes a data item, Franti et al. employed a vertex to represent a
cluster so as to speed up the process of clustering [17]. Other graph-
based methods take advantage of minimum spanning trees (MST) to
represent a dataset [18,19]. Zahn [18] divided a dataset into differ-
ent groups in terms of their intrinsic structures, and conquered them
with different schemes. Xu et al. [19] provided three approaches to
cluster datasets, i.e. clustering through removing long MST-edges, an
iterative clustering algorithm, and a globally optimal clustering algo-
rithm. Although the methods of Zahn and Xu are effective for datasets
with specific structures, users do not know how to select reason-
able methods since they have no information about the structures
of their datasets. From a statistical viewpoint, Gonzalez-Barrios [20]
identified clusters by comparing k nearest neighbor-based graph and
the MST of a dataset. The limitation of Gonzdlez-Barrios’s method is
that only i.i.d. data are considered. Pdivinen [21] combined a scale-
free structure with MST to form a scale-free minimum spanning
tree (SFMST) of a dataset, and determined the clusters and branches
from the SFMST. Spectral clustering is another group of graph-based
clustering algorithms [22]. Usually, in a spectral clustering, a fully
connected graph is considered to depict a dataset, and the graph is
partitioned in line with some cut off criterion, for instance, normal-
ized cut, ratio cut, minmax cut, etc. Lee et al.[23]recently presented
a novel spectral clustering algorithm that relaxes some constraints
to improve clustering accuracy whilst keeping clustering simplic-
ity. In addition, relative neighbor graphs can be used to cluster data
[24,25].

For the purpose of relieving the dilemma of users such as choice of
clustering method, choice of parameters, etc., in this paper, we pro-
pose a graph-theoretical clustering method based on two rounds of
minimum spanning trees (2-MSTClus). It comprises two algorithms,
i.e. a separated clustering algorithm and a touching clustering al-
gorithm, of which the former can partition separated clusters but
has no effect on touching clusters, whereas the latter acts in the
opposite way. From the viewpoint of data intrinsic structure, since
the concepts of separated and touching are mutually complement
as will be discussed in Section 2.1, clusters in any dataset can be ei-
ther separated or touching. As the two algorithms are adaptive to
the two groups of clusters, the proposed method can partially allevi-
ate the user dilemma aforementioned. The main contributions are as
follows:

(1) A graph representation, which is composed of two rounds
of minimum spanning tree, is proposed and employed for
clustering.

(2) Two mutually complementary algorithms are proposed and
merged into a scheme, which can roughly cope with clustering
problems with different shapes, densities and unbalanced sizes.

The rest of this paper is organized as follows. Section 2 depicts the
typical cluster problems. In terms of the typical cluster problems, a
graph-based clustering method is presented in Section 3. Section 4
demonstrates the effectiveness of the proposed method on synthetic
and real datasets. Section 5 discusses the method and conclusions
are drawn in Section 6.

2. Typical cluster problems
2.1. Terms of cluster problems

Since there does not exist a universal clustering algorithm that
can deal with all cluster problems [7], it is significant for us to clarify
what typical cluster problems are and which typical cluster problem
a clustering algorithm favors. Some frequently used terms about
cluster problem in the paper are defined as follows.

Definition 1. For a given distance metric, a well-separated cluster is
a set of points such that the distance between any pair of points in
the cluster is less than the distance between any point in the cluster
and any point not in the cluster.

The above definition of a well-separated cluster is similar to the
one in [27]. However, it is also similar to the second definition of a
cluster presented in [28]. That implies a cluster is well-separated for
a given distance metric.

Definition 2. For a given density metric and a distance metric, a
pair of separated clusters is two sets of points such that (1) the clos-
est point regions between the two clusters are with high densities
compared to the distance between the two closest points from the
two regions, respectively, or (2) the closest point regions between
the two clusters are different in density.

For the former situation the separated clusters are called distance-
separated clusters, while for the later called density-separated clusters.
Obviously, the separated clusters defined above are not transitive.
For instance, if A and B are a pair of separated clusters, and B and C are
another pair of separated clusters, then A and C are not necessarily
a pair of separated clusters.

Definition 3. A pair of touching clusters is two sets of points that
are joined by a small neck whose removal produces two separated
clusters which are substantially large than the neck itself.

Generally, a threshold, which is dependent on a concrete cluster-
ing method, is employed to determine how small a small neck is.

Definition 4. For a given distance metric, a compact cluster is a set
of points such that the distance between any point in the cluster and
the representative of the cluster is less than the distance between
the point and any representative of other clusters.

In general, a centroid or a medoid of a cluster can be selected as
the representative. The difference between the two representative
candidates is that a centroid of a cluster is not necessarily a member
point of the cluster, while a medoid must be a member point.

Definition 5. For a given distance metric, a connected cluster is a set
of points such that for every point in the cluster, there exists at least
one other point in the cluster, the distance between them is less than
the distance between the point and any point not in the cluster.

The definitions of a compact cluster and a connected cluster are

similar to those of center-based cluster and contiguouscluster in [27],
respectively.

2.2. Cluster problem samples described by Zahn

Some typical cluster problems are described in Fig. 1 by Zahn [18].
Fig. 1(a) illustrates two clusters with similar shape, size and density.
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Fig. 1. Typical cluster problems from Ref. [18]. (a)-(e) are distance-separated cluster problems; (f) is density-separated cluster problem; (g) and (h) are density-separated

cluster problems.
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Fig. 2. The three patterns by Handl [12]. In (a), the compactness pattern illustrates
the compactness objective which is suitable to deal with spherical datasets. In
(b), the connectedness pattern depicts the connectedness objective which handles
datasets of arbitrary shape; (c) is a spacial pattern.

It can be distinctly perceived that the two clusters are separated,
since the inter-cluster density is very high compared to the intra-
cluster pairwise distance. The principal feature of Fig. 1(b), (c) and (d)
is still distance-separated, even if the shapes, sizes and/or densities
of two clusters in each figure are diverse. The density of the two
clusters in Fig. 1(e) are gradually varied, and become highest in their
adjacent boundaries. From the global viewpoint of the rate of density
variation, however, the separability remains prominent. Intuitively,
the essential difference between the two clusters represented in
Fig. 1(f) lies in density, rather than distance, and Zahn [18] called
it density gradient. Fig. 1(g) and (h) are quite different from those
aforementioned figures, because the two clusters touch each other
slightly. Zahn [18] classified the cluster problems in Fig. 1(g) and (h)
as touching cluster problems.

2.3. Cluster problems implied by clustering algorithms

Traditionally, clustering algorithms can be categorized into hier-
archical, partitioning, density-based and model-based methods [3].
Being different from the traditional taxonomy, however, Handl and
Knowles [12,26] classified clustering algorithms into three categories
with different clustering criteria illustrated in Fig. 2: (1) algorithms
based on the concept of compactness, such as k-means, average-
linkage, etc., which make an effort to minimize the intra-cluster vari-
ation and are suitable for handling spherical datasets; (2) algorithms
based on the concept of connectedness, such as path-based cluster-
ing algorithm [29], single-linkage, etc., which can detect the clusters
with high intra-connectedness; (3) algorithms based on spatial sep-
aration criterion, which is opposed to connectedness criterion and
generally considered incorporated with other criteria rather than

independently. Actually, the clustering approach taxonomy in [12]
is cluster-problem-based, as a clustering algorithm is categorized
by the cluster problem which it favors, since the criteria of com-
pactness, connectedness and spatial separation delineate the dataset
structures instead of algorithms themselves. In accordance with the
classification of clustering algorithm in [12], therefore, the cluster
problems fall mainly into two groups: compact cluster problems and
connected cluster problems.

2.4. Cluster problems classified in this work

In this paper, we classify cluster problems into two categories:
separated problems and touching problems. The former includes
distance-separated problems and density-separated problems. In
terms of Definition 2, for example, we call the cluster problems de-
picted in Fig. 1(a)-(e) distance-separated, while the cluster problem
depicted in Fig. 1(f) density-separated. Cluster problems in Fig. 1(g)
and (h) are grouped, similarly in [18], as touching problems accord-
ing to Definition 3. Since separated problem and touching problem
are mutually supplemental, they may cover all kinds of datasets.
This taxonomy of cluster problems ignores the compactness and
connectedness. In fact, separated clusters can be compact or con-
nected, and touching clusters can also be compact or connected.
Based on our taxonomy, Fig. 3(a) and (b) are touching problems,
Fig. 3(c) and (d) are separated problems; while in terms of cluster-
ing criteria in [12], Fig. 3(a) and (c) are compact problems, Fig. 3(b)
and (d) are connected problems.

With the two-round-MST based graph representation of a dataset,
we propose a separated clustering algorithm and a touching clus-
tering algorithm, and encapsulate the two algorithms into a same
method.

3. The clustering method
3.1. Problem formulation

Suppose that X = {X1,Xp,...,X;,..., Xy} iS a dataset, X; = (X1,
X2y s Xy ...,xid)T e % is a feature vector, and x;j is a feature. Let
G(X)=(V,E) denote a weighted and undirected complete graph with
vertex set V =X and edge set E = {(x;,X;)|X;,X; € X,i#j}. Each edge
e = (X;,X;) has a length p(x;,X;), and generally the length can be
Euclidean distance, Mahalanobis distance, City-block distance, etc.
[7]. In this paper, Euclidean distance is employed. A general clus-
tering algorithm attempts to partition the dataset X into K clusters:
C1,C, ..., Ck, where Gi#08, GNG=0,X=CUGC---UCk i=1:K,



C. Zhong et al. / Pattern Recognition 43 (2010) 752 - 766 755

a b

d

.Q"‘ [ ] .“. ° .'

...g'o: t ¥

e | 57N,

...g.o: 8

Fig. 3. The different taxonomies of cluster problems. The patterns in (a) and (b) are touching problems, and the patterns in (c) and (d) are separated problems in this paper.
The patterns in (a) and (c) are compact problems, and the patterns in (b) and (d) are connected problems by Handl [12].

j=1:K, i#j. Correspondingly, the associated graph will be cut into
K subgraphs.

A minimum spanning tree (MST) of graph G(X) is an acyclic subset
T < E that connects all the vertices in V and whose total lengths
W(T) = in_xjdp(xi,xj) is minimum.

3.2. Algorithm for separated cluster problem

As mentioned above, separated cluster problems are either
distance-separated or density-separated. Zahn [18] employed two
different algorithms to deal with the two situations, respectively.
For the purpose of automatic clustering, we try to handle distance-
separated problem and density-separated problem with one
algorithm.

3.2.1. Two-round-MST based graph

Compared with KNN-graph-based clustering algorithms [16,17],
MST-based clustering algorithms [18,19] have two disadvantages.
The first one is that only information about the edges included in
MST is made use of to partition a graph, while information about the
other edges is lost. The second one is that for MST-based approaches
every edge’s removal will result in two subgraphs. This may lead
to a partition without sufficient evidence. With these observations
in mind, we consider using second round of MST for accumulating
more evidence and making MST-based clustering more robust. It is
defined as follows.

Definition 6. Let Ty = fi5:(V, E) denote the MST of G(X) = (V,E). The
second round MST of G(X) is defined as

T2 =fmst(VvE—T1) (])
where fs @ (V,E) — T is a function to produce MST from a graph.

If there exists a vertex, say v, in T; such that the degree of v is
V| — 1, v is isolated in G(V,E — T;). Hence T, cannot be generated
in terms of Definition 6. To remedy the deficiency simply, the edge
connected to v and with the longest length in T; is preserved for
producing T,.

Combining T; and T, a two-round-MST based graph, say Gps(X)=
(V,T1 + T2) =(V, Epst), is obtained. The two-round-MST based graph
is inspired by Yang [30]. Yang used k MSTs to construct k-edge
connected neighbor graph and estimate geodesic distances in high
dimensional datasets. Fig. 4(a) and (b), respectively, represent the
T, and T, of Fig. 1(c), in which the dataset is distance-separated.
Fig. 4(c) represents the corresponding two-round-MST based graph.

The lengths of edges from T; and T, have a special relationship
(see Theorem 3), which can be used to partition two-round-MST
based graph.

Lemma 1. Let T(Vr,Er) be a tree. If T'(Vy, E;) is maximum tree such
that Vi € Vr, E; NEr =@, then either |Ef| = |Er| — 1 or |E}| = |E7.

Proof. If V7| — 1 vertices of T(Vr,Er) have degree 1, and the other
vertex, say v, has degree |Vy| — 1. In T, from any vertex with degree
1, there exist at most |Vr| — 2 edges connected to other vertices
except its neighbor, i.e. v, and no more edge is available to construct
T'(Vy, Ep). At this moment, Vi = Vr\{v}, and |Ej| = |Vr| -2 = |E7| - 1.
Otherwise, suppose vertex vy has degree of 1, its neighbor is v;.
From v, |Vr|—2 edges can be used to construct T'(V7, E7). In addition,
there must exist an edge between vertex v and its non-neighbor
vertex. At this moment, V; =Vr, and |Ef| = V7| - 1=Er|. O

Corollary 2. Let F(V,Er) be an acyclic forest. Suppose F'(V,Ep) is
maximum acyclic forest such that Vi € Vf, Ep N Ep = ¢, and for any
e e Eg, F(Vr,Er U {e}) is cyclic, then |Ep| = |Eg|.

Theorem 3. Suppose T1 and T, are first round and second round MST of
G(V,E), respectively. If edges of T and edges of T, are ordered ascend-
ingly by their weights as el, €2, ...,el,....el/" " el e2, ... el,...,el" "1,
then p(eil)s p(eg), where i denotes the sequence number of ordered
edges,and 1=i=|V| - 1.

Proof. Suppose there exists j such that p(e))> p(e}). Obviously

ple)) > p(e))=ples )= - r
of constructing a MST, the reason why e}, e3, ..., ¢, are not selected
in the j th step of constructing Ty is that the combination of any
one of these edges with e},e%, ...,e’(l would produce a cycle in T;.
Letel,e2,...,e"! form F(Vi,Er) and el, €2, ..., e, form F(V}, E;), then
the two forests are acyclic since e},e%,...,eﬁ’] and e%,e%,...,ei2 are
the part of Ty and T, respectively. Because if any edge of F'(Vf,Ef)
is added into F(Vf,Ef), F(VE,Er) would be cyclic, we have Vi C V.
However, |Er| =j— 1 and |Eg| =j, this contradicts Corollary 2. [

= p(e%), in terms of Kruskal’s algorithm

For a tree, any removal of edge will lead to a partition. Whereas to
partition a two-round-MST based graph, at least two edges must be
removed, of which at least one edge comes from T; and T, respec-
tively. Accordingly, compared with a cut on MST, a two-round-MST
based graph cut requires more evidence and may result in a more
robust partition.

Generally, for a given dataset, MST is not unique because two
or more edges with same length may exist. However, the non-
uniqueness of MST does not influence the partition of a graph for
clustering [18], and the clustering induced by removing long edges
is independent of the particular MST [31].

3.2.2. Two-round-MST based graph cut
After a dataset is represented by a two-round-MST based graph,
the task of clustering is transformed to partitioning the graph with a
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Fig. 4. Two-round-MSTs of the dataset in Fig. 1(c). (a) is the first round of MST, i.e. Ty, and ab is the significant and expected edge to be removed in traditional MST based
clustering methods. (b) is the second round of MST, i.e. T, and ac is another significant edge. (c) illustrates the two-round-MST based graph. To partition the graph, ab and
ac are expected edges to be cut. (d) depicts the top 20 edges with large weights based on Definition 2. The first two edge removals result in a valid graph cut. From the

top 20 edges, 17 edges come from T,, and 3 from T;.

Fig. 5. Density-separated cluster problem taken from [18]. (a) illustrates the first round of MST; (b) depicts the second round of MST. In (c), the two-round-MST based
graph is illustrated; bu and bv are edges connected to ab by vertex b, while as and at are connected to ab by a. The average lengths of the two groups are quite different.
(d) illustrates the graph cut. The dashed curve is the graph cut which is achieved by the removals of the top nine edges based on Definition 2, the Ratio(Eg,) is 0.444 and

greater than the threshold /.

partitioning criterion. In general, a partitioning criterion plays a pivot
role in a clustering algorithm. Therefore, the next task is to define
an effective partitioning criterion. Fig. 4(a) is the MST of a distance-
separated dataset illustrated in Fig. 1(c). Obviously, ab is the very
edge to be removed and lead to a valid partition for MST-based meth-
ods. Zahn [18] defined an edge inconsistency to detect the edge. That
is, the edge, whose weight is significantly larger than the average of
nearby edge weights on both sides of the edge, should be deleted.
However, this definition is only relevant for the distance-separated
cluster problem, for instance, Fig. 4(a). For density-separated clus-
ter problem illustrated in Fig. 5(a), which is called density gradi-
ent problem in [18], Zahn first determined the dense set and the
sparse set with a histogram of edge lengths, then singled out five
inter-cluster edges ab, eg, hi, kI and no. Although Zahn’s method
for density-separated problem is feasible, it is somewhat complex.
In brief, Zahn used two partitioning criteria to deal with distance-
separated cluster problems and density-separated cluster problems,
respectively. Our goal, however, is to handle the two situations with
one partitioning criterion.

From Figs. 4(c) and 5(c), we observe that the main difference be-
tween a distance-separated cluster problem and a density-separated
cluster problem is whether the average lengths of edges connected
to two sides of an inter-cluster edge are similar or not. For distance-
separated clusters in Fig. 4(c), the average length of edges connected
to end point a of edge ab is similar to that of edges connected to the
other end of ab, while for density-separated clusters in Fig. 5(c), the
average lengths of two sets of edges connected, respectively, to two
ends of ab are quite different. Accordingly, for the purpose of iden-
tifying an inter-cluster edge with one criterion for both distance-
separated clusters and density-separated clusters, we compare the
length of the inter-cluster edge with the minimum of the average
lengths of the two sets of edges which are connected to its two ends,
respectively. First, we define the weight of an edge as follows:

Definition 7. Let Gyst(X)=(V, Emst) be a two-round-MST based graph,
ea» € Emst and a,b € V, w(eg,) be the weight of e, as in

p(eqp) — min(avg(Eq — {eqp}), avg(Ep — {egp}))

W(eab) - p(eab)

(2)
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where Eq = (ejjl(ejj € Emst) A (i=a v j=a)}, Ey = {ejjl(ej € Emst) A(i=
bvj=b),

avg(E) = = 3 )

ecE

and p(e) is the Euclidean distance of edge e.

Analyzing two-round-MST based graphs of some separated
datasets and the corresponding weights defined above, we find
that two-round-MST based graphs and the weights have three good
features: (1) generally, the weights of inter-cluster edges are quite
larger than those of intra-cluster edges. (2) The inter-cluster edges
are approximately equally distributed to T; and T. (3) Except inter-
cluster edges, most of edges with large weights come from T,, and
this is supported by Theorem 3. Fig. 4(d) depicts the top 20 weights
of the distance-separated dataset in Fig. 1(c). The two inter-cluster
edges are those with top two weights, respectively, and one is from
T; and the other one is from T,. Among the next 18 edges, 16 edges
come from T, and only two edges come from Ty. Fig. 5(d) describes
the top 20 weights of the density-separated dataset in Fig. 1(f).
The top nine weights are from the very nine inter-cluster edges, of
which five are from T; and four are from T, and all of the remaining
11 edges belong to T.

In terms of the first feature, a desired two-round-MST based graph
cut can be achieved by removing the edges with largest weight one
by one. The next two features indicate that whether or not a graph cut
is valid can be determined by analyzing the distribution of removed
edges.

Definition 8. Let Rank(Ens:) be a list of edges ordered descendingly
by corresponding weights as in

Rank(Eps:) = (edge_topweight(Emst) o Rank(Emst

— {edge_topweight(Emst)})) (3)
a b

Fig. 6. A cluster cannot be partitioned any more. (a) illustrates the sub-dataset of
Fig. 1(c); (b) separated clustering algorithm is applied to the sub-dataset. When a
graph cut is obtained, which is indicated by the dashed curve, the Ratio(Egq) is
0.304 and less than the threshold 4.

where edge_topweight(Emst) = arg maXecg,,, (w(e)), o is a concatenate
operator.

Edge removing scheme: The edge with large weight has the priority
to be removed, namely edges are removed in the order of Rank(Eps; ).
Since every removal of edge may lead to a graph cut (excluding the
first removal), we must determine whether or not a new graph cut
is achieved after each removal. The determination could be made by
traversing the graph with either breadth-first search algorithm or
depth-first search algorithm.

Definition 9. Let Eg¢ be a set of removed edges when a graph cut
on a two-round-MST based graph is achieved, if the following holds:
min(|Egeye N T11, |Egeur N T2|) -

Ratio(Egeyt) = T =] (4)
gcu

where A is a threshold, then the graph cut is valid, otherwise it is
invalid. If the first graph cut is valid, the cluster is said to be separated,
otherwise, non-separated.

Figs. 4(d) and 5(d) illustrate that both two first graph cuts are
valid, because the Ratio(Egcy)'s are 0.500 and 0.440, respectively,
greater than the threshold A= 0.333 which is discussed in Section 4.
Consequently, the datasets in Figs. 4 and 5 are separated, and are par-
titioned by removing the first two and first nine edges, respectively.
Fig. 6(a) represents a subgraph produced by applying the scheme on
the dataset in Fig. 4, while Fig. 6(b) indicates this subdataset is no-
separated, since the Ratio(Egc) for the first cut is 0.304 and less than
the threshold. However, the scheme is not always effective, because
two exceptions exist.

Exception 1. In a density-separated dataset, there exist two
(or more) inter-cluster edges which have a common vertex close to
dense part. For example, in Fig. 7(a), inter-cluster edge ey and ey,
have a common vertex g which belongs to the dense part of the
dataset. The dashed curve is the expected graph cut. But the weight
of ef, is less than those of ey, ey and e, because when we com-
pute the weight of eg,, another inter-cluster edge e, is concerned
according to Definition 7. As a result, more removed edges are from
T, when the first graph cut is achieved, and the probability of the
cut being valid decreases. The straightforward solution is to ignore
the longest neighbor edge. For example, when the weight of e, is
computed, edge ey, should be ruled out from Eg.

Exception 2. The weight defined in Definition 7 is a ratio. If there
exists an edge which is quite small in length, and the vertices con-
nected to its one end are extremely close, then its weight is relatively
large. In Fig. 7(c), vertices e,f,g are very close. For edge ey, because
avg(Es — {eps}) is extremely small, w(ey) is top 1 even though its
length is far less than those of e, and eqc. To remedy this exception,
the edge length can be considered as a penalty.

d

Fig. 7. Two exceptions for Definition 2. (a) is a density-separated cluster problem, the dashed curve is the expected graph cut. (b) illustrates the top 10 edges. As hg is
considered for evaluating the weight of fg in terms of Definition 2, fg has a less weight than ab, ef and cd do. (c) is a distance-separated cluster problem, the dashed line is
the expected graph cut. (d) illustrates another exception: since e, f, g are too close, he and hf have greater weights than ab and ac do.
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Fig. 8. Graph cuts with the improved definition of weight. In (a), the removals of the top two edges lead to the graph cut on dataset illustrated in Fig. 4, and corresponding
Ratio(Egq,) is 0.500. In (b), the graph cut on dataset presented in Fig. 5 is obtained by removing the top 13 edges, and the corresponding Ratio(Eg,) is 0.385. In (c), the

graph cut is different from that illustrated in Fig. 6, and the corresponding Ratio(Egc,) is 0.238.

cut1

Fig. 9. Clustering a touching problem. (a) is the dataset from Fig. 1. (b) illustrates the first round of MST. (c) represents the second of MST. Comparing cut1 of T; in (d) and
cut3 of T, in (f), two inconsistent vertices (a,c) exist, while between cut2 in (e) and cut3 in (f), there also exist two inconsistent vertices (b, c).

Therefore, the weight of ey, in Definition 7 is redefined as

pleqy)— min(avg(E;—{eg}), avg(E, —{e;}))

Wleap)=0x pleap)

+(1-0) x p(eq)
(5)

where Ej = Eq — {eqp}, €; = arg maxec, (p(e)), E, = E — {eqp},
e, = arg MaXecp, (pe)), 6 is a penalty factor and 0=0=1.
E, — {ep} and E, — {e,} ignore the longest neighbor edges, while
penalty factor o gives a tradeoff between the ratio and the edge
length.

Fig. 8 illustrates the first graph cut of applying redefined weight
on the three datasets in Figs. 4-6. The corresponding Ratio(Egcut)'s
are 0.500, 0.380, 0.240, respectively. According to the discussion of
A in Section 4, the first two graph cuts are still valid and the third
one is still invalid.

A subgraph partitioned from a separated problem may be an-
other separated problem. Therefore, we must apply the graph
cut method to every produced subgraph iteratively to check
whether or not it can be further partitioned until no subgraphs are
separated.

Algorithm 1. Clustering separated cluster problems

Input: G(X) = (V,E), the graph of the dataset to be partitioned

Output: S, the set of partitioned subdatasets.

Step 1. Compute T; and T, of G(X), and combine the two MSTs to
construct the two-round-MST based graph Gps:(X), and put it
into a table named Open; create another empty table named
Closed.

Step 2. If table Open is empty, sub-datasets corresponding to sub-
graphs in Closed table are put into S; return S.

Step 3. Get a graph G'(X’) = (V',E’) out of Open table, calculate the
weights of edges in G'(X’) with Eq. (5), and build the list
Rank(E").

Step 4. Remove the edges of G'(X’) in the order of Rank(E’) until a
cut is achieved.

Step 5. If the cut is valid in terms of Definition 9, put the two sub-
graphs produced by the cut into Open table; otherwise put
graph G'(X’) into Closed table.

Step 6. Go to Step 2.

Algorithm 1iteratively checks subgraphs, and partitions the sep-
arated ones until there exists no separated subgraphs. At the same
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/ cut1 cuté

cut2

cut7§ cut8

Fig. 10. A teapot dataset as a touching problem. (a) is a teapot dataset with a neck. In (b), the diameter defined by Zahn [18] is illustrated by the blue path. cut5 in (b)
and cut7 in (c) are similar (f=1), so are cutl and cut2, cut6 and cut2, cutl and cut8, cut3 and cut4.

time, the algorithm takes no action on non-separated subgraphs,
namely touching subgraphs. In fact, the reason why Algorithm 1
can identify separated clusters is the definition of edge weight in
Definition 7. The weight of an edge e, reflects the relation between
the length of e,, and two neighbor region densities of vertices a and
b, respectively, where the neighbor region density is measured by
the average length of the edges in the region. If the weight of ey, is
large, the densities of the two neighbor regions are high compared
to the length p(ey,), or the two densities are very different. For a
pair of touching clusters, as a neck exists and lengths of edges in the
neck are small compared to the neighbor region densities, namely
the weights of edges in the neck are small, Algorithm 1 cannot de-
tect the touching clusters.

3.3. Algorithm for touching cluster problem

Although Algorithm 1 can identify separated clusters, it becomes
disabled for touching clusters. After the algorithm is applied to a
dataset, each induced sub-dataset will be either a touching cluster
or a basic cluster which cannot be partitioned further.

For a touching cluster, a neck exists between the two connected
subclusters. The neck of touching cluster problem in Fig. 1(h) is il-
lustrated in Fig. 9(a). Zahn [18] defined a diameter of MST as a path
with the most number of edges, and detected the neck using diam-
eter histogram. However, a diameter does not always pass through
a neck. Fig. 10 illustrates an exception. We identify the neck by con-
sidering T; and T, simultaneously. The two-round-MSTs of Fig. 1(h)
are depicted by Fig. 9(b) and (c), respectively. The task in this phase
is to detect and remove these edges crossing the neck, and discover
touching clusters. Based on the two-round-MSTs, an important ob-
servation is as follows:

Observation 1. A partition resulted from deleting an edge crossing
the neck in Ty is similar to a partition resulted from deleting an edge
crossing the neck in T.

On the contrary, for the two cuts from T; and T,, respec-
tively, if one cut does not cross the neck, the two corresponding
partitions will be generally quite different from each other. Com-
paring the partition on T; in Fig. 9(d) with the partition on T, in
Fig. 9(f), we notice that only two vertices (a and c) belong to dif-
ferent group, and is called inconsistent vertices. Similarly, only two
inconsistent vertices (b and c) exist between the cuts in Fig. 9(e)
and (f).

For the purpose of determining whether two cuts are similar, the
number of inconsistent vertices must be given out as a constraint, i.e.
if the number of inconsistent vertices between two cuts is not greater
than a threshold, say f3, the two cuts are similar. For the previous
example in Fig. 9, § = 2 is reasonable. However, some unexpected
pairs of cuts which do not cross the neck of a dataset may conform to
the criterion and are determined to be similar. For example, the cut3
in Fig. 10(b) and the cut4 in Fig. 10(c) are similar if § = 1, however,
the two cuts are unexpected. Fortunately, the following observation
can remedy this bad feature.

Observation 2. With a same threshold f, the number of pairs of
similar cuts which cross the neck is generally greater than that of
pairs of similar cuts which do not cross the neck.

In Fig. 10(b) and (c), suppose =1, it is easy to find another pair
of similar cuts which cross the necks other than cut1 and cut2, for
instance, cut5 and cut7, cut6 and cut2, cut1l and cut8, while there
exists no other pair of similar cuts near cut3 and cut4. Therefore,
cut3 and cut4 are discarded because the similar evidence is insuf-
ficient. With the observation in mind, we can design the algorithm
for touching cluster problems as follows.

Definition 10. Let P™ be the list of N — 1 partitions on T; as in
PT = (P14 P15 ) (P31 P3b ) oo (PG P11 (6)

where pair (piTll,piTZ‘) denotes the partition which results from re-

moving the i th edge in Ty, p,.Tf and pg are subsets of vertices,
piTl1 UpiTz1 =V, \pin |= |pl.T21 |. Similarly, the list of N—1 partitions on T, P2,

is defined as

P2 = (pi2.p13), (P33 P33 s (D100 P(3_10) (7)

Obviously, some partitions both on T; and T, can be very skewed.
However, a valid partition is expected to generate two subsets with
relatively balanced element numbers in some typical graph partition
methods, such as ratio cut [32]. Therefore, the partition lists Pt and
P™2 can be refined by ignoring skewed partitions so as to reduce the
number of comparisons.

Definition 11. Let RP™' and RP™ be the refined lists, all of the ele-
ments of RP™' come from P , and all of the elements of RP™> come
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Fig. 11. Clustering results on DS1. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 3, Eps = 1.6); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is the clustering result of 2-MSTClus.

from P2, as in

RPT = (P13, 1P1)). (P35, 1P33). - (P, TPL3)) ®)
RPT2 = (1p3. 1075, (1033 1P33 ). oo, (1PARy TPAR,)) ©)

where L=N-1,¢= min(\rpl.Tl‘ l, |rpl.T21 |)/max(\rpl.T1’ l, |rpiT21 )y M=N-1,
&= min(|rp;?|, Irp}3 |/max(rp[? |, Irp |
Section 4.

), €<N, ¢ will be discussed in

In the next step, partitions in RP™* will be compared with those in
RP™2. As the number of inconsistent vertices between two cuts must
be less than or equal to the threshold f, if |\rpl.T11\ — |rp].T12|| > f, the
comparison between two partitions (rpl.Tl1 , rpiTz1 )and (rp].le, rpsz2 ) can be
skipped.

For the purpose of saving the computational cost, we can further
combine the two lists RP™' and RP™2, and order them ascendingly by
the element numbers of the left parts of the pairs. Only pairs which
come from different MSTs and of which element number of left parts
have differences not more than f will be compared.

Definition 12. Let SP be a set which consists of all the elements of
RP™' and RP™:

SP = {(rp}y, TP )y e, (PDLL TP, (TP TP TR, oo (PRI TPRR)) (10)

Definition 13. For a sp < SP, let left(sp) denote the left part of sp, the
source of sp is defined as

1 if sp comes from Ty

0 otherwise (1)

source(sp) = {

For example, if sp = (ip{},rpi), then left(sp) = rp]} and
source(sp) = 1.

Definition 14. Let CP(SP) = ((cP11,¢P12), -++» (P> CPi+my2)) be
the ordered list as in

CP(SP) = (part_min(SP) o CP(SP — {part_min(SP)})) (12)

where part_min(SP) = arg mingpcsp|left(sp)|, and o is a concatenate
operator.

Definition 15. Two partitions (cp;,cp;p) and (cpji,cpj,) are said to
be similar, where i =}, if the followings hold:

(a) source((cpjy, cp;p)) #source((cpji, cpj));
(b) Iepiy — €pj1l + Icpj1 — cpyn| = P or |cpjy — cpjal + IcPj2 — P | = B

The first condition indicates that the two partitions come from
different MSTs, while the second condition reveals that the number
of inconsistent vertices between the two partitions is sufficient small.
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Fig. 12. Clustering results on DS2. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 3,Eps = 1.9); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is the clustering result of 2-MSTClus.

Algorithm 2. Clustering touching problems

Input: T; and T, the two rounds of MST of a sub-dataset generated

by Algorithm 1.

Output: S, the set of expected partitions.

Step 1.Construct the ordered list CP(SP) with T; and T5; create two
empty set S’ and S.

Step 2.For each (¢p;y,¢p;p) € CP(SP), it is compared with (cpjq, cpjp) €
CP(SP) and j > i. According to Definition 15, if there exists a
partition (cpj;, cpj,) which is similar to (cpjq, cpiz), (¢Di1, CPiz)
is put into §'.

Step 3.For each s € §, if there exists a t € §, t#s, and t is similar to
s, s is put into S.

Step 4.Combine similar partitions in S.

In Algorithm 2, Step 3 is to remove the unexpected partitions in
terms of Observation 2. For simplicity, only those partitions without
similar others are removed. In Step 3, when determining the simi-
larity between t and s, we ignore whether they come from different
MSTs or not, since at this stage only the number of inconsistent ver-
tices are concerned. Step 4 combines the similar partitions. This can
be achieved by assigning inconsistent vertices to two groups in terms
of the evidence (support rate) accumulated from the similar parti-
tions. Algorithm 2 can identify touching clusters except overlapping
ones.

3.4. The combination of the two algorithms

As mentioned above, cluster problems are categorized into sep-
arated problems and touching problems in this paper, and the two
cluster problems roughly cover all the cluster problems since they
are mutual complementary. As Algorithm 1 automatically identifies
separated clusters and has no effect on touching clusters, Algorithms
1 and 2 can be easily combined to deal with any cluster problem.
When every subset partitioned by Algorithm 1 is fed to Algorithm
2, we will obtain the final clustering results. Therefore, the two al-
gorithms can be easily combined to form the method 2-MSTClus.

Many traditional clustering algorithms are vulnerable to the dif-
ferent cluster sizes, shapes and densities. However, since the sepa-
rated clusters and touching clusters can roughly cover all kinds of
clusters (except overlapping clusters) in terms of definition of sep-
arated cluster and touching cluster regardless of cluster size, shape
and density, the combination of Algorithms 1 and 2 is robust to di-
versifications of sizes, shapes and densities of clusters.

3.5. Computational complexity analysis
The computational complexity of Algorithm 1 is analyzed as fol-

lows. For a graph G(X) = (V,E), if Fibonacci heaps are used to im-
plement the min-priority queue, the running time of Prim’s MST
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Fig. 13. Clustering results on DS3. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 5,Eps = 1.5); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is clustering result of 2-MSTClus.

algorithm is O(|E| + |V|log|V]) [35]. As the MST in a graph-based
clustering method is generally constructed from a complete graph,
|E| is equal to |V|2 and the computational complexity of Prim’s algo-
rithm is O(|V|2). In Step 1, accordingly, T; and T, are generated in
O(N?), while Step 3 sorts the list Rank(E’) in O(NlogN). Step 4 re-
peatedly removes an edge of G'(X’) and checks if a cut is achieved
in O(|X'| log |X'|), where |X’| =N. The iteration time from Step 2 to
Step 6 is the number of separated clusters in dataset, which is gen-
erally far less than N. Therefore, the time complexity of Algorithm 1
is O(N2).

In Step 1 of Algorithm 2, the constructing SP takes O(N?), and
sorting CP(SP) takes O(NlogN). As a result, the Step 1 can be done
in O(N?). The iteration in Step 2 of Algorithm 2 can be finished in
O(NlogN). Both Steps 3 and 4 in Algorithm 2 are executed in O(N).
The computational complexity of Algorithm 2 is O(N?2).

Obviously, since the method 2-MSTClus is composed of
Algorithms 1 and 2, its overall time complexity is O(N?).

4. Experimental results
4.1. Parameter setting
In the two proposed algorithms, although four parameters exist,

they are all set to fixed values in all our experiments. The parameter /
determines whether a graph cut is valid or not when the framework

deals with separated cluster problems. For the first graph cut on
a separated problem, the numbers of edges removed from T; and
T, respectively, are almost equal. The ideal situation is that two
clusters are far away from each other, and when the first graph cut
is achieved the number of the edges removed from T; is equal to
that of the edges from T, i.e. A =0.5. For non-separated problems,
on the contrary, the edges removed from T, are in the majority, and
that leads to significantly skewed ratio. However, a change of local
density may disturb the ratio. Accordingly the parameter / is relaxed
to some degree. In all of our experiments, the parameter is set to
0.330. Specially, suppose that three edge removals result in a cut,
although the Ratio(Egcy) is 0.333 and only slightly greater than the
parameter, the absolute difference is very small (only 1).

When the weight of an edge is computed, the parameter ¢ is
employed to balance the relative weight (the ratio of lengths) and
the absolute weight (the length of the edge). As the relative weight
is crucial, ¢ is generally set to 0.9.

In touching problem algorithm, the parameter f§ is the margin
of the number of inconsistent vertices. If it is too small, some neck-
crossed partitions may be identified as invalid, while if it is too
large, some non-neck-crossed partitions may be regarded as valid.
As overlapped clusters are beyond the scope of this paper, and only
slightly touching clusters are considered, f is set to a relatively small
value, for instance, 2 in all our experiments. In addition, some ex-
treme skewed partitions can be ignored by the parameter ¢ to save
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Fig. 14. Clustering results on DS4. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 6, Eps = 1.5); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is clustering result of 2-MSTClus.

the computational cost in touching problem algorithm. For example,
cuts on some short branches (called hairs by [18]) are meaningless.
Although the short branches can be identified adaptively, for sim-
plicity we set ¢ € [0.01,0.05] in the following experiments. If the
number of vertices contained in a short branch is less than ¢ vertices,
cuts on the short branch will be ignored.

4.2. Experiments on synthetic and real datasets

The proposed method 2-MSTClus is tested on five 2-D synthetic
datasets, DS1-DS5, and two UCI datasets, Iris and Wine, and com-
pared with four typical clustering algorithms, namely k-means,
DBScan, single-linkage and spectral clustering, in which normalized
cut is used. For DBScan, in the all experiments, the parameters are
selected with the best clustering result.

The dataset DS1 is taken from [34] and illustrated in Fig. 11(a). It
contains three spiral clusters, which are separated from each other in
distance, therefore it is a distance-separated cluster problem. How-
ever, in terms of Handl's taxonomy [12], DS1 falls into the group
of connectedness. Fig. 11(b)-(f) depict the clustering results of the
four methods and 2-MSTClus. As DBScan and single-linkage prefer
the datasets with connectedness, they can discover the three actual
clusters, but k-means and spectral clustering cannot. 2-MSTClus can
easily deal with DS1 as a separated problem and detect the three
clusters.

Fig. 12 illustrates the clustering results of DS2, which is from [18].
It is a typical density-separated cluster problem. Since DBScan is a
density-based and identifies clusters with the concept of density-
reachable, it partitions DS2 well. However, k-means, single-linkage
and spectral clustering are ineffective on DS2. While 2-MSTClus still
produces ideal result by its separated algorithm.

The dataset DS3 is also taken from [18] and illustrated in
Fig. 13. It is composed of two clusters, which are compact and slightly
touched. k-means, which favors this kind of dataset, and spectral
clustering have good performance on D3, whereas single-linkage
and DBScan perform badly. Instead of the separated algorithm of
2-MSTClus, the touching algorithm of 2-MSTCLus can detect the two
clusters.

In Fig. 14(a), the dataset DS4 is taken from [11]. Compared with
the former three datasets DS1-DS3, this dataset is more complex.
It consists of seven clusters, and is a composite cluster problem.
All of the four algorithms, k-means, DBScan, single-linkage, spectral
clustering fail on this dataset. However, 2-MSTClus identifies the
seven clusters accurately.

In DS4, three clusters are distance-separated from others, while
two pairs are internal touched. When the dataset is fed to 2-MSTClus,
Algorithm 1 is first applied to it. Fig. 15(a) represents the first cut
when top two weight edges are removed. As the Ratio(Egcy:) is 0.333,
and greater than the threshold 4, the cut is valid. Next cut analysis is
on the remaining six clusters. In Fig. 15(b), the removals of the top
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Fig. 15. Clustering process of 2-MSTClus on DS4. (a)-(d) illustrate the four graph cuts by the separated algorithm. In (e) and (f), Algorithm 2 is applied, cut1 and cut8, cut2
and cut9, cut3 and cut9, cut4 and cut9, cut5 and cut10, cut6 and cutll, cut7 and cutl1,are similar (f=2). In (g) and (h), cut1 and cut2, cut3 and cut6, cut5 and cut2, cut7

and cut2, cut4 and cut4, etc. are similar (f =2).

two edges result in a valid cut, which partitions the six clusters into
two groups. Similarly, the separated sub-dataset in Fig. 15(c) and (d)
is further partitioned. Afterwards, Algorithm 1 could not partition
the clusters any more. Then all the clusters are checked by Algorithm
2. Two touching clusters problems are figured out in Fig. 15(e)-(h),
even though in Fig. 15(g) and (h) the two clusters have significant
difference in their sizes.

The dataset DS5 is composed of three datasets from [18]. The left
top dataset in Fig. 16(a) is a touching problem; the left bottom one
is a distance-separated problem; while the right one is a density-
separated problem. For this composite dataset, 2-MSTClus can iden-
tify the six clusters, but the four clustering methods k-means, single-
linkage, DBScan and spectral clustering cannot.

In Fig. 17(a), (b) and (d), the distance-separated problems are
identified with the removals of top two edges, respectively. With
diverse densities, the two clusters in Fig. 17(c) are partitioned by
Algorithm 1, and the corresponding Ratio(Egcy) is 0.417, hence the
graph cut is valid. As for the touching problem in the top left of
Fig. 16(a), Algorithm 1 is ineffective. The similar cuts in Fig. 17(e)
and (f) are detected by Algorithm 2.

Two real datasets from UCI are employed to test the proposed
method. The first one is IRIS, which is a well-known benchmark for
machine learning research. The dataset consists of three clusters with
50 samples each, and the one is well separated from the other two
clusters, while the two clusters are slightly touched to each other.
Similar to DS4 and DS5, it is also a composite clustering problem.
When the dataset is fed to the 2-MSTClus, Algorithm 1 in the first
round cuts off 50 samples, which constitute the separated cluster.

Then the algorithm produces no clusters further. When Algorithm 2
is applied to the two subsets, only the cluster that is composed of
100 samples has some similar cuts between its T; and T, therefore,
this cluster is further partitioned.

The performance comparison on IRIS is presented in Table 1. Four
frequently-used external clustering validity indices are employed to
evaluate the clustering results: Rand, Adjusted rand, Jaccard and FM.
From Table 1, it is evident that 2-MSTClus performs best, since all of
indices of 2-MSTClus are ranked first.

The second real dataset is WINE. It is composed of 178 samples,
which fall into three clusters. From Table 2, 2-MSTClus performs
only better than single-linkage. Compared with the former datasets,
the performance of 2-MSTClus on WINE is slightly weakened. This is
because some outliers exist in the dataset. In Algorithm 1, the graph
cut criterion is a heuristic, however, the existence of outlier may
affect the heuristic.

5. Discussion

Traditional MST-based clustering methods [18,19,24,33] make
use of an MST to partition a dataset. A general way of partitioning
is to remove the edges with relative large lengths, and one removal
leads to a bipartition. Within an MST, although some crucial infor-
mation of a dataset are collected, some are missed. T; and T, are
combined to form a graph for the purpose of accumulating more
evidence to partition datasets. In a two-round-MST based graph, a
graph cut requires at least two edge removals. Only the evidence
from Ty and T, being consistent, is the graph cut valid. For analyzing
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Fig. 16. Clustering results on DS5. (a) is the original dataset; (b) is the clustering result of k-means; (c) is the clustering result of DBScan (MinPts = 4, Eps = 1.4); (d) is the
clustering result of single-linkage; (e) is the clustering result of spectral clustering; (f) is the clustering result of 2-MSTClus.

Fig. 17. Clustering process of 2-MSTClus on DS5. In (a), (b) and (d), the separated clustering method is applied. Only two edges are removed for each dataset and three
valid graph cuts are achieved. (c) illustrates the partitioning process of the density-separated cluster problem. Totally 24 edges are removed for the graph cut, from which
14 edges come from T, and 10 from T;. In (e) and (f), cut1 and cut5, cutl and cut6, cut2 and cut7, cut3 and cut7, cut4 and cut7 are similar (f = 2).

the touching problems in 2-MSTClus, the concept of inconsistent ver- A drawback of 2-MSTClus is that it is not robust to outliers. Al-
tices delivers the same idea. though some outlier detection methods can be used to preprocess

The proposed method 2-MSTClus deals with a dataset in terms of a dataset and remedy this drawback, we will discover more robust
which cluster problem it belongs to, separated problem or touching mechanism to outliers based on two-round-MST based graph in the
problem. The diversifications of sizes, shapes as well as densities of future. In addition, the proposed method cannot detect the overlap-
clusters have no effect on the clustering process. ping clusters. If a dataset composed of two overlapping clusters is
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Table 1

Performance comparison on IRIS data.

Method Rand Adjusted rand Jaccard FM
k-Means 0.8797 0.7302 0.6959 0.8208
DBScan 0.8834 0.7388 0.7044 0.8268
Single-linkage 0.7766 0.5638 0.5891 0.7635
Spectral clustering 0.7998 0.5468 0.5334 0.6957
2-MSTClus 0.9341 0.8512 0.8188 0.9004
Table 2

Performance comparison on WINE data.

Method Rand Adjusted rand Jaccard FM
k-Means 0.7183 0.3711 0.4120 0.7302
DBScan 0.7610 0.5291 0.5902 0.7512
Single-linkage 0.3628 0.0054 0.3325 0.5650
Spectral clustering 0.7644 0.4713 0.4798 0.6485
2-MSTClus 0.7173 0.3676 0.4094 0.5809

dealt with 2-MSTClus, the two clusters will be recognized as one
cluster.

If more MSTs are combined, for instance, T, T», T3, ..., Ty, k= N/2,
does the performance of the proposed method become better? In
other words, how is a suitable k selected for a dataset? This is an
interesting problem for the future work.

6. Conclusions

In this paper, a two-round-MST based graph is utilized to repre-
sent a dataset, and a clustering method 2-MSTClus is proposed. The
method makes use of the good properties of the two-round-MST
based graph, automatically differentiates separated problems from
touching problems, and deals with the two kinds of cluster problem.
It does not request user-defined cluster number, and is robust to dif-
ferent cluster shapes, densities and sizes. Our future work will focus
on improving the robustness of 2-MSTClus to outliers and selecting
a reasonable k for constructing k-MST.
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sities. To alleviate these deficiencies, we propose a novel split-and-merge hierarchical clus-
tering method in which a minimum spanning tree (MST) and an MST-based graph are
employed to guide the splitting and merging process. In the splitting process, vertices with
high degrees in the MST-based graph are selected as initial prototypes, and K-means is
used to split the dataset. In the merging process, subgroup pairs are filtered and only neigh-
boring pairs are considered for merge. The proposed method requires no parameter except
the number of clusters. Experimental results demonstrate its effectiveness both on syn-
thetic and real datasets.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Clustering plays an important role in data mining, pattern recognition, and machine learning. It aims at grouping N data
points into K clusters so that data points within the same cluster are similar, while data points in diverse clusters are differ-
ent from each other. From the machine learning point of view, clustering is unsupervised learning as it classifies a dataset
without any a priori knowledge. A large number of clustering algorithms [20,37,46] have been presented in the literature
since K-means [32], one of the most popular clustering algorithms, was published. The algorithms can be grouped into hier-
archical clustering [12,15,16,19,27], partitional clustering [2,6,17,24,32,35], density-based clustering [10,18], grid-based
clustering [1,43], model-based clustering [11,33], and graph-based clustering [29,38,40,45,47,49]. Hierarchical and partition-
al clustering are the two most common groups [30].

Generally, a hierarchical clustering algorithm partitions a dataset into various clusters by an agglomerative or a divisive
approach based on a dendrogram. Agglomerative clustering starts by considering each point as a cluster, and iteratively com-
bines two most similar clusters in terms of an objective function. In contrast, divisive clustering starts with only one cluster
including all data points. It iteratively selects a cluster and partitions it into two subclusters. The main advantage of hierar-
chical clustering is that it produces a nested tree of partitions and can therefore be more informative than non-hierarchical
clustering. Furthermore, with the dendrogram, the optimal number of clusters can be determined. However, hierarchical
clustering has a relatively high computational cost. Single linkage [39] and complete linkage [26] are two well-known exam-
ples of hierarchical clustering algorithms, and they take O(N?logN) time.

Partitional clustering splits a dataset at once using an objective function. K-means is one of the most popular examples of
partitional clustering. It employs mean-squared-error as its objective function. Its main advantage is that it runs efficiently:
its computational complexity is O(NKId), where I is the number of iterations for convergence, and d is the dimensionality of

* Corresponding author. Tel.: +86 21 69589867.
E-mail address: miaoduogian@163.com (D. Miao).
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the dataset. Since K and d are usually far less than N, the algorithm runs in a linear time on low-dimensional data. However,
there does not exist a universal objective function that can be used to discover all different intrinsic structures of datasets.
Therefore, partitional clustering produces inaccurate results when the objective function used does not capture the intrinsic
structure of the data. This is the reason why partitional clustering algorithms are incapable of dealing with clusters of arbi-
trary shapes, different sizes and densities.

Clustering algorithms that combine the advantages of hierarchical and partitional clustering have been proposed in the
literature [5,23,25,28,30,31]. This kind of hybrid algorithms analyzes the dataset in two stages. In the first stage, the dataset
is split into a number of subsets with a partitioning criterion. In the second stage, the produced subsets are merged in terms
of a similarity measure. Different split and merge approaches have been designed in several hybrid algorithms. CSM [30] first
applies K-means to partition the dataset into K’ subsets, where K’ is an input parameter. Afterwards, single linkage, which
uses a dedicated cohesion function as the similarity measure, is utilized to iteratively merge the K’ subsets until K subsets
are achieved. In the split stage, as K-means may produce different partitions in different runs, the final results may be
unstable.

CHAMELEON [23] is another example of a hybrid clustering algorithm. It constructs a K-nearest neighbor graph, and em-
ploys a graph cut scheme to partition the graph into K’ subsets. Relative inter-connectivity and relative closeness are defined
to merge the subsets. Liu et al. [31] proposed a multi-prototype clustering algorithm, which can also be considered as a hy-
brid method. The method uses a convergence mechanism, and repeatedly performs split and merge operations until the pro-
totypes remain unchanged. However, many empirical parameters are involved. Kaukoranta et al. [25] proposed a split-and-
merge algorithm, where the objective function is to minimize the mean squared error.

A minimum spanning tree (MST) is a useful graph structure, which has been employed to capture perceptual grouping
[21]. Zahn defined several criteria of edge inconsistency for detecting clusters of different shapes [49]. However, for datasets
consisting of differently shaped clusters, the method lacks an adaptive selection of the criteria. Xu et al. [47] proposed three
MST-based algorithms: removing long MST-edges, a center-based iterative algorithm, and a representative-based global
optimal algorithm. But for a specific dataset, users do not know which algorithm is suitable.

In this paper, we propose a minimum spanning tree based split-and-merge method (SAM). It works on numerical data
and assumes that the graph can be calculated in a vector space. In the splitting stage, three iterations of MSTs are used to
construct a neighborhood graph called 3-MST graph. The vertices with high degrees in the graph are selected as the initial
prototypes, and K-means is then applied. In the merge stage, the neighboring subsets with respect to the MST are filtered out
and considered for merge.

The rest of the paper is organized as follows: In Section 2, the proposed algorithm is described. The experimental results
are presented in Section 3, and conclusions are drawn in Section 4.

2. The proposed method
2.1. Problem formulation

Given a set of data points X = {Xq,Xa,...,X;...,Xy}, Where X; = (Xi, X, ..., X, . . - ,Xid)T € ®? is a feature vector, the goal of
clustering is to partition the set X into K clusters: Gy, Gy,...,Cx, where G;# 0, GNG=0,X=CG UG ---UCi=1: K, j=1: K,
i # j. An undirected graph has been employed to represent a dataset for clustering [38,49]. Let G(X) = (V,E) denote the undi-
rected complete graph of X, the weights of the edges can be calculated with function w:E — R, where V=X,

E = {(xiX;)|xi, X; € X,i # j}, and w(X;, Xj) = 1/ (Xi — xj)T(xi —Xj).

2.2. Overview of the split-and-merge algorithm

The algorithm consists of three main stages as illustrated in Fig. 1. First, an MST of the given dataset is constructed to
guide the clustering process. In the splitting stage, K-means is applied to split the dataset into subsets, which are then ad-
justed according to the MST. In the merge stage, the final clusters are obtained by performing a carefully designed criterion-
based merge that aims at maximizing intra-cluster similarity and minimizing inter-connectivity between the clusters.

2.3. The stage of constructing a 3-MST graph

2.3.1. Pruning leaves

A minimum spanning tree (MST) of graph G(X) is a spanning tree T such that W(T) = Z(x“xi)dw(xi,xj) is minimum. The
leaves of an MST, called hairs in [49], are the vertices of degree 1. The leaves usually locate outside of kernels or skeletons of a
dataset. For splitting two neighboring clusters, the data points in the neck [49] will have a negative effect on the clustering
process. To alleviate the effect, we design a pruning step of removing the leaves so that the clusters are analyzed only on the
essential data points. In [49], the skeleton of an MST was detected by repeatedly pruning until the number of removed hairs
in two successive iterations remains the same. However, this may remove an entire cluster, and therefore, we conservatively
perform only one pruning.
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Fig. 1. The overview of split-and-merge. In Stage 1, the dataset X is pruned into X’ according to the MST of X, and three iterations of MSTs of X’ are computed
and combined into a 3-MST graph. In Stage 2, X' is partitioned by K-means, where the initial prototypes are generated from the 3-MST graph. The partitions
are then adjusted so that each partition is a subtree of the MST of X'. In Stage 3, the partitions are merged into the desired number of clusters and the pruned
data points are distributed to the clusters.

Definition 1. Let X' be the pruned version of X as in
X =X\ {vi|v; € V, degree(v;) = 1}, (1)

where degree(v;) denotes the degree of vertex ¢; in the MST of X.

2.3.2. Constructing a 3-MST graph

An MST describes the intrinsic skeleton of a dataset and accordingly can be used for clustering. In our proposed method, we
use it to guide the splitting and merging processes. However, a single MST loses some neighborhood information that is crucial
for splitting and merging. To overcome this drawback, we combine several MSTs and form a graph G,s(X, k) as follows:

Definition 2. Let T; = fi,(V,E) denote the MST of G(X) = (V,E). The following iterations of an MST are defined as:
Ti = fnse (V. E\UZIT)), 2)

where f.:: (V,E) — T is a function to compute an MST from graph G(X) = (V,E), and i > 2.

In theory, the above definition of T; is not rigorous because E \ U]'?j T; may produce isolated subgraph. For example, if there
exists a vertex v in T; and the degree of v is |V| — 1, v will be isolated in G(V,E\T;). Hence, the second MST (T>) cannot be
completed in terms of Definition 2. In practice, this is not a problem because the first MST T; is still connected and we
can simply ignore it as a minor artefact, because it has no noticeably effect on the performance of the overall algorithm. How-
ever, for the sake of completeness, we solve this minor problem by always connecting such an isolated subgraph with an
edge randomly selected from those connecting the isolated subgraph in T;.

Let Gus(X, k) denote the k-MST graph, which is defined as a union of the k MSTs: G,s(X,k) = T; U ToU - - - UT}. In this paper,
we use Gn(X', k) to determine the initial prototypes in the split stage and to calculate the merge index of a neighboring par-
tition pair in the merge stage. Here, k is set to 3 in terms of the following observation: 1 round of MST is not sufficient for the
criterion-based merge but 3 iterations are. The number itself is a small constant and can be justified from computational
point of view. Additional iterations do not add much to the quality, but only increase processing time. A further discussion
concerning the selection of k can be found in Section 3.4.

2.4. Split stage

In the split stage, initial prototypes are selected as the nodes of highest degree in the graph G,,(X’,k). K-means is then
applied to the pruned dataset using these prototypes. The produced partitions are adjusted to keep the clusters connected
with respect to the MST.

2.4.1. Application of K-means

The pruned dataset is first split by K-means in the original Euclidean space, where the number of partitions K’ is set to
/|X]. This is done under the assumption that the number of clusters in a dataset is smaller than the square root of the num-
ber of patterns in the dataset [3,36]. If \/[X| < K, K’ can be set to K+ i(|X' | — K) to grantee that K’ is greater than K, where
0 < Z < 1. Since this is not a normal situation, we do not discuss the parameter / in this paper. Moreover, if |X’ | < K, the split-
and-merge scheme will degenerate into a traditional agglomerative clustering.

However, to determine the K’ initial prototypes is a tough problem, and a random selection would give an unstable split-
ting result. For example, the method proposed in [30] uses K-means with randomly selected prototypes in its split stage, and
the final clustering results are not unique. We therefore utilize the MST-based graph G,s(X,3) to avoid this problem.
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Definition 3. Let » be the ith prototype from Gp(X,3)=(V,E), Vi_1={v1,v5,..., 01}, Eii1={(XX)|(XuX;) eEA(Xj=vV
X;=v) A ve Vi_1}, v is generated as:

v = arg max. Car({ (%, %;)|(Xi,X;) € (E\E.1)A (Xi=0vVX=10)}), 3)

where Car(S) denotes the cardinality of set S.

The above definition determines the vertex with the maximum degree as a prototype. It is a recursive definition, when we
determine the ith prototype #;, the edges connected to the existing i — 1 prototypes will not be considered for counting the
degrees of vertices. However, there may exist two or more vertices in G,s(X,3) simultaneously having the maximum degree.
In this case, the vertex with the minimum sum of weights of its edges is to be selected.

After the K’ initial prototypes have been determined, K-means is applied. The seven subsets (Cy,...,C;) in stage 2 of Fig. 1
are the partitions on T; produced by K-means.

2.4.2. Adjusting partitions

In traditional MST-based clustering methods such as [47,49], each partition is a subtree of the MST rather than a forest.
This is a reasonable observation, because data points in the same cluster are usually in the same branch of the MST. However,
the partitions in stage 2 of Fig. 1 may not coincide with the observation. For example, the four subsets (Cy,Cy4, Cs,C;) are for-
ests but not trees.

Furthermore, the partitions in stage 2 of Fig. 1 reduce the ability of the MST to guide the merging process. This is because
only neighboring partitions will be considered to be merged, and the neighboring partitions can be easily determined by the
MST. However, if the partitions are forests, the MST would lose the ability.

Therefore, a process of redistributing the vertices is designed to transform a forest into a tree. The process is described as
follows. Suppose that T; of X’ is partitioned into K’ forests, which are denoted as F1, F,, ..., Fy.. For redistributing the vertices,
the main tree in each forest is defined.

Definition 4. Let F; = {t,t,,...,t;,...,ty}, and each ¢; being a tree. The main tree of F; is defined as:

Maintree(F;) = arg max Car(t;), (4)
i

where Car(t;) denotes the edge number of the tree ¢;.

The vertices which are not included in any main tree will be re-allocated so that each subset is a subtree of T; of X'. Sup-
pose Fi,...,F; are the forests of the subsets Cy,...,C7 in Fig. 1, respectively. To adjust the seven subsets into seven subtrees,
vertices v1 and v2 can be re-allocated to Maintree(F,), v3 to Maintree(F;), v4, v5, v6 to Maintree(Fs), and v7 to Maintree(F;).
The re-allocation process is described as follows.

Let SV denote the set of vertices that are not in any main tree, ST the set of the main trees. The redistribution operation is
defined as: for an edge e,, from T; of X, if a € SV, and 3T(T € ST A b € T), then the vertex a is redistributed to T. For example, v2
is re-allocated to Maintree(F,), since e, € T1, v2 € SV, and v8 € Maintree(F,). We iteratively perform this operation until all
of the vertices in SV are re-allocated to the main trees.

The above operation may produce non-unique redistributions. Take v6 and v7 for example, if e,6,0 and e,;,s are consid-
ered before e,7,10, then v6 and v7 will be redistributed to Maintree(Fg). Similarly, v6 and v7 may be redistributed to Main-
tree(F7), or v6 to Maintree(Fg) and v7 to Maintree(F;). However, the non-unique redistribution does not noticeably affect
the final clustering result for the two reasons: one is that the subtrees in a subset are usually smaller than the main tree
of the subset, the other one is that the non-uniqueness most often happens inside rather than between the expected clusters.

2.5. Merge stage

After X’ has been split into K’ subgroups, the merge stage is performed to obtain the final clusters. In the merging process,
the crucial problem is to determine which pairs of subgroups should be merged. By brute force, there are K’ x (K" — 1)/2 can-
didate pairs for merge. In this paper, a stepwise refinement method is taken to address the problem. At the beginning, T; is
employed to filter out the pairs. On the basis of MST-based clustering [47,49], unconnected subtrees cannot be merged. For
example, the subgroups C; and C; in Fig. 1 will not be considered as a pair for merge. Consequently, only the neighboring
pairs with respect to T are the candidates.

2.5.1. Neighboring pairs

Definition 5. Let Pairs be the set of neighboring pairs from X’ as in:
Pairs = {(C;,G;)|3(Xp. Xq) € T1, (X, € CGiAXg € G) V (X, € GGAXg €C)}, (5)
where i # j.

For any two subgroups, if there exists an edge in T; connecting them, then the two subgroups belong to Pairs.
For selecting the best pair to be merged, we define an inter-connectivity index and an intra-similarity index to rank the pairs.
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2.5.2. Inter-connectivity index

Definition 6. Suppose (C; C;) € Pairs. In Gpus(X',3), let Eineer( G, G;) be the set of edges across the partitions C; and G:
Einter (Ci, Gj) = {(Xp, Xq)|((Xp € Ci AXq € Gj) V (Xp € (G AXq € Ci))} (6)

In Fig. 2, Einer(Cs,C7) = {(a,g), (a,h), (b,g), (c,i), (d,i), (d.j), (e,i), (e,j), (e,]), (e,k)}, i.e. the edges crossing the dotted curve.

Definition 7. Suppose that (G, G) € Pairs. In Gie(X',3), set Vij = {X,|(Xp,Xq) € Eineer(Gi, G) A Xp, € G}, Ejj is a set of edges within
where at least one endpoint is in Vj;:

E,-J-:{(xp,xq)|xp,xqeC,—/\(xpeVi_j\/xqeV,-J-)}. (7)

In Fig. 2, for example, Vs ={g,h,i,j,k,1}, V76 ={a,b,c,d,e}, Es7 includes all the internal edges of Cs (i.e. the edges whose
both endpoints are from Cg) except {(n,m), (n,0), (n,p), (m,0), (m,p), (m,q), (p,0), (p.q)}, and E7 ¢ includes all the internal edges
of C;. Actually, E;; is defined as the edges in the region of C; that is close to C;.

Connection span is then defined with respect to G,,(X’,3) as a factor of measuring the similarity of two clusters based on
the width of their connection. The intuition behind this index is that it estimates the size of the common border of the two
clusters. The larger the common border is, the higher the priority for merging these clusters will be. It depends only on the
distances in vector space and makes no assumption on the dimensionality.

Definition 8. Suppose that (C; C;) € Pairs. In Gms(X',3), the connection span of C; with respect to C; is:

ConnSpan;; = Xpn’zqeg& w(Xp, Xg). (8)
XqeVi

In Fig. 3, the connection span of Cs and C; is marked by the dotted edges (g,k) and (a,e), respectively.

Definition 9. Suppose that (C;,G) € Pairs. In Gpe(X',3), the inter-connectivity (IC) of G; and G is defined as:

[Eineer (G, Gj) | min (Avg (Eij), Avg (E;s)) .
IC(C;, G) = min (IGI, 1G)) x 708 (Erner(G.C))) X max (ConnSpaniJ»,ConnSpan(],l)>7 9)
where Avg(E) denotes the average weight of an edge set E.

From Eq. (9), the inter-connectivity index IC is a composite of three factors. The factor |Eine( G, C;)|/min(|C,|G|) describes
that the more edges straddling a pair of clusters, the stronger is the connective strength between the two clusters. In the
second factor, min (Avg(E;;),Avg(E;;)) is the minimum of the average weights of the edges that are in the two close regions
from G; and G, respectively. Avg(Eincr(Ci, C;)) is the average weight of the edges straddling C; and . This factor reflects that the
ratio of the average weight of the straddling edges to the minimum average weight in the two close regions is inversely pro-
portional to the connectivity of the two clusters. In fact, this is based on the observation that if the density between the two
clusters is low compared with those of the close regions, the two clusters have a small probability to be merged. The third
factor max (ConnSpan;;, ConnSpan;;) indicates that a pair of clusters with large connection span has strong connectivity.

2.5.3. Intra-similarity index

For describing the intra-similarity of pairs of clusters, a strategy inspired by Karypis et al. [23] is employed. Each cluster of
a neighboring pair is bisected in terms of Ty, and the corresponding inter-edges with respect to G,,s:(X’,3) are used to evaluate
the intra-similarity between the two clusters. The process is described as follows.

Suppose C; is the cluster to be bisected, and T;; is the subtree of T restricted to nodes and edges of C;. The bisecting edge
episect € Ti1 can be determined as:

Fig. 3. Illustration of connSpan between subgroups Cs and C;.
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Fig. 4. Illustration of the bisection process of a cluster ;. The data set is bisected into C} and C? by the cut so that the difference of cardinalities of C; and C?
is minimal.

@hisect = Al gT;lTn |Car (t;1) — Car(tp)]. (10)

j<til
where tj; and tj, are two subtrees of T;; generated by removing e; from Tj;, and Car(t) denotes the number of edges in a tree t.
An example of the bisection is shown in Fig. 4. Correspondingly, C; is bisected into two subsets: C! and C,-z. The inter-edge set
E,»nm(Ci] , Cl-z) with respect to Gms(C;,3) is obtained by Definition 6. The intra-similarity of C; and G is then defined as follows:

Definition 10. Suppose that (G, G;) € Pairs, C; is bisected into C,»l and C?, G is bisected into C} and Cjz, the intra-similarity (IS) of
the pair (G, G) is defined as:

. \/Az/g (E,»me, (c} , c,?)) x Avg (Ei,,[e, (cj1 , cj?))
e Avg(Emm<C}7C,-2>> +Avg<Eimr<C}7Cf)> 7

where r; and r; are the numbers of edges of Ein[er(cg , Ciz) and E,-me,(C}, Cjz), respectively, and Avg(E) denotes the average weight
of an edge set E.

Eq. (11) implies that the intra-similarity between the pair (G,G) is high when the two averages Ayg(Einre,(C},C,?)) and
Avg(E,-me,(C;,Cf)) are close to each other. For the two numbers r; and r,, unbalanced and small sizes indicate that the two
clusters are more likely to be merged.

Taking into account the inter-connectivity and the intra-similarity as a whole, we define the overall merge index as:

R(Ci,G) = IC(Gi, G) x IS(C;, ). (12)

IS(C,G) = (11)

The neighboring pair with the highest R() value is merged first. After one neighboring pair is merged, Pairs and corresponding
R() values are updated. When K partitions are achieved, the merge process stops. Because a pruned leaf €X is connected to
exact one vertex X; € X' in the MST of X, it is assigned the same label as x;.

Finally, the proposed algorithm is described as follows:

Algorithm 1: Split-and-merge (SAM)

Input: Dataset X, number of clusters K
Output: K clusters Cy, Gy,...,Cx
1. Construct 3-MST graph
1.1 Construct an MST on X
1.2 Produce X' by pruning the leaves of the MST
1.3 Create three MSTs on X': Ty, T> and T3
1.4 Compute 3-MST graph based on X': Gs(X',3) «— T U T, U T3
2. Split the pruned dataset X' into clusters
2.1 Select K’ highest degree nodes from G,s(X,3) as initial prototypes
2.2 Apply K-means with the prototypes to produce K’ partitions
2.3 For each of the partitions, find its main tree in T;
2.4 For each of the subtrees, repeatedly combine it with another subtree until it belongs to a main tree
3. Merge the partitions into final clusters
3.1 Generate the set of neighboring partition pairs Pairs
3.2 For each pair (G;, G) € Pairs, calculate the merge criterion R(G,G)
3.3 Repeatedly merge the pair with maximum R()-value until K clusters have been obtained
3.4 Add the pruned leaves to the clustering using T;
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2.6. Computational complexity

To construct an MST, if Fibonacci heaps are employed in Prim’s algorithm, the running time is O(|E| + |V|log|V]|) [9]. In this
paper, an MST is computed from a complete graph, |E| = O(|V|?) = O(N?), and therefore, the complexity of constructing an MST
is O(N?).

In Step 1.1, the MST is constructed in O(N?) time, and in Step 1.2, the complexity of pruning the leaves from the MST is
O(N). In Step 1.3, to generate the three MSTs of X' takes O(N?) time. Gps( X, 3) is obtained in O(N) time in Step 1.4. In Step 2.1,
the initial prototypes are determined in O(N), the time complexity of K-means on X' is O(K’' NdI), where d is the dimension-
ality of X, and I is the number of iterations. Since K’ < v/N, the total complexity of Step 2.1 is O(N*/?dI). The main trees can be
determined in O(N) in Step 2.2, and re-allocation can also be achieved in O(N) in Step 2.3. Step 3.1 takes O(N) to generate
Pairs, and Step 3.2 takes O(N) to compute the merge index R() for every pair in Pairs. As the merging of a pair can be achieved
in constant time, the maximum complexity of updating the merge index R() is O(N), and the number of iterations of Step 3.3
is O(v/N), the worst case complexity of this Step is therefore O(N*?). Step 3.4 can be processed in constant time.

To sum up, the computational complexity of the proposed method (SAM) is O(N?), which is dominated by the construc-
tion of the 3-MST graph. If also the factor of dimensionality d is considered, the exact complexity would be O(N?d).

3. Experimental results

The clustering performance of the proposed method is evaluated on six synthetic and four real datasets. The first four
synthetic datasets DS1-DS4 are taken from the literature [22,4,14,13], and the next two DS5, DS6 are from [42]. These data-
sets are illustrated in Fig. 5. The four real world instances are taken from the UCI datasets [50], including IRIS, WINE, Breast
Cancer Wisconsin (WBC), and Breast Cancer Wisconsin Diagnostic (WDBC). The descriptions of these datasets are shown in
Table 1.

The proposed method SAM is compared to the following six clustering algorithms:

. K-means [32].

. DBScan [10].

. Single linkage [39].

. Spectral clustering [38].
. CSM [30].

. CHAMELEON [23].

U WN =

The first four algorithms are traditional clustering methods, whereas the next two are hybrid ones. In addition, three vari-
ants of SAM are performed to demonstrate the importance of the various steps and design choices of the algorithm:

oo
oo
30 09, 88°°% oo 0% 0o
00 b o °© % o 0o
00 26 © ,%0%080 00
25| " % @ eotuine,
o, o ©9%o0p ©
0% o & 24 °0°80°% °
o o %o o o°
20l°  e_oe o 000 00 °50, °°:go°°°° ° 50
o Gt F R of 221000 0% %o  0ge0d
bo % 055 0° @, 88 B oe° 0o 0 P90 o o o 000 S
ke o ® o oo %50 o0 oo ° 0o
1508 % (3 °§ ° 29 @ | 20 °°°°o°o° oo 09°%0,0
oo 0800 ° © oo o ° o 000
2, %% oOf% bl °g°§: 000 ° 022 %% 2% 0% 00900
° ?%° %0 18 0 6°5%% 000,00 °0
10t°8 o ° 0°° © 4 0% 203%% 02 00 oo
o ° 000 O
. # RERHPOR
%o o 16 0 0°28%00 o
5 & %3" 00 % G000
© 500
14 °
5 10 15 20 25 30 35 40 5 10 15 20 25 30 2 4 6 8 10 12 14
DS3

o Ry
. W
. i &
5 10 15 20 25 30 35 5 10 15 20 25 4 6 '8 10 12 14 16
Ds4 DS5 DS6

Fig. 5. Illustration of the six original synthetic datasets.
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Table 1

Descriptions of used datasets.
Data set Data size (N) Dimensionality (d) Number of clusters (K)
DS1 373 2 2
DS2 300 2 3
DS3 240 2 2
DS4 788 2 7
DS5 3100 2 31
DS6 600 2 15
Iris 150 4 3
Wine 178 13 3
WBC 683 9 2
WDBC 569 30 2

1. SAM-No-Pruning: split-and-merge without the pruning step.
2. SAM-2-MST: split-and-merge but using 2-MST instead of 3-MST.
3. SAM-SL: split-and-merge but using single linkage within the merge stage instead of the criterion based on R()-values.

As K-means and CSM may produce different partitions in different runs, in the following experiments we take the best
clustering result out of 10 trial runs performed for each dataset in terms of one of the most used external clustering validity
indices, Adjusted Rand (see Section 3.1). For DBScan, since we have no a priori knowledge about the parameters (MinPts and
Eps), proper values were selected by trial and error.

3.1. External clustering validity indexes

An external clustering validity index is defined to measure the degree of correspondence between a clustering result and
the prespecified partitions [41]. We will employ the four popular external indexes, Rand, FM, Jaccard, and Adjusted Rand
([34,41,44,48]), to evaluate the quality of the clustering results. Briefly, these four indexes are described as follows.

Suppose {Py,...,P;} is the set of prespecified partitions, {Cy, . ..,Cx} is a set of partitions produced by a clustering. For a pair
of vectors (X,,Xy), it is referred as: (a) SS pair if 3I(x, € P; A X, € P;) and J)(X, € G A X, € ), (b) SD pair if 3(x, € P AX, € P)
and AJ(x, € (G AXy€ (), (c) DS pair if AI(x, € PrAXy€ Pp) and JJ(x, € GAXy<€ (), (d) DD pair if 2I(x, € PLAXy <€ Pr) and
AJ(x, € G AXy€ (). Leta, b, ¢, d denote the numbers of SS, SD, DS, and DD pairs, respectively, and M the number of total pairs,
the four indexes are defined as:

1. Rand

R=(a+d)/M. (13)
2. Jaccard

J=a/(@a+b+c). (14)
3. FM

a a

M=Varba+c (1)
4. Adjusted Rand

AR:M 2(Ma — (a+b)(a+c)) (16)

(2a+b+c)-2(a+b)a+c)

3.2. Results on synthetic datasets

DS1: This instance contains two datasets shaped like a crescent with different densities. The clustering results are illustrated
in Fig. 6. SAM and SAM-No-Pruning, DBScan, CSM and CHAMELEON can partition the dataset properly. Both SAM-2-MST and
SAM-SL fail. Since K-means favors spherical clusters, it fails on DS1. Single linkage clustering produces unsatisfactory partitions
because it measures the distance between two clusters as the minimum distance between the pairs of data points in the two
clusters. In the spectral clustering algorithm, the similarity matrix is created by a Gaussian kernel function with Euclidean dis-
tances, but the clustering result of this algorithm is similar to that of K-means. Although DBScan produces the expected parti-
tions, it was difficult to tune the two parameters to achieve the proper result.

DS2: The set is composed of two Gaussian distributed clusters and one unclosed ring cluster surrounding the first two.
Fig. 7 illustrates the clustering results. SAM and SAM-2-MST provide satisfactory clustering results, whereas SAM-No-Pruning
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Fig. 6. Illustration of clustering results on DS1.
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and SAM-SL produce improper results. CSM can sometimes identify the proper clusters, but not always. The results of DBScan
and spectral clustering are not perfect, but better than those of K-means, single linkage, and CHAMELEON.
DS3: This dataset contains a spherical cluster and a half ring shaped cluster. The clustering results are shown in Fig. 8. All
the algorithms except K-means and single linkage discover the expected clusters.
DS4: This dataset consists of 7 Gaussian distributed clusters. Fig. 9 illustrates the clustering results. SAM, its variant SAM-
No-Pruning and SAM-2-MST, spectral clustering, CSM, and CHAMELEON find the expected clusters. SAM-SL and K-means
provide partitions with low quality.
DS5: This dataset consists of 31 Gaussian distributed clusters. The clustering results are illustrated in Fig. 10. Spectral clus-
tering, CSM, and CHAMELEON produce the expected partitions. SAM and SAM-SL are also successful except they fail to detect
the cluster on the rightmost part. SAM-No-Pruning and SAM-2-MST perform much worse, whereas K-means, single linkage,
and DBScan fail to detect almost all the expected clusters.
DS6: The 15 Gaussian distributed clusters in this dataset are arranged in two concentric circles. Fig. 11 describes the clus-
tering results. SAM, SAM-SL, spectral clustering, CSM, and CHAMELEON produce the proper partitions, but SAM-No-Pruning,
SAM-2-MST, K-means, single linkage, and DBScan do not.
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The corresponding Adjusted Rand index values of the clustering results on these six synthetic datasets are shown in

Table 2.

3.3. Results on real datasets

The performance on each of the four UCI datasets is evaluated using the four common external clustering validity indices:
Rand, Adjusted-Rand, Jaccard coefficient, and Fowlkes and Mallows (FM). The evaluation results on the four datasets are
shown in Tables 3-6, respectively. The parameters of DBScan for IRIS, WINE, WBC, and WDBC are set to (MinPts = 8,
Eps = 0.4), (MinPts = 3,Eps = 0.3), (MinPts = 9,Eps = 2), (MinPts = 4,Eps = 32.3), respectively.

For the IRIS dataset, Table 3 indicates that SAM, SAM-2-MST, and SAM-SL have the same performance and outperform the
others. SAM-No-Pruning, CSM, DBScan, and K-means also provide partitions with relative high quality. In the case of the
WINE dataset, the corresponding clustering qualities are shown in Table 4. K-means has the best performance, single linkage
and spectral clustering provide more proper partitions than the proposed method SAM. It can be seen from Table 5 that SAM
outperforms the other algorithms except K-means on the WBC dataset. As for the WDBC dataset in Table 6, DBScan has the
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Table 2
Adjusted Rand index values of clustering performances on the six synthetic datasets.
Method DS1 DS2 DS3 DS4 DS5 DS6
SAM 1.0000 0.9597 0.9339 0.9835 0.8896 0.9928
SAM-No-Pruning 1.0000 0.7272 0.9180 0.9920 0.8051 0.8723
SAM-2-MST 03181 0.9597 0.9178 0.9902 0.8183 0.8375
SAM-SL 0.2563 0.6130 0.9178 0.8743 0.8755 0.9928
K-means 0.5146 0.4739 0.4312 0.7186 0.8218 0.8055
Single linkage 0.2563 0.0004 0.0103 0.7996 0.1739 0.5425
DBScan 1.0000 0.8213 0.8859 0.8043 0.4321 0.8804
Spectral clustering 0.3178 0.8757 0.9178 0.9919 0.9522 0.9928
CSM 1.0000 0.9118 0.9667 0.9978 0.9196 0.9857
CHAMELEON 1.0000 0.4756 0.9617 1.0000 0.9274 0.9928
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Table 3

Clustering performances on IRIS.
Method Rand Adjusted Rand Jaccard FM
SAM 0.9495 0.8858 0.8578 0.9234
SAM-No-Pruning 0.9075 0.7436 0.7298 0.8548
SAM-2-MST 0.9495 0.8858 0.8578 0.9234
SAM-SL 0.9495 0.8858 0.8578 0.9234
K-means 0.8797 0.7302 0.6959 0.8208
Single linkage 0.7766 0.5638 0.5891 0.7635
DBScan 0.8834 0.7388 0.7044 0.8268
Spectral clustering 0.8115 0.5745 0.5571 0.7156
CSM 0.8859 0.7455 0.7119 0.8321
CHAMELEON 0.7783 0.5492 0.5680 0.7369

Table 4

Clustering performances on WINE.
Method Rand Adjusted Rand Jaccard FM
SAM 0.7334 0.4007 0.4294 0.6009
SAM-No-Pruning 0.7012 0.3842 0.4113 0.5819
SAM-2-MST 0.7334 0.4007 0.4294 0.6009
SAM-SL 0.6976 0.3956 0.4702 0.6521
K-means 0.8797 0.7302 0.6959 0.8208
Single linkage 0.7766 0.5638 0.5891 0.7635
DBScan 0.6878 03171 0.3866 0.5582
Spectral clustering 0.7655 0.4741 0.4821 0.6506
CSM 0.6742 0.3757 0.4708 0.6618
CHAMELEON 0.7364 0.4769 0.5266 0.7049

Table 5

Clustering performances on WBC.
Method Rand Adjusted Rand Jaccard FM
SAM 0.9026 0.8033 0.8372 09114
SAM-No-Pruning 0.8876 0.7682 0.8061 0.8953
SAM-2-MST 0.8922 0.7820 0.8222 0.9025
SAM-SL 0.5565 0.0337 0.5453 0.7346
K-means 0.9240 0.8465 0.8703 0.9307
Single linkage 0.5453 0.0025 0.5444 0.7375
DBScan 0.8767 0.7529 0.7913 0.8838
Spectral clustering 0.5218 0.0246 0.4142 0.5867
CSM 0.5658 0.0585 0.5468 0.7333
CHAMELEON 0.5235 0.0279 0.5107 0.7007

best performance, while the proposed method SAM is better than K-means, single linkage, spectral clustering, CSM as well as
its variants.

3.4. Discussion about the SAM variants

Pruning gives a small but consistent improvement (SAM vs. SAM-No-Pruning) based on the numeric results (Tables 2-5).
In the case of DS2, pruning is critical to obtain the correct clustering whereas for the other test sets its effect is more like fine-
tuning.

For the merge criterion, the index R(C; G;) is more complicated to evaluate than some simple alternatives like the single
linkage criterion. Its effect on the clustering quality, however, is significant and in most cases the proposed approach (SAM)
outperforms the single linkage variant (SAM-SL) using the single linkage algorithm in the merge stage. We consider the cri-
terion-based merge critical for the performance of the algorithm.

The role of the k-MST is important. The value k = 3 was fixed already in preliminary tests using DS1-DS6, but let us discuss
other choices. In SAM, 1-MST cannot be used in the merge stage as the criterion requires more information about the neigh-
borhood than a simple spanning tree can provide, as the results of SAM-SL already showed. The question about the exact
value of k, however, is less critical. In most cases, SAM and SAM-2-MST provide the same result, and only in two cases
(DS1 and DS2) the 2-MST variant fails.
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Table 6
Clustering performances on WDBC.

Method Rand Adjusted Rand Jaccard FM
SAM 0.8138 0.6269 0.6981 0.8223
SAM-No-Pruning 0.8003 0.6091 0.6772 0.8101
SAM-2-MST 0.8012 0.6190 0.6811 0.8197
SAM-SL 0.5308 0.0032 0.5219 0.7162
K-means 0.7504 0.4914 0.6499 0.7915
Single linkage 0.5326 0.0024 0.5315 0.7286
DBScan 0.8691 0.7367 0.7828 0.8782
Spectral clustering 0.7479 0.4945 0.6133 0.7604
CSM 0.5860 0.1335 0.5392 0.7201
CHAMELEON 0.8365 0.6703 0.7406 0.8514
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Fig. 12. The quality of clustering results for different values of k to compute k-MSTs.

Higher values than k = 3 were also tested, see Fig. 12. In most cases, the improvements due to higher values for k are insig-
nificant and just increase the processing time. A contradicting example is the WDBC test set where higher values turn out to
be harmful. Therefore, it is reasonable that the value of k is set to 3.

4. Conclusion

The proposed method employs minimum spanning trees in different stages. Before a dataset is split into different clusters,
the hairs (leaves together with the connecting edges) of the first MST computed for the whole instance are pruned.

In the splitting stage, more than the desired K clusters are created by K-means. Three MSTs on an iteratively refined graph
are computed and combined to determine the initial prototypes for K-means, because randomly selected initial prototypes
would lead to unstable partitions.

After splitting, the initial MST is employed to adjust the partitions to make each subgroup corresponding to a subtree.
Finally, in the merge step only neighboring pairs with respect to the same MST are considered to be merged.

Experiments have demonstrated the importance of each step of the algorithm. Except the number of clusters, there are no
parameters left to be tuned by the user.

In summary, various MSTs are utilized during the whole split-and-merge algorithm because they can capture the intrinsic

structure of a dataset. However, the computational complexity of constructing an MST is close to O(N?). The expensive com-
putational cost obstructs the application of an MST to large scale data sets. One of our future work is to find a fast algorithm
to construct an approximate MST.

One drawback of the proposed method is that the universality of the definitions of inter-connectivity and intra-similarity
is insufficient. Although there does not exist a universal clustering method that can deal with all kinds of clustering prob-
lems, we try to improve the definition of inter-connectivity and intra-similarity to make the proposed method suitable
for as many clustering problems as possible.

Although the proposed method does not have any direct restrictions for being applied to datasets with high dimensions, it
is assumed to have all the same weaknesses as the other distance-based methods. Because to determine the intrinsic struc-
ture of this kind of datasets, different dimensions may have varied importance, whereas the proposed method equally con-
siders all of dimensions of an input dataset. Thus, subspace clusterings [7,8] or other methods tailored for high dimensional
data are expected to work better for high-dimensional datasets.
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Abstract

Minimum spanning trees (MSTs) have long been used in data mining, pattern recognition and machine learning. However, it is
difficult to apply traditional MST algorithms to a large dataset since the time complexity of the algorithms is quadratic. In this
paper, we present a fast MST algorithm on the complete graph of N points. The proposed algorithm employs a divide-and-conquer
scheme to produce an approximate MST with theoretical time complexity of O(N'-), which is faster than the conventional MST
algorithms with O(N?). It consists of two stages. In the first stage, called the divide-and-conquer stage, K-means is employed
to partition a dataset into VN clusters. Then an exact MST algorithm is applied to each cluster and the produced VN MSTs are
connected in terms of a proposed criterion to form an approximate MST. In the second stage, called the refinement stage, the clusters
produced in the first stage form VN — 1 neighboring pairs, and the dataset is repartitioned into VN — 1 clusters with the purpose of
partitioning the neighboring boundaries of a neighboring pair into a cluster. With the VN — 1 clusters, another approximate MST
is constructed. Finally, the two approximate MSTs are combined into a graph and a more accurate MST is generated from it. The
proposed algorithm can be regarded as a framework, since any exact MST algorithm can be incorporated into the framework to
reduce its running time. Experimental results show that the proposed approximate MST algorithm is computational efficient, and

the approximation is sufficiently close to the true MST such that the performance in practical applications hardly suffers.

Keywords: Minimum spanning tree, divide-and-conquer, K-means.

1. Introduction

Given an undirected and weighted graph, the problem of
MST is to find a spanning tree such that the sum of weights
is minimized. Since an MST can roughly estimate the intrin-
sic structure of a dataset, it has been broadly applied in image
segmentation [1], [47], cluster analysis [46], [51], [52], [53],
classification [27], manifold learning [48], [49], density esti-
mation [30], diversity estimation [33], and some applications
of the variant problems of MST [10], [43], [36]. Since the pi-
oneering algorithm of computing an MST was proposed by O-
takar Bortivka in 1926 [6], the studies of the problem have been
focused on finding the optimal exact MST algorithm, fast and
approximate MST algorithms, distributed MST algorithms and
parallel MST algorithms.

The beginning of the studies on constructing an exact MST
is Bortivka’s algorithm [6]. This algorithm begins with each
vertex of a graph being a tree. Then for each tree it iterative-
ly selects the shortest edge connecting the tree to the rest, and
combines the edge into the forest formed by all the trees, until
the forest is connected. The computational complexity of this
algorithm is O(E log V), where E is the number of edges, and V
is the number of vertices in the graph. Similar algorithms have
been invented by Choquet [13], Florek et al. [19] and Sollin
[42], respectively.
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One of the most typical examples is Prim’s algorithm, which
was proposed independently by Jarnik [26], Prim [39] and Di-
jkstra [15]. It first arbitrarily selects a vertex as a tree, then re-
peatedly adds the shortest edge that connects a new vertex to the
tree, until all the vertices are included. The time complexity of
Prim’s algorithm is O(E log V). If Fibonacci heap is employed
to implement a min-priority queue for searching for the shortest
edge, the computational time is reduced to O(E + Vlog V) [14].

Kruskal’s algorithm is another widely used exact MST algo-
rithm [32]. In this algorithm, all the edges are sorted by their
weights in non-decreasing order. It starts with each vertex be-
ing a tree, and iteratively combines the trees by adding edges in
the sorted order excluding those leading to a cycle, until all the
trees are combined into one tree. The running time of Kruskal’s
algorithm is O(E log V).

Several fast MST algorithms have been proposed. For a s-
parse graph, Yao [50], and Cheriton and Tarjan [11] indepen-
dently proposed algorithms with O(E loglog V) time. Fredman
and Tarjan [20] proposed Fibonacci heap as a data structure of
implementing the priority queue for constructing an exact MST.
With the heaps, the computational complexity is reduced to
O(EB(E, V)), where B(E, V) = min{i|log” V < E/V}. Gabow
et al. [21] incorporated the idea of Packets [22] into Fibonacci
heap, and reduced the complexity to O(E log B(E, V)).

Recent progress on exact MST algorithm was made by C-
hazelle [9]. He discovered a new heap structure called soft heap
to implement the priority queue, and reduced the time com-
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plexity to O(Ea(E, V)), where « is the inverse of the Acker-
mann function. March et al. [35] proposed a dual-tree Boru-
vka on a kd-tree and a dual-tree Boruvka on a cover-tree for
constructing MST, it is claimed that the time complexity is
O(Nlog Na(N)) =~ O(Nlog N).

Although a lot of work has been done on the exact MST prob-
lem, distributed MST and parallel MST algorithms have also
been studied in the literature. The first algorithm of distribut-
ed MST problem was presented by Gallager et al. [23]. The
algorithm supposes that a processor exits at each vertex and
knows initially only the weights of the adjacent edges. It runs
in O(Vlog V) time. Several faster O(V) time distributed MST
algorithms have been proposed by Awerbuch [3] and Abdel-
Wahab et al. [2], respectively. Peleg and Rubinovich [37] pre-
sented a lower bound of time complexity O(D + VV/logV)
for constructing distributed MST on a network, where D =
Q(log V) is the diameter of the network. Moreover, Khan et
al. [29] proposed a distributed approximate algorithm of MST
on networks and its complexity is O(D + L), where L is the local
shortest path diameter.

Chong et al. [12] presented a parallel algorithm to construc-
t an MST in O(log V) time by employing a linear number of
processors. Pettie and Ramachandran [38] proposed a random-
ized parallel algorithm to compute a minimum spanning forest,
which also runs in logarithmic time. Bader and Cong [4] pre-
sented four parallel algorithms, of which three algorithms are
variants of Bordvka. For different graphs, their algorithms can
find MSTs 4 to 6 times faster using 8 processors than the se-
quential algorithms.

Several approximate MST algorithms have been proposed.
The algorithms in [44], [7] are composed of two steps. In the
first step, a sparse graph is extracted from the complete graph,
and then in the second step, an exact MST algorithm is applied
on the extracted graph. In these algorithms, different methods
for extracting sparse graphs have been employed. For exam-
ple, Vaidya [44] used a group of grids to partition a dataset into
cubical boxes of identical size. For each box, a representative
point was determined. Any two representatives of two cubical
boxes were connected if the corresponding edge length was be-
tween two given thresholds. Within a cubical box, points were
connected to the representative. Callahan and Kosaraju [7] ap-
plied well-separated pair decomposition of the dataset to extract
a sparse graph.

Recent work for finding an approximate MST and applying it
to clustering can be found in [45, 34]. Wang et al. [45] employ
divide-and-conquer scheme to construct an approximate MST.
However, their goal was not to find the MST but merely to de-
tect the long edges of the MST at an early stage for clustering.
Initially, data points are randomly stored in a list, and each data
point is connected to its predecessor (or successor), and a span-
ning tree is achieved. At the same time, the weight of each edge
from a data point to its predecessor (or successor) are assigned,
and a spanning tree is formed by the randomly stored sequence
of data points. To optimize the spanning tree, the dataset is di-
vided into a collection of subsets with a divisive hierarchical
clustering algorithm (DHCA). The distance between any pair
of data points within a subset can be found by a brute force

nearest neighbor search, and with the distances, the spanning
tree is updated. The algorithm is performed repeatedly and the
spanning tree is optimized further after each run.

Lai et al. [34] proposed an approximate MST algorithm
based on Hilbert curve for clustering. It is a two-phase al-
gorithm: the first phase is to construct an approximate MST
of a given dataset with Hilbert curve, and the second phase is
to partition the dataset into subsets by measuring the densities
of points along the approximate MST with a specified density
threshold. The process of constructing an approximate MST
is iterative followed by a stepwise refinement. The number of
iterations is (d + 1), where d is the number of dimensions of
the dataset. In each iteration, an approximate MST is generat-
ed similarly as in Prim’s algorithm. The main difference is that
Lai’s method maintains a min-priority queue by considering the
approximate MST produced in last iteration and the neighbors
of visited points determined by a Hilbert sorted linear list, while
Prim’s algorithm by considering all the neighbors of a visited
points. However, the accuracy of Lai’s method depends on the
order of Hilbert Curve and the number of neighbors of a visited
point in the linear list.

In general, the computational cost of building an MST is the
bottleneck of the efficiency for a practical problem that involves
an MST of a large dataset, since so far the computational com-
plexity of the best exact MST algorithm has been O(Ea(E, V)).
This complexity roughly equals O(N?) for a complete graph of
a dataset, in which V = N and E = N X (N — 1)/2. In this paper,
we present a fast approximat MST algorithm (FMST). It con-
sists of two stages: divide-and-conquer and refinement. In the
divide-and-conquer stage, the dataset is partitioned by K-means
into VN clusters, and the exact MSTs of all the clusters are con-
structed and merged. In the refinement stage, boundaries of the
clusters are considered. It runs in O(N'?) time when Prim’s
or Kruskal’s algorithm is used in its divide-and-conquer stage,
and does not reduce the quality compared to an exact MST for
a practical use.

The rest of this paper is organized as follows. In Section 2,
the new fast divide-and-conquer MST algorithm is presented.
Time complexity of the proposed method is analyzed in Sec-
tion 3, and experiments on the efficiency and accuracy of the
proposed algorithm are given in Section 4. Finally, we con-
clude this work in Section 5.

2. Proposed method

2.1. Overview of the proposed method

To improve the efficiency of solutions for problems such as
constructing MST or K nearest neighbors (KNN), an intuitive
way is to reduce the unnecessary comparisons. For example,
to find the K nearest neighbor of a point in a dataset, it is not
necessary to search the entire dataset but a small local portion.
In the same way, to find the MST with Kruskal’s algorithm in a
complete graph, it is not necessary to sort all N(N — 1)/2 edges
in the graph but to find (1 +a)N edges with least weights, where
(N -3)/2 > a > —1/N. With this observation in mind, we em-
ploy a divide-and-conquer technique to achieve improvement.



Divide-and-conquer stage:

(a) Data set

(b) Partitions by K-means

(c) MSTs of the subsets (d) Connected MSTs

Refinement stage:

(e) Partitions on borders (f) MSTs of the subsets

(g) Connected MSTs (h) Approximate MST

e Lk

Figure 1: The scheme of the proposed fast MST algorithm. (a) A given dataset. (b) The dataset is partitioned into VN subsets by K-means. The dashed lines form
the corresponding Voronoi graph with respect to cluster centers (the big grey circles). (¢) An exact MST algorithm is applied to each subset. (d) MSTs of the subsets
are connected. (e) The dataset is partitioned again so that the neighboring data points in different subsets of (b) are partitioned into identical partitions. (f) Exact
MST algorithm is used again on the secondary partition. (g) MSTs of the subsets are connected. (h) A more accurate approximate MST is produced by merging the

two approximate MSTs in (d) and (g) respectively.

In general, a divide-and-conquer paradigm consists of three
steps according to [14]:

1. Divide step. The problem is divided into a collection of sub-
problems that are similar to the original problem but smaller
in size.

Conquer step. The subproblems are solved separately, and
corresponding subresults are achieved.

Combine step. The subresults are combined to form the final

result of the problem.

Following this divide-and-conquer paradigm, we construct a
two-stage fast approximate MST method as follows:

1. Divide-and-conquer stage

1.1. Divide step. For a given dataset of N data points, K-
means is applied to partition the dataset into VN sub-
sets.
Conquer step. An exact MST algorithm such as
Kruskal’s or Prim’s algorithm is employed to construct
an exact MST for each subset.
Combine step. VN MSTs are combined using a con-
nection criterion to form a primary approximate MST.
Refinement stage
2.1. Partitions focused on borders of the clusters produced
in the previous stage are constructed.
Secondary approximate MST is constructed with the
conquer and combine steps in the previous stage.
The two approximate MSTs are merged and a new
more accurate is obtained by using an exact MST al-
gorithm.

1.2.

1.3.

2.2.

2.3.

The process is illustrated in Fig. 1. In the first stage, an
approximate MST is produced. However, its accuracy is in-
sufficient compared to the corresponding exact MST, because
may of the data points that are located in the boundaries of the
subsets are connected incorrectly in the MST. This is because
an exact MST algorithm is applied only to data points within a
subset but not to those crossing the boundaries of the subsets.
To compensate the drawback, a refinement stage is designed.

In the refinement stage, we re-partition the dataset so that
the neighboring data points from different subsets will belong
to the same partition. After this, the two approximate MSTs
are merged, and the number of edges in the combined graph
is at most 2(N — 1). The final MST is built from this graph
by an exact MST algorithm. The details of the method will be
described in the following subsections.

2.2. Partition dataset with K-means

In general, a data point in an MST is connected to its nearest
neighbors, which implies that the connections have a locality
property. In the divide step, it is therefore expected that the
subsets preserve this locality. Since K-means can partition local
neighboring data points into the same group, we employ K-
means to partition the dataset.

K-means requires to know the number of clusters and to de-
termine the initial center points, we will discuss these two prob-
lems as follows.

2.2.1. The number of clusters K
In our method, the number of clusters X is set to VN. There
are two reasons for this determination. One is that the maxi-



mum number of clusters in some clustering algorithms is often
set to VN as a rule of thumb [5], [41]. That means if a dataset
is partitioned into VN subsets, each subset will consist of data
points coming from an identical genuine cluster, which satisfies
the requirement of the locality property when constructing an
MST.

The other reason is that the overall time complexity of the
proposed approximate MST algorithm is minimized if K is set
to VN, assuming that the data points are equally divided into
the clusters. This choice will be theoretically and experimen-
tally studied in more detail in Section 3 and 4, respectively.

2.2.2. Initialization of K-means

Clustering results of K-means are sensitive to the initial clus-
ter centers. A bad selection of the initial cluster centers may
have negative effects on the time complexity and accuracy of
the proposed method. However, we still randomly select the
initial centers due to the following considerations.

First, although a random selection may lead to a skewed par-
tition, such as linear partition, the time complexity of the pro-
posed method is still O(N 13), see Theorem 2 in Section 4. Sec-
ond, in the proposed method, a refinement stage is designed to
cope with the data points in the cluster boundaries. This pro-
cess makes the accuracy relatively stable, and random selection
of initial cluster centers is reasonable.

2.2.3. Divide and conquer algorithm

After the dataset is divided into VN subsets by K-means,
the MSTs of the subsets are constructed with an exact MST
algorithm, such as Prim’s or Kruskal’s algorithm. This corre-
sponds to the conquer step in the divide and conquer scheme, it
is trivial and illustrated in Fig. 1(c). The algorithm of K-means
based divide and conquer is described as follows:

Divide and Conquer Using K-means (DAC)
Input: Dataset X
Output: MSTs of the subsets partitioned from X

Step 1. Set the number of subsets K = VN.

Step 2. Apply K-means to X to achieve K subsets S =
{S1,...,S k), where the initial centers are randomly s-
elected.

Step 3. Apply an exact MST algorithm to each subsetin S, and
an MST of §;, denoted by MST(S;), is obtained, where
1<i<K.

The next step is to combine the MSTs of the K subsets into a
whole MST.

2.3. Combine MSTs of the K subsets

An intuitive solution to combine MSTs is brute force: for the
MST of a cluster, the shortest edge between it and MSTs of
other clusters is computed. But this solution is time consum-
ing, and therefore a fast MST-based effective solution is also
presented. The two solutions are discussed below.

2.3.1. Brute force solution

Suppose we combine a subset S; with another subset, where
1 << K. Letx;, x;bedatapoints and x; € S, x; € X—S,. The
edge that connects S, to another subset can be found by brute
force:

e = arg min p(e;) €))]
e€E;

where E; = {e(x;, xj)lx; € S; A xj € X — 8§}, e(x;, x;) is the
edge between vertices x; and x;, p(e;) is the weight of edge e;.
The whole MST is obtained by iteratively adding e into MSTs
and finding the new connecting edge between the merged subset
and the remaining part. This process is similar to the single-link
clustering [21].

However, the computational cost of the brute force method is
high. Suppose that each subset has an equal size of N/K, and
K is an even number. The running time 7. of combining the K
trees into the whole MST is:

N (K-1)XxN 2xN (K-2)XN
— X + X

T.=2x{
K K K K
+“.+(K/2)><N (K/2)><N}
K K

—(K_2 + 5 — l) X ]iz

6 4 6 K

=O(KN?)

=O(N*”) )

Consequently, a more efficient combining method is needed.

2.3.2. MST-based solution

The efficiency of combining process can be improved in t-
wo aspects. Firstly, in each combining iteration only one pair
of neighboring subsets is considered for finding the connecting
edge. Intuitively, it is not necessary to take into account subsets
that are far from each other, because no edge in an exact MST
connects the subsets. This consideration will save some compu-
tations. Secondly, to determine the connecting edge of a pair of
neighboring subsets, the data points in the two subsets will be
scanned only once. The implementation of the two techniques
is discussed in detail.

Determine the neighboring subsets. As the aforementioned
brute force solution runs in the same way as single-link clus-
tering [24] and all the information required by single-link can
be provided by the corresponding MST of the same data, we
make use of the MST to determine the neighboring subsets and
improve the efficiency of the combination process.

If each subset has one representative, an MST of the rep-
resentatives of the K subsets can roughly indicate which pairs
of subsets could be connected to. For simplicity, the center of a
subset is selected as its representative. After an MST of the cen-
ters (MS T.,) is constructed, each pair of subsets whose center-
s are connected by an edge of MST,., is combined. Although
not all of the neighboring subsets can be discovered by MS T.,,
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Figure 2: The combine step of MSTs of the proposed algorithm. In (a), centers of the partitions (c1, ..., c8) are calculated. In (b), a MST of the centers, MS Ty, is
constructed with an exact MST algorithm. In (c), each pair of subsets whose centers are neighbors with respect to MS T, in (b) is connected.

Figure 3: Detecting the connecting edge between S4 and S».

the dedicated refinement stage could remedy this drawback into
some extent.

The centers of the subsets in Fig. 1(c) are illustrated as the
solid points in Fig. 2(a), and MS T,, is composed of the dashed
edges in Fig. 2(b).

Determine the connecting edges. For combining MSTs of
a pair of neighboring subsets, an intuitive way is to find the
shortest edge between the two subsets and connect the MSTs by
this edge. Under the condition of average partition, finding the
shortest edge between two subsets takes N steps, and therefore,
the time complexity of the whole connection process is O(N'-).
Although this does not increase the total time complexity of the
proposed method, the absolute running time is still somewhat
high.

To make the connecting process faster, a novel way to detect
the connecting edges is illustrated in Fig. 3. Here, ¢; and ¢4
are the centers of the subset S, and S4, respectively. Suppose
a is the nearest point to ¢4 from S,, and b is the nearest point
to ¢, from S4. The edge e(a, b) is selected as the connecting
edge between S, and S4. The computational cost of this is
low. Although the edges found are not always optimal, it can
be compensated by the refinement stage.

Consequently, the algorithm of combining MSTs of subsets
is summarized as follows:

Combine Algorithm (CA)

Subset MST edges on border Exact MST edges

Figure 4: The data points on the subset boundaries are prone to be misconnect-
ed.

Input: MSTs of the
MST(S1), - ,MST(Sk).
Output: Approximate MST of X, denoted by MS T, and MST
of the centers of S, - -+ , S g, denoted by MS T.;

subsets partitioned from X:

Step 1. Compute the center c; of subset S;, 1 <i < K.
Step 2. Construct an MST, MS T, of ¢, -+ ,ck by an exact
MST algorithm.

Step 3. For each pair of subsets (S, S ;) that their centers ¢; and
c; are connected by an edge e € MST,,, discover the
edge by DCE that connects MST(S;) and MST(S ;).

Step 4. Add all the connecting edges discovered in Step 3 to
MST(Sy), - ,MST(Sg), and MS T, is achieved.

Detect the Connecting Edge (DCE)
Input: A pair of subsets to be connected, (S, S ;);
Output: The edge connecting MST(S;) and MST(S j);

Step 1. Find the data point a € §; such that the distance be-
tween a and the center of § ; is minimized.

Step 2. Find the data point b € §; such that the distance be-
tween b and the center of S; is minimized.

Step 3. Select edge e(a, b) as the connecting edge.
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Figure 5: Boundary-based partition. In (a), the black solid points, my, - - ,m7,
are the midpoints of the edges of MST,.,. In (b), each data point is assigned
to its nearest midpoint, and the dataset is partitioned by the midpoints. The
corresponding Voronoi graph is with respect to the midpoints.

2.4. Refine the MST focusing on boundaries

However, the accuracy of the approximate MST achieved so
far is far from the exact MST. The reason is that, when the MST
of a subset is built, the data points that lie in the boundary of
the subset are considered only within the subset, but not across
the boundaries. In Fig. 4, subsets S¢ and S3 have a common
boundary, and their MSTs are constructed independently. In
the MST of S 3, point a and b are connected to each other. But
in the exact MST they are connected to the points in S rather
than in §3. Therefore, data points located on the boundaries
are prone to be misconnected. Based on this observation, the
refinement stage is designed.

2.4.1. Partition dataset focusing on boundaries

In this step, another complimentary partition is constructed
so that the clusters would locate at the boundary areas of the
previous K-means partition. We first calculate the midpoints
of each edge of MST,.,. These midpoints generally lie near
the boundaries, and are therefore employed as the initial clus-
ter centers. The dataset is then partitioned by K-means. The
partition process of this stage is different from that of the first
stage. In this stage, the initial cluster centers are specified and
the maximum number of iterations is set to 1 for the purpose of
focusing on the boundaries. Since MS T, has VN -1 edges,
there will be VN — 1 clusters in this stage. The process is illus-
trated in Fig. 5.

In Fig. 5(a), the midpoints of edges of MST,., are comput-
ed as my,...,m7. In Fig. 5(b), the dataset is partitioned with
respect to these 7 midpoints.

2.4.2. Build secondary approximate MST

After the dataset has been re-partitioned, the conquer and
combine steps are similar to those used for producing the
primary approximate MST. The algorithm is summarized as
follows:

Secondary Approximate MST (SAM)
Input: MST of the subset centers MS T, dataset X;
Output: Approximate MST of X, MS T»;

Step 1. Compute the midpoint m; of an edge e; € MST,.p,
where 1 <i< K- 1.

Step 2. Partition dataset X into K — 1 subsets, S7,---,S%_|,
by assigning each point to its nearest point from
my, - Mg_1.

Step 3. Build MSTs, MST(S"), - ,MST(S%_,), with an ex-
act MST algorithm.

Step 4. Combine the K — 1 MSTs with CA to produce an ap-
proximate MST MS 7.

2.5. Combine two rounds of approximate MSTs

So far we have two approximate MSTs on dataset X, MST)
and MST,. To produce the final approximate MST, we first
merge the two approximate MSTs to produce a graph, which
has no more than 2(N — 1) edges, and then apply an exact MST
algorithm on this graph to achieve the final approximate MST
of X.

Finally, the overall algorithm of proposed method is summa-
rized as follows:

Fast MST (FMST)
Input: Dataset X;
Output: Approximate MST of X;

Step 1. Apply DAC on X to produce the K MSTs.

Step 2. Apply CA on the K MSTs to produce the first approx-
imate MST, MST,, and the MST of subset centers,
MST .

Step 3. Apply SAM on MST,., and X to generate the sec-
ondary approximate MST, MS T5.

Step 4. Merge MST; and MS T, into a graph G.

Step 5. Apply an exact MST algorithm on G, and the final ap-
proximate MST is achieved.

3. Complexity and accuracy analysis

3.1. Complexity analysis

The overall time complexity of the proposed algorithm
FMST, Tryst , can be evaluated as:

Trust = Tpac + Tca + Tsam + Tcom 3)

where Tpac, Tca and T4y are the time complexities of the al-
gorithms DAC, CA and SAM respectively, Tcoy is the running
time of an exact MST algorithm on the combination of MST)
and MST5.

DAC consists of two operations: partitioning the dataset X
with K-means and constructing the MSTs of the subsets with
an exact MST algorithm. Now we consider the time complexity
of DAC by the following theorems.



Theorem 1. Suppose a dataset with N points is equally parti-
tioned into K subsets by K-means, and an MST of each subset
is produced by an exact algorithm. If the total running time of
partitioning the dataset and constructing MSTs of the K subsets
is T, then argming T = VN.

Proof. Suppose the dataset is partitioned into K clusters equally
so that the number of data points in each cluster equals to N/K.
The time complexity of partitioning the dataset and construct-
ing the MSTs of K subsets are T = NKId and T, = K(N/K)?,
respectively, where [ is the number of iterations of K-means
and d is the dimension of the dataset. The total complexity is
T = T,+T, = NKId+N?/K. To find the optimal K correspond-
ing to the minimum 7', we solve 0T /0K = NId — N%/K? =0
which results in K = +/N/Id. Therefore, K = VN and
T = O(N'?) under the assumption that / << N and d < N. Be-
cause convergence of K-means is not necessary in our method,
we set I to 20 in all of our experiments. For very high dimen-
sional datasets, d < N may not hold, but for modern large high
dimensional datasets may not. The situation for high dimen-
sional datasets has been discussed in Section 4.5. O

Although the above theorem holds under the ideal condition
of average partition, it can be supported by more evidences
when the condition is not satisfied, for example, linear partition
and multinomial partition.

Theorem 2. Suppose a dataset is linearly partitioned into K
subsets. If K = VN, then the time complexity is O(N'?).

Proof. Let ny,ny,--- ,ng be the numbers of data points of the
K clusters. The K numbers form an arithmetic series, namely,
n; —n;_1 = ¢, where n; = 0 and c is a constant. The arithmetic
series sums up to sum = K = ng/2 = N, and thus, we have
ng = 2N/K and ¢ = 2N/[K(K — 1)]. The time complexity of
constructing MSTs of the subsets is then:

T2 = I’l12+}’122+"'+n](_12
= A+ Q)+ + (K- De]

2, (K- DKQK - 1)

6
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If K = VN, then T, = N'5 + 2 X" = O(N'5). Therefore,
T =T, +T> = O(N'9) holds. O

Theorem 3. Suppose a dataset is partitioned into K subsets,
and the sizes of the K subsets follow a multinomial distribution.
If K = VN, then the time complexity is O(N').

Proof. Let ny,ny,- -+ ,ng be the numbers of data points of the
K clusters. Suppose the data points are randomly assigned into
the K clusters, and ny, ny, - - - ,ng ~ Multinomial(N, %, cee, %).
We have E(n;) = N/K and Var(n;) = (N/K) * (1 — 1/K). Since

Figure 6: Merge of two Voronoi graphs. Voronoi graph in solid line is cor-
responding to the first partition, and that in dashed line corresponding to the
secondary partition. Only the first partition is illustrated.

E(m?) = [Em))* + Var(n) = N*/K* + N = (K — 1)/K?, the
expected complexity of constructing MSTs is T, = Zi’il n,2 =
K+ E@n?) = N*/K + N * (K - 1)/K, if K = VN, then T, =

O(N'd). Therefore T = T} + T» = O(N'®) holds. -

According to the above theorems, we have Tpsc = O(N L3y,
Proofs are given in Appendix.

In CA, the time complexity of computing the mean points of
the subsets is O(NV), as one scan of the dataset is enough. Con-
structing MST of the K mean points by an exact MST algorithm
takes only O(N) time. In Step 3, the number of subset pairs is
K — 1, and for each pair, determining the connecting edge by
DCE requires one scan on the two subsets, respectively. Thus,
the time complexity of Step 3 is O2N x (K — 1)/K), which e-
quals to O(N). The total computational cost of CA is therefore
O(N).

In SAM, Step 1 computes K — 1 midpoints, which takes
O(N®3) time. Step 2 takes O(N x (K — 1)) to partition the
dataset. The running time of Step 3 is O(K—1)xN?/(K—1)?) =
O(N?/(K—-1)). Step 4 is to call CA and has the time complexity
of O(N). Therefore, the time complexity of SAM is O(N 15y,

The number of edges in the graph that is formed by combin-
ing MST; and MST, is at most 2(N — 1). The time complex-
ity of applying an exact MST algorithm to this graph is only
OQ2(N - 1)log N). Thus, Tcoy = O(N log N).

To sum up, the time complexity of the proposed fast algorith-
mis O(N').

3.2. Accuracy analysis

Most inaccuracies originate from points that are on the
boundary regions of the partitions of K-means. The secondary
partition is generated in order to capture these problematic
points into the same clusters. Inaccuracies after the refinement
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Figure 7: The collinear Voronoi graph case.

stage can therefore originate only if two points that should be
connected by the exact MST, but are partitioned into different
clusters both in the primary and in the secondary partition, and
neither of the two conquer stages will be able to connect these
points. In Fig. 6, few such pair of points are shown that belong
to different clusters in both partitions. For example, point a and
b belong to different clusters of the first partition, but are in the
same cluster of the second one.

Since partitions generated by K-means form a Voronoi
graph [16], the analysis of the inaccuracy can be related to de-
gree of which the secondary Voronoi edges overlap that of the
Voronoi edges of the primary partition. Let |E| denote the num-
ber of edges of a Voronoi graph, in two-dimensional space, |E|
is bounded by K — 1 < |E| < 3K — 6, where K is the number of
clusters (the Voronoi regions). In higher dimensional case it is
more difficult to analysis.

A favorable case is demonstrated in Fig. 7. The first row is a
dataset which consists of 400 points and is randomly distribut-
ed. In the second row, the dataset is partitioned into 6 clusters
by K-means, and a collinear Voronoi graph is achieved. In the
third row, the secondary partition has 5 clusters, each of which
completely cover one boundary region in the second row. An
exact MST is produced in the last row.

4. Experiments

In this section, experimental results are presented to illustrate
the efficiency and the accuracy of the proposed fast approxi-
mate MST algorithm. The accuracy of FMST is tested with
both synthetic datasets and real applications. As a framework,
the proposed algorithm can be incorporated with any exact or
even approximate MST algorithm, of which the running time is
definitely reduced. Here we only take into account Kruskal’s
and Prim’s algorithms because of their popular. As in Kruskal’s
algorithm, all the edges need to be sorted into nondecreasing
order, it is difficult to apply the algorithm to large datasets. Fur-
thermore, Prim’s algorithm may employ Fibonacci heap to re-

duce the running time, we therefore use it rather than Kruskal’s
algorithm in our experiments as the exact MST algorithm.

Experiments were conducted on a PC with an Intel Core2
2.4GHz CPU and 4GB memory running Windows 7. The al-
gorithm for testing the running time is implemented in C++,
while the other tests are performed in Matlab (R2009b).

4.1. Running time
4.1.1. Running time on different datasets

We first perform experiments on four typical datasets with
different size and dimensions for testing the running time. The
four datasets are described as in Table 1.

Table 1: The description of four datasets

t4.8k MNIST ConfLongDemo MiniBooNE
Data size 8,000 10,000 164,860 130,065
Dimension 2 784 3 50

Dataset t4.8k is designed for testing CHAMELEON cluster-
ing algorithm [28] and available from [54]. MNIST is a dataset
of 10 handwriting digits and contains 60,000 training pattern-
s and 10,000 test patterns of 784 dimensions. We just use the
test set, which can be found in [55]. The last two sets are from
UCI machine learning repository [56]. ConfLongDemo has 8
attributes, of which only 3 numerical attributes are used here.

From each dataset, subsets with different size are randomly
selected to test the running time as a function of data size. The
subset sizes of the first two datasets gradually increase with step
20, the third with step 100 and the last with step 1000.

In general, the running time of constructing an MST of a
dataset depends on the size of the dataset but not on the under-
lying structure in the dataset. In our FMST method, K-means is
employed to partition a dataset, and the size of subsets depends
on initialization of K-means and distributions of the dataset-
s, which leads to different time costs. We therefore perform
FMST ten times on each dataset for alleviating the effects of
the random initialization of K-means.

The running time of FMST and Prim’s algorithm on the four
datasets is illustrated in the first row of Fig. 8. From the re-
sults, we can see that FMST is computationally more efficient
than Prim’s algorithm, especially for the large datasets Con-
fLongDemo and MiniBooNE. The efficiency for MiniBooNE
shown in the rightmost of the second and third row in Fig. 8§,
however, deteriorates because of the high dimensionality.

Although the complexity analysis indicates that the time
complexity of proposed FMST is O(N'?), the actual running
time can be different. We analyze the actual processing time by
fitting an exponential function T = aN®, where T is the running
time and N is the number of data points. The the results are
shown in Table 2.

4.1.2. Running time with different Ks
We have discussed the number of clusters K and set it to
VN in Section 2.2.1, and have also presented some supporting
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Figure 8: The results of the test on the four datasets. The first row shows the running time of t4.8k, ConfLongDemo, MNIST and MiniBooNE, respectively. The
second row shows corresponding edge error rates. The third show shows corresponding weight error rates.

Equivalence Property. Let T and T’ be the two different
MSTs of a dataset. For any edge e¢ € (T \ T’), there must exist
b another edge ¢’ € (T” \ T) such that (T’ \ {¢’}) U {e} is also an
MST. We call e and ¢’ a pair of equivalent edges.

Table 2: The exponent bs obtained by fitting T' = aN”

t4.8k MNIST ConfLongDemo MiniBooNE

FMST 1.57 1.62 1.54 1.44 Proof. The equivalency property can be operationally restated
Prim's Alg. 1.88 2.0l 1.99 2.00 as: Let T and 7’ be the two different MSTs of a dataset, for any
edge e € (T \ T’), there must exist another edge ¢’ € (T’ \ T)
such that w(e) = w(e’) and e connects T and T, where T and
T’ are the two subtrees generated by removing ¢’ from 77, w(e)
theorems in Section 3. In practical applications, however, the  is the weight of e.

value is slightly different. Some experiments are performed on Let G be the cycle formed by {e} U T’, we have:

dataset t4.8k and ConfLongDemo to study the effect of different

Ks on running time. The experimental results are illustrated in Ve' € (G \ (e} \ (T NT")),w(e) = w(e) ®)]
Fig. 9, from which we find that if K is set to 38 for t4.8k and

120 for ConfLongDemo, the running time will be minimum. Otherwise, an edge in G \ {e} \ (T' N T”) should be replaced
But according to the previous analysis, K would be set to VN, by e when constructing 7.

namely 89 and 406 for the two datasets, respectively. Therefore, Furthermore, the following claim holds: there must exist at
K is practically set to ‘/TN where C > 1. For dataset t4.8k and least f)ne edge ¢’ € (G\{e} \(TOT’)?’ such that the Cyd? fqrmed
ConfLongDemo, C is approximate 3. by {e’} U T contains e. We prove this claim by contradiction.

Assume that all the cycles G, formed by {¢/;} U T do not con-
tain e, where e;. € (G\{e}\(TNT"), 1 < j<|G\{e}\(TNT")|. Let
Gunion = (G1\{e1HU---U(G)\{e}}), where [ = |G\ {e}\(TNT")|.
4.2.1. Measures by edge error rate and weight error rate G can be expressed as {e} U {e{} U --- U {e]} U Ggeira» Where

The accuracy is another important performance of FMST. Gieita C (T NT"). As G is a cycle, Gyuion U {e} U Ggepre must be
Two accuracy rates are defined: edge error rate ER,4, and also a cycle, this is contradict because Gpion C T, Gaera € T
weight error rate ER,ign. Before ER,qq, is defined, we present and e € T. Therefore the claim is correct.

a notation of equivalent edge of an MST, because the MST may As a result, there must exist at least one edge ¢’ € (G \ {e} \

not be unique. The equivalence property is described as: (T N'T7)) such that w(e’) > w(e).

4.2. Accuracy on synthetic datasets
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right on ConfLongDemo.

Combine this result with (5), we have the following: for e €
(T \'T"), there must exist an edge e’ € (T’ \ T) such that w(e) =
w(e’). Furthermore, as e and ¢’ are in the same cycle G, (T’ \
{e’}) U {e} is still an MST. O

According to the equivalency property, we define a criterion
to determine whether an edge belongs to an MST:

Let T be an MST and e be an edge of a graph. If there exists
an edge ¢’ € T such that |e| = |¢’| and e connects T and 75,
where T and T, are the two subtrees achieved by removing ¢’
from T, then e is a correct edge, i.e., belongs to an MST.

Suppose E,,,, is the set of the correct edges in an approxi-
mate MST, the edge error rate ER,,, is defined as:

N - |Eappr| -1
N-1
The second measure is defined as the differ of the sum of the

weights in FMST and the exact MST, which is called weight
error rate ER,eion::

ERedge = (6)

Wa ppr — Wexacl

ER\eight =
ght W
exact

N
where W, y4; and W, are the sum of weights of the exact MST
and FMST, respectively.

The edge error rates and weight error rates of the four dataset-
s are shown in the third row of Fig. 8. We can see that both the
edge error rate and the weight error rate decrease with the in-
crease of the data size. For datasets with high dimension, the
edge error rates are bigger, for example, the maximum edge
error rates of MNIST are approximate to 18.5%, while those
of t4.8k and ConfLongDemo less than 3.2%. In contrast, the
weight error rates decrease when the dimensionality increas-
es. For instance, the weight error rates of MNIST are less than
3.9%. This is the phenomenon of the curse of dimensionality.

The high dimensional case will be discussed further in Section
4.5.

10

29

28 —o— k=0.15"N

—=— k=0.10"N

27 —— k=0.05*N

Edge error rate (%)

2000 3000 4000 5000 6000 7000 8000

22
1000

Data size

Figure 10: The edge error rate of Lai’s method on t4.8k.

4.2.2. Accuracy with different Ks

Globally, the edge and weight error rates increase with K.
This is because the bigger the K, the more the split boundaries,
from which error edges come. But when K is small, the error
rates increases slowly with K. In Fig. 9, we can see that the
weight error rates are still low when K is set to approximate
VN

3 -

4.2.3. Comparison to Lai’s method

The purpose of the method in [45] is to detect the clusters
efficiently by removing the longer edges of the MST at an ear-
ly stage, and no approximate MST is produced. The method
in [34] is designed for the same purpose, an approximate MST
is generated in the first stage. Therefore, we compare the pro-
posed FMST with the method in [34].

The accuracy of the approximate MST produced in [34] is
relevant to a parameter: the number of the nearest neighbors
of a data point. This parameter is used to update the priority
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Figure 11: Clustering results for t4.8k (above) and t8.8k (below).

queue when an algorithm like Prim’s is employed to construct
an MST. In general, the larger the number is, the more accurate
the approximate MST is. However, this parameter is also rele-
vant to the computational cost of the approximate MST, which
is O(dN(b + k + klog N)), where k is the number of nearest
neighbors and b is the number bits of a Hilbert number. Here
we only focus on the accuracy of the the method, and the num-
ber of nearest neighbors is set to N * 0.05, N = 0.10, N * 0.15,
respectively. The accuracy is tested on t4k.8k, and the result is
shown in Fig.10. From the result, the edge error rates are more
than 22%, and much higher than that of FMST, even if the num-
ber of nearest neighbors is set to N = 0.15, which leads to the
lost of the computational efficiency of the method.

4.3. Accuracy on clustering

In this subsection, the accuracy of FMST is tested in
clustering application. Path-based clustering employs min-
imax distance metric to measure the dissimilarities of data
points [17] [18]. For a pair of data points x;, x;, the minimax
distance D;; is defined as:

Di j= IIllIl{ (8)

ij

max
(XpsXps1 )EP:.‘].

d(xp’ Xp+l )}
where P{Fj denotes all possible paths between x; and x; and k
is an index to enumerate the paths, and d(x, x1) is the Eu-
clidean distance between x, and x,..

The minimax distance can be computed by all-pair shortest
path algorithm, such as Floyd-Warshall algorithm. However,
this algorithm runs in time O(N3). An MST is be used to com-
pute the minimax distance more efficiently in [31]. To make the
path-based clustering robust to outliers, Chang and Yeung [8]
improved minimax distance and incorporated it into spectral
clustering. We test FMST within this method on two synthetic
datasets (t4.8k and t8.8k) from [28] and one color image dataset
from [8]. For segmenting the color images, the color and spatial
features are used. Each image has 154,401 (321 x 481) pixels
and is divided into 1855 (35 x 53) overlapping patches of size
13 x 13 pixels each. One patch has five features: average RGB

11

Original image

Exact MST based FMST based
segmentation segmentation

Figure 12: Robust path-based clustering of images using exact MST and FMST.
In each row, the leftmost picture is original image, the rightmost is FMST based
clustering, while the middle is exact MST based clustering.

colors and two coordinates of the patch in the image. The coor-
dinate features are less important than color features, therefore,
a weight of 0.5 is assigned to coordinate features and 1 to color
features.

For computing minimax distances, exact MST and FMST are
used respectively. In Fig. 11, the clustering results of t4.4k
and t8.8k are shown. Robust path-based method with FMST
has similar performance to that with exact MST. Moreover,
CHAMELEON performs well on both datasets, while robust
path-based method also performs well except a strange phe-
nomenon: a small number of data points (usually outliers) may
be partitioned into a cluster far away.

In Fig. 12, robust path-based method with MST and FMST
are applied to four images respectively. From the figure, we can
observe that the segmentation results of FMST based clustering
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are similar to those of exact MST based clustering.

4.4. Accuracy on manifold learning

MST has been used for manifold learning [48, 49]. For a
kNN based neighborhood graph, an improperly selected k may
lead to a disconnected graph, and degrade the performance of
manifold learning. To address this problem, Yang in [48] used
MSTs to construct a k-edge connected neighborhood graph. We
implement the method of [48], with exact MST and FMST re-
spectively, to reduce the dimensionality of a manifold.

The FMST based and the exact MST based dimensionali-
ty reduction are performed on dataset Swiss-roll, which has
20,000 data points. In experiments, we select the first 10,000
data points because of the memory requirement, and set k = 3.
The accuracy of FMST based dimensionality reduction is com-
pared with that of a exact MST based in Fig. 13. The intrinsic
dimensionality of Swiss-roll can be detected by the “elbow”
of the curves in (b) and (d). Obviously, the MST graph based
method and the FMST graph based method have almost identi-
cal residual variance, and both indicate the intrinsic dimension-
ality is 2. Furthermore, Fig. 13 (a) and (c) show that the two
methods have similar two-dimensional embedding results.

4.5. Discussion on high dimensional datasets

As described in the experiments, the performances of both
computation and accuracy of the proposed method are reduced
when applied to high dimensional datasets. Since the time com-
plexity of FMST is O(N') under the condition of d < N, when
the number of dimensions d is getting big and even approximate
to N, the computational cost will degrade to O(N??). However,
it is still more efficient than corresponding Kruskal’s or Prim’s
algorithm.

The accuracy of FMST is reduced because of the curse
of dimensionality, which includes distance concentration phe-
nomenon and the hubness phenomenon [40]. The distance con-
centration phenomenon is that the distances between all pairs
of data points from a high dimensional dataset are almost e-
qual, in other words, the traditional distance measures become
ineffective, and the distances computed with the measures be-
come unstable [25]. For constructing an MST in terms of these
distances, the results of Kruskal’s or Prim’s algorithm are mean-
ingless, so is the accuracy of the proposed FMST. Furthermore,
hubness phenomenon in a high dimensional dataset, which im-
plies some data points may appear in many more KNN lists
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than other data points, shows the nearest neighbors become al-
so meaningless. Obviously, the hubness affects the construction
of an MST in the same way.

The intuitive way to address the above problems caused by
the curse of dimensionality is to employ dimensionality reduc-
tion methods, such as ISOMAP, LLE, or subspace based meth-
ods for a concrete task in machine learning, such as subspace
based clustering. Similarly, for constructing an MST of a high
dimensional dataset, one may preprocess the dataset with di-
mensionality reduction or subspace based methods for the pur-
pose of getting more meaningful MSTs.

5. Conclusion

In this paper, we have proposed a fast MST algorithm with
a divide and conquer scheme. Under the assumption that the
dataset is partitioned into equal sized subsets in divide step,
the time complexity of the proposed algorithm is theoretical-
ly O(N'?), which holds reasonably well in practice. Accura-
cy of FMST is analyzed experimentally using edge error rate
and weight error rate. Furthermore, two practical applications
are considered, and the experiments indicated that the proposed
FMST can be applied on large datasets.
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