
Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-021-01867-z

A review of motion planning algorithms for intelligent robots

Chengmin Zhou1 · Bingding Huang2 · Pasi Fränti1

Received: 11 February 2021 / Accepted: 12 October 2021
© The Author(s) 2021

Abstract
Principles of typical motion planning algorithms are investigated and analyzed in this paper. These algorithms include
traditional planning algorithms, classical machine learning algorithms, optimal value reinforcement learning, and policy
gradient reinforcement learning. Traditional planning algorithms investigated include graph search algorithms, sampling-
based algorithms, interpolating curve algorithms, and reaction-based algorithms. Classical machine learning algorithms
include multiclass support vector machine, long short-term memory, Monte-Carlo tree search and convolutional neural
network. Optimal value reinforcement learning algorithms include Q learning, deep Q-learning network, double deep Q-
learning network, dueling deep Q-learning network. Policy gradient algorithms include policy gradient method, actor-critic
algorithm, asynchronous advantage actor-critic, advantage actor-critic, deterministic policy gradient, deep deterministic
policy gradient, trust region policy optimization and proximal policy optimization. New general criteria are also introduced
to evaluate the performance and application of motion planning algorithms by analytical comparisons. The convergence
speed and stability of optimal value and policy gradient algorithms are specially analyzed. Future directions are presented
analytically according to principles and analytical comparisons ofmotion planning algorithms. This paper provides researchers
with a clear and comprehensive understanding about advantages, disadvantages, relationships, and future of motion planning
algorithms in robots, and paves ways for better motion planning algorithms in academia, engineering, and manufacturing.

Keywords Motion planning · Path planning · Intelligent robots · Reinforcement learning · Deep learning

Introduction

Intelligent robot, nowadays, is serving people from differ-
ent backgrounds in dense and dynamic shopping malls, train
stations and airports (Bai et al., 2015) like Daxin in Beijing
andChangi in Singapore. Intelligent robots guide pedestrians
to find coffee house, departure gates and exits via accurate
motion planning, and assist pedestrians in luggage delivery.
Another example of intelligent robot is the parcel delivery
robot from e-commercial tech giants like JD in China and
Amazon in US. Researchers in tech giants make it possible
for robots to autonomously navigate themselves and avoid
dynamic and uncertain obstacles via applying motion plan-
ning algorithms to accomplish parcel delivery tasks. In short,
intelligent robot gradually plays a significant role in service

B Pasi Fränti
franti@cs.uef.fi

1 Machine Learning Group, School of Computing, University
of Eastern Finland, Joensuu, Finland

2 College of Big Data and Internet, Shenzhen Technology
University, Shenzhen, China

industry, agricultural production, manufacture industry and
dangerous scenarios like nuclear radiation environment to
replace human manipulation, therefore the risk of injury is
reduced, and efficiency is improved.

Research of motion planning is going through a flour-
ishing period, due to development and popularity of deep
learning (DL) and reinforcement learning (RL) that have
better performance in coping with non-linear problems with
complexity. The complexity of these problems generally
refers to the uncertainty, ambiguity, and incompleteness (Cai
et al., 2017), especially the uncertainty that is the most chal-
lenging issue in robotic motion planning. Many universities,
tech giants, and research groups all over the world there-
fore attachmuch importance, time, and energy on developing
new motion planning techniques by applying DL algorithms
or integrating traditional motion planning algorithms with
advanced machine learning (ML) algorithms. Autonomous
vehicle is an example. Among tech giants, Google initiated
their self-driving project named Waymo in 2016 (Samuel.,
2017). In 2017, Tesla pledged a fully self-driving capable
vehicle (Bilbeisi & Kesse, 2017). Autonomous car from

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-021-01867-z&domain=pdf
http://orcid.org/0000-0002-8297-5949
http://orcid.org/0000-0002-9554-2827

Journal of Intelligent Manufacturing

Fig. 1 Three types of robotic platform. The first and second figures
represent wheel-based chassis (Minguez et al., 2008). The first figure
represents an Ackerman-type (car-like) chassis, while the second figure

represents a differential-wheel chassis. The third and fourth figures rep-
resent four-leg dog “SpotMini” from Boston Dynamic and the robotic
arm (Meyes et al., 2017)

Baidu had been tested successfully in highways of Beijing
in 2017 (Fan et al., 2018), and man-manipulated buses had
already been replaced by autonomous buses from Huawei
in some specific areas of Shenzhen. Other companies in tra-
ditional vehicle manufacturing, like Audi and Toyota, also
have their own experimental autonomous vehicles. Among
research institutes and universities, Navlab (navigation lab)
of Carnegie Mellon, Oxford University and MIT are leading
research institutes. Up to 2020, European countries like Bel-
gium, France, Italy, and UK are planning to operate transport
systems for autonomous vehicles. Twenty-nineUS states had
passed laws in permitting autonomous vehicles.Autonomous
vehicle is therefore expected to widely spread in near future
with improvement of traffic laws.

Motion planning and robotic platform Robots use
motion planning algorithms to plan their trajectories both
at global and local level. Human-like and dog-like robots
fromBostonDynamic and autonomous robotic car fromMIT
(Everett et al., 2018) are good examples. All of them lever-
age motion planning algorithms to enable robots to freely
walk in dense and dynamic scenarios both indoor and out-
door. Chassis of robots has two types of wheels, including
Ackerman-type wheel and differential wheel (Fig. 1).

InAckerman-type robots, two frontwheels steer the robot,
while two rear wheels drive the robot. The Ackerman-type
chassis has two servos. Two front wheels share a same servo,
and it means these two wheels can steer with a same steering
angle or rangeϕ (Fig. 1). Two rearwheels share another servo
to control the speed of robots. The robot using differential
wheel, however, is completely different with Ackerman-type
robot in functions of servo. The chassis with differential
wheels generally has two servos, and eachwheel is controlled
by one servo for forwarding. Steering is realized by giving
different speeds to each wheel. Steering range in Ackerman-
type robots is limited because two front wheels steer with a
same angle ϕ. The Ackerman-type wheel is therefore suit-
able to be used in high-speed outdoor scenarios because of
stability. Robots with differential wheels, however, can steer
in an angle ∈ (0, 2π], and it means robots can change their

yaw solelywithout changing their position (x, y). Robotswith
differential wheels are also sensitive to the speed difference
of two front wheels. The sensitivity depends on the rate of
the gearing steer mechanism that yields the speed reduction
and angular moment rotation. It means it is flexible to move
in low-speed indoor scenarios but very dangerous to move in
high-speed situations if something wrong in the speed con-
trol of two front wheels, because little speed changes of two
front wheels in differential chassis can be exaggerated and
accident follows.

It is popular to use legs in the chassis of robots in recent
years. Typical examples are human-like and animal-like
(dog-like, Fig. 1) robots from Boston Dynamic. The robotic
arm (Fig. 1) is also a popular platform to deploy motion
planning algorithms. In summary, wheels, arms, and legs are
choices of chassis to implement motion planning algorithms
which are widely used in academic and industrial scenar-
ios including commercial autonomous driving, service robot,
surgery robot and industrial arms.

Architecture of robots Classical hierarchical robotic
architecture (Meystel, 1990) in Fig. 2a is composed by three
stages: sense, plan and act (Murphy, 2000). Robots with
this architecture can be successfully used in simple appli-
cations. It can generate long-term action plans, however,
researchers are unsatisfied with the slow speed of this archi-
tecture in the update of world model and navigation plan,
when copingwith the environmentwith uncertainty.Reactive
architecture (Brooks, 1986) in Fig. 2b, therefore, is intro-
duced to copewith uncertain scenarios. Reactive architecture
is designed to output instant response by the sense-act struc-
ture (Murphy, 2000). Reactive strategies or algorithms (e.g.,
potential fields) originate from the intuitive response of ani-
mals, and they are computationally inexpensive. However,
the robot based on reactive architecture is short-sighted. It
cannot generate long-term plans to fulfill challenging tasks.
Hybrid deliberative/reactive architecture in Fig. 2c fuses
advantages of hierarchical and reactive architectures, and
it is also successfully used in autonomous robots (Arkin
et al., 1987; Murphy, 2000). Hybrid deliberative/reactive

123

Journal of Intelligent Manufacturing

Fig. 2 Architectures of autonomous robots. (a–c) denote the classi-
cal autonomous robotic architecture, while (d) denotes recent trend of
autonomous robotic architecture that features the DL and RL

architecture uses the deliberative layer to realize high-level
long-term planning, while the reactive layer is used to realize
local reactive planning. Hybrid deliberative/reactive archi-
tecture is still widely used in robots nowadays. A typical
example is that: (1) in deliberative layer, world maps of the
environment are constructed using information from sen-
sors like the light detection and ranging (liDAR). Planning
algorithms (e.g., A*) then plan high-level paths; (2) in reac-
tive layer, reactive strategies, like dynamic window approach
(DWA) for local planning and PID for speed control, are
used to make local planning or instant reactions to cope with
dynamic and uncertain scenarios. Finally, high-level plan-
ning, local planning or instant reactions are evaluated in
the behavior manager to generate a better combined plan-
ning.

However, autonomous robotic architecture is evolving
towards a simple architecture in Fig. 2d with the develop-

ment of DL and RL algorithms in recent years. For example,
in recent works (Chen et al., 2016, 2019, 2020; Everett et al.,
2018; Long et al., 2018): (1) The goal’s information (e.g.,
position of goals), sensor’s information (e.g. distances to
other robots) and attributes of robots (e.g., radius) are com-
bined to form the features of robots; (2) More features of
robots are obtained by interacting with the environment, and
feedbacks (rewards) are obtained accordingly; (3) These fea-
tures are recorded by the networks as the world model that
will be updated according to feedbacks, and it is followed
by obtaining a converged model; (4) Previous procedures are
defined as the trainer to obtain the world model, and then
time-sequential actions are generated in the navigator by
performing the trainedworldmodel to navigate robots to des-
tinations; (5) However, these time-sequential actions cannot
be recognized by the actuators of robots (e.g., motor), there-
fore it is necessary to use the parser to parse them to proper
formats that can be executed by actuators. This architecture
of current autonomous robots can be simply described as
five functional modules: feature extraction, environment per-
ception, environment understanding, time-sequential navi-
gation, and decision execution. It can be also simply divided
into three stages: sense and train, plan, and act.

The advantages of recent autonomous robotic architec-
ture are the simplicity, safety, and efficiency. Unlike Fig. 2c,
there is no clear boundary between deliberative and reactive
layers in Fig. 2d. Time-sequential planning can realize long-
term planning goals, local planning goals or quick response
with safety (e.g., safe distances to other objects) and effi-
ciency (e.g., shortest path, shortest time) at the same time.
Disadvantages of recent autonomous robotic architecture are
expensive computation cost and poor network convergence
especially when networks are trained with data from large
outdoor scenarios.

Motion planning and path planning Motion planning
is the extension of path planning. They are almost the same
term, but few differences exist. For example, path planning
aims at finding the path between the origin and destination
in workspace by strategies like shortest distance or shortest
time (Fig. 3), therefore path is planned from the global met-
ric or topological level. Motion planning, however, aims at
generating interactive trajectories in workspace when robots
interact with dynamic environment, therefore motion plan-
ning needs to consider kinetics features, velocities and poses
of robots and dynamic objects nearby (Fig. 3) when robots
move towards the goal. Note that workspace here is an area
where an algorithm works, or the task exists.

To conclude, on one hand, motion planning must con-
sider short-term optimal or suboptimal reactive strategies
to make instant or reactive response. This is achieved by
rotary or linear control in hardware (e.g., motor, servo) from
the perspective of robotic and control engineering. On the

123

Journal of Intelligent Manufacturing

(c) Hybrid deliberative/reactive architecture for autonomous robots (Arkin et al., 1987; Murphy, 2000)

Time-sequential

navigation

Decision

execution

Sensors info

Goal info

Environment

perception

Environment

understanding

Feature

extraction

Environment
World model

(networks)
Navigator Parser/

Actuators

robots Interactions

Feedbacks (rewards)

Autonomous
robotic

architecture

Abstract
functional
modules

SENSE & TRAIN PLAN ACTStages

Trainer

(d) Recent trend of autonomous robotic architecture.

ps1

ps2

ps3

ms1

ms2

ms3

Motor schema manager

Mission planner

Navigator

Pilot

Σ

Sensor
Motor

Carto-
grapher

Planner

Homeostatic
Control

Actuators

Sensors

Cartographer
Mission Planner

Sequencer
Performance Monitoring Agent

Behavioral
Manager

Deliberative Layer

Reactive Layer

Fig. 2 continued

other hand, motion planning should achieve long-term opti-
mal planning goals as path planning when robots interact
with the environment.

Classification of planning algorithms Robotic planning
algorithms can be divided into two categories: traditional
algorithms andML-based algorithms according to their prin-
ciples and the era they were invented. Traditional algorithms
are composed by four groups including graph search algo-

123

Journal of Intelligent Manufacturing

Fig. 3 Path planning and motion planning. The left figure denotes a
planned path based on shortest distance and time, and path is gener-
ated from high or global level. The right figure denotes famous piano

mover’s problem that not only consider planning a path from global
level, but also consider kinetics features, speeds and poses of the piano

Fig. 4 Two categories of robotic
planning algorithm

Graph search

based algorithms

Sampling based

algorithms

Interpolating

curve algorithms

Classical ML
Optimal value

RL

Policy gradient

RL

Traditional algorithms ML-based algorithms

Reaction-based

algorithms

rithms (e.g., A*), sampling-based algorithms like rapidly-
exploring random tree (RRT), interpolating curve algorithms
(e.g., line and circle), and reaction-based algorithms (e.g.,
DWA). ML based planning algorithms include classical ML
algorithms like support vector machine (SVM), optimal
value RL like deep Q-learning network (DQN) and policy
gradient RL (e.g., actor-critic algorithm). Categories of plan-
ning algorithms are summarized in Fig. 4.

Development of ML-based algorithms Classical ML,
like SVM, are used to implement simple motion planning at
an earlier stage, but its performance is poor because SVM
is short-sighted for its one-step prediction. It requires well-
prepared vector as inputs that cannot fully represent features
of image-based dataset. Significant improvement to extract
high-level features from images were made after the inven-
tion of convolutional neural network (CNN) (Lecun et al.,
1998). CNN is widely used in many image-related tasks
including motion planning, but it cannot cope with com-
plex time-sequential motion planning problems. These better
suit Markov chain (Chan et al., 2012) and long short-term
memory (LSTM) (Inoue et al., 2019). Neural networks are
then combined with LSTM or algorithms that are based on
Markov chain (e.g., Q learning (Smart & Kaelbling, 2002))
to implement time-sequential motion planning. However,
the efficiency is limited (e.g., poor performance in network

convergence).AbreakthroughwasmadewhenGoogleDeep-
Mind introduced nature DQN (Mnih et al., 2013, 2015),
in which reply buffer is to reuse old data to improve the
efficiency. Performance in robustness, however, is limited
because of noise that impacts the estimation of state-action
value (Q value).Double DQN (Hasselt et al., 2016; Sui et al.,
2018) and dueling DQN (Wang et al., 2015) are therefore
invented to cope with problems caused by noise. Double
DQN utilizes another network to evaluate the estimation of
Q value in DQN to reduce noise, while advantage value (A
value) is utilized in duelingDQN to obtain betterQ value, and
noise is mostly reduced. TheQ learning, DQN, double DQN
and dueling DQN are all based on optimal values (Q value
and A value) to select optimal time-sequential actions. These
algorithms are therefore called optimal value algorithms.
Implementation of optimal value algorithms, however, is
computationally expensive.

Optimal value algorithms are latter replaced by policy
gradient method (Sutton et al., 1999), in which gradi-
ent approach (Zhang, 2019) is directly utilized to upgrade
policy that is used to generate optimal actions. Policy gra-
dient method is more stable in network convergence, but
it lacks efficiency in speed of network convergence. Actor-
critic algorithm ((Cormen et al., 2009; Konda & Tsitsiklis,
2001)) improves the speed of convergence by the actor-critic
architecture. However, improvement in convergence speed is

123

Journal of Intelligent Manufacturing

achieved by sacrificing the stability of convergence, therefore
the network of actor-critic algorithm is hard to converge in
earlier-stage training. Asynchronous advantage actor-critic
(A3C) (Gilhyun, 2018; Mnih et al., 2016), advantage actor-
critic (A2C)1 (Babaeizadeh et al., 2016), trust region policy
optimization (TRPO) (Schulman et al., 2017a) and prox-
imal policy optimization (PPO) (Schulman et al., 2017b)
algorithms are then invented to cope with this shortcoming.
Multi-thread technique (Mnih et al., 2016) is utilized in A3C
andA2C to accelerate the speed of convergence, while TRPO
andPPO improve the policy of actor-critic algorithmby intro-
ducing trust region constraint in TRPO, and “surrogate” and
adaptive penalty in PPO to improve the speed and stability
of convergence. Data, however, is dropped after training, and
newdatamust therefore be collected to train the network until
convergence of network.

Off-policy gradient algorithms including deterministic
policy gradient (DPG) (Silver et al., 2014) and deep DPG
(DDPG) ((Lillicrap et al., 2019; Munos et al., 2016)) are
invented to reuse data by replay buffer. DDPG fuses the
actor-critic architecture and deterministic policy to enhance
the convergence speed. In summary, classical ML, optimal
value RL, and policy gradient RL are typical ML algorithms
in robotic motion planning, and the development of these
ML-based motion planning algorithms is shown in Fig. 5.

In this paper, state-of-art ML-based algorithms are inves-
tigated and analyzed to provide researchers with a compre-
hensive and clear understanding about functions, structures,
advantages, and disadvantages of planning algorithms. We
also summarize new criteria to evaluate the performance
of planning algorithms. Potential directions for making
practical optimization in motion planning algorithms are dis-
cussed simultaneously. Contributions of this paper include:
(1) Survey of traditional planning algorithms. (2) Detailed
investigations of classical ML, optimal value RL and pol-
icy gradient RL for robotic motion planning. (3) Analytical
comparisons of these algorithms according to new evaluation
criteria; (4) Analysis of future directions.

This paper is organized as follows: Sects. “Traditional
planning algorithms”, “Classical ML”, “Optimal value RL”
and “Policy gradient RL” present principles and applications
of traditional planning algorithms, classical ML, optimal
value RL and policy gradient RL in robotic motion plan-
ning; section VI presents analytical comparisons of these
algorithms, and criteria for performance evaluation; section
VII analyzes future directions of robotic motion planning.

1 OpenAI Baselines: ACKTR and A2C.Web. August 18, 2017. https://
openai.com/blog/baselines-acktr-a2c.

SVM CNN LSTM

Q learning DQN

Dueling DQN

Double DQN

Policy

gradient
Actor-critic

A2CA3C

DPG DDPG

MCTS

Classical ML

Optimal value RL

Policy gradient RL

PPOTRPO

Fig. 5 Development of ML-based robotic motion planning algorithms.
These algorithms evolve from classical ML to optimal value RL and
policy gradient RL. Classical ML cannot address time-sequential plan-
ning problem but RL copes with it well. Optimal value RL suffers slow
and unstable convergence speed but policy gradient RL performs better
in network convergence

Traditional planning algorithms

Traditional planning algorithms can be divided into four
groups: graph-search, sampling-based, interpolating curve,
and reaction-based algorithms. They will be described in
detail in the following sections.

Graph-search algorithms

Graph-search algorithms can be divided into depth-first
search, breadth-first search, and best-first search (Dijkstra,
1959). The depth-first search algorithmbuilds a search tree as
deep and fast as possible from the origin to destination until
a proper path is found. The breadth-first search algorithm
shares similarities with the depth-first search algorithm by
building a search tree. The search tree in the breadth-first
search algorithm, however, is accomplished by extending
the tree as broad and quick as possible until a proper path
is found. The best-first search algorithm adds a numerical
criterion (value or cost) to each node and edge in the search
tree. According to that, the search process is guided by cal-
culation of values in the search tree to decide: (1) whether
the search tree should be expanded; (2) which branch in
the search tree should be extended. The process of build-
ing search trees repeats until a proper path is found. Graph

123

https://openai.com/blog/baselines-acktr-a2c

Journal of Intelligent Manufacturing

(a)

(b)

Graph

establishment

Vertexes

selection

Distance

calculation

Distance

update

Vertexes

marking

Fig. 6 Steps of the Dijkstra algorithm (a) and road networks in web
maps (b) (Indrajaya et al., 2015; Mariescu & Franti., 2018). Web maps
are based on GPS data. Road network is mapped into the graph that is

composed by nodes and edges, therefore graph search algorithms like
A* and Dijkstra’s algorithms can be used in these graphs

search algorithms are composed by many algorithms. The
most popular are Dijkstra’s algorithm (Dijkstra, 1959) and
A* algorithm (Hart et al., 1968).

Dijkstra’s algorithm is one of earliest optimal algorithms
based on best-first search technique to find the shortest paths
among nodes in a graph. Finding the shortest paths in a road
network is a typical example. Steps of the Dijkstra algorithm
(Fig. 6) include: (1) converting the road network to a graph,
and distances between nodes in the graph are expected to be
found by exploration; (2) picking the unvisited node with the
lowest distance from the source node; (3) calculating the dis-
tance from the picked node to each unvisited neighbor and
update the distance of all neighbor nodes if the distance to
the picked node is smaller than the previous distance; (4)
marking the visited node when the calculation of distance to
all neighbors is done. Previous steps repeat until the shortest
distance between origin and destination is found. Dijkstra’s
algorithm can be divided into two versions: forward ver-
sion and backward version. Calculation of overall cost in
the backward version, called cost-to-come, is accomplished
by estimating the minimum distance from selected node to
destination, while estimation of overall cost in the forward
version, called cost-to-go, is realized by estimating the mini-
mum distance from selected node to the initial node. In most
cases, nodes are expanded according to the cost-to-go.

A* algorithm is based on the best-first search, and it uti-
lizes heuristic function to find the shortest path by estimating
the overall cost. The algorithm is different from theDijkstra’s
algorithm in the estimation of the path cost. The cost estima-
tion of a node i in a graph by A* is as follows: (1) estimate
the distance between the initial node and node i; (2) find the

nearest neighbor j of the node I; and estimate the distance
of nodesj and i; (3) estimate the distance between the node j
and the goal node. The overall estimated cost is the sum of
these three factors:

Ci � cstart,i + min j
(
di, j + d j,goal

)
(1)

where Ci represents overall estimated cost of node i, cstart,i
the estimated cost from the origin to the node i, di, j the
estimated distance from the node i to its nearest node j, and
d j,goal the estimated distance from the node j to the node
of goal. A* algorithm has a long history in path planning in
robots. A common application of the A* algorithm is mobile
rovers planning via an occupancy grid map (Fig. 7) using the
Euclidean distance (Wang, 2005). There are many variants
of A* algorithm, like dynamic A* and dynamic D* (Stentz,
1994), Field D* (Ferguson & Stentz, 2006), Theta* (Daniel
et al., 2014), Anytime Repairing A* (ARA*) and Anytime
D* (Likhachev et al., 2008), hybrid A* (Montemerlo et al.,
2008), and AD* (Ferguson et al., 2008). Other graph search
algorithms have a difference with common robotic grid map.
For example, the state lattice algorithm (Ziegler & Stiller,
2009) uses one type of gridmapwith a specific shape (Fig. 7),
while the grid in normal robotic map is in a square-grid shape
(Fig. 7).

Sampling-based algorithms

Sampling-based algorithms randomly sample a fixed
workspace to generate sub-optimal paths. The RRT and the
probabilistic roadmap method (PRM) are two algorithms
that are commonly utilized in motion planning. The RRT
algorithm is more popular and widely used for commercial

123

Journal of Intelligent Manufacturing

Fig. 7 The left figure represents a specific grid map in the State Lattice algorithm (Ziegler & Stiller, 2009), while the right figure represents a normal
square-grid (occupancy grid) map in the robot operating system (ROS)

Fig. 8 Trajectories planned by the RRT and PRM. The left figure rep-
resents trajectories planned by RRT algorithm (Jeon et al., 2013), and
the right figure represents the trajectory planned by PRM algorithm
(Kavraki et al., 2002)

and industrial purposes. It constructs a tree that attempts
to explore the workspace rapidly and uniformly via a ran-
dom search (LaValle & Kuffner, 1999). The RRT algorithm
can consider non-holonomic constraints, such as the maxi-
mum turning radius and momentum of the vehicle (Bautista
et al., 2015). The example of trajectories generated by RRT
is shown in Fig. 8. The PRM algorithm (Kavraki et al., 2002)
is normally used in a static scenario. It is divided into two
phases: learning phase and query phase. In the learning
phase, a collision-free probabilistic roadmap is constructed
and stored as a graph. In query phase, a path that connects
original and targeted nodes is searched from the probabilis-

tic roadmap. An example of trajectory generated by PRM is
shown in Fig. 8.

Interpolating curve algorithms

Interpolating curve algorithm is defined as a process that
constructs or inserts a set of mathematical rules to draw
trajectories. The interpolating curve algorithm is based on
techniques, e.g., computer aided geometric design (CAGD),
to draw a smooth path. Mathematical rules are used for path
smoothing and curve generation. Typical path smoothing
and curve generation rules include line and circle (Reeds
& Shepp, 1990), clothoid curves (Funke et al., 2012), poly-
nomial curves (Xu et al., 2012),Bezier curves (Bautista et al.,
2014) and spline curves (Farouki & Sakkalis, 1994). Exam-
ples of trajectories are shown in Fig. 9.

Reaction-based algorithms

Unlike graph-search algorithms that cost longer time to plan
high-level or global-level paths, reaction-based algorithms
are about making reactions or doing local path planning
quickly and intuitively, as the description of algorithms in
reactive architecture (Murphy, 2000). Here three reaction-
based algorithms that are widely used in engineering and
manufacturing are presented, and they are potential field
method (PFM), velocity obstacle method (VOM), and DWA.

Fig. 9 Trajectories generated by mathematical rules (Bautista et al., 2014; Farouki & Sakkalis, 1994; Funke et al., 2012; Reeds & Shepp, 1990; Xu
et al., 2012)

123

Journal of Intelligent Manufacturing

Fig. 10 Different types of potential filed. (a–e) denote five primitive potential fields: uniform, perpendicular, attraction, repulsion, and tangen-
tial. (f) denotes a potential field combined by attraction (goal) and repulsion (obstacle) (Murphy, 2000)

PFM (Khatib, 1986) is about using vectors to represent
behaviors and using vector summation to combine vectors
from different behaviors to produce an emergent behavior
(Murphy, 2000). Potential field is a differentiable real-valued
functionU whosevalue canbe seen as energy, and its gradient
can be seen as a force. If potential field functionU is defined
artificially, it is called artificial potential field (APF). Its gra-
dient ∇U (x), where x denotes a robot configuration (e.g.,
positions of robots), is a vector which points at a local direc-
tion that maximally increases U (Tobaruela, 2012). Hence,
robots in potential field or combined potential field (Fig. 10)
will be forced to move along the gradient of potential field
to maximize U .

Shortcomings of PFM include: (1) local minima if poten-
tial field converges to aminimum that is not globalminimum.
(2) oscillation of motion when robots navigate among very
close obstacles at high speed. (3) impossibility to go through
small openings. These shortcomings can be solved or par-
tially solved by potential field variants (e.g., generalized
potential fields method (GPFM) (Krogh, 1984), virtual force
field (VFF) (Borenstein & Koren, 1989), vector field his-
togram (VFH) (Borenstein & Koren, 1991) and harmonic
potential field (HPF) (Masoud, 2007)) in real-world engi-
neering and manufacturing.

VOM (Fiorini & Shiller, 1998) relies on current positions
and velocities of robots and obstacles to compute a reachable
avoidance velocity space (RAV), and then a proper avoidance

maneuver (velocity) is selected from RAV to avoid static and
moving obstacles (Fiorini & Shiller, 1998). To compute a
RAV (Fig. 11): (1) Velocity obstacle (VO) must be obtained.
VO is a velocity set or space, and the selection of velocity
from VO will lead to collision. (2) A set of reachable veloc-
ities (RV) should be obtained. This is achieved by mapping
the actuator constraints to acceleration constraints (Fiorini &
Shiller, 1998). (3) RAV is obtained by computing the differ-
ence between RV and VO.

To select a proper avoidance maneuver (Fig. 11), exhaus-
tive global search method and heuristic search method in
RAV are suitable for off-line and on-line cases, respectively:
(1) A search tree can be obtained by expanding the tree on
RAV. A proper avoidance maneuver can be selected from
the search tree according to assigned cost on the branch of
search tree. Cost is relevant with some objective functions
(e.g., distance traveled, motion time and energy). The search
tree is expanded off-line, therefore near-optimal trajectories
that lead to shortest time or distance can be obtained (Fiorini
& Shiller, 1998). (2) The heuristic search costs less time on
search process, and it is designed to select specific veloci-
ties that can realize special goals (e.g., the highest avoidance
velocity towards goals, themaximumavoidance velocity, and
velocities that ensure desired trajectory structures).

However, collisions with obstacles still exist when using
velocity obstacle method in complex scenarios like dense
and dynamic cases. Hence, some optimized velocity obstacle

123

Journal of Intelligent Manufacturing

Fig. 11 The principle of VOM. (a)–(c) denote the VO, RV, and RAV.
(d) denotes the exhaustive search in the search tree. (e)–(g) denote
heuristic searchmethod to select the highest avoidance velocity towards

goals, the maximum avoidance velocity, and velocities that ensure
desired trajectory structures (Fiorini & Shiller, 1998)

Fig. 12 The relationship of possible velocity search space Vs , admissi-
ble velocities Va , dynamic window velocity Vd , and resulting velocity
Vr (Stentz, 1994)

methods, like reciprocal velocity obstacle (RVO) (Berg et al.,
2008, 2011; Guy et al., 2009), are introduced to better avoid
collisions.

DWA (Fox et al., 1997) is about choosing a proper trans-
lational and rotational velocity (v,w) that will maximize an
objective function within dynamic window. Objective func-
tion includes a measure of progress towards a goal location,
the forward velocity of the robot, and the distance to the
next obstacle on the trajectory. Proper velocity (v,w) is
selectedwithin the dynamicwindow (a search space of veloc-
ity) which consists of the velocities reachable within a short
time interval. This is achieved by: (1) computing a two-

dimensional possible velocity search space Vs that is related
to circular trajectories (curvatures) uniquely determined by
(v,w). (2) computing admissible velocities Va that ensures
the stop before the robot reaches the closest obstacle on
the corresponding curvature. (3) computing dynamic win-
dow velocity Vd . All curvatures outside the dynamic window
cannot be reached within the next time interval. (4) selecting
a proper velocity from resulting search spacewhich consists
of resulting velocity Vr defined by Vr � Vs ∩ Va ∩ Vd (Fox
et al., 1997). The relationship of these velocity search spaces
is shown in Fig. 12 where the resulting search space is the
white area in the dynamic window.

Classical ML

Here basic principles of four classical but pervasiveML algo-
rithms for motion planning are presented. These algorithms
include three supervised learning algorithms (SVM, LSTM
and CNN) and one RL that is the Monte-Carlo tree search
(MCTS).

SVM (Evgeniou & Pontil, 1999) is a well-known super-
vised learning algorithm for classification. The basic prin-
ciple of SVM is about drawing an optimal separating
hyperplane between inputted data by training a maximum
margin classifier (Evgeniou & Pontil, 1999). Inputted data is
in the form of vector that is mapped into high-dimensional

123

Journal of Intelligent Manufacturing

Fig. 13 Cells of LSTM that are implemented using neural network (N.
Arbel. How LSTM networks solve the problem of vanishing gradients.
Web. Dec 21, 2018. https://medium.com/datadriveninvestor/how-do-
lstm-networks-solve-the-problem-of-vanishing-gradients). ct denotes
cell’s state in time step t. ht denotes the output that will be transferred
to the next state as its input, therefore format of input is the vector
[ht−1, xt]. Cell states are controlled and updated by three gates (forget
gate, input gate and output gate) that are implemented using neural
networks with weights W f , Wc +Wi , and Wo respectively

space where classified vectors are obtained by performing
trained classifier. SVM is used in 2-class classification that
cannot suit real-world task, but its variant multiclass SVM
(MSVM) (Weston & Watkins, 1998) works.

LSTM ((Hochreiter & Schmidhuber, 1997; Inoue et al.,
2019)) is a variant of recurrent neural network (RNN).LSTM
can remember inputted data (vectors) in its cells. Because
of limited capacity of cell in storage, a part of data will be
dropped when cells are updated with past and new data, and
then a part of data will be remembered and transferred to
next time step. These functions in cells are achieved by neu-
ral network as the description in Fig. 13. In robotic motion
planning, robots’ features and labels in each time step are
fed into neural networks in cells for training, therefore deci-
sions for motion planning are made by performing trained
network.

MCTS is a classical RL algorithm, and it is the combina-
tion of Monte-carlo method (Kalos & Whitlock, 2008) and
the search tree (Coulom, 2006). MCTS is widely used in
games (e.g., Go and chess) for motion prediction ((Paxton
et al., 2017; Silver et al., 2016)). Mechanism of MCTS is
composed by four processes that include selection, expan-
sion, simulation, and backpropagation as Fig. 14. In robotic
motion planning, node of MCTS represents possible state
of robot, and stores state value of robot in each step. First,
selection is made to choose some possible nodes in the tree
basedonknownstate value. Second, tree expands to unknown
state by tree policy (e.g., random search). Third, simulation
of expansion is made on new-expanded node by default pol-
icy (e.g., random search) until terminal state of robot and
reward R is obtained. Finally, backpropagation is made from
new-expanded node to root node, and state values in these

nodes are updated according to received reward. These four
processes are repeated until the convergence of state values in
the tree. The robot can therefore plan its motion according to
state values in the tree. MCTS fits discrete-action tasks (e.g.,
AlphaGo (Silver et al., 2016)), and it also fits time-sequential
tasks like autonomous driving.

CNN (Lecun et al., 1998) has become a research focus of
ML afterLeNet5 (Lecun et al., 1998)was introduced and suc-
cessfully applied into handwritten digits recognition. CNN is
one of the essential types of neural network because it is good
at extracting high-level features fromhigh-dimensional high-
resolution images by convolutional layers. CNN makes the
robot avoid obstacles and plans motions of robot according
to human experience by models trained in forward propa-
gation and back propagation processes, especially the back
propagation. In the back propagation, a model with a weight
matrix/vector θ is updated to record features of obstacles.
Note that θ � {wi , bi }Li where w and b represent weight
and bias, and i represents the serial number of w-b pairs. L
represents the length of weight.

Training steps of CNN are shown as Fig. 15. Images of
objects (obstacles) are used as inputs of CNN. Outputs are
probability distributions obtained by softmax function (Bri-
dle, 1990). Loss value LossCE is cross-entropy (CE) and that
is obtained by

LossCE � −
∑

i

pi · log qi (2)

where p denotes probability distributions of output (observed
real value), q represents probability distributions of expecta-
tion (p, qε(0, 1)), and i represents the serial number of each
batch of images in training. The loss function measures the
difference (distance) of observed real value p and expected
value q. Mean-square error (MSE) is an alternative of CE
and MSE is defined by LossMSE � ∑

i
(pi − qi)2 where pi

represents observed values while qi represents predicted val-
ues or expectation. The weight is updated in optimizer by
minimizing the loss value using gradient descent approach
(Zhang, 2019) therefore new weight wnew

i is obtained by

wnew
i � wi − η · ∂Loss

∂wi
(3)

where w represents the weight, η represents a learning rate
(ηε(0, 1)) andi represents the serial number of each batch
of images in training. Improved variants of CNN are also
widely used in motion planning, e.g., residue networks (Gao
et al., 2017; He et al., 2016).

123

https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients

Journal of Intelligent Manufacturing

Fig. 14 Four processes of MCTS. These processes repeat until the convergence of state values in the tree

Parameters

(weight matrix)
CNN layers

Feature vector

Loss

function

Loss value

Optimizer

Inputs

Softmax

Labels

CNN

Probability distribution
(real value)

Probability distribution
(expectation)

New

parameters

Initial
parameters

Images

Steering angles

Fig. 15 Training steps of CNN. The trajectory is planned by human in
data collection in which steering angles of robots are recorded as labels
of data. Robots learn behavior strategies in training and move along
the planned trajectory in the test. The softmax function maps values

of feature to probabilities p ∈ (0, 1). The optimizer represents gradi-
ent descent approach, e.g., stochastic gradient descent (SGD) (Zhang,
2019)

Optimal value RL

Here basic concepts of RL are recalled firstly, and then the
principles of Q learning, nature DQN, double DQN and duel-
ing DQN are given.

Classical ML algorithm like CNN is competent only in
static obstacle avoidance by one-step prediction, therefore
it cannot cope with time-sequential obstacle avoidance. RL
algorithms, e.g., optimal value RL, fit time-sequential tasks.
Typical examples of these algorithms include Q learning,

nature DQN, double DQN and dueling DQN. Motion plan-
ning is realized by attaching destination and safe paths with
big reward (numerical value), while obstacles are attached
with penalties (negative reward). Optimal path is found
according to total rewards from initial place to destination. To
better understand optimal value RL, it is necessary to recall
several fundamental concepts: Markov chain, Markov deci-
sion process (MDP), model-based dynamic programming,
model-free RL, Monte-Carlo method (MC), temporal dif-
ference method (TD), and State-action-reward-state-action

123

Journal of Intelligent Manufacturing

(a) (b)

Model-based

dynamic

programming

Monte

Carlo

method

Q learning

algorithm

SARSA

algorithm

Temporal Difference method

Model-free reinforcement learning

Markov Chain/Markov Decision Process Robot

Environment

r

r’
a

πs

s’

Fig. 16 a represents the relationship of basic concepts of RL. b represents the principle of MDP

(SARSA). MDP is based on Markov chain (Chan et al.,
2012), and it can be divided into two categories: model-based
dynamic programming and model-free RL. Mode-free RL
can be divided into MC and TD that includes SARSA and Q
learning algorithms. Relationship of these concepts is shown
in Fig. 16.

Markov chain Variable set X � {Xnn > 0} is called
Markov chain (Chan et al., 2012) if X meets

p(Xt+1|Xt , . . . , X1) � p(Xt+1|Xt) (4)

This means the occurrence of event Xt+1 depends only on
event Xt and has no correlation to any earlier events.

Markov decision process MDP (Chan et al., 2012) is a
sequential decision process based on Markov Chain. This
means the state and action of the next step depend only on
the state and action of the current step. MDP is described as a
tuple< S, A, P, R >. S represents the state and here it refers
to the state of robot and obstacles. A represents an action
taken by robot. State S transits into another state under a state-
transition probability P and a reward R from the environment
is obtained. Principle of MDP is shown in Fig. 16. First, the
robot in state s interacts with the environment and generate
an action based on policy π(s)s → a. Robot then obtains
the reward r from the environment, and state transits into the
next state s’. The reach of next state s’ marks the end of one
loop and the start of the next loop.

Model-free RL and model-based dynamic program-
ming Problems in MDP can be solved using model-based
dynamic programming and model-free RL methods. The
model-based dynamic programming is used in a known
environment, while the model-free RL is utilized to solve
problems in an unknown environment.

Temporal difference and Monte Carlo methods The
model-free RL includes MC and TD. A sequence of actions
is called an episode. Given an episode<S1, A1, R2, S2,
A2, R3, …, St, At, Rt+1, …, ST > , the state value V (s) in

the time step t is defined as the expectation of accumulative
rewards Gt by

V (s) � E

[
Gt � Rt+1 + γ Rt+1 + . . . + γ T−1RT |St � s

]

(5)

where γ represent a discount factor (γ ε[0, 1]).MCusesGt−
V (s) to update its state value VMC(s) by

VMC (s) ← V (s) + α(Gt − V (s)) (6)

where “←” represents the update process inwhich new value
will replace previous value. α is a discount factor. TD uses
Rt+1 + γ V (st+1) − V (s) to update its state value VT D(s) by

VT D(s) ← V (s) + α
[
Rt+1 + γ V (st+1) − V (s)

]
(7)

where α is a learning rate, Rt+1+γ V (st+1) is the TD target in
which the estimated state value V (st+1) is obtained by boot-
strappingmethod (Tsitsiklis, 2003). This meansMC updates
its state value after the termination of an episode, while TD
update its state value in every steps. TD method is therefore
efficient than MC in state value update.

Q learning

TD includes SARSA (Rummery & Niranjan, 1994) and Q
learning ((Smart &Kaelbling, 2002; Sutton &Barto, 1998)).
Given an episode<S1, A1, R2, S2, A2, R3, …, St, At, Rt+1,
…, ST > , SARSA and Q learning use the ε-greedy method
(Santos Mignon., 2017) to select an action At at time step t.
There are two differences between SARSA and Q learning:
(1) SARSA uses ε-greedy again to select an estimated action
value Q(St+1, At+1) at time step t + 1 to update its action
value by

QSARSA (St , At)

← Q (St , At) + α (Rt+1 + γ Q (St+1, At+1) − Q (St , At))

(8)

123

Journal of Intelligent Manufacturing

whileQ learning directly uses maximum estimated action
value maxQQ(St+1, At+1) at time step t + 1 to update its
action value by

(9)

QQL (St , At)

← Q (St , At)

+ α

(
Rt+1 + γ max

At+1
Q (St+1, At+1) − Q (St , At)

)

(2) SARSA adopts selected action At+1 directly to update
its next action value, but Q learning algorithm use ε-greedy
to select a new action to update its next action value.

SARSA uses ε-greedy method to sample all potential
action values of next step and selects a “safe” action even-
tually, while Q learning pays attention to the maximum
estimated action value of the next step and selects optimal
actions eventually. Steps of SARSA is shown inAlgorithm 1
(Sutton & Barto, 1998), whileQ learning algorithm asAlgo-
rithm2 (Sutton&Barto, 1998) and Fig. 17. Implementations
of robotic motion planning by Q learning are as (Panov et al.,
2018; Qureshi et al., 2018; Smart & Kaelbling, 2002).

Nature deep Q-learning network

DQN (Mnih et al., 2013) is a combination of Q leaning and
deep neural network (e.g., CNN). DQN uses CNN to approx-
imate Q values by its weight θ . Hence, Q table in Q learning
changes to Q value network that can be converged in a faster
speed in complex motion planning. DQN became a research
focuswhen itwas inventedbyGoogleDeepMind (Mnih et al.,
2013, 2015), and performance of DQN approximates or even
surpasses the performance of human being in Atari games
(e.g., Pac-man and Enduro in Fig. 18) and real-world motion
planning tasks (Bae et al., 2019; Isele et al., 2017). DQN
utilizes CNN to approximate Q values (Fig. 19) by

Q∗(s, a) ≈ Q(s, a; θ) (10)

123

Journal of Intelligent Manufacturing

Q value initialization

Action selection Action execuation Q value update

Environment

End

Convergence?

s (images)
Q, s

s,a s,a,r,s’

No Yes

Fig. 17 Steps of Q learning algorithm. Input of Q learning is in the vector format normally. Q value is obtained via Q value table or network as
approximator. Extra preprocessing is needed to extract features from image if input is in image format

Fig. 18 Two examples of motion
planning in early-stage arcade
games: Enduro (left) and
Pac-man (right)

In contrast with the Q learning, DQN features three
components: CNN, replay buffer (Schaul et al., 2016) and
targeted network. CNN extracts feature from images that are
inputs. Outputs can be Q value of current state Q(s,a) and
Q value of next stateQ(s’,a’), therefore experiences< s,a,r,s’
>are obtained and temporarily stored in replay buffer. It is
followed by training DQN using experiences in the replay
buffer. In this process, a targeted network θ ′ is leveraged to
minimize the loss value by

Loss �
(
r + γ max

a′ Q
(
s′, a′; θ ′) − Q(s, a; θ)

)2

(11)

Loss value measures the distance between expected
value and real value. In DQN, expected value is (r +
γmaxQ(s’,a’;θ ’)) that is similar to labels in supervised learn-
ing, while Q(s,a;θ) is the observed real value. weights of
targeted network andQ value network share a sameweight θ .
The difference is that weight ofQ value network θ is updated

Convolutional Neural

Network (CNN) (weight)

Convolutional

layers Full-Connection (FC)

layers

Images of

environment

Fig. 19 Q(s,a0), Q(s,a1), Q(s,a2) and Q(s,at) denote Q values of all
potential actions

in each step,whileweight of targeted network θ ’ is updated in
a long period of time. Hence, θ is updated frequently while
θ ’ is more stable. It is necessary to keep targeted network
stable, otherwise Q value network will be hard to converge.
Detailed steps of DQN are shown as Algorithm 3 (Mnih
et al., 2013) and Fig. 20.

123

Journal of Intelligent Manufacturing

Q value calculation

Action selection Action execuation Parameter update

Environment

End

Convergence?

s (images)
Q, s

s,a s,a,r,s’

No Yes

Replay buffer

s,a,r,s’

Targeted network

Next action selection

ɵ, ɵ’

Fig. 20 Steps of DQN algorithm

Double deep Q-learning network

Noise in DQN leads to bias and false selection of next action
a′ follows, therefore leading to over-estimation of next action
value Q

(
s′, a′; θ ′). To reduce the over-estimation caused by

noise, researchers invented the double DQN (Hasselt et al.,
2016) in which another independent targeted network with
weight θ− is introduced to evaluate the selected action a′.
Hence, equation of targeted network therefore changes from
yDQN � r + γ max Q

(
s′, a′; θ ′) to

ydoubleDQN � r + γ Q
(
s′, argmaxa′Q

(
s′, a′; θ ′); θ−)

(12)

Steps of double DQN are the same with DQN. Examples
of application are (Chao et al., 2020; Lei et al., 2018; Sui
et al., 2018) in which double DQN is used in games and
physical robots based on ROS.

Dueling deep Q-learning network

The state value V π (s) measures “how good the robot is” in
the state s where π denotes policy π : s → a, while the
action value Qπ (s, a) denotes “how good the robot is” after
robot takes action a in state s using policyπ .Advantage value
(A value) denotes the difference of Qπ (s, a) and V π (s) by

A(s, a) � Q(s, a) − V (s, a) (13)

thereforeA valuemeasures “howgood the action a is” in state
s if robot takes the action a. In neural network case (Fig. 21),
weights α, β, θ are added, therefore

Q(s, a; θ, α, β) � V (s; θ, β) + A(s, a; θ, α) (14)

where θ is the weight of neural network and it is the shared
weight of Q, V and A values. Here α denotes the weight of A
value, and β the weight of V value. V (s; θ, β) is a scalar, and
A(s, a; θ, α) is a vector. There are however too many V -A
value pairs ifQ value is simply divided into two components

123

Journal of Intelligent Manufacturing

Convolutional

layers
FC layers

Images of

environment

Fig. 21 The architecture of dueling DQN, in which Q value Q(s,a) is
decoupled into two parts, including V value V (s) and A value A(s,a)

without constraints, and only one V -A pairs are qualified.
Thus, it is necessary to constrain the V value or A value to
obtain a fixed V -A pair. According to relationship of Qπ

(s, a) and V π (s) where V π (s) � Ea∼π(s)[Qπ (s, a)], the
expectation of A value is

Ea∼π(s)[A(s, a)] � 0 (15)

Equation 15 can be used as a rule to constrain A value
for obtaining a stable V -A pair. Expectation of A value is
obtained by using A(st , at) to subtract mean A value that is
obtained from all possible actions, therefore

E[A(st , at)] � A(st , at) − 1

|A|
∑

a−
t εA

A
(
st , a

−
t

)
(16)

where A represents action space in time step t, |A| the
number of actions, and a−

t one of possible actions in A
at time step t. Expectation of A value keeps zero for tε
[0, T], although the fluctuation of A(st , at) in different action
choices. Researchers use the expectation ofA value to replace
the current A value by

(17)

Q (s, a; θ, α, β)

� V (s; θ, β)

+

⎧
⎨

⎩
A (s, a; θ, α) − 1

|A|
∑

a−
t εA

A
(
st , a

−
t ; θ, α

)
⎫
⎬

⎭

Thus, a stable V-A pair is obtained although original
semantic definition of A value (Eq. 13) is changed (Wang
et al., 2015). In other words: (1) advantage constraint⎧
⎨

⎩
A(s, a; θ, α) − 1

|A|
∑

a−
t εA

A
(
st , a

−
t ; θ, α

)
⎫
⎬

⎭
� 0 is used to

constrain the update of A value network α; (2) Q value
network θ is therefore obtained by Q(s, a; θ, α, β) � V
(s; θ, β). Q value network θ is updated according to V value
that is more accurate and it is easy to obtain via accumulative

Fig. 22 Q(s,a) andA(s,a) saliencymaps (red-tinted overlay) on theAtari
game (Enduro). Q(s,a) learns to pay attention to the road, but pay less
attention to obstacles in the front. A(s,a) learns to pay much attention
to dynamic obstacles in the front (Wang et al., 2015)

rewards defined by Eq. 5. Hence, a better estimation of action
value is obtained by performing a better Q value network θ .

DQN obtained action value Q(s, a) directly by using net-
work to approximate action value. This process introduces
over-estimation of action value. Dueling DQN obtains bet-
ter action value Q(s, a) by constraining advantage value A
(s, a). Finally, threeweights (θ, α, β) are obtained after train-
ing, and Q value network θ is with less bias but A value is
better than action value to represent “how good the action is”
(Fig. 22).

Further optimizations are distributional DQN (Bellemare
et al., 2017), noise network (Fortunato et al., 2017), duel-
ing double DQN2 and rainbow model (Hessel et al., 2017).
Distributional DQN is like the dueling DQN, as noise is
reduced by optimizing the architecture of DQN. Noise net-
work is about improving the ability in exploration by a more
exquisite and smooth approach. Dueling double DQN and
rainbow model are hybrid algorithms. Rainbow model fuses
several suitable components: double networks, replay buffer,
dueling network, multi-step learning, distributional network,
and noise network.

Policy gradient RL

Here the principles of policy gradient method and actor-critic
algorithm are given firstly. It is followed by recalling the
principles of their optimized variants: (1) A3C and A2C; (2)
DPG and DDPG; (3) TROP and PPO.

Optimal value RL uses neural network to approximate
optimal values to indirectly select actions. This process is
simplified as a ← argmaxa R(s, a) + Q(s, a; θ). Noise
leads to over-estimation of Q(s, a; θ), therefore the selected
actions are suboptimal, and network θ is hard to converge.
Policy gradient algorithm uses neural network θ as policy

2 A. Suran. Dueling Double Deep Q Learning using Tensorflow
2.x.Web. Jul 10, 2020. https://towardsdatascience.com/dueling-double-
deep-q-learning-using-tensorflow-2-x-7bbbcec06a2a.

123

https://towardsdatascience.com/dueling-double-deep-q-learning-using-tensorflow-2-x-7bbbcec06a2a

Journal of Intelligent Manufacturing

Fig. 23 Training and test steps of policy gradient algorithms. In the
training, time-sequential actions are generated by the behavior policy.
Note that policy is divided to behavior policy and target policy. Behav-
ior policy is about selecting actions for training and behavior policy will
not be updated,while target policy is also used to select actions but itwill

be updated in training. Policy refers to target policy normally. Robots
learn trajectories via target policy (neural network as approximator) and
trained policy is obtained. In the test, optimal time-sequential actions
are generated directly by trained policy πθ : s → a until destination is
reached

πθ : s → a to directly select actions to avoid this problem.
Brief steps of policy gradient algorithm are shown in Fig. 23.

Policy gradient method

Policy is a probability distribution P{a|s,θ} � πθ (a|s) �
π (a|s;θ) that is used to select action a in state s, where weight
θ is the parameter matrix that is used as an approximation
of policy π (a|s). Policy gradient method (PG) (Sutton et al.,
1999) seeks an optimal policy and uses it to find optimal
actions. how to find this optimal policy? Given a episode τ

� (s1,a1,…,sT ,aT), the probability to output actions in τ isπθ

(τ) � p(s1)
T∏

t�2
πθ (at |st)p(st |st−1, at−1). The aim of the PG

is to find optimal parameter θ∗ � argmaxθEτ∼πθ (τ)[R(τ)]

where episode reward R(τ) �
T∑

t�1
r(st , at)) is the accumu-

lative rewards in episode τ .Objective of PG is defined as the
expectation of rewards in episode τ by

J (θ) � Eτ∼πθ (τ)[R(τ)] � ∫πθ (τ)R(τ)dτ (18)

To find higher expectation of rewards, gradient operation
is used on objective to find the increment of network that may

lead to a better policy. Increment of network is the gradient
value of objective, and that is

(19)

∇θ J (θ) � ∫∇θπθ (τ) R (τ) dτ

� ∫πθ (τ)∇θ logπθ (τ) R (τ) dτ

� Eτ∼πθ (τ)
[∇θ logπθ (τ) R (τ)

]

An example of PG is Monte-carlo reinforce (Williams,
1992). Data τ for training are generated from simulation
by stochastic policy. Previous objective and its gradient
(Eq. 18–19) are replaced by

J (θ) ≈ 1

N

N∑

i�1

T∑

t�1

r
(
sit , a

i
t

)
(20)

∇θ J (θ) ≈ 1

N

N∑

i�1

[
T∑

t�1

∇θ logπθ

(
ait , s

i
t

)][
T∑

t�1

r
(
sit , a

i
t

)]

(21)

where N is the number of episodes, T the length of tra-
jectory. A target policy πθ is used to generate episodes for
training. For example,Gaussian distribution function is used
as behavior policy to select actions by a ∼ N (

μ(s), σ 2
)
.

Network f (s; θ) is then used to approximate expectation of
Gaussian distribution by μ(s) � f (s; θ). It means a ∼ N(
mean � f

[
s; θ � {wi , bi }Li)

]
, stdev � σ 2

)
and μ(s; θ) �

123

Journal of Intelligent Manufacturing

[mean, stdev] where w and b represent weight and bias of
network, L the number of w-b pairs. Its objective is defined
as J (θ) � f (st ;w)−a2t� , therefore the objective gradient is

∇θ J (θ) � −1

2
�−1(f (st) − at)

d f

dθ
(22)

where d f
dθ

is obtained by backward-propagation. According
to Eq. 21–22, its objective gradient is

∇θ J (θ) ≈ 1

N

N∑

i�1

[
T∑

t�1

−1

2
�−1

(
f
(
sit

)
− ait

)d f
dθ

]

×
[

T∑

t�1

r
(
sit , a

i
t

)]

(23)

Once objective gradient is obtained, network is updated
by gradient ascent method. That is

θ ← θ + ∇θ J (θ) (24)

Actor-critic algorithm

The update of policy in PG is based on expectation of accu-
mulative rewards in episode τ Eτ∼πθ (τ)[R(τ)]. This leads
to high variance that causes low speed in network conver-
gence, but convergence stability is improved. Actor-critic
algorithm (AC) (Cormen et al., 2009;Kimet al., 2019;Konda
& Tsitsiklis, 2001) reduces the variance by one-step reward
in TD-error e for network update. TD-error is defined by

e � rt + V (st+1) − V (st) (25)

To enhance convergence speed, AC uses actor-critic archi-
tecture that includesactor network (policy network) and critic
network. Critic network is used in TD-error therefore TD-
error changes into

e � rt + V (st+1;w) − V (st ;w) (26)

Objective of critic network is defined by

J (w) � e2 (27)

Objective gradient is therefore obtained by minimizing
the mean-square error

∇w J (w) � ∇we
2 (28)

Critic network is updated by gradient ascent method
(Zhang, 2019). That is

w ← w + β∇w J (w) (29)

Environment

Actor

neural

network

Critic

neural

network

eUpdate of

weight ɵ

Update of

weight ԝ

s

a, r, s’

s

V, V’

w

ɵ

1

2
34

5

Fig. 24 Training steps of AC

whereβ represents learning rate. Objective of policy network
is defined by

J (θ) � πθ (at |st) · e (30)

Hence, objective gradient of policy network is obtained
by

∇θ J (θ) � ∇θ logπθ (at |st) · e (31)

and policy network is updated by

θ ← θ + α∇θ J (θ) (32)

where α is a learning rate of actor network. Detailed steps of
the AC are as Fig. 24: (1) action at at time step t is selected by
policy network θ ; (2) selected action is executed and reward
is obtained. State transits into the next state st ; (3) state value
is obtained by critic network and TD error is obtained; (4)
policy network is updated by minimizing objective of critic
network; (5) critic network is updated according to objec-
tive gradient of critic network. This process repeats until the
convergence of policy and critic networks.

A3C and A2C

A3C In contrast to AC, the A3C (Everett et al., 2018) has
three features (1) multi-thread computing; (2) multi-step
rewards; (3) policy entropy. Multi-thread computing means
multiple interactions with the environment to collect data
and update networks. Multi-step rewards are used in critic
network, therefore the TD-errore of A3C is obtained by

e �
T∑

i�t

γ i−t ri + V (st+n) − V (st) (33)

Hence, the speed of convergence is improved. Here γ is a
discount factor, and n is the number of steps. Data collection
by policy π(st ; θ) will cause over-concentration, because

123

Journal of Intelligent Manufacturing

initial policy is with poor performance therefore actions are
selected fromsmall area ofworkspace.This causes poor qual-
ity of the input, therefore convergence speed of network is
poor. Policy entropy increases the ability of policy in action
exploitation to reduce over-concentration. Objective gradient
of A3C therefore changes to

∇θ J (θ)A3C � ∇θ J (θ)AC + β∇θ H(π(st ; θ)) (34)

where β is a discount factor and H (π(st ; θ) is the policy
entropy.

A2C A2C (Everett et al., 2018) is the alternative of A3C
algorithm. Each thread in A3C algorithm can be utilized
to collect data, train critic and policy networks, and send
updated weights to global model. Each thread in A2C how-
ever can only be used to collect data. Weights in A2C are
updated synchronously compared with the asynchronous
update of A3C, and experiments demonstrate that syn-
chronous update of weights is better than asynchronous way
in weights update ((Babaeizadeh et al., 2016; Mnih et al.,
2016)). Their mechanisms in weight update are shown in
Fig. 25.

DPG and DDPG

Here some prerequisites are recalled on-policy algorithm,
off-policy algorithm, important sampling ratio, stochastic
policy gradient algorithm, and then the principles of DPG
and DDPG are given.

Prerequisites In data generation and training processes, if
behavior policy and target policy of an algorithm are the same
policy πθ , this algorithm is called on-policy algorithm. On-
policy algorithmhowevermay lead to low-quality data in data
generation and a slow speed in network convergence. This
problem can be solved by using one policy (behavior policy)
βθ for data generation and another policy (target policy) πθ

for learning andmaking decision. Algorithms using different
policies on data generation and learning are therefore called
off-policy algorithms. Although policies in off-policy algo-
rithm are different, their relationship can still be measured by
transition probability ρβ (s) that is the importance-sampling
ratio and defined by

ρβ(s) � πθ (a|s)
βθ (a|s) �

∏T
k�t π (ak |sk ; θ)∏T
k�t β(ak |sk ; θ)

(35)

Importance-sampling ratio measures the similarity of two
policies. These policies must be with large similarity in the
definition of important sampling. Particularly, behavior pol-
icy βθ is the same as policy πθ in on-policy algorithms. This
means πθ � βθ and ρβ (s) � ρπ (s) � 1.

In on-policypolicygradient algorithm (e.g., PG), its objec-
tive is defined as

(36)

J (θ) � Eτ∼πθ (τ) [R (τ)] � ∫
τ∼πθ (τ)

πθ (τ) R (τ) dτ

� ∫
s∼S

ρπ (s) ∫
a∼A

πθ (a|s) R (s, a) dads

� Es∼ρπ ,a∼πθ [R (s, a)]

where ρπ is the distribution of state transition. The objec-
tive gradient of PG ∇θ J (θ) � Eτ∼πθ (τ)

[∇θ logπθ (τ)R(τ)
]

includes a vector C � ∇θ logπθ (τ) and a scalar R � R
(τ). Vector C is the trend of policy update, while scalar R is
the range of this trend. Hence, the scalar R acts as a critic
that decides how policy is updated. Action value Qπ (s, a) is
defined as the expectation of discounted rewards by

Qπ (s, a) � E

[

rγ
1 �

∞∑

k�t

γ k−t r(sk, ak)|S1 � s, A1 � a;π

]

(37)

Qπ (s, a) is an alternative of scalar R, and it is better than
R as the critic. Hence, objective gradient of PG changes to

(38)

∇θ J (θ) � ∇θ ∫
s∼S

ρπ (s) ∫
a∼A

πθ (a|s) Qπ (s, a) dads

� Es∼ρπ ,a∼πθ

[∇θ logπθ (a|s)Qπ (s, a)
]

and policy is updated using objective gradient with action
value Qπ (s, a). Hence, algorithms are called stochastic pol-
icy gradient algorithm if action value Qπ (s, a) is used as
critic.

DPG DPG are algorithms in which a deterministic policy
μθ(s) is trained to select actions, instead of policy πθ (a|s) in
AC. A policy is deterministic policy μθ(s) if it directly maps
the state to the action ← μθ(s), while stochastic policy πθ

(a|s) maps state and action to a probability P(a|s) (Silver
et al., 2014). The update of deterministic policy is defined as

μk+1(s) � argmaxaQ
μk

(s, a) (39)

If network θ is used as approximator of deterministic pol-
icy, update of network changes to

(40)

θk+1 � θk + αE
s∼ρμk

[
∇θ Q

μk
(s, μθ (s))

]

� θk + αE
s∼ρμk

[
∇θμθ (s)∇aQ

μk
(s, a) |a�μθ (s)

]

There are small changes in state distribution ρμ of deter-
ministic policy during the update of network θ , but this
change will not impact the update of network. Hence, net-
work of deterministic policy is updated by

θ ← θ + αEs∼ρμ

[∇θμθ (s)∇aQ
μ(s, a)|a�μθ (s)

]
(41)

123

Journal of Intelligent Manufacturing

Global

model

3
rd

thread

2
nd

thread

1
st

thread

Environment Model

3
rd

thread

2
nd

thread

1
st

thread

Interact

Training

Training
Training and

weight update

Weight update

Weight

update

Weight update

Data

Data

Data

Interact

Training

A3C A2C

Fig. 25 The weight update processes of the A3C and A2C

because

(42)

∇θ J (μθ) � ∇θ ∫
S

ρμ (s) R (s, μθ (s)) ds

� ∇θEs∼ρμ [R (s, μθ (s))]

� ∫
S

ρμ (s)∇θμθ (s)∇aQ
μ (s, a) |a�μθ (s)

� Es∼ρμ

[∇θμθ (s)∇aQ
μ (s, a) |a�μθ (s)

]

Once Qμ(s, a) is obtained, θ can be updated after obtain-
ing objective gradient.

How to find Qμ(s, a)? Note that discounted reward Qμ

(s, a) is a critic in stochastic policy gradient mentioned
before. If network w is used as approximator, Qμ(s, a) is
obtained by

Qμ(s, a) ≈ Qw(s, a) (43)

stochastic policy gradient algorithm includes two networks,
in which w is the critic that approximates Q value and
θ is used as actor to select actions in test (actions are
selected by behavior policy β in training). Stochastic policy
gradient in this case is called off-policy deterministic actor-
critic (OPDAC) orOPDAC-Q. Objective gradient ofOPDAC
therefore changes from the Eq. 42 to

∇θ Jβ(μθ) ≈ Es∼ρβ

[∇θμθ (s)∇aQ
w(s, a)|a�μθ (s)

]
(44)

where β represents the behavior policy. Two networks are
updated by

δt � rt + γ Qw(st+1, μθ (st+1)) − Qw(st , at) (45)

wt ← wt + αwδt∇wQw(st , at) (46)

θt ← θt + αθ∇θμθ (s)∇aQ
w(s, a)|a�μθ (s) (47)

However, no constrains is used on network w in the
approximation of Q value and this will lead to a large bias.

How to obtain a Qw(s, a) without bias? Compatible
function approximation (CFA) can eliminate the bias by
adding two constraints on w (proof is given in Silver et al.
(2014)): (1) ∇aQw(s, a)|a�μθ (s) � ∇θμθ (s)ᵀw; (2) MSE
(θ, w) � E[ε(s; θ,w)]

[
ε(s; θ,w)ᵀε(s; θ,w)

] → 0 where
∈ (s; θ,w) � ∇aQw(s, a)|a�μθ (s)−∇aQμ(s, a)|a�μθ (s). In
other words, Qw(s, a) should meet

Qw(s, a) � (a − μθ(s))
ᵀ∇θμθ (s)

ᵀw + V v(s) (48)

where state value V v(s) may be any differentiable base-
line function (Silver et al., 2014). Here v and ∅ are feature
and parameter of state value (V v(s) � vᵀ

∅(s)). Parame-
ter ∅ is also the feature of advantage function (Aw(s, a) �
∅(s, a)ᵀw), and∅(s, a) is defined as∅(s, a)

def� ∇θμθ (s)(a−
μθ(s)). Hence, a low-biasQw(s,a) is obtained usingOPDAC-
Q and CFA. This new algorithm with less bias is called
Compatible OPDAC-Q (COPDAC-Q) (Silver et al., 2014),
in which weights are updated as Eq. 49–51

vt ← vt + avδt∅(st) (49)

wt ← wt + αwδt∅(st , at) � wt + αwδt∇wAw(st , at) (50)

θt ← θt + αθ∇θμθ (st)(∇θμθ (st)
ᵀwt) (51)

123

Journal of Intelligent Manufacturing

Deterministic

policy μθ(s)
Critic

Actor

Qμ(s,a) Qw(s,a) Q learning

CFA

Gradient Q

learning

Fig. 26 Brief steps of DPG algorithm

where δt is the same as the Eq. 45. Here av , αw and αθ

are learning rates. Note that linear function approximation
method (Silver et al., 2014) is used to obtain advantage func-
tion Aw(s, a) that is used to replace the value function Qw

(s, a) because Aw(s, a) is efficient than Qw(s, a) in weight
update. Linear function approximation however may lead to
divergence of Qw(s, a) in critic δ. Critic δ can be replaced
by the gradient Q-learning critic (Sutton et al., 2009) to
reduce the divergence. Algorithm that combines COPDAC-
Q and gradient Q-learning critic is calledCOPDACGradient
Q-learning (COPDAC-GQ). Details of gradient Q-learning
critic and COPDAC-GQ algorithm can be found in ((Silver
et al., 2014; Sutton et al., 2009)).

By analytical illustration above, 2 examples (COPDAC-Q
and COPDAC-GQ) of DPG algorithm are obtained. In short,
key points of DPG are to: (1) find a no-biased Qw(s, a) as
critic; (2) train a deterministic policy μθ(s) to select actions.
networks of DPG are updated as AC via the policy ascent
approach. Brief steps of DPG are shown in Fig. 26.

DDPG (Lillicrap et al., 2019) is the combination of replay
buffer, deterministic policyμ(s) and actor-critic architecture.
θQ is used as critic network to approximate action value Q(
si , ai ; θQ

)
. θμ is used as policy network to approximate

deterministic policyμ(s; θμ). TD target y ofDDPG is defined
by

yi � ri + γ Q′(si+1, μ′(si+1; θμ′)
; θQ′)

(52)

where θQ′
and θμ′

are copies of θQ and θμ as target networks
that are updated with low frequency. The objective of critic
network is defined by

J
(
θQ

)
� yi − Q

(
si , ai ; θ

Q
)

(53)

Critic network θQ is updated byminimizing the loss value
(MSE loss)

Loss � 1

N

∑

i

J
(
θQ

)2
(54)

where N is the number of tuples< s,a,r,s’ >sampled from
replay buffer. Target function of policy network is defined by

J
(
θμ

) � 1

N

∑

i

Q
(
si , ai ; θ

μ
)

(55)

and objective gradient is obtained by

∇θμ J
(
θμ

) ∼� 1

N

∑

i

∇θμμ
(
si ; θ

μ
)∇aQ

(
si , a; θ

Q
)
|a�μ(si)

(56)

Hence, policy network θμ is updated according to gradient
ascent method by

θμ ← θμ + α∇θμ J
(
θμ

)
(57)

where α is a learning rate. New target networks

θQ′ ← τθQ + (1 − τ)θQ′
(58)

θμ′ ← τθμ + (1 − τ)θμ′
(59)

where τ is a learning rate, are obtained by “soft” update
method that improves the stability of network convergence.
Detailed steps of DDPG are shown in Algorithm 4 (Lill-
icrap et al., 2019) and Fig. 27. Examples can be found in
((Jorgensen & Tamar, 2019; Munos et al., 2016)) in which
DDPG is used in robotic arms.

123

Journal of Intelligent Manufacturing

TRPO and PPO

PPO (Long et al., 2018; Schulman et al., 2017b) is the opti-
mized version of TRPO (Schulman et al., 2017a). Hence,
here the principle of TRPO is given before recalling that of
PPO.

TRPO Previous policy gradient algorithms update their
policies by θ ← θ + ∇θ J (θ). However, new policy is
improved unstably with fluctuation. The goal of TRPO is
to improve its policy monotonously, therefore stability of
convergence is improved by finding a new policy with the
objective that is defined by

J (θ) � Lθold (θ), s.t .Dmax
K L (θold , θ) ≤ δ (60)

where Lθold (θ) is the approximation of new policy’s expec-
tation, Dmax

K L (θold , θ) the KL divergence between old policy
θold and new policy θ , and δ a trust region constraint of KL
divergence. The objective gradient ∇θ J (θ) is obtained by
maximizing the objective J (θ).

η(θ) and η(θold) denote expectations of new and old poli-
cies, respectively. Their relationship is defined by η(θ) � η

(θold) + Es0,a0,s1,a1...

[∞∑
t�0

γ t Aθold (st , at)

]
where γ is a dis-

count factor, and Aθold (st , at) is the advantage value that is
defined by Aθ (s, a) � Qθ (s, a) − Vθ (s). Thus, η(θ) � η

(θold)+
∑

s
ρθ (s)

∑

a
θ (a|s)Aθold (s, a)whereρθ (s) is the prob-

ability distribution of new policy, but ρθ (s) is unknown
therefore it is impossible to obtain new policy η(θ). Approx-
imation of new policy’s expectation Lθold (θ) is defined by

(61)

Lθold (θ) � η (θold) +
∑

s

ρθold (s)
∑

a

θ (a|s) Aθold (s, a)

� η (θold) +
∑

s

ρθold (s)
∑

a

θ (a|s)
θold (a|s)

· θold (a|s) · Aθold (s, a)

� η (θold) + E

[
θ (a|s)

θold (a|s) Aθold (s, a)

]

where ρθold (s) is known. The relationship of Lθold (θ) and η

(θ) (Kakade & Langford, 2002) is proved to be

η(θ) ≥ Lθold (θ) − C · Dmax
K L (θold , θ) (62)

123

Journal of Intelligent Manufacturing

Environment

Actor

neural

network

Critic

neural

network

 and

targeted function y
Update of

weight θμ using sampled

Update of

weight θQ by minimizing

the loss

s

a, r, s’

s

r,θQ θμ’ θQ’

Q y

θQ

Replay

buffer <s,a,r,s’>

θμ’θμ

1

2

3

4
5

Fig. 27 Steps of DDPG. DDPG combines the replay buffer, actor-critic
architecture, and deterministic policy. First, action is selected by policy
network and reward is obtained. State transits to next state. Second,

experience tuple is saved in replay buffer. Third, experiences are sam-
pled from replay buffer for training. Fourth, critic network is updated.
Finally, policy network is updated

where penalty coefficient C � 2εγ
(1−γ)2

, γ ε[0, 1] and ∈ the

maximum advantage. Hence, it is possible to obtain η(θ) by
maximizeθ

[
Lθold (θ) − C · Dmax

K L (θold , θ)
]
or

maximizeθE

[
θ(a|s)

θold (a|s) Aθold (s, a) − C · Dmax
K L (θold , θ)

]

(63)

However, penalty coefficient C (constrain of KL diver-
gence) will lead to small step size in policy update. Hence, a
trust region constraint δ is used to constrain KL divergence
by

maximizeθE

[
θ(a|s)

θold(a|s) Aθold (s, a)

]
, s.t .Dmax

K L (θold , θ) ≤ δ

(64)

therefore step size in policy update is enlarged robustly. New
improved policy is obtained in trust region by maximizing
objective Lθold (θ), s.t. Dmax

K L (θold , θ) ≤ δ. This objective can
be simplified further (Schulman et al., 2017a) and new policy
θ is obtained by

maximizeθ

[∇θ Lθold (θ)|θ�θold
• (θ − θold)

]

s.t.
1

2
‖θ − θold‖2 ≤ δ (65)

PPO The objective of TRPO is maximizeθE[
θ(a|s)

θold (a|s) Aθold (s, a)
]
, s.t .Dmax

K L (θold , θ) ≤ δ, in which a

fixed trust region constraint δ is used to constrain KL

divergence instead of penalty coefficientC . Fixed trust
region constraint δ leads to a reasonable step size in policy
update therefore stability in convergence is improved and
convergence speed is acceptable. However, objective of
TRPO is obtained in implementation by conjugate gradient
method (Schulman et al., 2017b) that is computationally
expensive.

PPO optimizes objective maximizeθE[
θ(a|s)

θold (a|s) Aθold (s, a) − C · Dmax
K L (θold , θ)

]
from two aspects:

(1) probability ratio r(θ) � θ(a|s)
θold (a|s) in objective is con-

strained in interval [1 − ε, 1 + ε] by introducing“surrogate”
objective

LCL I P (θ) � E{min[r(θ)A, clip(r(θ), 1 − ε, 1 + ε)]} (66)

where ∈ is a hyperparameter, to penalize changes of pol-
icy that move r(θ) away from 1 (Schulman et al., 2017b);
(2) penalty coefficient C is replaced by adaptive penalty
coefficient β that increases or decreases according to the
expectation of KL divergence in new update. To be exact,

i f d

〈
dtarg
1.5

, β ← β

2
; i f d

〉
dtarg × 1.5, β ← β × 2 (67)

where d � E[Dmax
K L (θold , θ)] and dtarg denotes target value

of KL divergence in each policy update, therefore KL-
penalized objective is obtained by

123

Journal of Intelligent Manufacturing

(68)

LK LPEN (θ)

� E

[
θ (a|s)

θold (a|s) Aθold (s, a) − β · Dmax
K L (θold , θ)

]

In the implementation with neural network, loss function
is required to combine the policy surrogate and value func-
tion error (Schulman et al., 2017b), and entropy are also used
in objective to encourage exploration. Hence, combined sur-
rogate objective is obtained by

LCL I P+V F+S(θ) � E

[
LCL I P (θ) + c1L

V F (θ) + c2S(πθ |s)
]

(69)

where c1, c2, S and LV F (θ) denote two coefficients, entropy
bonus and square-error loss respectively. Objectives of PPO
(LCL I P+V F+S(θ) and LK LPEN (θ)) is optimized by SGD
that costs less computing resource than conjugate gradient
method. PPO is implemented with actor-critic architecture,
therefore it converges faster than TRPO.

Analytical comparisons

Toprovide a clear understanding about advantages and disad-
vantages of different motion planning algorithms, we divide
these algorithms into four groups: traditional algorithms,
classical ML algorithms, optimal value RL and policy gra-
dient RL. Comparisons are made according to principles
of the algorithm mentioned in section II, III, IV and V.
First, direct comparisons of the algorithm in each group
are made to provide a clear understanding about the input,
output, and key features of these algorithms. Second, ana-
lytical comparisons of all motion planning algorithms are
made to provide a comprehensive understanding about per-
formances and applications of the algorithm, according to
criteria summarized. Third, analytical comparisons about
the convergence of RL-based motion planning algorithms
are specially made, because RL-based algorithms are the
research focus recently.

Direct comparisons of motion planning algorithm

Traditional algorithms This group includes graph search
algorithms, sampling-based algorithms, interpolating curve
algorithms and reaction-based algorithms. Table 1 lists their
input, output, and key features. According to Table 1:
(1) Graph search algorithms, sampling-based algorithms,
and interpolating curve algorithms use graph or map of
workspace as the input and global trajectories are generated
directly, while reaction-based algorithms use different types
of information as the input. (2) Graph search algorithms find
the shortest and collision-free trajectories by the searchmeth-
ods (e.g., best-first search). For example,Dijkstra’s algorithm

is based on best-first search. However, the search process
is computationally expensive because search space is large,
therefore heuristic function is used to reduce the search space
and the shortest path is found by estimating the overall cost
(e.g., A*). (3) Sampling-based algorithms randomly sample
collision-free trajectories in search space (e.g., PRM), and
constraints (e.g., non-holonomic constraint) are needed for
some algorithms (e.g., RRT) in the sampling process. (4)
Interpolating curve algorithms plan their path by mathemat-
ical rules, and then planned path is smoothed by CAGD.
(5) In reaction-based algorithms, the moving directions of
robots in PFM (APF) are the gradients of the converged and
combined potential field function U . The velocity of robots
in VOM is selected from RAV that is related to VO and
RV. Exhaustive search and heuristic search can be used in
the velocity selection process of VOM, and selected veloc-
ity must maximize the objective function U (e.g., distance
traveled and motion time). Before velocity selection process
of DWA, it is necessary to reduce the search space of veloc-
ity to obtain the resulting search space Vr � Vs ∩ Va ∩ Vd .
Proper velocity of robots in DWA is selected from Vr , and
selected velocity must maximize the objective function U .
Note that U includes a measure of progress towards a goal
location, the forward velocity of the robot, and the distance
to the next obstacle on the trajectory. (6) Outputs of graph
search algorithms, sampling-based algorithms, and interpo-
lating curve algorithms are trajectories. The outputs of PFM
(APF) are directions of robots according to the gradient of
the converged and combined potential field functionU , while
outputs of VOM and DWA are selected velocity among pos-
sible velocities.

Classical ML algorithms This group includes MSVM,
LSTM,MCTS andCNN.These algorithms are listed in Table
2. According to that: (1) MSVM, LSTM and MCTS use
well-prepared vector as the input, while CNN can directly
use image as its input. (2) LSTM and MCTS can output
time-sequential actions, because of their structures (e.g., tree)
that can store and learn time-sequential features. MSVM and
CNNcannot output time-sequential actions because they out-
put one-step prediction by performing trained classifier. (3)
MSVMplans the motion of the robot by training a maximum
margin classifier. LSTMstores and processes inputs in its cell
that is a stack structure, and then actions are outputted by per-
forming trained LSTM model. MCTS is the combination of
Monte-Carlo method and search tree. Environmental states
and values are stored and updated in its node of tree, therefore
actions are outputted by performing trained MCTS model.
CNN converts high-dimensional images to low-dimensional
features by convolutional layers. These low-dimensional fea-
tures are used to train a CNN model, therefore actions are
outputted by performing trained CNN model.

123

Journal of Intelligent Manufacturing

Table 1 Comparisons of traditional planning algorithm

Classification Example Input Key features Output

Graph search algorithm Dijkstra’s 1 Graph or map 1. Best-first search (large
search space)

2. Heuristic function in cost
estimation

Trajectory

A* 1,2

Sampling based algorithm PRM 1 1. Random search
(suboptimal path)

2. Non-holonomic
constraint

RRT 1,2

Interpolating Curve
algorithm

Line and circle 1. Mathematical rules
2. Path smoothing using
CAGD

Clothoid curves

Polynomial curves

Bezier curves

Spline curves

Reaction based algorithm PFM (APF) Robot configurations (e.g.,
position)

1. Different potential field
functions U for different
targets (e.g., goal,
obstacle)

2. Combined U and
gradient of U

Moving directions

VOM Positions and velocities
(robot and obstacles)

1. VO, RV and RAV
2. Exhaustive/global search,
and heuristic search
according to objective
function U

Selected velocity among
possible velocities

DWA Robot’s position, distances
to goal/obstacles, (v,w),
and kinematics of robot

1. Vs , Va , Vd , Vr
2. Velocity selection
according to objective
function U

Table 2 Comparison of classical
ML algorithms Algorithm Input Key features Output

MSVM Vector Maximum margin classifier None-sequential actions

LSTM Vector Cell (stack structure) Time-sequential actions

MCTS Vector Monte-carlo method/Tree structure Time-sequential actions

CNN Image Convolutional layers/Weight matrix None-sequential actions

Optimal value RL This group here includes Q learning,
DQN, double DQN, and dueling DQN. Features of algo-
rithms here include the replay buffer, objectives of algorithm,
and method of weight update. Comparisons of these algo-
rithms are listed in Table 3. According to that: (1) Q learning
normally uses well-prepared vector as the input, while DQN,
double DQN and dueling DQN use images as their input
because these algorithms use convolutional layer to process
high-dimensional images. (2) Outputs of these algorithms
are time-sequential actions by performing trained model. (3)
DQN, double DQN and dueling DQN use replay buffer to
reuse the experience, while Q learning collects experiences
and learns from then in an online way. (4) DQN, double
DQN and duelingDQNuseMSE e2 as their objectives. Their

differences are: first, DQN obtains action values by neural
network Q(s, a; θ), while Q learning obtains action values
by querying the Q-table; second, double DQN uses another
neural network θ− to evaluate selected actions to obtain bet-
ter action values by Q

(
s

′
, argmaxaQ

(
s

′
, a

′
; θ

′)
; θ−

)
; third,

dueling DQN obtains action values by dividing them to
advantage values and state values. The constraint Ea∼π (s)

[A(s, a)] � 0 is used on the advantage value, therefore
a better action value is obtained by Q(s, a; θ, α, β) �
V (s; θ, β) +

{
A(s, a; θ, α) − 1

|A|
∑

a−
t ∈A A(st , a

−
t ; θ, α)

}
.

Networks that approximate action value in these algorithms
are updated by minimizing MSE with gradient descent
approach.

123

Journal of Intelligent Manufacturing

Table 3 Comparison of optimal-value RL

Algorithm Input Output Replay buffer Objective Method of weight update

Q learning Vector Time-sequential actions No e2 where e �
r + γ maxa Q(s′, a′)− Q(s, a)

Gradient descent

DQN Image Time-sequential actions Yes e2 where
e � r + γ maxa Q(s′, a′; θ ′)−
Q(s, a; θ)

Gradient descent

Double DQN Image Time-sequential actions Yes e2 where
e � r + γ Q(s

′
, argmaxaQ(

s
′
, a

′
; θ

′)
; θ−) − Q(s, a; θ)

Gradient descent

Dueling DQN Image Time-sequential actions Yes e2 where
e � r + γmaxaQ(s

′
, a

′
; θ) −

Q(s, a; θ) and Q
(s, a; θ, α, β) � V (s; θ, β)+{
A(s, a; θ, α) − 1

|A|
∑

a−
t ∈A A(st , a

−
t ; θ, α)

}

Gradient descent

Table 4 Comparison of policy gradient RL

Algorithm Input Output Actor-critic
architecture

Multi-thread
method

Replay buffer Objective Method of
weight update

PG Image/vector Time-sequential
actions

—* — — 1 Gradient ascent

AC Image/vector Time-sequential
actions

Yes — — Critic: 2 Actor: 3 Gradient ascent

A3C Image/vector Time-sequential
actions

Yes Yes — Critic: 4 Actor: 5 Gradient ascent
Asynchronous
update

A2C Image/vector Time-sequential
actions

Yes Yes — Critic: 6 Actor: 7 Gradient ascent
Synchronous
update

DPG Image/vector Time-sequential
actions

Yes — Yes Critic: 8 Actor: 9 Gradient ascent

DDGP Image/vector Time-sequential
actions

Yes — Yes Critic: 10 Actor:
11

Gradient ascent
Soft update

TRPO Image/vector Time-sequential
actions

Yes — — Critic: 12 Actor:
13

Gradient ascent

PPO Image/vector Time-sequential
actions

Yes — — Critic: 14 Actor:
15

Gradient ascent

*Here the mark “—” denotes “No”
1. Eτ∼πθ (τ)[R(τ)]
2. e2, e � rt + V (st+1;w) − V (st ;w)
3. πθ (at |st) • e
4. e2, e � ∑T

i�t γ
i−t ri + V (st+n ;w) − V (st ;w)

5. πθ (at |st) • e + βH (π (st ; θ)
6. e2, e � ∑T

i�t γ
i−t ri + V (st+n ;w) − V (st ;w)

7. πθ (at |st) • e + βH (π (st ; θ)
8. e2, e � rt + γ Qw(st+1, μθ (st+1)) − Qw(st , at)
9. Qw(st , at), objective gradient: ∇θμθ (s)∇a Qw(s, a)|a�μθ (s)

10.e2, e � ri + γ Q
′(
si+1, μ

′(
si+1; θμ

′)
; θQ

′) − Q(si , ai ; θQ)

11. Q(si , ai ; θμ), objective gradient: ∇θμμ(si ; θμ)∇a Q(si , a; θQ)|a�μ(si)

12. At � δt + (γ λ)δt+1 + · · · + γ λT−tδ(sT), δt � rt + γ V (st+1;w) − V (st ;w)
13. E[θ(a|s)

θold (a|s) Aθold (s, a)], s.t .Dmax
K L (θold , θ) ≤ δ

14. At � δt + (γ λ)δt+1 + · · · + γ λT−tδ(sT), δt � rt + γ V (st+1;w) − V (st ;w)
15. (1) LK LPEN (θ) � E[θ(a|s)

θold (a|s) Aθold (s, a) − β • Dmax
K L (θold , θ)]

(2) LCL I P+V F+S(θ) � E[LCL I P (θ) + c1LV F (θ) + c2S(πθ |s)]
where LCL I P (θ) � E{min[r(θ)A, clip(r(θ), 1 − ε, 1 + ε)]}

123

Journal of Intelligent Manufacturing

Policy gradient RLAlgorithms in this group include PG,
AC, A3C, A2C, DPG, DDPG, TRPO, and PPO. Features of
them include actor-critic architecture, multi-thread method,
replay buffer, objective of algorithm, and method of weight
update. Comparisons of these algorithms are listed in Table
4. According to that: (1) Inputs of policy gradient RL can
be image or vector, and image is used as inputs under
the condition that convolutional layer is used as prepro-
cessing component to convert high-dimensional image to
low-dimensional feature. (2) Outputs of policy gradient RL
are time-sequential actions by performing trained policy
π (s) : s → a. (3) Actor-critic architecture is not used in
PG, while other policy gradient RL are implemented with
actor-critic architecture. (4) A3C and A2C use multi-thread
method to collect data and update their network, while
other policy gradient RL are based on single thread in data
collection and network update. (5) DPG and DDPG use
replay buffer to reuse data in an offline way, while other
policy gradient RL learn online. (6) The objective of PG
is defined as the expectation of accumulative rewards in
the episode by Eτ∼πθ (τ)[R(τ)]. Critic objectives of AC,
A3C, A2C, DPG and DDPG are defined as MSE e2, and
their critic networks are updated by minimizing the MSE.
However, their actor objectives are different because: first,
actor objective of AC is defined as πθ (at |st) · e; second,
policy entropy is added on πθ (at |st) · e to encourage the
exploration, therefore actor objectives of A3C and A2C are
defined by πθ (at |st) ·e+βH (π (st ; θ); third, DPG and DDPG
use action value as their actor objectives by Q(si , ai ; θμ)
that are approximated by neural network, and their pol-
icy networks (actor networks) are updated by obtaining
objective gradient ∇θμμ(si ; θμ)∇aQ(si , a; θQ)|a�μ(si).
Critic objectives of TRPO and PPO are defined as the
advantage value by At � δt + (γ λ)δt+1 + . . . + γ λT−tδ(sT)
where δt � rt + γ V (st+1;w) − V (st ;w), and their critic
networks w are updated by minimizing δ2t . Actor objectives
of TRPO and PPO are different: objective of TRPO is
defined as E[θ(a|s)

θold (a|s) Aθold (s, a)], s.t .D
max
K L (θold , θ) ≤ δ in

which a fixed trust region constraint δ is used to ensure
the monotonous update of policy network θ , while PPO
uses “surrogate” [1 − ε, 1 + ε] and adaptive penalty β to
ensure a better monotonous update of policy network,
therefore PPO has two objectives that are defined as
LK LPEN (θ) � E[θ(a|s)

θold (a|s) Aθold (s, a) − β · Dmax
K L (θold , θ)]

(KL-penalized objective) and LCL I P+V F+S(θ) �
E[LCL I P (θ) + c1LV F (θ) + c2S(πθ |s)] (surrogate objective)
where LCL I P (θ) � E{min[r (θ)A, clip(r (θ), 1− ε, 1+ ε)]}.
(7) Policy network of policy gradient RL are all updated
by gradient ascent method θ ← θ + α∇θ J (θ). Policy
networks of A3C and A2C are updated in asynchronous and
synchronous ways, respectively. Networks of DDPG are

updated in a “soft” way by θQ′ ← τθQ + (1 − τ)θQ′
and

θμ′ ← τθμ + (1 − τ)θμ′
.

Analytical comparisons of motion planning
algorithms

Here analytical comparisons of motion planning algorithms
are made according to general criteria we summarized.
These criteria consist of six aspects: local or global planning,
path length, optimal velocity, reaction speed, safe distance
and time-sequential path. The speed and stability of network
convergence for optimal value RL and policy gradient RL are
then compared analytically because convergence speed and
stability of RL in robotic motion planning are recent research
focus.

Comparisons according to general criteria

Local (reactive) or global planning This criterion denotes
the area where the algorithm is used in most case. Table 5
lists planning algorithms and the criteria they fit. Accord-
ing to Table 5: (1) Graph search algorithms plan their path
globally by searchmethods (e.g., depth-first search, best-first
search) to obtain a collision-free trajectory on the graph or
map. (2) Sampling-based algorithms samples local or global
workspace by sampling methods (e.g., random tree) to find
collision-free trajectories. (3) Interpolating curve algorithms
draw fixed and short trajectories by mathematical rules to
avoid local obstacles. (4) Reaction based algorithms plan
local paths or reactive actions according to their objective
functions. (5) MSVM and CNNmake one-step prediction by
trained classifiers to decides their local motions. (6) LSTM,
MCTS, optimal value RL and policy gradient RL can make
time-sequential motion planning from the start to destination
by performing their trained models. These models include
the stack structure model of LSTM, tree model of MCTS
and matrix weight model of RL. These algorithms fit global
motion planning tasks theoretically if size of workspace is
not large, because it is hard to train a converged model
in large workspace. In most case, models of these algo-
rithms are trained in localworkspace tomake time-sequential
predictions by performing their trained model or policy π

(s) : s → a.

Path length This criterion denotes the length of planned
path that is described as optimal path (the shortest path),
suboptimal path, and fixed path. Path length of algorithms
are listed in Table 5. According to that: (1) Graph search
algorithms can find a shortest path by performing search
methods (e.g., best-first search) in the graph or map. (2)
Sampling-based algorithms plan a suboptimal path. Their
sampling method (e.g., random tree) leads to the insufficient
sampling that only covers a part of cases and suboptimal

123

Journal of Intelligent Manufacturing

Table 5 Analytical comparisons according to general criteria

Algorithm Local/global Path length Optimal velocity Reaction speed Safe distance Time-sequential
path

Graph search alg Global Optimal path
(shortest path)

–* Slow Fixed
distance/High
Collison rate

No

Sampling-based
alg

Local/Global Suboptimal path – Slow Fixed
distance/High
Collison rate

No

Interpolating curve
alg

Local Fixed path – Medium Fixed distance No

Reaction based alg Local Optimal path Optimal velocity Medium Suboptimal
distance

No

MSVM Local Suboptimal path Suboptimal
velocity

Fast Suboptimal
distance

No

LSTM Local/Global Suboptimal path Suboptimal
velocity

Fast Suboptimal
distance

Yes

MCTS Local/Global Optimal path – Fast Optimal distance Yes

CNN Local Suboptimal path Suboptimal
velocity

Fast Suboptimal
distance

No

Q learning Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

DQN Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

Double DQN Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

Dueling DQN Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

PG Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

AC Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

A3C Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

A2C Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

DPG Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

DDGP Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

TRPO Local/Global Optimal path Optimal velocity Fast Optimal distance Yes

PPO Local/Global Optimal path Optimal velocity Fast Optimal distance Yes
*The mark “–” denotes the performance that cannot be evaluated

path is obtained. (3) Interpolating curve algorithms plan their
path according to mathematical rules that lead to a fixed
length of path. (4) Reaction-based algorithms can find the
shortest path if their objective functions are related to short-
est distance travelled, and then robots will move towards
directions that maximize objective functions. (5) MSVM,
LSTM and CNN plan their path by performing models that
are trained with human-labeled dataset, therefore suboptimal
path is obtained. MCTS can receive the feedback (reward)
from the environment to update its model (tree), therefore it
is possible to find a shortest path like other RL algorithms.
(6) RL algorithms (optimal value RL and policy gradient RL)
can generate optimal path under the condition that reason-
able penalty is used to punish moved steps in the training,
therefore optimal path is obtained by performing the trained
RL policy.

Optimal velocity This criterion denotes the ability to tune
the velocity when algorithms plan their path, therefore robot

can reach the destination with minimum time in travelled
path. This criterion is described as optimal velocity and sub-
optimal velocity. Table 5 lists performance of algorithms
in the optimal velocity. According to that: (1) Performance
of graph search algorithms, sampling-based algorithms and
interpolating algorithms in the velocity tuning cannot be eval-
uated, because these algorithms are only designed for the
path planning to find a collision-free trajectory in the graph
ormap. (2)Among reaction-based algorithms, the velocity of
robots in PFM can be tuned according to obtained potential
field,while velocities of robots inVOMandDWAare dynam-
ically selected among their possible velocities according to
their objective functions. Hence, reaction-based algorithms
can realize optimal velocity. (3) MSVM, LSTM, and CNN
can output actions that are in the format v � [vx , vy] where
vx and vy are velocity in x and y axis, if algorithms are
trained with these vector labels. However, these velocity-
related labels are all hard-coded artificially. Time to reach

123

Journal of Intelligent Manufacturing

destination heavily relies on the artificial factor, therefore
these algorithms cannot realize optimal velocity. MCTS can
realize optimal velocity theoretically if the size of action
space is small. However, the case where MCTS is used in
velocity-related tasks has not been found. Large action space
will lead to a large search tree, and it is hard to train such
a large tree model. In normal case, MCTS is used in one-
step prediction via its trained tree model, therefore the state
can transit into next state but velocity in this state transition
process will not be considered. Hence, its ability in velocity
tunning cannot be evaluated. (4) optimal value RL and pol-
icy gradient RL can realize optimal velocity by attaching the
penalty to consumed time in the training. These algorithms
can automatically learn how to choose the best velocity in
the action space for training to cost time as less as possible,
therefore robots can realize optimal velocity by performing
trained policy. Note that in this case, actions in optimal value
RL and policy gradient RL must be in format of [vx , vy]
and action space that contains many action choices must be
pre-defined artificially.

Reaction speed This criterion denotes the computational
cost or time cost of the algorithm to react dynamic obsta-
cles. Computational cost of some algorithms (e.g., traditional
non-AI algorithms) would be easy to obtain by counting the
number of lines and functions in the source code (Kinnunen
et al., 2011). However, the problems of this approach are
that all source codes should be found first, and the result
would still depend on the chosen programming language
and the quality of the implementation. It is hard to obtain
clear computational costs, thus here reaction speed is briefly
described analytically using three levels: slow, medium and
fast. Table 5 lists reaction speed of the algorithms. Accord-
ing to that: (1) Graph search algorithms and sampling-based
algorithms rely on planned trajectories in the graph or map
to avoid obstacles. However, the graph or map is updated in
a slow frequency normally, therefore reaction speed of these
algorithms is slow. (2) Interpolating curve algorithms plan
their path according to mathematical rules with limited and
predictable time in computation, therefore reaction speed of
these algorithms is medium. (3) Reaction-based algorithms
should first update their potential field (for PFM) and search
space (forVOMandDWA) in small local areas to selectmov-
ing directions or proper velocities. These update processes
take lesser time than that of graph search algorithms. Hence,
reaction speed of reaction-based algorithms is medium. (4)
classical ML algorithms, optimal value RL and policy gra-
dient RL react to obstacles by performing trained model or
policy π(s) : s → a that maps state of environment to a
probability distribution P(a|s) or to actions directly (e.g.,

DDPG). This process is fast and time cost can be ignored,
therefore reaction speed of these algorithms is fast.

Safe distance This criterion denotes the ability to keep a
safe distance to obstacles. Safe distance is described as three
level that includes fixed distance, suboptimal distance and
optimal distance. Table 5 lists the performance of algorithms.
According to that: (1)Graph search algorithms and sampling-
based algorithms keep a fixed distance to static obstacles by
hard-coded setting in robotic application. However, high col-
lision rate is inevitable in dynamic environment because of
slow update frequency of graph or map. (2) Interpolating
algorithms keep a fixed distance to static and dynamic obsta-
cles according to mathematical rules. (3) Reaction-based
algorithms can keep safe and dynamic distances to obstacles
theoretically according to their potential field functions (for
PFM) or objective functions (for VOM and DWA). However,
their updates in potential fields or search spaces cost a short
period of time that cannot be ignored, therefore increasing
the rate of collision with obstacles especially in high-speed,
dense, and dynamic scenarios. Hence, they keep a subop-
timal distance to obstacles. (4) MSVM, LSTM and CNN
keep a suboptimal distance to static and dynamic obstacles.
Suboptimal distance is obtained by performing a model that
is trained with human-labeled dataset. MCTS can output a
collision-free time-sequential path and keep a safe distance
to obstacles theoretically as other RL algorithms. (5) optimal
valueRLand policy gradientRLkeep a safe and dynamic dis-
tance to static and dynamic obstacles with the computational
cost that can be ignored, by performing a trained policy π

(s) : s → a. This policy is trained under the condition that the
penalty is used to punish the close distances between robot
and obstacles in the training, therefore algorithms will auto-
matically learn how to keep an optimal distance to obstacles
when robot moves towards destination.

Time-sequential path This criterion denotes whether an
algorithm fits time-sequential task or not. Table 5 lists algo-
rithms that fit time-sequential planning.According to that: (1)
Graph search algorithms, sampling-based algorithms, inter-
polating curve algorithms, and reaction-based algorithms
plan their path according to the graph or map, mathemati-
cal rules, obtained potential field or search spaces, regardless
of environmental state in each time step. Hence, these algo-
rithms cannot fit time-sequential task. (2) MSVM and CNN
output actions by one-step prediction that has no relationwith
environmental state in each time step. (3) LSTM and MCTS
store environmental state in each time step in their cells and
nodes respectively, and their models are updated by learning
from these time-related experience. Time-sequential actions
are outputted by performing trained models, therefore these
algorithms fit time-sequential task. (4) Optimal value RL and
policy gradient RL train their policy network by learning
from environmental state in each time step. Time-sequential

123

Journal of Intelligent Manufacturing

actions are outputted by performing trained policy, therefore
these algorithms fit time-sequential task.

Comparisons of convergence speed and stability

Convergence speed Here poor, reasonable, good, and
excellent are used to describe the performance of conver-
gence speed. Table 6 lists the performance of optimal value
RL and policy gradient RL. According to that: (1) Q learning
only fits simple motion planning with small-size Q table. It
is hard to converge for Q learning with large-size Q table in
complex environment. Over-estimation of Q value also leads
to poor performance of Q learning if neural network is used
to approximate Q value. (2) DQN suffers the over-estimation
of Q value when CNN is used to approximate Q values, but
DQN learns from the experience in replay buffer that make
network reuse high-quality experience efficiently. Hence,
convergence speed of DQN is reasonable. (3) Double DQN
uses another network θ− to evaluate actions that are selected
by θ ′. New Q value with less over-estimation is obtained by
Q

(
s′, argmaxa Q

(
s′, a′; θ ′); θ−)

, therefore the convergence
speed is improved. (4) Dueling DQN finds better Q value
by: first, dividing action value to state value and advantage
value Q(s, a) � V (s, a) + A(s, a); second, constraining
advantage value A(s, a) by Ea∼π(s)[A(s, a)] � 0, therefore
new action value is obtained by Q(s, a; θ, α, β) � V

(s; θ, β) +

⎧
⎨

⎩
A(s, a; θ, α) − 1

|A|
∑

a−
t εA

A
(
st , a

−
t ; θ, α

)
⎫
⎬

⎭
.

Hence, performance of dueling DQN in convergence speed
is good. (5) PG updates its policy according to the episode
rewards by Eτ∼πθ (τ)[R(τ)], therefore poor performance
in convergence speed is inevitable. (5) AC uses the critic
network to evaluate actions selected by the actor network,
therefore speeding up the convergence. (6) A3C andA2C use
multi-thread method to improve convergence speed directly,
and policy entropy is also used to encourage exploration.
These methods indirectly enhance the convergence speed.
(7) Performance of DPG and DDPG in convergence speed is
good because: first, their critics are unbiased critic networks
obtained by CFA and gradient Q learning; second, their
policies are deterministic policy μθ(s) that is faster than the
stochastic policy πθ (at |st) in convergence speed; third, their
networks are updated offline with replay buffer; fourth, noise
is used in DDPG to encourage the exploration; (8) TRPO
makes a great improvement in convergence speed by adding
trust region constraint to policies by Dmax

K L (θold , θ) ≤ δ,
therefore its networks are updated monotonously by

maximizing its objective E

[
θ(a|s)

θold (a|s) Aθold (s, a)
]
, s.t .Dmax

K L

(θold , θ) ≤ δ. (9) PPO moves further in improving
convergence speed by introducing “surrogate” objective
LCL I P+V F+S(θ) � E

[
LCL I P (θ) + c1LV F (θ) + c2S(πθ |s)

]

and KL-penalized objective LK LPEN (θ) �
E[θ(a|s)

θold (a|s) Aθold (s, a) − β · Dmax
K L (θold , θ)].

Convergence stability Table 7 lists convergence stability
of optimal value RL and policy gradient RL. According to
that: (1) Q learning update its action value every step, there-
fore the bias is introduced. Over-estimation of Q value leads
to suboptimal update direction of Q value, if neural network
is used as approximator. Hence, convergence stability of Q
learning is poor. (2) DQN improves the convergence stability
by replay buffer in which a batch of experiences are sampled
for training and its network is update according to the batch
loss. (3) Double DQN and dueling DQN can find a better
action value than that of DQN by the evaluation network and
advantage network respectively, therefore networks of these
algorithms are updated towards a better direction. (4) PG
updates its network according to the accumulative episode
reward. This reduces bias caused by one-step rewards, but it
introduces high variance. Hence, network of PG is updated
with stability, but it is still hard to converge. (5) The perfor-
mance of actor and critic network ofAC is poor in early-stage
training. This leads to a fluctuated update of networks in the
beginning, although network is updated by gradient ascent
method θ ← θ + ∇θ J (θ). (6) A3C and A2C update their

networks by multi-step rewards
T∑

i�t
γ i−t ri that reduces the

bias and improves convergence stability, although it will
introduce some variance. Gradient ascent method also helps
in convergence stability, therefore performance in their
convergence stability is reasonable. (6) Unbiased critic,
gradient ascent method and replay buffer contribute to good
performance in convergence stability for DPG and DDPG.
Additionally, target networks of DDPG are updated in a
soft way by θQ′ ← τθQ + (1 − τ)θQ′

and θμ′ ← τθμ +
(1 − τ)θμ′

that also contributes to convergence stability.
(7) Networks of TRPO and PPO is updated monotonously.
TRPO achieves this goal by the trust region constraint
Dmax

K L (θold , θ) ≤ δ, while PPO uses “surrogate” objective
LCL I P+V F+S(θ) � E

[
LCL I P (θ) + c1LV F (θ) + c2S(πθ |s)

]

and KL-penalized objective LK LPEN (θ) � E[
θ(a|s)

θold (a|s) Aθold (s, a) − β · Dmax
K L (θold , θ)

]
. Hence, per-

formance of their networks in convergence stability is
good.

Future directions of robotic motion planning

Here a commonbut complex real-worldmotion planning task
is firstly given: how to realize long-distance motion plan-
ning with safety and efficiency (e.g., long-distance luggage
delivery by robots)? Then research questions and directions
are obtained by analyzing this task according to processing

123

Journal of Intelligent Manufacturing

Table 6 Comparison of speed in
convergence for RL Algorithm Speed of convergence Reasons

Q learning Poor Over-estimation of action value

DQN Reasonable Replay buffer

Double DQN Good Replay buffer

Another network for evaluation

Dueling DQN Good Replay buffer

Division of action value Q(s, a) � V (s, a) + A(s, a)

PG Poor High variance by Eτ∼πθ (τ)[R(τ)]

AC Reasonable Actor-critic architecture

A3C Good Actor-critic architecture

Multi-thread method

Policy entropy

A2C Good Actor-critic architecture

Multi-thread method

Policy entropy

DPG Good Replay buffer

Actor-critic architecture

Deterministic policy

Unbiased critic network

DDGP Good Replay buffer

Actor-critic architecture

Deterministic policy

Unbiased critic network

Exploration noise

TRPO Good Actor-critic architecture

Fixed trust region constraint;

PPO Excellent Actor-critic architecture

“surrogate” objective

KL-penalized objective

steps that include data collection, data preprocessing,motion
planning and decision making (Fig. 28).

Data collection To realize mentioned task, these ques-
tions should be considered firstly: (1) how to collect enough
data? (2) how to collect high-quality data? To collect enough
data in a short time, multi-thread method or cloud technol-
ogy should be considered. Existing techniques seem enough
to solve this questionwell. To collect high-quality data, exist-
ing works use prioritized replay buffer (Oh et al., 2018) to
reuse high-quality data to train network. Imitation learning
(Codevilla et al., 2018; Oh et al., 2018) is also used for the
network initialization with expert experience, therefore net-
work can converge faster (e.g., deep V learning (Chen et al.,
2016, 2019)). Existing methods in data collection work well,
therefore it is hard to make further optimization.

Data preprocessData fusion and data translation should
be considered after data is obtained. Multi-sensor data fusion
algorithms (Durrant-Whyte & Henderson, 2008) fuse data
that is collected from same or different type of sensors. Data
fusion is realized from pixel, feature, and decision levels,

therefore partial understanding of environment is avoided.
Another way to avoid partial understanding of environment
is the data translation that interpretates data to new format,
therefore algorithms can have a better understanding about
the relationship of robots and other obstacles (e.g., attention
weight (Chen et al., 2019) and relation graph (Chen et al.,
2020)). However, algorithms in data fusion and translation
cannot fit all cases, therefore further works is needed accord-
ing to the environment of application.

Motion planning: In this step, the selection and optimiza-
tion of motion planning algorithms should be considered: (1)
if traditional motion planning algorithms (e.g., A*, RRT) are
selected for the taskmentioned before, global trajectory from
the start to destination will be obtained, but this process is
computationally expensive because of the large search space.
To solve this problem, the combination of traditional algo-
rithms and other ML algorithms (e.g., CNN, DQN) may be
a good choice. For example, RRT can be combined with
DQN (Fig. 29) by using action value to predict directions
of tree expansion, instead of the heuristic or random search.

123

Journal of Intelligent Manufacturing

Table 7 Comparison of stability
in convergence for RL Algorithms Stability of convergence Reasons

Q learning Poor Update in each step

Over-estimation of action value

DQN Reasonable Replay buffer

Double DQN Reasonable Replay buffer

Evaluation network

Dueling DQN Reasonable Replay buffer

Advantage network

PG Good Update by trajectory rewards

Gradient ascent update

AC Poor (in the beginning) Update in each step

Gradient ascent update

A3C Reasonable Update by multi-step rewards

Gradient ascent update

A2C Reasonable Update by multi-step rewards

Gradient ascent update

DPG Good Unbiased critic

Gradient ascent update

Replay buffer

DDGP Good Unbiased critic

Gradient ascent update

Replay buffer

Soft update

TRPO Good Monotonous update

Gradient ascent update

PPO Good Monotonous update

Gradient ascent update

(2) It seems impossible to use supervised learning to real-
ize task mentioned above safely and quickly. Global path is
impossible to be obtained by supervised learning that out-
puts one-step prediction. (3) Global path cannot be obtained
by optimal value RL or policy gradient RL, but their perfor-
mance in safety and efficiency is good locally by performing
trained RL policy that leads to quick reaction, safe distance
to obstacles, and shortest travelled path or time. However,
it is time-consuming to train a RL policy because of defi-
ciencies in network convergence. Existing works made some
optimizations to improve convergence (e.g., DDPG, PPO) in
games and physical robots to shorten training time of RL,
but there is still a long way to go in real-world engineering
and manufacturing for commercial purposes. Recent trend to
improve the network convergence is to create hybrid architec-
ture that is the fusion of high-performance components (e.g.,
replay buffer, actor-critic architecture, policy entropy, multi-
threadmethod).Apart fromoptimizations ofmotionplanning
algorithms, hardware planningmay be a possible direction to
improve the performance of future motion planning system.
Hardware planning refers to the reconfiguration and adjust-
ment of hardware of robotic system, therefore robots can be

reconfigured into different shapes (Salemi et al., 2006;Wang
et al., 2020) to improve their performance in motion plan-
ning.

Decision: Traditional algorithms (e.g., A*) feature the
global trajectory planning, while optimal value RL and pol-
icy gradient RL feature the safe and quick motion planning
locally. It is a good direction to realize task mentioned above
by combining traditional algorithmwith RL. This is achieved
by fusing the commands generated by each algorithm or
functional module (e.g., functional modules in ROS) via
algorithm-level and system-level data fusions. Multi-sensor
fusion technique can not only fuse information of sensors
from pixel and feature level as the inputs, but also fuse dif-
ferent types of decisional commands from decisional level
in a loose-coupled way. Hence, overall path of the robot is
expected to approximate the shortest path, and safety and
efficiency can be ensured simultaneously. Recent state of art
borrows the group decisionmaking theory to sensor fusion or
data fusion to solve the problem of howweights or impacts of
each decisional command are determined from the consensus
level and confidence level (Ji et al., 2020). Some pioneering
ideas about how to better combine or integrate algorithms can

123

Journal of Intelligent Manufacturing

Data

collecton

Preprocess

Motion

planing

Quantity

Quality Method to collect high-quality data

Method to collect sufficient data

Data fusion

Data

translation

Traditional

algorithms

RL

Decision Fusions

Input fusion strategies

Feature interpretation

Search space reducing

Speed and stability of convergence

Decision fusions (algorithm and system levels)

Supervised

learning
Combination with other algorithms

Hardware

planning
Self-reconfiguration to have different shapes

Joint

decision
Collaborative operations (software and hardware)

Robustness and resilience

Fig. 28 Processing steps for motion planning task

be also seen in Zhang et al. (2019). Apart from hybrid algo-
rithms or decisional commands, joint decision making may
be helpful to improve the performance of future motion plan-
ning system. This is achieved via collaborative operations
from software-based planning (algorithm-based planning)
and hardware planning.

Finally, the robustness and resilience of motion planning
system should be considered if robots are expected to have
better performance in engineering and manufacturing for
commercial use. Robustness refers to the ability to resist out-
side noise or attack (e.g., the cyber-attack in ROS), while

resilience refers to the ability of the robot to recover its
function after the robot is partially damaged (Wang et al.,
2020). To conclude, Fig. 28 lists possible research directions,
but attentions to improve the performance of robotic motion
planning are expected to be paid on: (1) data fusion and trans-
lation of inputted features; (2) the optimization in traditional
planning algorithms to reduce the search space by combining
traditional algorithmswith supervised learning or RL; (3) the
optimization in network convergence for RL.

123

Journal of Intelligent Manufacturing

Fig. 29 Fusion of DQN or CNN with RRT

Conclusion

This paper carefully analyzes principles of robotic motion
planning algorithms in section II-VI. These algorithms
include traditional planning algorithms, classical ML, opti-
mal value RL and policy gradient RL. Direct comparisons
of these algorithms are made in section VII according to
their principles. Hence, a clear understanding about mecha-
nisms of motion planning algorithms is provided. Analytical
comparisons of these algorithms are made in section VII
according to the newcriteria summarized that include local or
global planning, path length, optimal velocity, reaction speed,
safe distance, and time-sequential path. Hence, general per-
formances of these algorithms and their potential application
domains are obtained. The convergence speed and stability
of optimal value RL and policy gradient RL are specially
compared in section VII because they are recent research
focus on robotic motion planning. Hence, a detailed and
clear understanding of these algorithms in network conver-
gence are provided. Finally, a common motion planning task
is analyzed: long-distance motion planning with safety and
efficiency (e.g., long-distance luggage delivery by robots)
according to processing steps (data collection, data pre-
processing, motion planning and decision making). Hence,
potential research directions are obtained, and we hope they
are useful to pave ways for further improvements of robotic
motion planning algorithms or motion planning systems in
academia, engineering, and manufacturing.

Author contributions Conceptualization: [CZ], [PF], [BH]; Methodol-
ogy: [CZ]; Formal analysis and investigation: [CZ]; Writing—original
draft preparation: [CZ];Writing—reviewand editing: [PF], [BH]; Fund-
ing acquisition; Resources: [CZ], [BH], [PF]; Supervision: [PF], [BH].

Funding Open access funding provided by University of Eastern Fin-
land (UEF) including Kuopio University Hospital. The authors did not
receive support from any organization for the submitted work.

Declarations

Conflict of interests All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial
interest or non-financial interest in the subject matter or materials dis-
cussed in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Arkin, R. C., Riseman, E. M., & Hansen, A. (1887). AuRA: an
architecture for vision-based robot navigation. Proceedings of the
DARPA ImageUnderstandingWorkshop, LosAngeles, CA, Febru-
ary 1987, pp. 417–413.

Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz J. (2016).
Reinforcement learning through asynchronous advantage Actor-
Critic on a GPU. arXiv, arXiv:1611.06256 [cs.LG].

Bae, H., Kim, G., Kim, J., Qian, D., & Lee, S. (2019). Multi-robot path
planning method using reinforcement learning. Applied Science.,
9, 3057.

Bai, H., Cai, S., Ye, N., Hsu, D., & Lee, W. S. (2015). Intention-
aware online POMDPplanning for autonomous driving in a crowd.
2015 IEEE International Conference on Robotics and Automation
(ICRA), Seattle, WA, pp. 454–460.

Bautista, G. D., Perez, J., Milanés, V., & Nashashibi, F. (2015). A
review of motion planning techniques for automated vehicles.
IEEE Transactions on Intelligent Transportation Systems, 17(4),
1–11.

Bautista, D. G., Perez, J., Lattarulo, R. A., Milanes, V., Nashashibi,
F. (2014). Continuous curvature planning with obstacle avoidance
capabilities in urban scenarios. IEEE International Conference on
Intelligent Transportation Systems, pp. 1430–1435.

Bellemare, M. G., Dabney, W., Rémi, M. (2017). A distributional per-
spective on reinforcement learning. arXiv:1707.06887 [cs.LG].

Bilbeisi, K. M., & Kesse, M. (2017). Tesla: A successful entrepreneur-
ship strategy. Morrow, GA: Clayton State University.

Borenstein, J.,&Koren,Y. (1989). Real-time obstacle avoidance for fast
mobile robots. IEEE Transactions on Systems, Man, and Cyber-
netics, 19(5), 1179–1187.

Borenstein, J., & Koren, Y. (1991). The vector field histogram-fast
obstacle avoidance for mobile robots. IEEE Transactions on
Robotics and Automation, 7(3), 278–288.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classi-
fication network outputs, with relationships to statistical pattern

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1611.06256
https://arxiv.org/abs/1707.06887

Journal of Intelligent Manufacturing

recognition. In F. Fogleman Soulie & J. Herault (Eds.), Neuro-
computing: Algorithms, architectures and applications. Springer-
Verlag.

Brooks, R. A. (1986). A robust layered control system for a mobile
robot. IEEE Transactions on Robotics and Automation, 1(1), 1–10.

Cai, M., Lin, Y., Han, B., Liu, C., & Zhang, W. (2017). On a simple and
efficient approach to probability distribution function aggregation.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
47(9), 2444–2453.

Chan, K. C., Lenard, C. T., Mills, T. M. (2012). An introduction to
Markov chains. In 49th Annual Conference of Mathematical Asso-
ciation of Victoria, Melbourne, pp 40–47.

Chao, Y., Xiang, X., & Wang, C. (2020). Towards real-time path plan-
ning through deep reinforcement learning for UAV in dynamic
environment. Journal of Intelligent and Robotic Systems, 98,
297–309.

Chen, Y., Liu, M., Everett, M., & How, J. P. (2016). Decentral-
ized non-communicatingmultiagent collision avoidancewith deep
reinforcement learning, arXiv:1609.07845v2 [cs.MA].

Chen, C., Liu, Y., Kreiss, S., & Alahi, A. (2019). Crowd-robot inter-
action: Crowd-aware robot navigation with attention-based deep
reinforcement learning. International Conference on Robotics and
Automation (ICRA), pp. 6015–6022.

Chen, C., Hu, S., Nikdel, P., Mori, G., & Savva, M. (2020). Rela-
tional graph learning for crowd navigation. arXiv:1909.13165v3
[cs.RO].

Codevilla, F., Müller, M., López, A., Koltun, V. & Dosovitskiy,
A. (2018). End-to-end driving via conditional imitation learn-
ing. IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 4693–4700.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).
Introduction to algorithms. The MIT Press.

Coulom, R. (2006). Efficient selectivity and backup operators in
Monte-Carlo tree search.Computers andGames, 5th International
Conference, CG 2006, Turin, Italy, May 29–31, 2006.

Daniel,K.,Nash,A.,Koenig, S.,&Felner,A. (2014).Theta*:Any-angle
path planning on grids. Journal of Artificial Intelligence Research,
39(1), 533–579.

Dijkstra, E. W. (1959). A note on two problems in connexion with
graphs. Numerische Mathematik, 1, 269–271.

Dos Santos Mignon, A., & De Azevedo Da Rocha, R. L. (2017). An
adaptive implementation of ε-greedy in reinforcement learning. In
Procedia Computer Science, 109, 1146–1151.

Durrant-Whyte, H., & Henderson, T. C. (2008). Multi-sensor data
fusion. In B. Siciliano & O. Khatib (Eds.), Springer handbook
of robotics. Springer handbooks. Springer.

Everett, M., Chen, Y., How, J. P. (2018). Motion planning among
dynamic, decision-making robots with deep reinforcement learn-
ing. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, pp. 3052–3059.

Evgeniou, T., & Pontil, M. (1999) Support vector machines: Theory
and applications. In Advanced Course on Artificial Intelligence,
Springer, Berlin, Heidelberg, pp. 249–257.

Fan, H., Zhu, F., Liu, C., Zhang, L., Zhuang, L., Li, D., Zhu, W., Hu,
J., Li, H., & Kong, Q. (2008). Baidu apollo em motion planner.
arXiv:1807.08048.

Farouki, R. T., & Sakkalis, T. (1994). Pythagorean-hodograph space
curves. Advances in Computational Mathematics, 2(1), 41–66.

Ferguson, D., Howard, T. M., & Likhachev, M. (2008). Motion plan-
ning in urban environments. Journal of Field Robotics, 25(11–12),
939–960.

Ferguson, D., & Stentz, A. (2006). Using interpolation to improve path
planning: The fieldD* algorithm. Journal of Field Robotics, 23(2),
79–101.

Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environ-
ments using velocity obstacles. International Journal of Robotics
Research, 17(7), 760–772.

Fortunato, M., Azar, M. G., Piot, B., et al. (2017). Noisy networks for
exploration, arXiv:1706.10295 [cs.LG].

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics and Automation
Magazine, 4(1), 23–33.

Funke, J., Theodosis, P., Hindiyeh, R., et al. (2012). Up to the lim-
its: Autonomous Audi TTS. IEEE Intelligent Vehicles Symposium
(IV). Alcala De Henares, 2012, 541–547.

G., Samuel, G. (2017). Google sibling waymo launches fully
autonomous ride-hailing service. The Guardian 7.

Gao, W., Hus, D., Lee, W. S., Shen, S., Subramanian, K. (2017).
Intention-net: integrating planning and deep learning for goal-
directed autonomous navigation. arXiv, arXiv:1710.05627 [cs.AI].

Gilhyun, R. (2018). Applying asynchronous deep classification net-
works and gaming reinforcement learning-based motion plan-
ners to mobile robots. IEEE Robotics and Automation Society,
pp. 6268–6275.

Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D.,
& Dubey P. (2009). Clearpath: Highly parallel collision avoid-
ance for multi-agent simulation. Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 177–187.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the
heuristic determination ofminimumcost paths. IEEETransactions
on Systems Science and Cybernetics, 4(2), 100–107.

Hasselt, H. V., Guez, A. & Silver, D. (2016). Deep reinforcement learn-
ing with double q-learning. In Proceedings of the AAAI conference
on artificial intelligence, vol. 30, no. 1.

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770–778.

Hessel, M., Modayil, J., Van, H. H., et al. (2017). Rainbow: Combining
improvements in deep reinforcement learning. arXiv:1710.02298
[cs.AI].

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735–1780.

Indrajaya, M. A., Affandi, A., & Pratomo, I. (2015). Design of geo-
graphic information system for tracking and routing using dijkstra
algorithm for public transportation. In 2015 1st International Con-
ference on Wireless and Telematics (ICWT), pp. 1–4.

Inoue, M., Yamashita, T., & Nishida, T. (2019). Robot path planning
by LSTM network under changing environment. In S. Bhatia, S.
Tiwari, K. Mishra, & M. Trivedi (Eds.), Advances in computer
communication and computational sciences. Springer.

Isele, D., Cosgun, A., Subramanian, K., Ffjimura, K. (2017). Navigat-
ing occluded intersections with autonomous vehicles using deep
reinforcement learning. arXiv, arXiv:1705.01196 [cs.AI].

Jeon, J. H., Cowlagi, R. V., Peter, S. C., et al. (2013). Optimal motion
planning with the half-car dynamical model for autonomous high-
speed driving. American Control Conference (ACC), pp. 188–193.

Ji, C., Lu, X., &Zhang,W. (2020). A biobjective optimizationmodel for
expert opinions aggregation and its application in group decision
making. IEEE Systems Journal, 15(2), 2834–2844.

Jorgensen, T., Tama, A. (2019). Harnessing reinforcement learning for
neural motion planning. arXiv, arXiv:1906.00214 [cs.RO].

Kakade, S., &Langford, J. (2002). Approximately optimal approximate
reinforcement learning. ICML, 2, 267–274.

Kalos, M. H., & Whitlock, P. A. (2008). Monte Carlo methods. Wiley-
VCH. ISBN 978-3-527-40760-6.

Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (2002).
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. IEEETransactions onRobotics andAutomation,
12(4), 566–580.

123

https://arxiv.org/abs/1609.07845v2
https://arxiv.org/abs/1909.13165v3
https://arxiv.org/abs/:1807.08048
https://arxiv.org/abs/1706.10295
https://arxiv.org/abs/1710.05627
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1705.01196
https://arxiv.org/abs/1906.00214

Journal of Intelligent Manufacturing

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and
mobile robots. International Journal of Robotics Research, 5(1),
90–98.

Kim, B., Kaelbling, L. P., & Lozano-Perez, T. (2019). Adversarial
actor-critic method for task and motion planning problems using
planning experience. AAAI Conference on Artificial Intelligence
(AAAI), 33(01), 8017–8024.

Kinnunen, T., Sidoroff, I., Tuononen, M., & Fränti, P. (2011).
Comparison of clustering methods: A case study of text-
independent speaker modeling. Pattern Recognition Letters,
32(13), 1604–1617.

Konda, V. R., Tsitsiklis, J. N. (2001). Actor-critic algorithms. Society
for Industrial and Applied Mathematics, vol 42.

Krogh, B. (1984). A generalized potential field approach to obstacle
avoidance control. Proceedings of SME Conference on Robotics
Research: The Next Five Years and Beyond, Bethlehem, PA.

LaValle, S. M., & Kuffner, J. J. (1999). Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5),
378–400.

Lecun, Y., Bottou, L., Bengio, Y., & Patrick, H. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324.

Lei, X., Zhang, Z., & Dong, P. (2018). Dynamic path planning of
unknown environment based on deep reinforcement learning.
Journal of Robotics, 2018, 1–10.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S.
(2008). Anytime search in dynamic graphs. Artificial Intelligence,
172(14), 1613–1643.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wierstra, D. (2019). Continuous control with deep rein-
forcement learning. arXiv:1509.02971 [cs.LG].

Long, P., Fan, T., Liao, X., Liu,W., Zhang,H.,&Pan, J. (2018). Towards
optimally decentralized multi-robot collision avoidance via deep
reinforcement learning. , arXiv:1709.10082v3 [cs.RO].

Mariescu, I. R., & Franti, P. (2018). Cell Net: Inferring road networks
from GPS trajectories. ACM Transactions on Spatial Algorithms
and Systems, 4(3), 1–22.

Masoud, A. A. (2007). Decentralized self-organizing potential field-
based control for individually motivated mobile agents in a clut-
tered environment: A vector-harmonic potential field approach.
IEEE Transactions on Systems, Man, and Cybernetics-Part a: Sys-
tems and Humans, 37(3), 372–390.

Meyes, R., Tercan, H., Roggendorf, S., Thomas, T., Christian, B.,
Markus, O., Christian, B., Sabina, J., Tobias, M. (2017). Motion
planning for industrial robots using reinforcement learning. In 50th
CIRP Conference on Manufacturing Systems, 63:107–112.

Meystel, A. (1990). Knowledge based nested hierarchical control.
Advances in Automation and Robotics, 2, 63–152.

Minguez, J., Lamiraux, F., & Laumond, J. P. (2008). Motion planning
and obstacle avoidance. Springer International Publishing.

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2013). Playing atari with
deep reinforcement learning. arXiv, arXiv:1312.5602 [cs.LG].

Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level con-
trol through deep reinforcement learning. Nature, 518, 529–533.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley,
T., Silver, D., Kavukcuoglu, K. (2016). Asynchronousmethods for
deep reinforcement learning. arXiv, arXiv:1602.01783 [cs.LG].

Montemerlo, M., Becker, J., Bhat, S., et al. (2008). Junior: The stanford
entry in the urban challenge. Journal of Field Robotics, 25(9),
569–597.

Munos, R., Stepleton, T., Harutyunyan, A., Bellemare, M. G. (2016).
Safe and efficient off-policy reinforcement learning. arXiv, arXiv:
1606.02647 [cs.LG].

Murphy, R. R. (2000). Introduction to AI robotics. MIT press.
Oh, J., Guo, Y., Singh, S. & Lee, H. (2018). Self-imitation learning.

arXiv 2018, arXiv:1806.05635v1 [cs.LG].

Panov, A. I., Yakovlev, K. S., & Suvorov, R. (2018). Grid path planning
with deep reinforcement learning: Preliminary results. Procedia
Computer Science, 123, 347–353.

Paxton, C., Raman, V., Hager, G. D., & Kobilarov, M. (2017). Combin-
ing neural networks and tree search for task and motion planning
in challenging environments. 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Vancouver, BC,
pp. 6059–6066.

Qureshi, A. H., Simeonov, A., Bency, M. J., Yip, M. C. (2018). Motion
planning networks, arXiv:1806.05767 [cs.RO].

Reeds, J. A., & Shepp, L. A. (1990). Optimal paths for a car that
goes both forward and backward. Pacific Journal of Math, 145(2),
367–393.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using
connectionist systems. University of Cambridge.

Salemi, B.,Moll,M.,&Shen,W.M. (2006). SUPERBOT:Adeployable
multi–functional and modular self–reconfigurable robotic system.
Proceeding of IEEE/RSJ International Conference on Intelligent
and Robots System, pp. 3636–3641.

Schaul, T., Quan, J., Antonoglou, I., Silver, D. (2016). Prioritized
experience replay. International Conference on Learning Repre-
sentations (ICLR).

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2017).
Trust region policy optimization. arXiv:1502.05477v5 [cs.LG].

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv:1707.06347v2
[cs.LG].

Silver, D., Huang, A., Maddison, C. J., et al. (2016). Mastering the
game of Go with deep neural networks and tree search. Nature,
529(7587), 484–489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.
(2014). Deterministic policy gradient algorithms. In Proceedings
of the 31st International Conference on International Conference
on Machine Learning, vol. 32. pp 387–395.

Smart, W. D., Kaelbling, L. P. (2002). Effective reinforcement learning
formobile robots. IEEE International Conference on Robotics and
Automation, vol 4.

Stentz, A. (1994). Optimal and efficient path planning for partially-
known environments. Robotics and Automation, pp. 203–220.

Sui, Z., Pu, Z., Yi, J., Tian, X. (2018). Path Planning of multiagent
constrained formation through deep reinforcement Learning. 2018
International Joint Conference on Neural Networks (IJCNN).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An intro-
duction. MIT Press.

Sutton, R., Mcallester, D. A., Singh, S., Mansour, Y. (1999). Policy
gradientmethods for reinforcement learningwith function approx-
imation. In Proceedings of the 12th International Conference on
Neural Information Processing Systems, MIT Press, Cambridge,
MA, USA, pp 1057–1063.

Sutton,R. S.,Maei,H.R., Precup,D., et al. (2009). Fast gradient-descent
methods for temporal-difference learning with linear function
approximation. In 26th International Conference on Machine
Learning, Montreal, Canada.

Tobaruela, J. A. (2012). Reactive and path-planningmethods for mobile
robot navigation. PhD dissertation, Universitat de les Illes Balears.
http://hdl.handle.net/11201/151880.

Tsitsiklis, J. N. (2003). On the convergence of optimistic policy itera-
tion. Journal of Machine Learning Research, 3(1), 59–72.

Van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity
obstacles for real-time multi-agent navigation. IEEE International
Conference on Robotics and Automation, 2008, 1928–1935.

Van Den Berg, J., Guy, S. J., Lin, M., Manocha, D. (2011). Reciprocal
n-body collision avoidance. Robotics research, 2011, pp. 3–19.

Wang, L. (2005). On the euclidean distance of image. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 27(8),
1334–1339.

123

https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1709.10082v3
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1806.05635v1
https://arxiv.org/abs/1806.05767
https://arxiv.org/abs/1502.05477v5
https://arxiv.org/abs/1707.06347v2
http://hdl.handle.net/11201/151880

Journal of Intelligent Manufacturing

Wang, F., Qian, Z., Yan, Z., Yuan, C., & Zhang, W. (2020). A novel
resilient robot: Kinematic analysis and experimentation. IEEE
Access, 8, 2885–2892.

Wang,Z., Freitas,N., Lanctot,M. (2015).Duelingnetwork architectures
for deep reinforcement learning. arXiv:1511.06581 [cs.LG].

Weston, J., Watkins, C. (1998). Multi-class support vector machines.
Technical report, Department of computer science, Royal Hol-
loway, university of London, May 20.

Williams, R. J. (1992). Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning, 8,
229–256.

Xu, W., Wei, J., Dolan, J. M., Zhao, H., Zha, H. (2012). A real-time
motion planner with trajectory optimization for autonomous vehi-
cles. IEEE International Conference on Robotics and Automation,
pp. 2061–2067.

Zhang,W. J., Wang, J.W., & Lin, Y. (2019). Integrated design and oper-
ation management for enterprise systems. Enterprise Information
Systems, 13(4), 424–429.

Zhang, J. (2019) Gradient descent based optimization algorithms for
deep learning models training, arXiv:1903.03614v1 [cs.LG].

Ziegler, J., Stiller, C. (2009). Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios. IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pp. 1879–1884.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1903.03614v1

	A review of motion planning algorithms for intelligent robots
	Abstract
	Introduction
	Traditional planning algorithms
	Graph-search algorithms
	Sampling-based algorithms
	Interpolating curve algorithms
	Reaction-based algorithms

	Classical ML
	Optimal value RL
	Q learning
	Nature deep Q-learning network
	Double deep Q-learning network
	Dueling deep Q-learning network

	Policy gradient RL
	Policy gradient method
	Actor-critic algorithm
	A3C and A2C
	DPG and DDPG
	TRPO and PPO

	Analytical comparisons
	Direct comparisons of motion planning algorithm
	Analytical comparisons of motion planning algorithms
	Comparisons according to general criteria
	Comparisons of convergence speed and stability

	Future directions of robotic motion planning
	Conclusion
	References

